1
|
Scutca AC, Nicoară DM, Mang N, Jugănaru I, Brad GF, Mărginean O. Correlation between Neutrophil-to-Lymphocyte Ratio and Cerebral Edema in Children with Severe Diabetic Ketoacidosis. Biomedicines 2023; 11:2976. [PMID: 38001976 PMCID: PMC10669654 DOI: 10.3390/biomedicines11112976] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Diabetic ketoacidosis (DKA), a common onset modality of type 1 diabetes mellitus (T1DM), can lead, in rare instances, to the development of cerebral edema, which is the leading cause of mortality in T1DM. Aside from the identification of several demographic and clinical risk factors for cerebral edema, attention has also been drawn to the possible link between systemic inflammation and neuroinflammation. This single-center retrospective study of 98 children with severe DKA aimed to investigate the possible relationship between neutrophil-to-lymphocyte ratio NLR) levels and the presence of cerebral edema. Patients were classified into three groups: alert (n = 28), subclinical cerebral edema (n = 59), and overt cerebral edema (n = 11). Lower blood pH and elevated NLR and blood urea were correlated with the presence of cerebral edema (p < 0.001). After a multivariable risk adjustment for possible confounding factors, such as age, pH, corrected sodium, and BUN, the NLR remained positively associated with cerebral edema (p = 0.045). As such, NLR may be an additional instrument to help practitioners target patients with a higher risk of severe cerebral edema. These patients would benefit from more rigorous neurologic surveillance, enabling the prompt identification of early signs of cerebral edema.
Collapse
Affiliation(s)
- Alexandra-Cristina Scutca
- Department XI Pediatrics, Discipline I Pediatrics, ‘Victor Babeş’ University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania; (A.-C.S.); (N.M.); (I.J.); (G.-F.B.); (O.M.)
- Department of Pediatrics I, Children’s Emergency Hospital “Louis Turcanu”, 300011 Timisoara, Romania
| | - Delia-Maria Nicoară
- Department XI Pediatrics, Discipline I Pediatrics, ‘Victor Babeş’ University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania; (A.-C.S.); (N.M.); (I.J.); (G.-F.B.); (O.M.)
| | - Niculina Mang
- Department XI Pediatrics, Discipline I Pediatrics, ‘Victor Babeş’ University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania; (A.-C.S.); (N.M.); (I.J.); (G.-F.B.); (O.M.)
- Department of Pediatrics I, Children’s Emergency Hospital “Louis Turcanu”, 300011 Timisoara, Romania
| | - Iulius Jugănaru
- Department XI Pediatrics, Discipline I Pediatrics, ‘Victor Babeş’ University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania; (A.-C.S.); (N.M.); (I.J.); (G.-F.B.); (O.M.)
- Department of Pediatrics I, Children’s Emergency Hospital “Louis Turcanu”, 300011 Timisoara, Romania
- Research Center for Disturbances of Growth and Development in Children BELIVE, ‘Victor Babeş’ University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania
| | - Giorgiana-Flavia Brad
- Department XI Pediatrics, Discipline I Pediatrics, ‘Victor Babeş’ University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania; (A.-C.S.); (N.M.); (I.J.); (G.-F.B.); (O.M.)
- Department of Pediatrics I, Children’s Emergency Hospital “Louis Turcanu”, 300011 Timisoara, Romania
| | - Otilia Mărginean
- Department XI Pediatrics, Discipline I Pediatrics, ‘Victor Babeş’ University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania; (A.-C.S.); (N.M.); (I.J.); (G.-F.B.); (O.M.)
- Department of Pediatrics I, Children’s Emergency Hospital “Louis Turcanu”, 300011 Timisoara, Romania
- Research Center for Disturbances of Growth and Development in Children BELIVE, ‘Victor Babeş’ University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania
| |
Collapse
|
2
|
García-Velázquez L, Massieu L. The proteomic effects of ketone bodies: implications for proteostasis and brain proteinopathies. Front Mol Neurosci 2023; 16:1214092. [PMID: 37575967 PMCID: PMC10413579 DOI: 10.3389/fnmol.2023.1214092] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/07/2023] [Indexed: 08/15/2023] Open
Abstract
A growing body of evidence supports the beneficial effects of the ketone bodies (KBs), acetoacetate and β-hydroxybutyrate (BHB), on diverse physiological processes and diseases. Hence, KBs have been suggested as therapeutic tools for neurodegenerative diseases. KBs are an alternative fuel during fasting and starvation as they can be converted to Ac-CoA to produce ATP. A ketogenic diet (KD), enriched in fats and low in carbohydrates, induces KB production in the liver and favors their use in the brain. BHB is the most abundant KB in the circulation; in addition to its role as energy fuel, it exerts many actions that impact the set of proteins in the cell and tissue. BHB can covalently bind to proteins in lysine residues as a new post-translational modification (PTM) named β-hydroxybutyrylation (Kbhb). Kbhb has been identified in many proteins where Kbhb sites can be critical for binding to other proteins or cofactors. Kbhb is mostly found in proteins involved in chromatin structure, DNA repair, regulation of spliceosome, transcription, and oxidative phosphorylation. Histones are the most studied family of proteins with this PTM, and H3K9bhb is the best studied histone mark. Their target genes are mainly related to cell metabolism, chromatin remodeling and the control of circadian rhythms. The role of Kbhb on physiological processes is poorly known, but it might link KB metabolism to cell signaling and genome regulation. BHB also impacts the proteome by influencing proteostasis. This KB can modulate the Unfolded Protein Response (UPR) and autophagy, two processes involved in the maintenance of protein homeostasis through the clearance of accumulated unfolded and damaged proteins. BHB can support proteostasis and regulate the UPR to promote metabolism adaptation in the liver and prevent cell damage in the brain. Also, BHB stimulates autophagy aiding to the degradation of accumulated proteins. Protein aggregation is common to proteinopathies like Alzheimer's (AD) and Parkinson's (PD) diseases, where the KD and BHB treatment have shown favorable effects. In the present review, the current literature supporting the effects of KBs on proteome conformation and proteostasis is discussed, as well as its possible impact on AD and PD.
Collapse
Affiliation(s)
| | - Lourdes Massieu
- Department of Molecular Neuropathology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), México City, Mexico
| |
Collapse
|
3
|
Zhong R, Miao R, Meng J, Wu R, Zhang Y, Zhu D. Acetoacetate promotes muscle cell proliferation via the miR-133b/SRF axis through the Mek-Erk-MEF2 pathway. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1009-1016. [PMID: 34184741 DOI: 10.1093/abbs/gmab079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Indexed: 12/13/2022] Open
Abstract
Acetoacetate (AA) is an important ketone body that is used as an oxidative fuel to supply energy for the cellular activities of various tissues, including the brain and skeletal muscle. We recently revealed a new signaling role for AA by showing that it promotes muscle cell proliferation in vitro, enhances muscle regeneration in vivo, and ameliorates the dystrophic muscle phenotype of Mdx mice. In this study, we provide new molecular insight into this function of AA. We show that AA promotes C2C12 cell proliferation by transcriptionally upregulating the expression of muscle-specific miR-133b, which in turn stimulates muscle cell proliferation by targeting serum response factor. Furthermore, we show that the AA-induced upregulation of miR-133b is transcriptionally mediated by MEF2 via the Mek-Erk1/2 signaling pathway. Mechanistically, our findings provide further convincing evidence that AA acts as signaling metabolite to actively regulate various cellular activities in mammalian cells.
Collapse
Affiliation(s)
- Ran Zhong
- The State Key Laboratory of Medical Molecular Biology, Chinese Academy of Medical Sciences and School of Basic Medicine, Institute of Basic Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Renling Miao
- The State Key Laboratory of Medical Molecular Biology, Chinese Academy of Medical Sciences and School of Basic Medicine, Institute of Basic Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Jiao Meng
- The State Key Laboratory of Medical Molecular Biology, Chinese Academy of Medical Sciences and School of Basic Medicine, Institute of Basic Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Rimao Wu
- The State Key Laboratory of Medical Molecular Biology, Chinese Academy of Medical Sciences and School of Basic Medicine, Institute of Basic Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Yong Zhang
- The State Key Laboratory of Medical Molecular Biology, Chinese Academy of Medical Sciences and School of Basic Medicine, Institute of Basic Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Dahai Zhu
- The State Key Laboratory of Medical Molecular Biology, Chinese Academy of Medical Sciences and School of Basic Medicine, Institute of Basic Medical Sciences, Peking Union Medical College, Beijing 100005, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510320, China
| |
Collapse
|
4
|
Hoffman WH, Whelan SA, Lee N. Tryptophan, kynurenine pathway, and diabetic ketoacidosis in type 1 diabetes. PLoS One 2021; 16:e0254116. [PMID: 34280211 PMCID: PMC8289002 DOI: 10.1371/journal.pone.0254116] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 06/20/2021] [Indexed: 12/22/2022] Open
Abstract
Diabetic ketoacidosis (DKA) is a serious complication of complete insulin deficiency and insulin resistance in Type 1 diabetes (T1D). This results in the body producing high levels of serum ketones in an attempt to compensate for the insulin deficiency and decreased glucose utilization. DKA's metabolic and immunologic dysregulation results in gradual increase of systemic and cerebral oxidative stress, along with low grade systemic and cerebral inflammation and the development of pretreatment subclinical BE. During treatment the early progression of oxidative stress and inflammation is hypothesized to advance the possibility of occurrence of crisis of clinical brain edema (BE), which is the most important cause of morbidity and mortality in pediatric DKA. Longitudinal neurocognitive studies after DKA treatment show progressive and latent deficits of cognition and emphasize the need for more effective DKA treatment of this long-standing conundrum of clinical BE, in the presence of systemic osmotic dehydration, metabolic acidosis and immune dysregulation. Candidate biomarkers of several systemic and neuroinflammatory pathways prior to treatment also progress during treatment, such as the neurotoxic and neuroprotective molecules in the well-recognized tryptophan (TRP)/kynurenine pathway (KP) that have not been investigated in DKA. We used LC-MS/MS targeted mass spectrometry analysis to determine the presence and initiation of the TRP/KP at three time points: A) 6-12 hours after initiation of treatment; B) 2 weeks; and C) 3 months following DKA treatment to determine if they might be involved in the pathogenesis of the acute vasogenic complication of DKA/BE. The Trp/KP metabolites TRP, KYN, quinolinic acid (QA), xanthurnenic acid (XA), and picolinic acid (PA) followed a similar pattern of lower levels in early treatment, with subsequent increases. Time point A compared to Time points B and C were similar to the pattern of sRAGE, lactate and pyruvic acid. The serotonin/melatonin metabolites also followed a similar pattern of lower quantities at the early stages of treatment compared to 3 months after treatment. In addition, glutamate, n-acetylglutamate, glutamine, and taurine were all lower at early treatment compared to 3 months, while the ketones 3-hydroxybutaric acid and acetoacetate were significantly higher in the early treatment compared to 3 months. The two major fat metabolites, L-carnitine and acetyl-L-carnitine (ALC) changed inversely, with ALC significantly decreasing at 2 weeks and 3 months compared to the early stages of treatment. Both anthranilic acid (AA) and 3-OH-anthranilic acid (3OH-AA) had overall higher levels in the early stages of treatment (A) compared to Time points (B and C). Interestingly, the levels of AA and 3OH-AA early in treatment were higher in Caucasian females compared to African American females. There were also differences in the metabolite levels of QA and kynurenic acid (KA) between genders and between races that may be important for further development of custom targeted treatments. We hypothesize that the TRP/KP, along with the other inflammatory pathways, is an active participant in the metabolic and immunologic pathogenesis of DKA's acute and chronic insults.
Collapse
Affiliation(s)
- William H. Hoffman
- Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
- * E-mail: (WHH); (SAW)
| | - Stephen A. Whelan
- Department of Chemistry, Chemical Instrumentation Center (CIC), Boston University, Boston Massachusetts, United States of America
- * E-mail: (WHH); (SAW)
| | - Norman Lee
- Department of Chemistry, Chemical Instrumentation Center (CIC), Boston University, Boston Massachusetts, United States of America
| |
Collapse
|
5
|
Azova S, Rapaport R, Wolfsdorf J. Brain injury in children with diabetic ketoacidosis: Review of the literature and a proposed pathophysiologic pathway for the development of cerebral edema. Pediatr Diabetes 2021; 22:148-160. [PMID: 33197066 PMCID: PMC10127934 DOI: 10.1111/pedi.13152] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/06/2020] [Accepted: 10/29/2020] [Indexed: 01/24/2023] Open
Abstract
Cerebral edema (CE) is a potentially devastating complication of diabetic ketoacidosis (DKA) that almost exclusively occurs in children. Since its first description in 1936, numerous risk factors have been identified; however, there continues to be uncertainty concerning the mechanisms that lead to its development. Currently, the most widely accepted hypothesis posits that CE occurs as a result of ischemia-reperfusion injury, with inflammation and impaired cerebrovascular autoregulation contributing to its pathogenesis. The role of specific aspects of DKA treatment in the development of CE continues to be controversial. This review critically examines the literature on the pathophysiology of CE and attempts to categorize the findings by types of brain injury that contribute to its development: cytotoxic, vasogenic, and osmotic. Utilizing this scheme, we propose a multifactorial pathway for the development of CE in patients with DKA.
Collapse
Affiliation(s)
- Svetlana Azova
- Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Robert Rapaport
- Division of Pediatric Endocrinology and Diabetes, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Joseph Wolfsdorf
- Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Nasser S, Vialichka V, Biesiekierska M, Balcerczyk A, Pirola L. Effects of ketogenic diet and ketone bodies on the cardiovascular system: Concentration matters. World J Diabetes 2020; 11:584-595. [PMID: 33384766 PMCID: PMC7754168 DOI: 10.4239/wjd.v11.i12.584] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/29/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023] Open
Abstract
Ketone bodies have emerged as central mediators of metabolic health, and multiple beneficial effects of a ketogenic diet, impacting metabolism, neuronal pathologies and, to a certain extent, tumorigenesis, have been reported both in animal models and clinical research. Ketone bodies, endogenously produced by the liver, act pleiotropically as metabolic intermediates, signaling molecules, and epigenetic modifiers. The endothelium and the vascular system are central regulators of the organism’s metabolic state and become dysfunctional in cardiovascular disease, atherosclerosis, and diabetic micro- and macrovascular complications. As physiological circulating ketone bodies can attain millimolar concentrations, the endothelium is the first-line cell lineage exposed to them. While in diabetic ketoacidosis high ketone body concentrations are detrimental to the vasculature, recent research revealed that ketone bodies in the low millimolar range may exert beneficial effects on endothelial cell (EC) functioning by modulating the EC inflammatory status, senescence, and metabolism. Here, we review the long-held evidence of detrimental cardiovascular effects of ketoacidosis as well as the more recent evidence for a positive impact of ketone bodies—at lower concentrations—on the ECs metabolism and vascular physiology and the subjacent cellular and molecular mechanisms. We also explore arising controversies in the field and discuss the importance of ketone body concentrations in relation to their effects. At low concentration, endogenously produced ketone bodies upon uptake of a ketogenic diet or supplemented ketone bodies (or their precursors) may prove beneficial to ameliorate endothelial function and, consequently, pathologies in which endothelial damage occurs.
Collapse
Affiliation(s)
- Souad Nasser
- Carmen Laboratory, INSERM Unit 1060—Lyon 1 University, Pierre Benite 69310, France
| | - Varvara Vialichka
- Faculty of Biology and Environmental Protection, Department of Molecular Biophysics, University of Lodz, Lodz 90-236, Poland
- The University of Lodz Doctoral School of Exact and Natural Sciences, Lodz 90-237, Poland
| | - Marta Biesiekierska
- Faculty of Biology and Environmental Protection, Department of Molecular Biophysics, University of Lodz, Lodz 90-236, Poland
| | - Aneta Balcerczyk
- Faculty of Biology and Environmental Protection, Department of Molecular Biophysics, University of Lodz, Lodz 90-236, Poland
| | - Luciano Pirola
- Carmen Laboratory, INSERM Unit 1060—Lyon 1 University, Pierre Benite 69310, France
| |
Collapse
|
7
|
Immunoglobulins reduced oxidative stress in human microglial cells induced by high dose of acetoacetate. Brain Res 2020; 1748:147054. [PMID: 32818529 DOI: 10.1016/j.brainres.2020.147054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/12/2020] [Accepted: 08/08/2020] [Indexed: 11/23/2022]
Abstract
Diabetic ketoacidosis (DKA) has been associated with cognitive impairment and structural alterations in the brain. There is increased evidence supporting the role of neuroinflammation in causing these alterations. In the present study, using human microglial cell line (CHME-5), we aimed to investigate the effect of immunoglobulins (IG) on survival, activation, reactive oxygen species (ROS) and cytokine production of microglia exposed to ketone bodies. We demonstrated that high and low dose of ketone bodies induced a significant increase in ROS within 1 h after exposure to CHME-5 cells with upregulation in mitochondrial superoxide level 5 min after exposure suggestive of early and selective impairment of mitochondrial function. A significant and delayed increase of apoptosis of CHME-5 cells was observed 4 days after ketone bodies exposure. Cytokine expression reached a peak within 1 h and persisted for 3 days after exposure to ketone bodies. IG significantly reduced ROS and transiently suppressed cytokine expression of CHME-5 cells after exposure to ketone bodies. However, no effect of IG on apoptosis was observed. Overall, these results supported that ketone bodies induced microglia activation with early and selective impairment of mitochondrial function, increased cytokines expression and delayed increase in apoptosis. IG suppressed microglia activation and transiently inhibited cytokines expression without affecting apoptosis. These results warrant further experimental work on the role of microglia and potential benefit of IG in brain structural changes induced by DKA.
Collapse
|
8
|
Hoffman WH, Cudrici CD, Boodhoo D, Tatomir A, Rus V, Rus H. Intracerebral matrix metalloproteinase 9 in fatal diabetic ketoacidosis. Exp Mol Pathol 2019; 108:97-104. [PMID: 30986397 PMCID: PMC6563901 DOI: 10.1016/j.yexmp.2019.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 02/22/2019] [Accepted: 04/11/2019] [Indexed: 02/08/2023]
Abstract
There is increasing awareness that in addition to the metabolic crisis of diabetic ketoacidosis (DKA) caused by severe insulin deficiency, the immune inflammatory response is likely an active multicomponent participant in both the acute and chronic insults of this medical crisis, with strong evidence of activation for both the cytokine and complement system. Recent studies report that the matrix metalloproteinase enzymes and their inhibitors are systemically activated in young Type 1 diabetes mellitus (T1D) patients during DKA and speculate on their involvement in blood-brain barrier (BBB) disruption. Based on our previous studies, we address the question if matrix metalloproteinase 9 (MMP9) is expressed in the brain in the fatal brain edema (BE) of DKA. Our data show significant expression of MMP9 on the cells present in brain intravascular areas. The presence of MMP9 in intravascular cells and that of MMP+ cells seen passing the BBB indicates a possible role in tight junction protein disruption of the BBB, possibly leading to neurological complications including BE. We have also shown that MMP9 is expressed on neurons in the hippocampal areas of both BE/DKA cases investigated, while expression of tissue inhibitor of metalloproteinases 1 (TIMP1) was reduced in the same areas. We can speculate that intraneuronal MMP9 can be a sign of neurodegeneration. Further studies are necessary to determine the role of MMP9 in the pathogenesis of the neurologic catastrophe of the brain edema of DKA. Inhibition of MMP9 expression might be helpful in preserving neuronal function and BBB integrity during DKA.
Collapse
Affiliation(s)
- William H Hoffman
- Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Cornelia D Cudrici
- Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, MD, USA
| | - Dallas Boodhoo
- Department of Neurology, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Alexandru Tatomir
- Department of Neurology, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Violeta Rus
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Horea Rus
- Department of Neurology, University of Maryland, School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
9
|
Liu L, Liu X. Contributions of Drug Transporters to Blood-Brain Barriers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1141:407-466. [PMID: 31571171 DOI: 10.1007/978-981-13-7647-4_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Blood-brain interfaces comprise the cerebral microvessel endothelium forming the blood-brain barrier (BBB) and the epithelium of the choroid plexuses forming the blood-cerebrospinal fluid barrier (BCSFB). Their main functions are to impede free diffusion between brain fluids and blood; to provide transport processes for essential nutrients, ions, and metabolic waste products; and to regulate the homeostasis of central nervous system (CNS), all of which are attributed to absent fenestrations, high expression of tight junction proteins at cell-cell contacts, and expression of multiple transporters, receptors, and enzymes. Existence of BBB is an important reason that systemic drug administration is not suitable for the treatment of CNS diseases. Some diseases, such epilepsy, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and diabetes, alter BBB function via affecting tight junction proteins or altering expression and function of these transporters. This chapter will illustrate function of BBB, expression of transporters, as well as their alterations under disease status.
Collapse
Affiliation(s)
- Li Liu
- China Pharmaceutical University, Nanjing, China
| | - Xiaodong Liu
- China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
10
|
Hoffman WH, Artlett CM, Boodhoo D, Gilliland MGF, Ortiz L, Mulder D, Tjan DHT, Martin A, Tatomir A, Rus H. Markers of immune-mediated inflammation in the brains of young adults and adolescents with type 1 diabetes and fatal diabetic ketoacidosis. Is there a difference? Exp Mol Pathol 2017; 102:505-514. [PMID: 28533125 DOI: 10.1016/j.yexmp.2017.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 05/18/2017] [Indexed: 12/17/2022]
Abstract
Due to the limited data on diabetic ketoacidosis and brain edema (DKA/BE) in children/adolescents and the lack of recent data on adults with type 1 diabetes (T1D), we addressed the question of whether neuroinflammation was present in the fatal DKA of adults. We performed immunohistochemistry (IHC) studies on the brains of two young adults with T1D and fatal DKA and compared them with two teenagers with poorly controlled diabetes and fatal DKA. C5b-9, the membrane attack complex (MAC) had significantly greater deposits in the grey and white matter of the teenagers than the young adults (p=0.03). CD59, a MAC assembly inhibitory protein was absent, possibly suppressed by the hyperglycemia in the teenagers but was expressed in the young adults despite comparable average levels of hyperglycemia. The receptor for advanced glycation end products (RAGE) had an average expression in the young adults significantly greater than in the teenagers (p=0.02). The autophagy marker Light Chain 3 (LC3) A/B was the predominant form of programmed cell death (PCD) in the teenage brains. The young adults had high expressions of both LC3A/B and TUNEL, an apoptotic cell marker for DNA fragmentation. BE was present in the newly diagnosed young adult with hyperglycemic hyperosmolar DKA and also in the two teenagers. Our data indicate that significant differences in neuroinflammatory components, initiated by the dysregulation of DKA and interrelated metabolic and immunologic milieu, are likely present in the brains of fatal DKA of teenagers when compared with young adults.
Collapse
Affiliation(s)
- William H Hoffman
- Department of Pediatrics, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States.
| | - Carol M Artlett
- Department of Microbiology & Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, United States
| | - Dallas Boodhoo
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Mary G F Gilliland
- Department of Pathology and Laboratory Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27858, United States
| | - Luis Ortiz
- Department of Pediatrics, Nephrology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Dries Mulder
- Department of Pathology, Rijnstate Hospital, Arnhem, The Netherlands
| | - David H T Tjan
- Department of Intensive Care, Gelderse Vallei Hospital, Ede, The Netherlands
| | - Alvaro Martin
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Alexandru Tatomir
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Horea Rus
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Research Service, Veterans Administration Maryland Health Care System, MD 21201, United States.
| |
Collapse
|
11
|
Kanikarla-Marie P, Jain SK. Hyperketonemia and ketosis increase the risk of complications in type 1 diabetes. Free Radic Biol Med 2016; 95:268-77. [PMID: 27036365 PMCID: PMC4867238 DOI: 10.1016/j.freeradbiomed.2016.03.020] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 03/16/2016] [Accepted: 03/21/2016] [Indexed: 12/19/2022]
Abstract
Diets that boost ketone production are increasingly used for treating several neurological disorders. Elevation in ketones in most cases is considered favorable, as they provide energy and are efficient in fueling the body's energy needs. Despite all the benefits from ketones, the above normal elevation in the concentration of ketones in the circulation tend to illicit various pathological complications by activating injurious pathways leading to cellular damage. Recent literature demonstrates a plausible link between elevated levels of circulating ketones and oxidative stress, linking hyperketonemia to innumerable morbid conditions. Ketone bodies are produced by the oxidation of fatty acids in the liver as a source of alternative energy that generally occurs in glucose limiting conditions. Regulation of ketogenesis and ketolysis plays an important role in dictating ketone concentrations in the blood. Hyperketonemia is a condition with elevated blood levels of acetoacetate, 3-β-hydroxybutyrate, and acetone. Several physiological and pathological triggers, such as fasting, ketogenic diet, and diabetes cause an accumulation and elevation of circulating ketones. Complications of the brain, kidney, liver, and microvasculature were found to be elevated in diabetic patients who had elevated ketones compared to those diabetics with normal ketone levels. This review summarizes the mechanisms by which hyperketonemia and ketoacidosis cause an increase in redox imbalance and thereby increase the risk of morbidity and mortality in patients.
Collapse
Affiliation(s)
- Preeti Kanikarla-Marie
- Department of Pediatrics, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA
| | - Sushil K Jain
- Department of Pediatrics, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA.
| |
Collapse
|
12
|
Kanikarla-Marie P, Jain SK. 1,25(OH)2D3 inhibits oxidative stress and monocyte adhesion by mediating the upregulation of GCLC and GSH in endothelial cells treated with acetoacetate (ketosis). J Steroid Biochem Mol Biol 2016; 159:94-101. [PMID: 26949104 PMCID: PMC4825694 DOI: 10.1016/j.jsbmb.2016.03.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 02/29/2016] [Accepted: 03/01/2016] [Indexed: 01/10/2023]
Abstract
BACKGROUND There is a significantly higher incidence of cardiovascular disease (CVD) among type 1 diabetic (T1D) patients than among non-diabetic subjects. T1D is associated with hyperketonemia, a condition with elevated blood levels of ketones, in addition to hyperglycemia. The biochemical mechanism by which vitamin D (VD) may reduce the risk of CVD is not known. This study examines whether VD can be beneficial in reducing hyperketonemia (acetoacetate, AA) induced oxidative stress in endothelial cells. METHODS HUVEC were pretreated with 1,25(OH)2D3, and later exposed to the ketone body acetoacetate. RESULTS The increases in ROS production, ICAM-1 expression, MCP-1 secretion, and monocyte adhesion in HUVEC treated with AA were significantly reduced following treatment with 1,25(OH)2D3. Interestingly, an increase in glutathione (GSH) levels was also observed with 1,25(OH)2D3 in ketone treated cells. The effects of 1,25(OH)2D3 on GSH, ROS, and monocyte-endothelial adhesion were prevented in GCLC knockdown HUVEC. This suggests that 1,25(OH)2D3 inhibits ROS, MCP-1, ICAM-1, and adherence of monocytes mediated by the upregulation of GCLC and GSH. CONCLUSION This study provides evidence for the biochemical mechanism through which VD supplementation may reduce the excess monocyte adhesion to endothelium and inflammation associated with T1D.
Collapse
Affiliation(s)
- Preeti Kanikarla-Marie
- Departments of Pediatrics and Biochemistry & Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Sushil K Jain
- Departments of Pediatrics and Biochemistry & Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA.
| |
Collapse
|
13
|
Hoffman WH, Sharma M, Cihakova D, Talor MV, Rose NR, Mohanakumar T, Passmore GG. Cardiac antibody production to self-antigens in children and adolescents during and following the correction of severe diabetic ketoacidosis. Autoimmunity 2016; 49:188-96. [PMID: 26911924 DOI: 10.3109/08916934.2015.1134509] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Diabetic cardiomyopathy (DC) is an independent phenotype of diabetic cardiovascular disease. The understanding of the pathogenesis of DC in young patients with type 1 diabetes (T1D) is limited. The cardiac insults of diabetic ketoacidosis (DKA) and progression of DC could include development of antibodies (Abs) to cardiac self-antigens (SAgs) such as: myosin (M), vimentin (V) and k-alpha 1 tubulin (Kα1T). The goal of this study is to determine if the insults of severe DKA and its inflammatory cascade are associated with immune responses to SAgs. Development of Abs to the SAgs were determined by an ELISA using sera collected at three time points in relation to severe DKA (pH < 7.2). Results demonstrate significant differences between the development of Abs to VIM and a previously reported diastolic abnormality (DA) during DKA and its treatment and a NDA group at 2-3 months post DKA (p = 0.0452). A significant association is present between T1D duration (<3 years) and Abs to Kα1T (p = 0.0134). Further, Abs to MYO and VIM are associated with inflammatory cytokines. We propose that severe DKA initiates the synthesis of Abs to cardiac SAgs that are involved in the early immunopathogenesis of DC in young patients with T1D.
Collapse
Affiliation(s)
- William H Hoffman
- a Department of Pediatrics , Georgia Regents University (Medical College of Georgia) , Augusta , GA , USA
| | - Monal Sharma
- b Department of Surgery , Washington University School of Medicine , St. Louis, MO , USA
| | - Daniela Cihakova
- c Department of Pathology , The Johns Hopkins University School of Medicine, The William H. Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins University Bloomberg School of Public Health , Baltimore , MD , USA
| | - Monica V Talor
- d Department of Pathology , The Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Noel R Rose
- c Department of Pathology , The Johns Hopkins University School of Medicine, The William H. Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins University Bloomberg School of Public Health , Baltimore , MD , USA
| | - T Mohanakumar
- e Departments of Surgery , Pathology and Immunology, Washington University School of Medicine , St. Louis, MO , USA , and
| | - Gregory G Passmore
- f Medical Laboratory, Imaging and Radiologic Sciences, Georgia Regents University , Augusta , GA , USA
| |
Collapse
|
14
|
High levels of acetoacetate and glucose increase expression of cytokines in bovine hepatocytes, through activation of the NF-κB signalling pathway. J DAIRY RES 2016; 83:51-7. [DOI: 10.1017/s0022029915000680] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Elevated levels of blood interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumour necrosis factor–α (TNF–α) increase insulin resistance and result in inflammation. It is not clear whether elevated blood level of acetoacetate (ACAC) and decreased blood level of glucose, which are the predominant characteristics of clinical biochemistry in ketotic dairy cows, increase proinflammatory cytokines and subsequent inflammation. The objective of this study was to test the hypothesis that ACAC and glucose activate the NF-κB signalling pathway to regulate cytokines expression in bovine hepatocytes. Bovine hepatocytes were cultured with ACAC (0–4·8 mm) and glucose (0–5·55 mm) with or without NF-κB inhibitor PDTC for 24 h. The secretion and mRNA levels of cytokines were determined by enzyme-linked immunosorbent assay (ELISA) and real-time fluorescence quantitative polymerase chain reaction (qRT-PCR). The NF-κB signalling pathway activation was evaluated by western blotting. Results showed that the secretion and expression of IL-1β, IL-6 and TNF-α increased in an ACAC dose-dependent manner. Additionally, there was an increase in the secretion and mRNA expression of these three cytokines in glucose treatment group, which increased significantly when the glucose concentrations exceed 3·33 mm. Furthermore, both ACAC and glucose upregulated NF-κB p65 protein expression and IκBα phosphorylation levels. However, these effects were reduced by PDTC. These results demonstrate that elevated levels of ACAC and glucose increase the synthesis and expression of proinflammatory factors by activating NF-κB signalling pathway in hepatocytes, which may contribute to inflammation injury in ketotic dairy cows.
Collapse
|
15
|
Zou X, Meng J, Li L, Han W, Li C, Zhong R, Miao X, Cai J, Zhang Y, Zhu D. Acetoacetate Accelerates Muscle Regeneration and Ameliorates Muscular Dystrophy in Mice. J Biol Chem 2015; 291:2181-95. [PMID: 26645687 DOI: 10.1074/jbc.m115.676510] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Indexed: 11/06/2022] Open
Abstract
Acetoacetate (AA) is a ketone body and acts as a fuel to supply energy for cellular activity of various tissues. Here, we uncovered a novel function of AA in promoting muscle cell proliferation. Notably, the functional role of AA in regulating muscle cell function is further evidenced by its capability to accelerate muscle regeneration in normal mice, and it ameliorates muscular dystrophy in mdx mice. Mechanistically, our data from multiparameter analyses consistently support the notion that AA plays a non-metabolic role in regulating muscle cell function. Finally, we show that AA exerts its function through activation of the MEK1-ERK1/2-cyclin D1 pathway, revealing a novel mechanism in which AA serves as a signaling metabolite in mediating muscle cell function. Our findings highlight the profound functions of a small metabolite as signaling molecule in mammalian cells.
Collapse
Affiliation(s)
- Xiaoting Zou
- From the State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 and
| | - Jiao Meng
- From the State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 and
| | - Li Li
- From the State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 and
| | - Wanhong Han
- From the State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 and
| | - Changyin Li
- From the State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 and
| | - Ran Zhong
- From the State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 and
| | - Xuexia Miao
- the Key Laboratory of Genomic and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jun Cai
- the Key Laboratory of Genomic and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong Zhang
- From the State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 and
| | - Dahai Zhu
- From the State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005 and
| |
Collapse
|
16
|
Kanikarla-Marie P, Jain SK. Hyperketonemia (acetoacetate) upregulates NADPH oxidase 4 and elevates oxidative stress, ICAM-1, and monocyte adhesivity in endothelial cells. Cell Physiol Biochem 2015; 35:364-73. [PMID: 25591777 DOI: 10.1159/000369702] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND/AIMS The incidence of developing microvascular dysfunction is significantly higher in type 1 diabetic (T1D) patients. Hyperketonemia (acetoacetate, β-hydroxybutyrate) is frequently found along with hyperglycemia in T1D. Whether hyperketonemia per se contributes to the excess oxidative stress and cellular injury observed in T1D is not known. METHODS HUVEC were treated with ketones in the presence or absence of high glucose for 24 h. NOX4 siRNA was used to specifically knockdown NOX4 expression in HUVEC. RESULTS Ketones alone or in combination with high glucose treatment cause a significant increase in oxidative stress, ICAM-1, and monocyte adhesivity to HUVEC. Using an antisense approach, we show that ketone induced increases in ROS, ICAM-1 expression, and monocyte adhesion in endothelial cells were prevented in NOX4 knockdown cells. CONCLUSION This study reports that elevated levels of ketones upregulate NOX, contributing to increased oxidative stress, ICAM-1 levels, and cellular dysfunction. This provides a novel biochemical mechanism that elucidates the role of hyperketonemia in the excess cellular injury in T1D. New drugs targeting inhibition of NOX seems promising in preventing higher risk of complications associated with T1D.
Collapse
Affiliation(s)
- Preeti Kanikarla-Marie
- Departments of Pediatrics and Biochemistry & Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | | |
Collapse
|
17
|
Rains JL, Jain SK. Effect of hyperketonemia (Acetoacetate) on nuclear factor-κB and p38 mitogen-activated protein kinase activation mediated intercellular adhesion molecule 1 upregulation in endothelial cells. Metab Syndr Relat Disord 2014; 13:71-7. [PMID: 25489974 DOI: 10.1089/met.2014.0101] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Hyperketonemia is a pathological condition observed in patients with type 1 diabetes and ketosis-prone diabetes (KPD), which results in increased blood levels of acetoacetate (AA) and β-hydroxybutyrate (BHB). Frequent episodes of hyperketonemia are associated with a higher incidence of vascular disease. We examined the hypothesis that hyperketonemia activates the nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways that regulate intercellular adhesion molecule 1 (ICAM-1) expression in endothelial cells. METHODS Human umbilical vein endothelial cells (HUVECs) were cultured with AA (0-8 mM) or BHB (0-10 mM) for 0-24 hr. Western blotting was used to determine NF-κB activation in whole-cell lysates. ICAM-1 expression was measured using flow cytometry. RESULTS RESULTS show a 2.4-fold increase in NF-κB activation in cells treated with 8 mM AA compared to the control. BHB had little or no effect on NF-κB activation. Pretreatment with a reactive oxygen species (ROS) inhibitor [N-acetyl-l-cysteine (NAC)] reduced NF-κB to near-control levels. The expression of AA-induced ICAM-1 was significantly reduced when cells were pretreated with either NAC or p38 MAPK inhibitor. CONCLUSIONS These results suggest that NF-κB and p38 MAPK mediate upregulation of ICAM-1 expression in endothelial cells exposed to elevated levels of AA, which may contribute to the development of vascular disease in diabetes.
Collapse
Affiliation(s)
- Justin L Rains
- Department of Pediatrics and Department of Biochemistry and Molecular Biology Louisiana State University Health Sciences Center , Shreveport, Louisiana
| | | |
Collapse
|
18
|
l-Cysteine supplementation reduces high-glucose and ketone-induced adhesion of monocytes to endothelial cells by inhibiting ROS. Mol Cell Biochem 2014; 391:251-6. [DOI: 10.1007/s11010-014-2009-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 02/25/2014] [Indexed: 12/12/2022]
|
19
|
Niu J, Gilliland MGF, Jin Z, Kolattukudy PE, Hoffman WH. MCP-1and IL-1β expression in the myocardia of two young patients with Type 1 diabetes mellitus and fatal diabetic ketoacidosis. Exp Mol Pathol 2013; 96:71-9. [PMID: 24246157 DOI: 10.1016/j.yexmp.2013.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 11/04/2013] [Accepted: 11/04/2013] [Indexed: 01/01/2023]
Abstract
Convincing evidence exists for the early onset of diabetic cardiomyopathy and coronary artery disease (CAD) as distinct forms of cardiac disease in young patients with Type 1 diabetes mellitus (T1DM) and the pre-stages of T2DM, forms of dysregulated insulin signaling. Progression of both chronic cardiac conditions is mediated by oxidative stress and low grade inflammation. This study reports the expression of monocyte chemotactic protein-1 (MCP-1) chemokine and the interleukin (IL)-1β inflammatory cytokine in two young patients with suboptimal metabolic control and fatal diabetic ketoacidosis (DKA), two age-matched overweight/obesity cases and two age-matched controls. In addition, markers of oxidative stress, apoptosis, collagen deposition and cardiomyocyte hypertrophy were studied. Significant expression of MCP-1 and IL-1β was seen in the myocardia of the T1DM/DKA cases, with lesser amounts expressed in the overweight/obesity myocardia. All of the other markers except cardiomyocyte hypertrophy were expressed to a significantly greater extent in the T1DM/DKA and overweight/obesity cases in comparison to the age-matched controls. Cardiomyocyte hypertrophy was significantly greater in the overweight/obesity cases than in the T1DM/DKA or the control cases.
Collapse
Affiliation(s)
- Jianli Niu
- Burnett School of Biomedical Sciences, College of medicine, University of Central Florida, Orlando, FL, USA
| | - M G F Gilliland
- Department of Pathology and Laboratory Medicine, The Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Zhuqing Jin
- School of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Pappachan E Kolattukudy
- Burnett School of Biomedical Sciences, College of medicine, University of Central Florida, Orlando, FL, USA
| | - William H Hoffman
- Department of Pediatrics, Section of Pediatric Endocrinology, Georgia Regents University, Augusta, GA, USA.
| |
Collapse
|
20
|
Gregory SM, Headley SA, Wood RJ. Effects of dietary macronutrient distribution on vascular integrity in obesity and metabolic syndrome. Nutr Rev 2012; 69:509-19. [PMID: 21884131 DOI: 10.1111/j.1753-4887.2011.00390.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Metabolic syndrome is a condition characterized by a clustering of risk factors for cardiovascular disease. Emerging data suggest vascular integrity is disrupted in metabolic syndrome. Vascular integrity may be determined using several measurements, including pulse wave velocity, augmentation index, and flow-mediated dilation. Arterial stiffness has become an important clinical indicator of cardiovascular disease risk. Several circulating inflammatory peptides also impact vascular integrity. The present review examines the efficacy of nutritional interventions aimed at improving vascular integrity and reducing levels of associated inflammatory peptides in individuals with metabolic syndrome, with a specific focus on the effect of dietary macronutrient redistribution on these factors.
Collapse
Affiliation(s)
- Sara M Gregory
- Department of Exercise and Sports Studies, Springfield College, Springfield, Massachusetts 01109, USA
| | | | | |
Collapse
|
21
|
Rains JL, Jain SK. Hyperketonemia increases monocyte adhesion to endothelial cells and is mediated by LFA-1 expression in monocytes and ICAM-1 expression in endothelial cells. Am J Physiol Endocrinol Metab 2011; 301:E298-306. [PMID: 21540444 PMCID: PMC3154536 DOI: 10.1152/ajpendo.00038.2011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Frequent episodes of hyperketonemia are associated with a higher incidence of vascular disease. The objective of this study was to examine the hypothesis that hyperketonemia increases monocyte-endothelial cell (EC) adhesion and the development of vascular disease in diabetes. Human U937 and THP-1 monocyte cell lines and human umbilical vein endothelial cells (HUVECs) were cultured with acetoacetate (AA) (0-10 mM) or β-hydroxybutyrate (BHB) (0-10 mM) for 24 h prior to evaluating adhesion and adhesion molecule expression. The results demonstrate a significant (P < 0.01) increase in both U937 and THP-1 adhesion to HUVEC monolayers treated with 4 mM AA compared with control. Equal concentrations of BHB resulted in similar increases in monocyte-EC adhesion. Similarly, treatments of AA or BHB to isolated monocytes from human blood also show increases in adhesion to endothelial cells. intercellular adhesion molecule-1 (ICAM-1) was significantly increased on the surface of HUVECs and an increase in total protein expression with AA treatment compared with control. The expression level of lymphocyte function-associated antigen-1 (LFA-1) was increased in monocytes treated with AA, and LFA-1 affinity was altered from low to high affinity following treatment with both AA and BHB. Monocyte adhesion could be blocked when cells were preincubated with an antibody to ICAM-1 or LFA-1. Results also show a significant increase in IL-8 and MCP-1 secretion in monocytes and HUVECs treated with 0-10 mM AA. These results suggest that hyperketonemia can induce monocyte adhesion to endothelial cells and that it is mediated via increased ICAM-1 expression in endothelial cells and increased expression and affinity of LFA-1 in monocytes.
Collapse
Affiliation(s)
- Justin L Rains
- Department of Pediatrics, Louisiana State University Health Sciences Center, 1501 Kings Hwy., Shreveport, LA 71130, USA
| | | |
Collapse
|
22
|
Abstract
BACKGROUND Diabetic ketoacidosis is a metabolic disorder caused by insulin deficiency and is the most important cause of mortality and morbidity in children with Type 1 diabetes mellitus. Acute neurological complications related to diabetic ketoacidosis include cerebral oedema, cerebral infarction, brain herniation, cortical venous thrombosis and cerebral haemorrhage. Cerebral infarction is rare in juvenile diabetic ketoacidosis. CASE REPORT We report a girl with a newly diagnosed Type 1 diabetes mellitus who presented with diabetic ketoacidosis and developed cerebral infarction with transient visual loss. CONCLUSIONS Our findings emphasize the importance of prompt evaluation and proper management of intracranial crises in diabetic ketoacidosis.
Collapse
Affiliation(s)
- H S Lee
- Department of Pediatrics, Ajou University School of Medicine, Ajou University Hospital, Suwon, Korea
| | | |
Collapse
|
23
|
Hoffman WH, Siedlak SL, Wang Y, Castellani RJ, Smith MA. Oxidative damage is present in the fatal brain edema of diabetic ketoacidosis. Brain Res 2011; 1369:194-202. [PMID: 21040714 PMCID: PMC3056460 DOI: 10.1016/j.brainres.2010.10.085] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 10/21/2010] [Accepted: 10/22/2010] [Indexed: 12/16/2022]
Abstract
Oxidative stress is implicated as a pathogenic factor in a spectrum of chronic diseases, notably, neurodegenerative disease. Noteworthy in this regard is that type 1 diabetes mellitus (T1DM) results in oxidative stress, leading to systemic complications of T1DM. We hypothesized that oxidative stress associated with diabetic ketoacidosis (DKA) of T1DM might have measurable brain sequelae. Consistent with this hypothesis are neurohistology and neuroradiologic studies of T1DM that suggest oxidative insults are involved in the chronic complications of diabetic encephalopathy. To further address the role of oxidative stress in an acute setting, specifically in fatal brain edema (BE) associated with DKA, we studied neuronal localization and levels of oxidative stress markers reported to be increased in other neurodegenerative conditions. We demonstrated increased levels of 8-hydroxyguanosine (8OHG), 4-hydroxynonenal (HNE), and heme oxygenase-1 (HO-1) in the pyramidal neurons of the hippocampus of DKA BE in comparison to controls. However, in the cerebellum, only 8OHG was increased in the Purkinje cells and other cells of the molecular layer. These results indicate a role for oxidative stress in the pathogenesis of T1DM encephalopathy.
Collapse
Affiliation(s)
- William H Hoffman
- Department of Pediatrics, Section of Pediatric Endocrinology, Medical College of Georgia, 1120 15th Street BG-1007Augusta, GA 30912, USA.
| | | | | | | | | |
Collapse
|
24
|
Rains JL, Jain SK. Hyperketonemia decreases mitochondrial membrane potential and its normalization with chromium (III) supplementation in monocytes. Mol Cell Biochem 2010; 349:77-82. [PMID: 21153866 DOI: 10.1007/s11010-010-0662-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 11/15/2010] [Indexed: 01/17/2023]
Abstract
Altered cellular mitochondrial membrane potential (MMP) has been implicated in the increased insulin resistance and the risk for diabetes. Hyperketonemia is increasingly being identified in type 2 diabetic patients in addition to those with type 1 diabetes. No previous study has examined the effect of hyperketonemia and trivalent chromium on cellular mitochondrial membrane potential (MMP) in any cell type. Using a U937 monocyte cell culture model, this study examined the hypothesis that hyperketonemia decreases and trivalent chromium normalizes the cellular MMP level. Cells were cultured with control and ketone bodies [acetoacetate (AA), β-hydroxybutyrate (BHB)] in the absence or the presence (0.5-100 μM) of Cr(3+) at 37°C for 24 h. The MMP was determined using DiOC6 and flow cytometry. The results show a significant decrease in MMP in cells treated with AA, but not in the cells treated with BHB. The effect of AA on cellular MMP was prevented in chromium (III)-pretreated cells. Thus, hyperketonemia decreases the MMP, and supplementation with chromium (III) normalizes altered MMP, which may play a role in the improvement in glucose metabolism seen after chromium (III) supplementation in some studies with diabetic animals and patients.
Collapse
Affiliation(s)
- Justin L Rains
- Department of Pediatrics, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | | |
Collapse
|
25
|
Allen CL, Bayraktutan U. Antioxidants attenuate hyperglycaemia-mediated brain endothelial cell dysfunction and blood-brain barrier hyperpermeability. Diabetes Obes Metab 2009; 11:480-90. [PMID: 19236439 DOI: 10.1111/j.1463-1326.2008.00987.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
AIMS Hyperglycaemia (HG), in stroke patients, is associated with worse neurological outcome by compromising endothelial cell function and the blood-brain barrier (BBB) integrity. We have studied the contribution of HG-mediated generation of oxidative stress to these pathologies and examined whether antioxidants as well as normalization of glucose levels following hyperglycaemic insult reverse these phenomena. METHODS Human brain microvascular endothelial cell (HBMEC) and human astrocyte co-cultures were used to simulate the human BBB. The integrity of the BBB was measured by transendothelial electrical resistance using STX electrodes and an EVOM resistance meter, while enzyme activities were measured by specific spectrophotometric assays. RESULTS After 5 days of hyperglycaemic insult, there was a significant increase in BBB permeability that was reversed by glucose normalization. Co-treatment of cells with HG and a number of antioxidants including vitamin C, free radical scavengers and antioxidant enzymes including catalase and superoxide dismutase mimetics attenuated the detrimental effects of HG. Inhibition of p38 mitogen-activated protein kinase (p38MAPK) and protein kinase C but not phosphoinositide 3 kinase (PI3 kinase) also reversed HG-induced BBB hyperpermeability. In HBMEC, HG enhanced pro-oxidant (NAD(P)H oxidase) enzyme activity and expression that were normalized by reverting to normoglycaemia. CONCLUSIONS HG impairs brain microvascular endothelial function through involvements of oxidative stress and several signal transduction pathways.
Collapse
Affiliation(s)
- C L Allen
- Division of Stroke Medicine, University of Nottingham, Nottingham, UK
| | | |
Collapse
|
26
|
Buscemi S, Verga S, Tranchina MR, Cottone S, Cerasola G. Effects of hypocaloric very-low-carbohydrate diet vs. Mediterranean diet on endothelial function in obese women*. Eur J Clin Invest 2009; 39:339-47. [PMID: 19302563 DOI: 10.1111/j.1365-2362.2009.02091.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Obesity is a cardiovascular risk factor associated with endothelial dysfunction, but the effect of different weight loss strategies on endothelial function is not known. The effect of diet on endothelial function in two hypocaloric diets, a very-low-carbohydrate diet (A) and a Mediterranean diet (M), was measured by brachial artery flow-mediated dilation (FMD). Design Using a longitudinal, randomized, open study design, subjects were engaged in a 2-month weight loss diet. FMD, inflammatory cytokines [interleukin-6 (IL-6) and tumour necrosis factor-alpha] and a marker of oxidative stress [8-iso-prostaglandin F2alpha (8-iso-PGF2alpha)] were measured in subjects on three occasions: before initiating the diet (T0), after 5-7 days of dieting (T5) and after 2 months of dieting (T60). The very short- and medium-term time points were established to discriminate respectively the effect of the diet itself (T5) from that of weight loss (T60). Twenty overweight/obese but otherwise healthy women (BMI: 27-34.9 kg m(-2); age 30-50 years) completed the study. Results Group A lost more weight (mean +/- SEM; -7.6 +/- 0.8 kg) than group M (-4.9 +/- 0.6 kg, P = 0.014) at T60. The FMD was not significantly different between the two groups at T0 (group A: 12.2 +/- 2.9% vs. group B: 10.3 +/- 2.3%, P = ns). In group A, FMD was significantly reduced at T5 and returned to baseline at T60; in group M, FMD increased at T5 and returned to baseline at T60 (P = 0.007 for diet x time interaction). Serum concentrations of IL-6 and 8-iso-PGF2alpha were not significantly different between the two groups at T0 and increased significantly at T5 only in group A (P < 0.001 and P < 0.005 respectively). Conclusion As endothelial dysfunction is known to be associated with acute cardiovascular events, this study suggests that the cardiovascular risk might be increased in the first days of a very-low-carbohydrate diet.
Collapse
Affiliation(s)
- S Buscemi
- University of Palermo, Palermo, Italy
| | | | | | | | | |
Collapse
|
27
|
Hoffman WH, Stamatovic SM, Andjelkovic AV. Inflammatory mediators and blood brain barrier disruption in fatal brain edema of diabetic ketoacidosis. Brain Res 2009; 1254:138-48. [DOI: 10.1016/j.brainres.2008.11.100] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Revised: 11/25/2008] [Accepted: 11/27/2008] [Indexed: 12/31/2022]
|
28
|
Mahmud FH, Ramsay DA, Levin SD, Singh RN, Kotylak T, Fraser DD. Coma with diffuse white matter hemorrhages in juvenile diabetic ketoacidosis. Pediatrics 2007; 120:e1540-6. [PMID: 18039811 DOI: 10.1542/peds.2007-0366] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cerebral edema is the most common neurologic complication of diabetic ketoacidosis in children. A minority of young patients with intracerebral crises in diabetic ketoacidosis present with cerebrovascular accidents. We report 2 adolescent patients with diabetic ketoacidosis who presented with coma and diffuse white matter hemorrhages in the absence of either cerebral edema or cerebrovascular accidents. These 2 cases illustrate a novel clinical and neuropathologic description of diffuse white matter hemorrhages, possibly related to a cytotoxic process as the underlying mechanism. These case descriptions emphasize that pediatric patients with diabetic ketoacidosis and coma can present with pathology not related to either cerebral edema or cerebrovascular accidents.
Collapse
Affiliation(s)
- Farid H Mahmud
- Division of Pediatric Endocrinology, Children's Hospital of Western Ontario, 800 Commissioners Rd E, London, Ontario, Canada N6C 2V5.
| | | | | | | | | | | |
Collapse
|
29
|
Jain SK, Rains JL, Croad JL. High glucose and ketosis (acetoacetate) increases, and chromium niacinate decreases, IL-6, IL-8, and MCP-1 secretion and oxidative stress in U937 monocytes. Antioxid Redox Signal 2007; 9:1581-90. [PMID: 17665966 DOI: 10.1089/ars.2007.1577] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Elevated blood levels of the proinflammatory cytokines interleukin-6 (IL-6), interleukin-8 (IL-8), and MCP-1 (monocyte chemoattractant protein-1) increase insulin resistance and the risk of cardiovascular disease (CVD). There is no previous study that has examined the effect of ketosis and trivalent chromium on IL-6, IL-8, or MCP-1 secretion in any cell type or in human or animal model. The authors examined the hypothesis that ketosis increases and trivalent chromium decreases the levels of cytokines and oxidative stress in diabetes using a U937 monocyte cell culture model. Cells were cultured with control, high glucose (HG), and acetoacetate (AA) in the absence or presence (0.5-10 microM) of CrCl(3), chromium picolinate (Cr-P), or chromium niacinate (Cr-N) at 37 degrees C for 24 h. The data show a significant stimulation of IL-6, IL-8, and MCP-1 secretion and an increase in oxidative stress in cells treated with HG or AA. The effect of HG on cytokine secretion was reduced by Cr-N, and to a lesser extent by CrCl(3) and Cr-P. The effect of HG on oxidative stress was reduced by Cr-N and CrCl 3, but not by Cr-P. Similarly, Cr-N decreased the cytokine secretion in HG + AA-treated cells. Cr-N significantly decreased standard oxidant (H(2)O(2)) induced cytokine secretion, which suggests that reduction of cytokine secretion by Cr-N is in part mediated by its antioxidative effect. In a cell culture model, Cr-N appears to be the most effective form of chromium in inhibiting oxidative stress and proinflammatory cytokine secretion by monocytes. This study suggests that chromium niacinate supplementation may be useful in reducing vascular inflammation and the risk of CVD in diabetes.
Collapse
Affiliation(s)
- Sushil K Jain
- Department of Pediatrics, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130, USA.
| | | | | |
Collapse
|
30
|
Hoffman WH, Casanova MF, Cudrici CD, Zafranskaia E, Venugopalan R, Nag S, Oglesbee MJ, Rus H. Neuroinflammatory response of the choroid plexus epithelium in fatal diabetic ketoacidosis. Exp Mol Pathol 2007; 83:65-72. [PMID: 17335802 PMCID: PMC1950467 DOI: 10.1016/j.yexmp.2007.01.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 01/08/2007] [Accepted: 01/09/2007] [Indexed: 01/11/2023]
Abstract
A systemic inflammatory response (SIR) occurs prior to and during the treatment of severe diabetic ketoacidosis (DKA). IL-1beta, TNF-alpha and C5b-9 are components of SIR and have been speculated to be involved in the clinical brain edema (BE) of DKA. We studied IL-1beta, TNF-alpha, C5b-9, inducible nitric oxide (iNOS), ICAM-1, IL-10 and Hsp70 expression in the brains of two patients who died as the result of clinical BE during the treatment of DKA. IL-1beta was strongly expressed in the choroid plexus epithelium (CPE) and ependyma, and to a lesser extent in the hippocampus, caudate, white matter radiation of the pons, molecular layer of the cerebellum and neurons of the cortical gray matter. TNF-alpha was expressed to a lesser extent than IL-1beta, and only in the CP. C5b-9, previously shown to be deposited on neurons and oligodendrocytes, was found on CPE and ependymal cells. iNOS and ICAM-1 had increased expression in the CPE and ependyma. Hsp70 and IL-10 were also expressed in the CPE of the case with the shorter duration of treatment. Our data demonstrate the presence of a multifaceted neuroinflammatory cytotoxic insult of the CPE, which may play a role in the pathophysiology of the fatal brain edema of DKA.
Collapse
Affiliation(s)
- William H. Hoffman
- Department of Pediatrics, Medical College of Georgia, Augusta, GA, 30912, USA
| | - Manuel F. Casanova
- Department of Psychiatry, University of Louisville, Medical School, Louisville, KY, USA
| | - Cornelia D. Cudrici
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Ekaterina Zafranskaia
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Roopa Venugopalan
- Department of Laboratory Medicine and Pathobiology, University of Toronto Toronto, Ontario, Canada
| | - Sukriti Nag
- Department of Laboratory Medicine and Pathobiology, University of Toronto Toronto, Ontario, Canada
| | - Michael J. Oglesbee
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Horea Rus
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| |
Collapse
|
31
|
Wu T, McGrath KCY, Death AK. Cardiovascular disease in diabetic nephropathy patients: cell adhesion molecules as potential markers? Vasc Health Risk Manag 2007; 1:309-16. [PMID: 17315603 PMCID: PMC1993958 DOI: 10.2147/vhrm.2005.1.4.309] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cardiovascular disease is a major complication of diabetes mellitus, especially for patients with diabetic nephropathy. The underlying factor or pathogenic mechanism that links diabetic nephropathy with cardiovascular disease is not known. The endothelial cell adhesion molecules, intercellular adhesion molecule-1 or vascular cell adhesion molecule-1, play a crucial role in the initiation of atherosclerosis. Levels of both cell adhesion molecules are raised by the diabetic and kidney disease states. This review focuses on these important cell adhesion molecules and their role in the pathogenesis of cardiovascular disease in diabetes and diabetic nephropathy.
Collapse
Affiliation(s)
- Ted Wu
- The Heart Research InstituteCamperdown, NSW, Australia
- Discipline of Medicine, University of SydneySydney, NSW, Australia
| | - Kristine CY McGrath
- The Heart Research InstituteCamperdown, NSW, Australia
- Discipline of Medicine, University of SydneySydney, NSW, Australia
| | - Alison K Death
- The Heart Research InstituteCamperdown, NSW, Australia
- Discipline of Medicine, University of SydneySydney, NSW, Australia
| |
Collapse
|
32
|
Jain SK, McVie R, Bocchini JA. Hyperketonemia (ketosis), oxidative stress and type 1 diabetes. ACTA ACUST UNITED AC 2006; 13:163-70. [PMID: 16782314 DOI: 10.1016/j.pathophys.2006.05.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The long-term complications of diabetes are the leading causes of morbidity and mortality in the type 1 diabetic population and remain a major public health issue. Hyperglycemia is one of the major risk factors in the development of vascular complications. A growing body of evidence indicates that hyperglycemia leads to increased oxidative stress and monocyte and endothelial cell dysfunction. In addition to hyperglycemia, type 1 diabetic patients frequently experience ketosis (hyperketonemia). The blood concentration of ketone bodies reaches higher than 25mM in diabetics with severe ketosis. Traditionally, clinical practice has considered hypertketonemia to be present only in type 1 diabetic patients. Newer data indicate that diabetic ketoaciosis or hyperketonemia co-exists with hyperglycemia among older type 2 diabetic patients and in African Americans and other minority groups with type 2 diabetes. This review will focus on the role of hyperketonemia in the etiology of oxidative stress in diabetic patients. The data presented here illustrate that the ketone body acetoacetate (AA) can generate superoxide radicals and cause increases in oxidative stress and cellular dysfunction. The data included in this review demonstrate that blood levels of markers of oxidative stress are elevated in hyperketonemic patients compared with those of normoketonemic diabetic patients. Thus, both in vitro and in vivo research indicate that ketosis can generate oxygen radicals and result in excess cellular oxidative stress in type 1 diabetic patients. Elevated oxidative stress levels in ketotic patients can play a significant role in the development of vascular inflammation and contribute to the increased incidence of vascular disease and complications associated with type 1 diabetes.
Collapse
Affiliation(s)
- Sushil K Jain
- Department of Pediatrics, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, United States
| | | | | |
Collapse
|
33
|
Abstract
The prevalence of diabetes mellitus makes the occurrence of hyperglycemic emergencies a key component in clinical practice. The expert nurse is well positioned to manage both diabetic ketoacidosis and hyperosmolar hyperglycemic states. Patient care management includes a high index of suspicion for awareness for the possibility of diabetic ketoacidosis or hyperosmolar hyperglycemic states in patients based on a multifactorial etiology, evidence-based treatment of the emergent episode, and tertiary prevention to prevent recurrent episodes.
Collapse
Affiliation(s)
- Zara R Brenner
- Department of Nursing, State University of New York at Brockport and Rochester General Hospital, 14621, USA.
| |
Collapse
|
34
|
Jerath RS, Burek CL, Hoffman WH, Passmore GG. Complement activation in diabetic ketoacidosis and its treatment. Clin Immunol 2005; 116:11-7. [PMID: 15925827 DOI: 10.1016/j.clim.2005.03.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2004] [Revised: 03/04/2005] [Accepted: 03/07/2005] [Indexed: 11/15/2022]
Abstract
Recent studies support the presence of an inflammatory response during the treatment of diabetic ketoacidosis (DKA). The objectives of this study were to monitor the complement activation products C3a, C4a, Bb, and C5b-9 prior to, during, and after correction of DKA. All patients had increased levels of C3a at 6-8 h and 24 h (P<0.05). C4a was increased in only one patient. Bb showed an upward trend at 6-8 h, and was significantly elevated at 24 h (P<0.05); sC5b-9 was elevated in all patients prior to treatment or in the first 6-8 h of treatment. Results indicate that the alternative pathway may be the primary pathway of activation. These results extend the observation that both DKA and its treatment produce varying degrees of immunologic stress during the time when acute complications are most likely to occur.
Collapse
Affiliation(s)
- Rita S Jerath
- Section of Rheumatology, Department of Pediatrics, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | |
Collapse
|
35
|
Carl GF, Ameri A, Hoffman WH. Cerebral infarction in diabetic ketoacidosis. J Pediatr 2005; 147:129-30; author reply 130-1. [PMID: 16027720 DOI: 10.1016/j.jpeds.2005.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Martin SLA, Hoffman WH, Marcus DM, Passmore GG, Dalton RR. Retinal vascular integrity following correction of diabetic ketoacidosis in children and adolescents. J Diabetes Complications 2005; 19:233-7. [PMID: 15993358 DOI: 10.1016/j.jdiacomp.2004.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Revised: 05/17/2004] [Accepted: 08/09/2004] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Increased permeability of the cerebral microvasculature occurs during the treatment of diabetic ketoacidosis (DKA). Microvascular changes consistent with diabetic retinopathy have been reported prior to and after the treatment of DKA. This study evaluated the structural and functional aspects of the retina immediately following the correction of DKA. METHODS Seven young patients had comprehensive ophthalmologic examinations, including fluorescein angiography, within 24 h after the correction of severe DKA (pH <7.2). RESULTS None of the patients had clinical, photographic, or angiographic evidence of a retinal abnormality. CONCLUSION The blood-retinal barrier (BRB) does not experience the same degree of perturbation as the blood-brain barrier (BBB) does and may be a protected site during the insult of DKA and its treatment. The greater stability of the retinal microvasculature may be due to the increased number of pericytes in the BRB in comparison with the BBB.
Collapse
Affiliation(s)
- S Lee Anne Martin
- Department of Pathology, Medical College of Georgia, 1120 15th Street, Augusta, GA 30912, USA
| | | | | | | | | |
Collapse
|
37
|
Figueroa RE, Hoffman WH, Momin Z, Pancholy A, Passmore GG, Allison J. Study of subclinical cerebral edema in diabetic ketoacidosis by magnetic resonance imaging T2 relaxometry and apparent diffusion coefficient maps. Endocr Res 2005; 31:345-55. [PMID: 16433253 DOI: 10.1080/07435800500451912] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Cerebral edema is the most significant complication in children with diabetic ketoacidosis (DKA). Our goal was to study whether subclinical cerebral edema was preferentially vasogenic or cytotoxic. Magnetic resonance imaging (MRI)--diffusion-weighted imaging (DWI) and T2 relaxometry (T2R)--were obtained in pediatric patients presenting with severe diabetic ketoacidosis (DKA) 6-12 hours after initial DKA treatment and stabilization and 96 hours after correction of DKA. T2 relaxometry was significantly increased during treatment in both white and gray matter, in comparison to the absolute T2R values 96 hours after correction of DKA (p = .034). Classic intracellular cytotoxic edema could not be detected, based on the lack of a statistically significant decrease in ADC values. ADC values were instead elevated, implying a large component of cell membrane water diffusion, correlating with the elevated white and gray matter T2R We discuss the findings in relation to cerebral blood volume, cerebral vasoregulatory dysfunction, and cerebral hyperemia.
Collapse
Affiliation(s)
- Ramon E Figueroa
- Neuroradiology Section, Department of Radiology, Medical College of Georgia, 1120 15th street, Augusta, GA 30912, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Abdelmegeed MA, Kim SK, Woodcroft KJ, Novak RF. Acetoacetate activation of extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase in primary cultured rat hepatocytes: role of oxidative stress. J Pharmacol Exp Ther 2004; 310:728-36. [PMID: 15051799 DOI: 10.1124/jpet.104.066522] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Diabetes is characterized by elevated levels of ketone bodies acetoacetate (AA) and 3-hydroxybutyrate (3HB). High levels of ketone bodies have been implicated in generation of cellular oxidative stress. Ketone body activation of cellular signaling pathways associated with oxidative stress, however, has not been established. Thus, ketone body effects on kinase activation in primary cultured rat hepatocytes have been examined. Treatment with AA increased the phosphorylation of extracellular signal-regulated kinase 1/2 (Erk1/2) and p38 mitogen-activated protein kinase (MAPK), maximally by approximately 2.5- and 4-fold, respectively. AA failed to activate c-Jun NH(2)-terminal kinase. AA-mediated Erk1/2 and p38 MAPK activation was detectable at 3 h post-treatment with maximal activation occurring at 12 h. In contrast, 3HB failed to activate any of these kinases. Elevated phosphorylation of Raf and MKK3/6 also occurred in response to AA. Bisindolylmaleimide, a generalized protein kinase C (PKC) inhibitor, and B581, a Ras farnesylation inhibitor, inhibited AA-mediated activation of Erk1/2 and p38 MAPK, suggesting a role for PKC and Ras in mediating such activation. Interestingly, the tyrosine kinase inhibitor genistein prevented the AA-mediated phosphorylation of Erk1/2, but not p38 MAPK. AA treatment resulted in the generation of reactive oxygen species (ROS) and the depletion of cellular glutathione levels, which was ameliorated by the antioxidants N-Acetyl-l-cysteine (NAC) and Trolox (6-hydroxy-2,5,7,8-tetramethyl-chroman-2-carboxylic acid). NAC and Trolox also ameliorated AA-mediated Erk1/2 and p38 MAPK activation, suggesting that this activation is associated with ROS and oxidative stress.
Collapse
Affiliation(s)
- Mohamed A Abdelmegeed
- Institute of Environmental Health Sciences, Wayne State University, 2727 S Avenue, Rm 4000, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
39
|
Glaser NS, Wootton-Gorges SL, Marcin JP, Buonocore MH, Dicarlo J, Neely EK, Barnes P, Bottomly J, Kuppermann N. Mechanism of cerebral edema in children with diabetic ketoacidosis. J Pediatr 2004; 145:164-71. [PMID: 15289761 DOI: 10.1016/j.jpeds.2004.03.045] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVES Cerebral edema during diabetic ketoacidosis (DKA) has been attributed to osmotic cellular swelling during treatment. We evaluated cerebral water distribution and cerebral perfusion during DKA treatment in children. STUDY DESIGN We imaged 14 children during DKA treatment and after recovery, using both diffusion and perfusion weighted magnetic resonance imaging (MRI). We assessed the apparent diffusion coefficients (ADCs) and measures reflecting cerebral perfusion. RESULTS The ADC was significantly elevated during DKA treatment (indicating increased water diffusion) in all regions except the occipital gray matter. Mean reductions in the ADC from initial to postrecovery MRI were: basal ganglia 4.7 +/- 2.5 x 10(-5) mm(2)/s (P=.002), thalamus 3.7 +/- 2.8 x 10(-5) mm(2)/s, (P=.002), periaqueductal gray matter 4.3 +/- 5.1 x 10(-5) mm(2)/s (P=.03), and frontal white matter 2.0 +/- 3.1 x 10(-5) mm(2)/s (P=.03). In contrast, the ADC in the occipital gray matter increased significantly from the initial to postrecovery MRI (mean increase 3.9 +/- 3.9 x 10(-5) mm(2)/s, P=.004). Perfusion MRI during DKA treatment revealed significantly shorter mean transit times (MTTs) and higher peak tracer concentrations, possibly indicating increased cerebral blood flow (CBF). CONCLUSIONS Elevated ADC values during DKA treatment suggests a vasogenic process as the predominant mechanism of edema formation rather than osmotic cellular swelling.
Collapse
Affiliation(s)
- Nicole S Glaser
- Department of Pediatrics, Division of Emergency Medicine, University of California, Davis School of Medicine, Sacramento, California 95817, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
McCloud LL, Parkerson JB, Freant L, Hoffman WH, Catravas JD. beta-hydroxybutyrate induces acute pulmonary endothelial dysfunction in rabbits. Exp Lung Res 2004; 30:193-206. [PMID: 15195553 DOI: 10.1080/01902140490276311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The authors examined the effects of high ketone body and glucose concentrations on endothelial cell (EC) function in perfused rabbit lungs. beta-Hydroxybutyrate (beta OHB), at 5 mM, decreased endothelial angiotensin-converting enzyme (eACE) activity, whereas 25 mM glucose (HG), 1 mM beta OHB, or 10 mM acetoacetate (AcAc) did not. Dry to wet weight ratios were also reduced in lungs perfused with 5 mM beta OHB, but not with AcAc. beta OHB, at 5 mM, caused massive hemorrhage and interstitial and alveolar neutrophil infiltration; AcAc only produced engorgement of septal capillaries. Thus, pulmonary EC dysfunction occurs in rabbit lungs acutely perfused with beta OHB, but not with AcAc or glucose.
Collapse
Affiliation(s)
- Laryssa L McCloud
- Vascular Biology Center, Medical College of Georgia, Augusta, GA 30912-2500, USA.
| | | | | | | | | |
Collapse
|
41
|
Hoffman WH, Burek CL, Waller JL, Fisher LE, Khichi M, Mellick LB. Cytokine response to diabetic ketoacidosis and its treatment. Clin Immunol 2003; 108:175-81. [PMID: 14499240 DOI: 10.1016/s1521-6616(03)00144-x] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The objectives of this study were to monitor plasma cytokines as markers of cellular activation and as potential markers for the progression of the acute complications of diabetic ketoacidosis (DKA). Blood samples were obtained prior to, during and after treatment of severe DKA (pH < 7.2) in six children and adolescents. Plasma IL-10, IL-1beta, TNF-alpha, IL-6, IL-8 and IL-2 cytokine levels were assayed by ELISA at each of the time points. Prior to treatment, elevations of multiple cytokines were found, the highest being IL-10. Treatment of DKA resulted in a significant decrease of IL-10 at 6-8 h (p = 0.0062), and further increases in the inflammatory cytokines at 6-8 h and/or 24 h vs 120 h (baseline): IL-1beta (p =.0048); TNF-alpha (p =.0188) and IL-8 (p =.0048). This study strengthens the hypothesis that the metabolic crisis of DKA, and its treatment, have differential effects on cellular activation and cytokine release. The time frame for the increase in inflammatory cytokines correlates with the reported progression of subclinical brain edema, interstitial pulmonary edema and the development of clinical brain edema.
Collapse
Affiliation(s)
- William H Hoffman
- Department of Pediatrics, Medical College of Georgia, Augusta, GA 30912, USA.
| | | | | | | | | | | |
Collapse
|