1
|
Zulfiqar F, Ali Z, Viljoen AM, Chittiboyina AG, Khan IA. Flavonoid glycosides and ellagic acid cognates from defatted African mango ( Irvingia gabonensis) seed kernel. Nat Prod Res 2023; 37:2878-2887. [PMID: 36318869 PMCID: PMC12083747 DOI: 10.1080/14786419.2022.2140151] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/17/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022]
Abstract
Seventeen compounds of diverse classes including four flavonoid glycosides, five ellagic acid derivatives, and eight other metabolites were isolated from the methanolic extract of the defatted seed kernel of Irvingia gabonensis. Among the isolates, quercetin 3-O-methyl-4'-[α-L-rhamnopyranosyl-(1→3)]-O-α-L-rhamnopyranoside (1) and 3,3'-di-O-methyl-4'-O-α-L-rhamnopyranosylellagic acid 4-sulfate ester (5) were found to be previously undescribed. Structure elucidation was mainly achieved by the interpretation of 1D and 2D NMR and HRESIMS spectral data. Though compound 6 was previously reported, its 13C NMR data is being reported herein for the first time. To the best of our literature search knowledge, this is the first phytochemical report on I. gabonensis seed kernels.
Collapse
Affiliation(s)
- Fazila Zulfiqar
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, USA
| | - Zulfiqar Ali
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, USA
| | - Alvaro M. Viljoen
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Pretoria, South Africa
- SAMRC Herbal Drugs Research Unit, Tshwane University of Technology, Pretoria, South Africa
| | - Amar G. Chittiboyina
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, USA
| | - Ikhlas A. Khan
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, USA
- Division of Pharmacognosy, Department of BioMolecular Sciences School of Pharmacy, University of Mississippi, University, MS, USA
| |
Collapse
|
2
|
Omoniyi SA, Idowu MA, Adeola AA, Folorunso AA. Chemical composition and industrial benefits of dikanut (irvingia gabonensis) kernel oil. ACTA ACUST UNITED AC 2017. [DOI: 10.1108/nfs-03-2017-0054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purpose
This paper aims to review the chemical composition and industrial benefits of oil extracted from dikanut kernels.
Design/methodology/approach
Several literatures on chemical composition of dikanut kernels, methods of oil extraction from dikanut kernels and chemical composition of oil extracted from dikanut kernels were critically reviewed.
Findings
The review showed that proximate composition of dikanut kernels ranged from 2.10 to 11.90 per cent, 7.70 to 9.24 per cent, 51.32 to 70.80 per cent, 0.86 to 10.23 per cent, 2.26 to 6.80 per cent and 10.72 to 26.02 per cent for moisture, crude protein, crude fat, crude fibre, ash and carbohydrate contents, respectively. The methods of oil extraction from dikanut kernels include soxhlet extraction method, novel extraction method, enzymatic extraction method and pressing method. The quality attributes of dikanut kernel oil ranged from 1.59 to 4.70 g/100g, 0.50 to 2.67 meq/Kg, 4.30 to 13.40 g/100g, 187.90 to 256.50 mg KOH/g and 3.18 to 12.94 mg KOH/g for free fatty acid, peroxide value, iodine value, saponification value and acid value, respectively. Also, the percentage compositions of oleic, myristic, stearic, linolenic, palmitic, lauric, saturated fatty acids, monosaturated fatty acids and polyunsaturated fatty acids ranging from 0.00 to 6.90, 20.50 to 61.68, 0.80 to 11.40, 0.27 to 6.40, 5.06 to 10.30, 27.63 to 40.70, 97.45 to 98.73, 1.82 to 2.12 and 0.27 to 0.49 respectively. The results showed that dikanut kernels has appreciable amount of protein, carbohydrate and high level of fat content while oil extracted from dikanut kernels have high saponification value, high myristic acid and high lauric acid.
Research limitations/implications
There are scanty information/published works on industrial products made from oil extracted from dikanut kernels.
Practical implications
The review helps in identifying different methods of extraction of oil from dikanut kernels apart from popular soxhlet extraction method (uses of organic solvent). Also, it helps to identify the domestic and industrial benefits of oil extracted from dikanut kernels.
Originality/value
The review showed that oil extracted from dikanut kernels could be useful as food additive, flavour ingredient, coating fresh citrus fruits and in the manufacture of margarine, oil creams, cooking oil, defoaming agent, cosmetics and pharmaceutical products.
Collapse
|
3
|
Ezekiel CN, Sulyok M, Somorin Y, Odutayo FI, Nwabekee SU, Balogun AT, Krska R. Mould and mycotoxin exposure assessment of melon and bush mango seeds, two common soup thickeners consumed in Nigeria. Int J Food Microbiol 2016; 237:83-91. [PMID: 27543818 DOI: 10.1016/j.ijfoodmicro.2016.08.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/22/2016] [Accepted: 08/12/2016] [Indexed: 01/26/2023]
Abstract
An examination of the mould and fungal metabolite pattern in melon and bush mango seeds locally produced in Nigeria was undertaken in order to understand the mycotoxicological risk posed to consumers of both of these important and commonly consumed soup thickeners. The variation in mycotoxin levels in graded categories of both foodstuffs were also determined. Aspergillus, Fusarium, Penicillium, Mucorales and Trichoderma were the recovered fungi from the foodstuffs with Aspergillus species dominating (melon=97.8%; bush mango=89.9%). Among the Aspergillus species identified Aspergillus section Flavi dominated (melon: 72%; bush mango: 57%) and A. flavus, A. parasiticus, A. parvisclerotigenus and A. tamarii were the recovered species. About 56% and 73% of the A. flavus isolates from melon and bush mango seed samples, respectively were aflatoxigenic. Thirty-four and 59 metabolites including notable mycotoxins were found in the melon and bush mango seeds respectively. Mean aflatoxin levels (μg/kg) in melon (aflatoxin B1 (AFB1)=37.5 and total aflatoxins=142) and bush mango seeds (AFB1=68.1 and total aflatoxins=61.7) were higher than other mycotoxins, suggesting potential higher exposure for consumer populations. Significantly (p<0.05) higher levels of mycotoxins were found in hand-peeled melon and discoloured bush mango seeds than in machine-peeled melon and non-discoloured seeds except for HT-2 and T-2 toxins which occurred conversely. All melon and bush mango seeds exceeded the 2μg/kg AFB1 limit whereas all melon and 55% of bush mango seeds exceeded the 4μg/kg total aflatoxin EU limit adopted in Nigeria. This is the first report of (1) mycotoxin co-occurrence in bush mango seeds, (2) cyclopiazonic acid, HT-2 toxin, moniliformin, mycophenolic acid, T-2 toxin and tenuazonic acid occurrence, and (3) mycotoxin exposure assessment of both foodstuffs.
Collapse
Affiliation(s)
- Chibundu N Ezekiel
- Mycology/Mycotoxicology Research Unit, Department of Biosciences and Biotechnology, Babcock University, Ilishan Remo, Ogun State, Nigeria.
| | - Michael Sulyok
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenzstr. 20, A-3430 Tulln, Austria
| | - Yinka Somorin
- Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Foluke I Odutayo
- Mycology/Mycotoxicology Research Unit, Department of Biosciences and Biotechnology, Babcock University, Ilishan Remo, Ogun State, Nigeria; Department of Basic Sciences, Babcock University, Ilishan Remo, Ogun State, Nigeria
| | - Stella U Nwabekee
- Mycology/Mycotoxicology Research Unit, Department of Biosciences and Biotechnology, Babcock University, Ilishan Remo, Ogun State, Nigeria
| | - Afeez T Balogun
- Mycology/Mycotoxicology Research Unit, Department of Biosciences and Biotechnology, Babcock University, Ilishan Remo, Ogun State, Nigeria
| | - Rudolf Krska
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenzstr. 20, A-3430 Tulln, Austria
| |
Collapse
|
4
|
Martínez-Abundis E, Mendez-del Villar M, Pérez-Rubio KG, Zuñiga LY, Cortez-Navarrete M, Ramírez-Rodriguez A, González-Ortiz M. Novel nutraceutic therapies for the treatment of metabolic syndrome. World J Diabetes 2016; 7:142-52. [PMID: 27076875 PMCID: PMC4824685 DOI: 10.4239/wjd.v7.i7.142] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 01/24/2016] [Accepted: 02/14/2016] [Indexed: 02/05/2023] Open
Abstract
Nutraceutic therapies such as berberine, bitter melon, Gymnema sylvestre, Irvingia gabonensis, resveratrol and ursolic acid have been shown to help control metabolic syndrome (MetS). The effect of berberine on glucose and lipid metabolism, hypertension, obesity and MetS has been evaluated in animal models and humans. Most clinical trials involving bitter melon have been conducted to evaluate its effect on glucose metabolism; nevertheless, some studies have reported favorable effects on lipids and blood pressure although there is little information about its effect on body weight. Gymnema sylvestre helps to decrease body weight and blood sugar levels; however, there is limited information on dyslipidemia and hypertension. Clinical trials of Irvingia gabonensis have shown important effects decreasing glucose and cholesterol concentrations as well decreasing body weight. Resveratrol acts through different mechanisms to decrease blood pressure, lipids, glucose and weight, showing its effects on the population with MetS. Finally, there is evidence of positive effects with ursolic acid in in vitro and in vivo studies on glucose and lipid metabolism and on body weight and visceral fat. Therefore, a review of the beneficial effects and limitations of the above-mentioned nutraceutic therapies is presented.
Collapse
|
5
|
Lee M, Nam DE, Kim OK, Shim TJ, Kim JH, Lee J. Anti-obesity Effects of African Mango (Irvingia gabonesis, IGOB 131TM) Extract in Leptin-deficient Obese Mice. ACTA ACUST UNITED AC 2014. [DOI: 10.3746/jkfn.2014.43.10.1477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
The potential benefits and adverse effects of phytic Acid supplement in streptozotocin-induced diabetic rats. Adv Pharmacol Sci 2013; 2013:172494. [PMID: 24454345 PMCID: PMC3881338 DOI: 10.1155/2013/172494] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/04/2013] [Accepted: 11/11/2013] [Indexed: 12/01/2022] Open
Abstract
In this study, the effect of phytic acid supplement on streptozotocin-induced diabetic rats was investigated. Diabetic rats were fed rodent chow with or without phytic acid supplementation for thirty days. Blood and organ samples were collected for assays. The average food intake was the highest and the body weight gain was the lowest in the group fed phytic acid supplement compared to the diabetic and normal control groups. There was a downward trend in intestinal amylase activity in the group fed phytic acid supplement compared to the other groups. The spike in random blood glucose was the lowest in the same group. We noted reduced serum triglycerides and increased total cholesterol and HDL cholesterol levels in the group fed phytic acid supplement. Serum alkaline phosphatase and alanine amino transferase activities were significantly (P < 0.05) increased by phytic acid supplementation. Systemic IL-1β level was significantly (P < 0.05) elevated in the diabetic control and supplement treated groups. The liver lipogenic enzyme activities were not significantly altered among the groups. These results suggest that phytic acid supplementation may be beneficial in the management of diabetes mellitus. The observed adverse effect on the liver may be due to the combined effect of streptozotocin-induced diabetes and phytic acid supplementation.
Collapse
|
7
|
Obianime AW, Uche FI. The phytoconstituents and the comparative effects of aqueous extract of Irvingia gabonensis seeds and proviron on the biochemical parameters of male guinea pigs. ASIAN PAC J TROP MED 2010. [DOI: 10.1016/s1995-7645(10)60044-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
8
|
McAnuff MA, Omoruyi FO, Morrison EY, Asemota HN. Plasma and liver lipid distributions in streptozotocin-induced diabetic rats fed sapogenin extract of the Jamaican bitter yam (Dioscorea polygonoides). Nutr Res 2002. [DOI: 10.1016/s0271-5317(02)00457-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|