1
|
Uygur E, Karatay KB, Derviş E, Evren V, Kılçar AY, Güldü ÖK, Sezgin C, Çinleti BA, Tekin V, Muftuler FZB. Synthesis of Novel Plant-Derived Encapsulated Radiolabeled Compounds for the Diagnosis of Parkinson's Disease and the Evaluation of Biological Effects with In Vitro/In Vivo Methods. Mol Neurobiol 2024; 61:8851-8871. [PMID: 38568418 PMCID: PMC11496352 DOI: 10.1007/s12035-024-04103-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/29/2024] [Indexed: 10/23/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that affects millions of individuals globally. It is characterized by the loss of dopaminergic neurons in Substantia Nigra pars compacta (SNc) and striatum. Neuroimaging techniques such as single-photon emission computed tomography (SPECT), positron emission tomography (PET), and magnetic resonance imaging (MRI) help diagnosing PD. In this study, the focus was on developing technetium-99 m ([99mTc]Tc) radiolabeled drug delivery systems using plant-derived compounds for the diagnosis of PD. Madecassoside (MA), a plant-derived compound, was conjugated with Levodopa (L-DOPA) to form MA-L-DOPA, which was then encapsulated using Poly Lactic-co-Glycolic Acid (PLGA) to create MA-PLGA and MA-L-DOPA-PLGA nanocapsules. Extensive structural analysis was performed using various methods such as Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), liquid chromatography-mass spectrometry (LC-MS), thin layer chromatography (TLC), high performance liquid chromatography (HPLC), dynamic light scattering (DLS), and scanning electron microscopy (SEM) to characterize the synthesized products. Radiochemical yields of radiolabeled compounds were determined using thin layer radio chromatography (TLRC) and high performance liquid radio chromatography (HPLRC) methods. In vitro cell culture studies were conducted on human neuroblastoma (SH-SY5Y) and rat pheochromocytoma (PC-12) cell lines to assess the incorporation of [99mTc]Tc radiolabeled compounds ([99mTc]Tc-MA, [99mTc]Tc-MA-L-DOPA, [99mTc]Tc-MA-PLGA and [99mTc]Tc-MA-L-DOPA-PLGA) and the cytotoxicity of inactive compounds (MA and MA-L-DOPA compounds and encapsulated compounds (MA-PLGA and MA-L-DOPA-PLGA). Additionally, the biodistribution studies were carried out on healthy male Sprague-Dawley rats and a Parkinson's disease experimental model to evaluate the compounds' bioactivity using the radiolabeled compounds. The radiochemical yields of all radiolabeled compounds except [99mTc]Tc-L-DOPA-PLGA were above 95% and had stability over 6 h. The cytotoxic effects of all substances on SH-SY5Y and PC-12 cells increase with increasing concentration values. The uptake values of PLGA-encapsulated compounds are statistically significant in SH-SY5Y and PC-12 cells. The biodistribution studies showed that [99mTc]Tc-MA is predominantly retained in specific organs and brain regions, with notable uptake in the prostate, muscle, and midbrain. PLGA-encapsulation led to higher uptake in certain organs, suggesting its biodegradable nature may enhance tissue retention, and surface modifications might further optimize brain penetration. Overall, the results indicate that radiolabeled plant-derived encapsulated drug delivery systems with [99mTc]Tc hold potential as diagnostic agents for PD symptoms. This study contributes to the advancement of drug delivery agents in the field of brain research.
Collapse
Affiliation(s)
- Emre Uygur
- Soma Vocational School, Department of Biomedical Device Technologies, Manisa Celal Bayar University, Nihat Danışman, Değirmen Cd. No. 2, Soma, 45500, Manisa, Turkey.
| | - Kadriye Büşra Karatay
- Institute of Nuclear Sciences, Ege University, Erzene, Ege Üniversitesi, Ege Ünv., 35100, Bornova, İzmir, Turkey
| | - Emine Derviş
- Institute of Nuclear Sciences, Ege University, Erzene, Ege Üniversitesi, Ege Ünv., 35100, Bornova, İzmir, Turkey
| | - Vedat Evren
- Faculty of Medicine, Department of Physiology, Ege University, Bornova, 35100, İzmir, Turkey
| | - Ayfer Yurt Kılçar
- Institute of Nuclear Sciences, Ege University, Erzene, Ege Üniversitesi, Ege Ünv., 35100, Bornova, İzmir, Turkey
| | - Özge Kozguş Güldü
- Institute of Nuclear Sciences, Ege University, Erzene, Ege Üniversitesi, Ege Ünv., 35100, Bornova, İzmir, Turkey
| | - Ceren Sezgin
- Department of Nuclear Medicine, Manisa City Hospital, Adnan Menderes Neighborhood, 132Nd Street Number 15 Şehzadeler, 45100, Manisa, Turkey
| | - Burcu Acar Çinleti
- Faculty of Medicine, Buca Seyfi Demirsoy Training and Research Hospital, Department of Neurology, Izmir Democracy University, Kozağaç Mah. Özmen Cad. No. 147, Buca, 35040, Izmir, Turkey
| | - Volkan Tekin
- Institute of Nuclear Sciences, Ege University, Erzene, Ege Üniversitesi, Ege Ünv., 35100, Bornova, İzmir, Turkey
| | | |
Collapse
|
2
|
Sternberg Z. Neurodegenerative Etiology of Aromatic L-Amino Acid Decarboxylase Deficiency: a Novel Concept for Expanding Treatment Strategies. Mol Neurobiol 2024; 61:2996-3018. [PMID: 37953352 DOI: 10.1007/s12035-023-03684-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 09/29/2023] [Indexed: 11/14/2023]
Abstract
Aromatic l-amino acid decarboxylase deficiency (AADC-DY) is caused by one or more mutations in the DDC gene, resulting in the deficit in catecholamines and serotonin neurotransmitters. The disease has limited therapeutic options with relatively poor clinical outcomes. Accumulated evidence suggests the involvement of neurodegenerative mechanisms in the etiology of AADC-DY. In the absence of neurotransmitters' neuroprotective effects, the accumulation and the chronic presence of several neurotoxic metabolites including 4-dihydroxy-L-phenylalanine, 3-methyldopa, and homocysteine, in the brain of subjects with AADC-DY, promote oxidative stress and reduce the cellular antioxidant and methylation capacities, leading to glial activation and mitochondrial dysfunction, culminating to neuronal injury and death. These pathophysiological processes have the potential to hinder the clinical efficacy of treatments aimed at increasing neurotransmitters' synthesis and or function. This review describes in detail the mechanisms involved in AADC-DY neurodegenerative etiology, highlighting the close similarities with those involved in other neurodegenerative diseases. We then offer novel strategies for the treatment of the disease with the objective to either reduce the level of the metabolites or counteract their prooxidant and neurotoxic effects. These treatment modalities used singly or in combination, early in the course of the disease, will minimize neuronal injury, preserving the functional integrity of neurons, hence improving the clinical outcomes of both conventional and unconventional interventions in AADC-DY. These modalities may not be limited to AADC-DY but also to other metabolic disorders where a specific mutation leads to the accumulation of prooxidant and neurotoxic metabolites.
Collapse
Affiliation(s)
- Zohi Sternberg
- Jacobs School of Medicine and Biomedical Sciences, Buffalo Medical Center, Buffalo, NY, 14203, USA.
| |
Collapse
|
3
|
Cifuentes J, Cifuentes-Almanza S, Ruiz Puentes P, Quezada V, González Barrios AF, Calderón-Peláez MA, Velandia-Romero ML, Rafat M, Muñoz-Camargo C, Albarracín SL, Cruz JC. Multifunctional magnetoliposomes as drug delivery vehicles for the potential treatment of Parkinson's disease. Front Bioeng Biotechnol 2023; 11:1181842. [PMID: 37214285 PMCID: PMC10196638 DOI: 10.3389/fbioe.2023.1181842] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease. Therefore, development of novel technologies and strategies to treat PD is a global health priority. Current treatments include administration of Levodopa, monoamine oxidase inhibitors, catechol-O-methyltransferase inhibitors, and anticholinergic drugs. However, the effective release of these molecules, due to the limited bioavailability, is a major challenge for the treatment of PD. As a strategy to solve this challenge, in this study we developed a novel multifunctional magnetic and redox-stimuli responsive drug delivery system, based on the magnetite nanoparticles functionalized with the high-performance translocating protein OmpA and encapsulated into soy lecithin liposomes. The obtained multifunctional magnetoliposomes (MLPs) were tested in neuroblastoma, glioblastoma, primary human and rat astrocytes, blood brain barrier rat endothelial cells, primary mouse microvascular endothelial cells, and in a PD-induced cellular model. MLPs demonstrated excellent performance in biocompatibility assays, including hemocompatibility (hemolysis percentages below 1%), platelet aggregation, cytocompatibility (cell viability above 80% in all tested cell lines), mitochondrial membrane potential (non-observed alterations) and intracellular ROS production (negligible impact compared to controls). Additionally, the nanovehicles showed acceptable cell internalization (covered area close to 100% at 30 min and 4 h) and endosomal escape abilities (significant decrease in lysosomal colocalization after 4 h of exposure). Moreover, molecular dynamics simulations were employed to better understand the underlying translocating mechanism of the OmpA protein, showing key findings regarding specific interactions with phospholipids. Overall, the versatility and the notable in vitro performance of this novel nanovehicle make it a suitable and promising drug delivery technology for the potential treatment of PD.
Collapse
Affiliation(s)
- Javier Cifuentes
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
| | | | - Paola Ruiz Puentes
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Valentina Quezada
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Andrés Fernando González Barrios
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá, Colombia
| | | | | | - Marjan Rafat
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States
| | | | - Sonia L. Albarracín
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
| |
Collapse
|
4
|
Chakrabarti S, Bisaglia M. Oxidative Stress and Neuroinflammation in Parkinson's Disease: The Role of Dopamine Oxidation Products. Antioxidants (Basel) 2023; 12:antiox12040955. [PMID: 37107329 PMCID: PMC10135711 DOI: 10.3390/antiox12040955] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Parkinson's disease (PD) is a chronic neurodegenerative condition affecting more than 1% of people over 65 years old. It is characterized by the preferential degeneration of nigrostriatal dopaminergic neurons, which is responsible for the motor symptoms of PD patients. The pathogenesis of this multifactorial disorder is still elusive, hampering the discovery of therapeutic strategies able to suppress the disease's progression. While redox alterations, mitochondrial dysfunctions, and neuroinflammation are clearly involved in PD pathology, how these processes lead to the preferential degeneration of dopaminergic neurons is still an unanswered question. In this context, the presence of dopamine itself within this neuronal population could represent a crucial determinant. In the present review, an attempt is made to link the aforementioned pathways to the oxidation chemistry of dopamine, leading to the formation of free radical species, reactive quinones and toxic metabolites, and sustaining a pathological vicious cycle.
Collapse
Affiliation(s)
- Sasanka Chakrabarti
- Department of Biochemistry and Central Research Laboratory, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar University (Deemed to be), Mullana, Ambala 133207, India
| | - Marco Bisaglia
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
- Study Center for Neurodegeneration (CESNE), 35121 Padova, Italy
| |
Collapse
|
5
|
Borges JMP, de Jesus LB, Dos Santos Souza C, da Silva VDA, Costa SL, de Fátima Dias Costa M, El-Bachá RS. Astrocyte Reaction to Catechol-Induced Cytotoxicity Relies on the Contact with Microglia Before Isolation. Neurotox Res 2022; 40:973-994. [PMID: 35708826 DOI: 10.1007/s12640-022-00528-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 10/18/2022]
Abstract
Astrocytes preserve the brain microenvironment homeostasis in order to protect other brain cells, mainly neurons, against damages. Glial cells have specific functions that are important in the context of neuronal survival in different models of central nervous system (CNS) diseases. Microglia are among these cells, secreting several molecules that can modulate astrocyte functions. Although 1,2-dihydroxybenzene (catechol) is a neurotoxic monoaromatic compound of exogenous origin, several endogenous molecules also present the catechol group. This study compared two methods to obtain astrocyte-enriched cultures from newborn Wistar rats of both sexes. In the first technique (P1), microglial cells began to be removed early 48 h after primary mixed glial cultures were plated. In the second one (P2), microglial cells were late removed 7 to 10 days after plating. Both cultures were exposed to catechol for 72 h. Catechol was more cytotoxic to P1 cultures than to P2, decreasing cellularity and changing the cell morphology. Microglial-conditioned medium (MCM) protected P1 cultures and inhibited the catechol autoxidation. P2 cultures, as well as P1 in the presence of 20% MCM, presented long, dense, and fibrillary processes positive for glial fibrillary acidic protein, which retracted the cytoplasm when exposed to catechol. The Ngf and Il1beta transcription increased in P1, meanwhile astrocytes expressed more Il10 in P2. Catechol decreased Bdnf and Il10 in P2 cultures, and it decreased the expression of Il1beta in both conditions. A prolonged contact with microglia before isolation of astrocyte-enriched cultures modifies astrocyte functions and morphology, protecting these cells against catechol-induced cytotoxicity.
Collapse
Affiliation(s)
- Julita Maria Pereira Borges
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia (UFBA), 40.110-902, Salvador, Bahia (BA), Brazil. .,Department of Science and Technology, Southwest Bahia State University (UESB), 45.208-409, Jequie, BA, Brazil.
| | - Lívia Bacelar de Jesus
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia (UFBA), 40.110-902, Salvador, Bahia (BA), Brazil
| | - Cleide Dos Santos Souza
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia (UFBA), 40.110-902, Salvador, Bahia (BA), Brazil
| | - Victor Diogenes Amaral da Silva
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia (UFBA), 40.110-902, Salvador, Bahia (BA), Brazil
| | - Silvia Lima Costa
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia (UFBA), 40.110-902, Salvador, Bahia (BA), Brazil
| | - Maria de Fátima Dias Costa
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia (UFBA), 40.110-902, Salvador, Bahia (BA), Brazil
| | - Ramon Santos El-Bachá
- Department of Biochemistry and Biophysics, Institute of Health Sciences, Federal University of Bahia (UFBA), 40.110-902, Salvador, Bahia (BA), Brazil.
| |
Collapse
|
6
|
Carpéné C, Boulet N, Grolleau JL, Morin N. High doses of catecholamines activate glucose transport in human adipocytes independently from adrenoceptor stimulation or vanadium addition. World J Diabetes 2022; 13:37-53. [PMID: 35070058 PMCID: PMC8771263 DOI: 10.4239/wjd.v13.i1.37] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/26/2021] [Accepted: 12/28/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND When combined with vanadium salts, catecholamines strongly activate glucose uptake in rat and mouse adipocytes.
AIM To test whether catecholamines activate glucose transport in human adipocytes.
METHODS The uptake of 2-deoxyglucose (2-DG) was measured in adipocytes isolated from pieces of abdominal subcutaneous tissue removed from women undergoing reconstructive surgery. Pharmacological approaches with amine oxidase inhibitors, adrenoreceptor agonists and antioxidants were performed to unravel the mechanisms of action of noradrenaline or adrenaline (also named epinephrine).
RESULTS In human adipocytes, 45-min incubation with 100 µmol/L adrenaline or noradrenaline activated 2-DG uptake up to more than one-third of the maximal response to insulin. This stimulation was not reproduced with millimolar doses of dopamine or serotonin and was not enhanced by addition of vanadate to the incubation medium. Among various natural amines and adrenergic agonists tested, no other molecule was more efficient than adrenaline and noradrenaline in stimulating 2-DG uptake. The effect of the catecholamines was not impaired by pargyline and semicarbazide, contrarily to that of benzylamine or methylamine, which are recognized substrates of semicarbazide-sensitive amine oxidase. Hydrogen peroxide at 1 mmol/L activated hexose uptake but not pyrocatechol or benzoquinone, and only the former was potentiated by vanadate. Catalase and the phosphoinositide 3-kinase inhibitor wortmannin inhibited adrenaline-induced activation of 2-DG uptake.
CONCLUSION High doses of catecholamines exert insulin-like actions on glucose transport in human adipocytes. At submillimolar doses, vanadium did not enhance this catecholamine activation of glucose transport. Consequently, this dismantles our previous suggestion to combine the metal ion with catecholamines to improve the benefit/risk ratio of vanadium-based antidiabetic approaches.
Collapse
Affiliation(s)
- Christian Carpéné
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR1297, Toulouse 31432, France
| | - Nathalie Boulet
- Team Dinamix, Institute of Metabolic and Cardiovascular Diseases (I2MC), Paul Sabatier University, Toulouse 31432, France
| | | | - Nathalie Morin
- Faculté de Pharmacie de Paris, Université de Paris, INSERM UMR-S 1139, 3PHM, Paris 75006, France
| |
Collapse
|
7
|
An Unrecognized Fundamental Relationship between Neurotransmitters: Glutamate Protects against Catecholamine Oxidation. Antioxidants (Basel) 2021; 10:antiox10101564. [PMID: 34679699 PMCID: PMC8533062 DOI: 10.3390/antiox10101564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 01/16/2023] Open
Abstract
Neurotransmitter catecholamines (dopamine, epinephrine, and norepinephrine) are liable to undergo oxidation, which copper is deeply involved in. Catecholamine oxidation-derived neurotoxicity is recognized as a pivotal pathological mechanism in neurodegenerative diseases. Glutamate, as an excitatory neurotransmitter, is enriched in the brain at extremely high concentrations. However, the chemical biology relationship of these two classes of neurotransmitters remains largely unknown. In the present study, we assessed the influences of glutamate on the autoxidation of catecholamines, the copper- and copper-containing ceruloplasmin-mediated oxidation of catecholamines, the catecholamine-induced formation of quinoprotein, catecholamine/copper-induced hydroxyl radicals, and DNA damage in vitro. The results demonstrate that glutamate, at a physiologically achievable molar ratio of glutamate/catecholamines, has a pronounced inhibitory effect on catecholamine oxidation, catecholamine oxidation-evoked hydroxyl radicals, quinoprotein, and DNA damage. The protective mechanism of glutamate against catecholamine oxidation could be attributed to its restriction of the redox activity of copper via chelation. This previously unrecognized link between glutamate, catecholamines, and copper suggests that neurodegenerative disorders may occur and develop once the built-in equilibrium is disrupted and brings new insight into developing more effective prevention and treatment strategies for neurodegenerative diseases.
Collapse
|
8
|
Asanuma M, Miyazaki I. Glutathione and Related Molecules in Parkinsonism. Int J Mol Sci 2021; 22:ijms22168689. [PMID: 34445395 PMCID: PMC8395390 DOI: 10.3390/ijms22168689] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/08/2021] [Accepted: 08/11/2021] [Indexed: 12/14/2022] Open
Abstract
Glutathione (GSH) is the most abundant intrinsic antioxidant in the central nervous system, and its substrate cysteine readily becomes the oxidized dimeric cystine. Since neurons lack a cystine transport system, neuronal GSH synthesis depends on cystine uptake via the cystine/glutamate exchange transporter (xCT), GSH synthesis, and release in/from surrounding astrocytes. Transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), a detoxifying master transcription factor, is expressed mainly in astrocytes and activates the gene expression of various phase II drug-metabolizing enzymes or antioxidants including GSH-related molecules and metallothionein by binding to the antioxidant response element (ARE) of these genes. Accumulating evidence has shown the involvement of dysfunction of antioxidative molecules including GSH and its related molecules in the pathogenesis of Parkinson’s disease (PD) or parkinsonian models. Furthermore, we found several agents targeting GSH synthesis in the astrocytes that protect nigrostriatal dopaminergic neuronal loss in PD models. In this article, the neuroprotective effects of supplementation and enhancement of GSH and its related molecules in PD pathology are reviewed, along with introducing new experimental findings, especially targeting of the xCT-GSH synthetic system and Nrf2–ARE pathway in astrocytes.
Collapse
|
9
|
Hörmann P, Delcambre S, Hanke J, Geffers R, Leist M, Hiller K. Impairment of neuronal mitochondrial function by L-DOPA in the absence of oxygen-dependent auto-oxidation and oxidative cell damage. Cell Death Discov 2021; 7:151. [PMID: 34226525 PMCID: PMC8257685 DOI: 10.1038/s41420-021-00547-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/06/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
L-3,4-Dihydroxyphenylalanin (L-DOPA or levodopa) is currently the most used drug to treat symptoms of Parkinson's disease (PD). After crossing the blood-brain barrier, it is enzymatically converted to dopamine by neuronal cells and restores depleted endogenous neurotransmitter levels. L-DOPA is prone to auto-oxidation and reactive intermediates of its degradation including reactive oxygen species (ROS) have been implicated in cellular damage. In this study, we investigated how oxygen tension effects L-DOPA stability. We applied oxygen tensions comparable to those in the mammalian brain and demonstrated that 2% oxygen almost completely stopped its auto-oxidation. L-DOPA even exerted a ROS scavenging function. Further mechanistic analysis indicated that L-DOPA reprogrammed mitochondrial metabolism and reduced oxidative phosphorylation, depolarized the mitochondrial membrane, induced reductive glutamine metabolism, and depleted the NADH pool. These results shed new light on the cellular effects of L-DOPA and its neuro-toxicity under physiological oxygen levels that are very distinct to normoxic in vitro conditions.
Collapse
Affiliation(s)
- Philipp Hörmann
- Department of Bioinformatics and Biochemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Sylvie Delcambre
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jasmin Hanke
- Department of Bioinformatics and Biochemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Robert Geffers
- Genome Analytics, Helmholtz-Center for Infection Research, Braunschweig, Germany
| | - Marcel Leist
- In Vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany
| | - Karsten Hiller
- Department of Bioinformatics and Biochemistry, Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
10
|
Young KZ, Cartee NMP, Ivanova MI, Wang MM. Thiol-mediated and catecholamine-enhanced multimerization of a cerebrovascular disease enriched fragment of NOTCH3. Exp Neurol 2020; 328:113261. [PMID: 32119934 DOI: 10.1016/j.expneurol.2020.113261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 02/13/2020] [Accepted: 02/28/2020] [Indexed: 10/24/2022]
Abstract
Cerebral small vessel disease is a common condition linked to dementia and stroke. As an age-dependent brain pathology, cerebral SVD may share molecular processes with core neurodegenerative diseases such as Alzheimer's and Parkinson's disease. Many neurodegenerative diseases feature abnormal protein accumulation and aberrant protein folding, resulting in multimerization of specific proteins. We investigated if a small NOTCH3 N-terminal fragment (NTF) that co-registers with pathologically affected cells in the inherited SVD, CADASIL, is capable of multimerization. We also characterized endogenous small molecule vascular enhancers and inhibitors of multimerization. NTF multimerizes spontaneously and also forms conjugates with vascular catecholamines, including dopamine and norepinephrine, which avidly promote multimerization of the protein. Inhibition of catecholamine-dependent multimerization by vitamin C and reversal by reducing agents implicate an essential role of oxidation in NTF multimerization. Antibodies that react with degenerating arteries in CADASIL tissue preferentially bind to multimerized forms of NTF. These studies suggest that multimerization of proteins in the aging brain is not restricted to neuronal molecules and may participate in age-dependent vascular pathology.
Collapse
Affiliation(s)
- Kelly Z Young
- Departments of Neurology, University of Michigan, Ann Arbor, MI 48109-5622, USA; Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109-5622, USA
| | - Naw May P Cartee
- Departments of Neurology, University of Michigan, Ann Arbor, MI 48109-5622, USA
| | - Magdalena I Ivanova
- Departments of Neurology, University of Michigan, Ann Arbor, MI 48109-5622, USA
| | - Michael M Wang
- Departments of Neurology, University of Michigan, Ann Arbor, MI 48109-5622, USA; Neurology Service, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA.
| |
Collapse
|
11
|
Kovalchuke L, Mosharov EV, Levy OA, Greene LA. Stress-induced phospho-ubiquitin formation causes parkin degradation. Sci Rep 2019; 9:11682. [PMID: 31406131 PMCID: PMC6690910 DOI: 10.1038/s41598-019-47952-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 07/26/2019] [Indexed: 12/21/2022] Open
Abstract
Mutations in the E3 ubiquitin ligase parkin are the most common known cause of autosomal recessive Parkinson’s disease (PD), and parkin depletion may play a role in sporadic PD. Here, we sought to elucidate the mechanisms by which stress decreases parkin protein levels using cultured neuronal cells and the PD-relevant stressor, L-DOPA. We find that L-DOPA causes parkin loss through both oxidative stress-independent and oxidative stress-dependent pathways. Characterization of the latter reveals that it requires both the kinase PINK1 and parkin’s interaction with phosphorylated ubiquitin (phospho-Ub) and is mediated by proteasomal degradation. Surprisingly, autoubiquitination and mitophagy do not appear to be required for such loss. In response to stress induced by hydrogen peroxide or CCCP, parkin degradation also requires its association with phospho-Ub, indicating that this mechanism is broadly generalizable. As oxidative stress, metabolic dysfunction and phospho-Ub levels are all elevated in PD, we suggest that these changes may contribute to a loss of parkin expression.
Collapse
Affiliation(s)
| | - Eugene V Mosharov
- Departments of Psychiatry, Neurology, and Pharmacology, Columbia University: Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Oren A Levy
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Lloyd A Greene
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
12
|
Biosa A, De Lazzari F, Masato A, Filograna R, Plotegher N, Beltramini M, Bubacco L, Bisaglia M. Superoxide Dismutases SOD1 and SOD2 Rescue the Toxic Effect of Dopamine-Derived Products in Human SH-SY5Y Neuroblastoma Cells. Neurotox Res 2019; 36:746-755. [DOI: 10.1007/s12640-019-00078-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 01/06/2023]
|
13
|
Synthesis and Biological Evaluation of Novel Selenyl and Sulfur-l-Dopa Derivatives as Potential Anti-Parkinson's Disease Agents. Biomolecules 2019; 9:biom9060239. [PMID: 31216771 PMCID: PMC6628379 DOI: 10.3390/biom9060239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by loss of dopaminergic neurons at level of substantia nigra pars compacta. To date, there is no cure for this pathology, except for some drugs able to alleviate the symptoms of PD. In this paper we report the synthesis and biological evaluation of novel sulfur- and selenyl-l-Dopa (LD) derivatives (SP1-6) obtained through the amide junction between the amino group of LD and carboxylic moiety of sulfur- and selenyl-organic compounds, which are commercially available. Biological activity was evaluated on human undifferentiated and retinoic acid/phorbol myristyl acetate (RA/PMA)-differentiated SY-SH5Y neuroblastoma cell line using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Antioxidant activity against oxidative stress was measured using nitroblue tetrazolium (NBT) and 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) assays. Finally, physico-chemical characterization and plasma stability studies of SP1-6 were also performed. Biological data revealed that SP6 has a significant protective action against the neurotoxic action of 6-hydroxydopamine (6-OHDA) and H2O2 in a RA/PMA-differentiated SY-SH5Y neuroblastoma cell line that proved to be an effective antioxidant and protective compound. SP6, endowed with a lipophilic nature, low molecular weight, and plasma stability, can easily cross biological membranes via passive diffusion such as through the blood-brain barrier. SP6 has great potential for developing novel pharmacological approach for neurodegenerative diseases, such as PD. Further studies will help define its exact antioxidant mechanism and determine whether the neuroprotective action is mediated or modulated by glutathione peroxidase (GPx).
Collapse
|
14
|
Billings JL, Gordon SL, Rawling T, Doble PA, Bush AI, Adlard PA, Finkelstein DI, Hare DJ. l
‐3,4‐dihydroxyphenylalanine (
l
‐DOPA) modulates brain iron, dopaminergic neurodegeneration and motor dysfunction in iron overload and mutant alpha‐synuclein mouse models of Parkinson's disease. J Neurochem 2019; 150:88-106. [DOI: 10.1111/jnc.14676] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/15/2018] [Accepted: 01/16/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Jessica L. Billings
- Melbourne Dementia Research Centre at The Florey Institute of Neuroscience and Mental Health and The University of Melbourne Parkville Victoria Australia
| | - Sarah L. Gordon
- Melbourne Dementia Research Centre at The Florey Institute of Neuroscience and Mental Health and The University of Melbourne Parkville Victoria Australia
| | - Tristan Rawling
- School of Mathematical and Physical Sciences Faculty of Science University of Technology Sydney Broadway New South Wales Australia
| | - Philip A. Doble
- Elemental Bio‐imaging Facility University of Technology Sydney Broadway New South Wales Australia
| | - Ashley I. Bush
- Melbourne Dementia Research Centre at The Florey Institute of Neuroscience and Mental Health and The University of Melbourne Parkville Victoria Australia
| | - Paul A. Adlard
- Melbourne Dementia Research Centre at The Florey Institute of Neuroscience and Mental Health and The University of Melbourne Parkville Victoria Australia
| | - David I. Finkelstein
- Melbourne Dementia Research Centre at The Florey Institute of Neuroscience and Mental Health and The University of Melbourne Parkville Victoria Australia
| | - Dominic J. Hare
- Melbourne Dementia Research Centre at The Florey Institute of Neuroscience and Mental Health and The University of Melbourne Parkville Victoria Australia
- Elemental Bio‐imaging Facility University of Technology Sydney Broadway New South Wales Australia
- Department of Clinical Pathology The University of Melbourne Parkville Victoria Australia
| |
Collapse
|
15
|
Park HJ, Kang JK, Lee MK. 1- O-Hexyl-2,3,5-Trimethylhydroquinone Ameliorates l-DOPA-Induced Cytotoxicity in PC12 Cells. Molecules 2019; 24:molecules24050867. [PMID: 30823626 PMCID: PMC6429301 DOI: 10.3390/molecules24050867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 11/18/2022] Open
Abstract
1-O-Hexyl-2,3,5-trimethylhydroquinone (HTHQ) has previously been found to have effective anti-oxidant and anti-lipid-peroxidative activity. We aimed to elucidate whether HTHQ can prevent dopaminergic neuronal cell death by investigating the effect on l-DOPA-induced cytotoxicity in PC12 cells. HTHQ protected from both l-DOPA-induced cell death and superoxide dismutase activity reduction. When assessing the effect of HTHQ on oxidative stress-related signaling pathways, HTHQ inhibited l-DOPA-induced phosphorylation of sustained extracellular signal-regulated kinases (ERK1/2), p38 mitogen-activated protein kinase (MAPK), and c-Jun N-terminal kinase (JNK1/2). HTHQ also normalized l-DOPA-reduced Bcl-2-associated death protein (Bad) phosphorylation and Bcl-2-associated X protein (Bax) expression, promoting cell survival. Taken together, HTHQ exhibits protective effects against l-DOPA-induced cell death through modulation of the ERK1/2-p38MAPK-JNK1/2-Bad-Bax signaling pathway in PC12 cells. These results suggest that HTHQ may show ameliorative effects against oxidative stress-induced dopaminergic neuronal cell death, although further studies in animal models of Parkinson’s disease are required to confirm this.
Collapse
Affiliation(s)
- Hyun Jin Park
- Department of Pharmacy and Research Center for Bioresource and Health, College of Pharmacy, Chungbuk National University, 194-21, Osongsaengmyung 1-ro, Osong, Heungduk-gu, Cheongju 28160, Korea.
| | - Jong Koo Kang
- Department of Veterinary Medicine, College of Veterinary Medicine, Chungbuk National University, 1, Chungdae-ro, Seowon-gu, Cheongju 28644, Korea.
| | - Myung Koo Lee
- Department of Pharmacy and Research Center for Bioresource and Health, College of Pharmacy, Chungbuk National University, 194-21, Osongsaengmyung 1-ro, Osong, Heungduk-gu, Cheongju 28160, Korea.
| |
Collapse
|
16
|
Magnetic hydrogels for levodopa release and cell stimulation triggered by external magnetic field. Colloids Surf B Biointerfaces 2018; 167:415-424. [PMID: 29704742 DOI: 10.1016/j.colsurfb.2018.04.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 04/10/2018] [Accepted: 04/20/2018] [Indexed: 12/15/2022]
Abstract
Magnetic responsive hydrogels composed of alginate (Alg) and xanthan gum (XG), crosslinked with Ca2+ ions, were modified by in situ magnetic nanoparticles (MNP) formation. In comparison to magnetic Alg hydrogels, magnetic Alg-XG hydrogels presented superior mechanical and swelling properties, due to the high charge density and molecular weight of XG. The loading efficiency of levodopa (LD), an important antiparkinson drug, in the Alg-XG/MNP hydrogels was the highest (64%), followed by Alg/MNP (56%), Alg-XG (53%) and Alg (28%). A static external magnetic field (EMF) of 0.4 T stimulated the release of LD from Alg-XG/MNP hydrogels achieving 64 ± 6% of the initial loading after 30 h. The viability, proliferation and expression of dopaminergic markers of human neuroblastoma SH-SY5Y cell on the LD loaded magnetic hydrogels were successful, particularly under EMF, which stimulated the release of LD. Overall, the results of this study provided the rational design of magnetic hydrogels for the delivery of drugs, which combined with external magnetic stimulus, might improve cell proliferation and specific differentiation.
Collapse
|
17
|
Miyazaki I, Asanuma M. Serotonin 1A Receptors on Astrocytes as a Potential Target for the Treatment of Parkinson's Disease. Curr Med Chem 2016; 23:686-700. [PMID: 26795196 PMCID: PMC4997990 DOI: 10.2174/0929867323666160122115057] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/12/2015] [Accepted: 01/22/2016] [Indexed: 12/30/2022]
Abstract
Astrocytes are the most abundant neuron-supporting glial cells in the central nervous system. The neuroprotective role of astrocytes has been demonstrated in various neurological disorders such as amyotrophic lateral sclerosis, spinal cord injury, stroke and Parkinson’s disease (PD). Astrocyte dysfunction or loss-of-astrocytes increases the susceptibility of neurons to cell death, while astrocyte transplantation in animal studies has therapeutic advantage. We reported recently that stimulation of serotonin 1A (5-HT1A) receptors on astrocytes promoted astrocyte proliferation and upregulated antioxidative molecules to act as a neuroprotectant in parkinsonian mice. PD is a progressive neurodegenerative disease with motor symptoms such as tremor, bradykinesia, rigidity and postural instability, that are based on selective loss of nigrostriatal dopaminergic neurons, and with non-motor symptoms such as orthostatic hypotension and constipation based on peripheral neurodegeneration. Although dopaminergic therapy for managing the motor disability associated with PD is being assessed at present, the main challenge remains the development of neuroprotective or disease-modifying treatments. Therefore, it is desirable to find treatments that can reduce the progression of dopaminergic cell death. In this article, we summarize first the neuroprotective properties of astrocytes targeting certain molecules related to PD. Next, we review neuroprotective effects induced by stimulation of 5-HT1A receptors on astrocytes. The review discusses new promising therapeutic strategies based on neuroprotection against oxidative stress and prevention of dopaminergic neurodegeneration.
Collapse
Affiliation(s)
- Ikuko Miyazaki
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | | |
Collapse
|
18
|
Takeshima M, Miyazaki I, Murakami S, Kita T, Asanuma M. l-Theanine protects against excess dopamine-induced neurotoxicity in the presence of astrocytes. J Clin Biochem Nutr 2016. [PMID: 27698535 DOI: 10.3164/jcbn.16.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
l-Theanine (γ-glutamylethylamide), a component of green tea, is considered to have regulatory and neuroprotective roles in the brain. The present study was designed to determine the effect of l-theanine on excess dopamine-induced neurotoxicity in both cell culture and animal experiments. The primary cultured mesencephalic neurons or co-cultures of mesencephalic neurons and striatal astrocytes were pretreated with l-theanine for 72 h, and then treated with excess dopamine for further 24 h. The cell viability of dopamine neurons and levels of glutathione were evaluated. Excess dopamine-induced neurotoxicity was significantly attenuated by 72 h preincubation with l-theanine in neuron-astrocyte co-cultures but not in neuron-rich cultures. Exposure to l-theanine increased the levels of glutathione in both astrocytes and glial conditioned medium. The glial conditioned medium from l-theanine-pretreated striatal astrocytes attenuated dopamine-induced neurotoxicity and quinoprotein formation in mesencephalic neurons. In addition, replacement of l-glutamate with l-theanine in an in vitro cell-free glutathione-synthesis system produced glutathione-like thiol compounds. Furthermore, l-theanine administration (4 mg/kg, p.o.) for 14 days significantly increased glutathione levels in the striatum of mice. The results suggest that l-theanine provides neuroprotection against oxidative stress-induced neuronal damage by humoral molecules released from astrocytes, probably including glutathione.
Collapse
Affiliation(s)
- Mika Takeshima
- Department of Brain Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Ikuko Miyazaki
- Department of Brain Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Shinki Murakami
- Department of Brain Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; SAIDO Co., Fukuoka 810-0021, Japan
| | - Taizo Kita
- Laboratory of Pharmacology, Kyushu Nutrition Welfare University School of Health Science, Fukuoka 803-8511, Japan
| | - Masato Asanuma
- Department of Brain Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
19
|
Takeshima M, Miyazaki I, Murakami S, Kita T, Asanuma M. l-Theanine protects against excess dopamine-induced neurotoxicity in the presence of astrocytes. J Clin Biochem Nutr 2016; 59:93-99. [PMID: 27698535 PMCID: PMC5018574 DOI: 10.3164/jcbn.16-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 04/12/2016] [Indexed: 01/05/2023] Open
Abstract
l-Theanine (γ-glutamylethylamide), a component of green tea, is considered to have regulatory and neuroprotective roles in the brain. The present study was designed to determine the effect of l-theanine on excess dopamine-induced neurotoxicity in both cell culture and animal experiments. The primary cultured mesencephalic neurons or co-cultures of mesencephalic neurons and striatal astrocytes were pretreated with l-theanine for 72 h, and then treated with excess dopamine for further 24 h. The cell viability of dopamine neurons and levels of glutathione were evaluated. Excess dopamine-induced neurotoxicity was significantly attenuated by 72 h preincubation with l-theanine in neuron-astrocyte co-cultures but not in neuron-rich cultures. Exposure to l-theanine increased the levels of glutathione in both astrocytes and glial conditioned medium. The glial conditioned medium from l-theanine-pretreated striatal astrocytes attenuated dopamine-induced neurotoxicity and quinoprotein formation in mesencephalic neurons. In addition, replacement of l-glutamate with l-theanine in an in vitro cell-free glutathione-synthesis system produced glutathione-like thiol compounds. Furthermore, l-theanine administration (4 mg/kg, p.o.) for 14 days significantly increased glutathione levels in the striatum of mice. The results suggest that l-theanine provides neuroprotection against oxidative stress-induced neuronal damage by humoral molecules released from astrocytes, probably including glutathione.
Collapse
Affiliation(s)
- Mika Takeshima
- Department of Brain Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Ikuko Miyazaki
- Department of Brain Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Shinki Murakami
- Department of Brain Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; SAIDO Co., Fukuoka 810-0021, Japan
| | - Taizo Kita
- Laboratory of Pharmacology, Kyushu Nutrition Welfare University School of Health Science, Fukuoka 803-8511, Japan
| | - Masato Asanuma
- Department of Brain Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
20
|
Van Laar VS, Berman SB, Hastings TG. Mic60/mitofilin overexpression alters mitochondrial dynamics and attenuates vulnerability of dopaminergic cells to dopamine and rotenone. Neurobiol Dis 2016; 91:247-61. [PMID: 27001148 DOI: 10.1016/j.nbd.2016.03.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/04/2016] [Accepted: 03/16/2016] [Indexed: 12/15/2022] Open
Abstract
Mitochondrial dysfunction has been implicated in Parkinson's disease (PD) neuropathology. Mic60, also known as mitofilin, is a protein of the inner mitochondrial membrane and a key component of the mitochondrial contact site and cristae junction organizing system (MICOS). Mic60 is critical for maintaining mitochondrial membrane structure and function. We previously demonstrated that mitochondrial Mic60 protein is susceptible to both covalent modification and loss in abundance following exposure to dopamine quinone. In this study, we utilized neuronally-differentiated SH-SY5Y and PC12 dopaminergic cell lines to examine the effects of altered Mic60 levels on mitochondrial function and cellular vulnerability in response to PD-relevant stressors. Short hairpin RNA (shRNA)-mediated knockdown of endogenous Mic60 protein in neuronal SH-SY5Y cells significantly potentiated dopamine-induced cell death, which was rescued by co-expressing shRNA-insensitive Mic60. Conversely, in PC12 and SH-SY5Y cells, Mic60 overexpression significantly attenuated both dopamine- and rotenone-induced cell death as compared to controls. Mic60 overexpression in SH-SY5Y cells was also associated with increased mitochondrial respiration, and, following rotenone exposure, increased spare respiratory capacity. Mic60 knockdown cells exhibited suppressed respiration and, following rotenone treatment, decreased spare respiratory capacity. Mic60 overexpression also affected mitochondrial fission/fusion dynamics. PC12 cells overexpressing Mic60 exhibited increased mitochondrial interconnectivity. Further, both PC12 cells and primary rat cortical neurons overexpressing Mic60 displayed suppressed mitochondrial fission and increased mitochondrial length in neurites. These results suggest that altering levels of Mic60 in dopaminergic neuronal cells significantly affects both mitochondrial homeostasis and cellular vulnerability to the PD-relevant stressors dopamine and rotenone, carrying implications for PD pathogenesis.
Collapse
Affiliation(s)
- Victor S Van Laar
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sarah B Berman
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA
| | - Teresa G Hastings
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
21
|
Lih E, Choi SG, Ahn DJ, Joung YK, Han DK. Optimal conjugation of catechol group onto hyaluronic acid in coronary stent substrate coating for the prevention of restenosis. J Tissue Eng 2016; 7:2041731416683745. [PMID: 28228930 PMCID: PMC5308429 DOI: 10.1177/2041731416683745] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 11/21/2016] [Indexed: 01/25/2023] Open
Abstract
Although endovascular stenting has been used as an interventional therapy to treat cardio- and cerebro-vascular diseases, it is associated with recurrent vascular diseases following stent thrombosis and in-stent restenosis. In this study, a metallic stent was coated with dopamine-conjugated hyaluronic acid with different ratios of catechol group to improve hemocompatibility and re-endothelialization. Especially, we were interested in how much amount of catechol group is appropriate for the above-mentioned purposes. Therefore, a series of dopamine-conjugated hyaluronic acid conjugates with different ratios of catechol group were synthesized via a carbodiimide coupling reaction. Dopamine-conjugated hyaluronic acid conjugates were characterized with 1H-nuclear magnetic resonance and Fourier transform infrared spectroscopy, and the amount of catechol group in dopamine-conjugated hyaluronic acid was measured by ultraviolet spectrometer. Co-Cr substrates were polished and coated with various dopamine-conjugated hyaluronic acid conjugates under pH 8.5. Dopamine-conjugated hyaluronic acid amounts on the substrate were quantified by micro-bicinchoninic acid assay. Surface characteristics of dopamine-conjugated hyaluronic-acid-coated Co-Cr were evaluated by water contact angle, scanning electron microscopy, and atomic force microscopy. The hemocompatibility of the surface-modified substrates was assessed by protein adsorption and platelet adhesion tests. Adhesion and activation of platelets were confirmed with scanning electron microscopy and lactate dehydrogenase assay. Human umbilical vein endothelial cells were cultured on the substrates, and the viability, adhesion, and proliferation were investigated through cell counting kit-8 assay and fluorescent images. Obtained results demonstrated that optimal amounts of catechol group (100 µmol) in the dopamine-conjugated hyaluronic acid existed in terms of various properties such as hemocompatibility and cellular responses.
Collapse
Affiliation(s)
- Eugene Lih
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, Korea
| | - Seul Gi Choi
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, Korea
- Department of Biomicrosystem Technology, Korea University, Seoul, Korea
- Department of Chemical & Biological Engineering, Korea University, Seoul, Korea
| | - Dong June Ahn
- Department of Biomicrosystem Technology, Korea University, Seoul, Korea
- Department of Chemical & Biological Engineering, Korea University, Seoul, Korea
- KU-KIST Graduate School of Converging Science and Engineering, Korea University, Seoul, Korea
| | - Yoon Ki Joung
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, Korea
- Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon, Korea
| | - Dong Keun Han
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, Korea
- Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon, Korea
| |
Collapse
|
22
|
Dopaminergic effects on in vitro osteogenesis. Bone Res 2015; 3:15020. [PMID: 26558139 PMCID: PMC4639997 DOI: 10.1038/boneres.2015.20] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 04/21/2015] [Accepted: 05/14/2015] [Indexed: 11/09/2022] Open
Abstract
Multiple growth factors (e.g., BMP2, TGF-β1, FGF2) and isolated genes have been shown to improve osteoblastic proliferation and mineralization, advancing bone tissue engineering. Among these factors, both polydopamine (PDA) and dopamine (DA) monomer have recently been reported to increase osteoblast proliferation and mineralization in vitro. Although a well-characterized neurotransmitter, DA's role in the bone is unknown. We hypothesize that DA can directly act on osteoblasts, and examined whether osteoblasts express DA receptors that respond to exogenous DA. mRNAs and protein cell lysates were obtained from MC3T3-E1 cells during osteogenic differentiation phase. Reverse transcription polymerase chain reaction and western blot analysis were used to examine the expression of DA receptors, D1-D5. Dose-response effect and time course of DA treatment on cell proliferation, mineralization, and osteogenic differentiation were investigated at pre-determined days. Real-time PCR was performed to investigate whether DA affects osteogenic gene expression (ALP, BSP, OC, OSX, RUNX2, and Collagen1a2) with or without receptor antagonists (SCH233390 and GR103691). Two-way ANOVA was used for statistical analysis. All five DA receptors (D1, D2, D3, D4, and D5) mRNAs and proteins were expressed in MC3T3-E1 cells. DA treatment increased cell proliferation for up to 7 days (P < 0.05). Osteogenic mineralization was significantly greater in the DA-treated group than control group (P < 0.05). Finally, expression of all the osteogenic genes was inhibited by DA receptor antagonists for D1, D3, and D5. Our findings suggest that MC3T3-E1 osteoblasts express functional DA receptors that enhance proliferation and mineralization. PDA is not biologically inert and has important implications in orthopedic applications. Furthermore, osteoblast differentiation might be regulated by the nervous system, presumably during bone development, remodeling, or repair.
Collapse
|
23
|
Jodko-Piórecka K, Litwinienko G. Antioxidant activity of dopamine and L-DOPA in lipid micelles and their cooperation with an analogue of α-tocopherol. Free Radic Biol Med 2015; 83:1-11. [PMID: 25701434 DOI: 10.1016/j.freeradbiomed.2015.02.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 01/20/2015] [Accepted: 02/09/2015] [Indexed: 12/16/2022]
Abstract
Oxidative stress contributes to the progression of neurodegenerative diseases and considerable attention has been given to the development of new antioxidant-based therapies aimed at limiting neuronal cell damage. Structural analysis of catecholamine neurotransmitters indicates that these molecules can exhibit antioxidant activity due to the presence of a catechol moiety. This hypothesis is confirmed in cell culture experiments but the mechanism of antioxidant action of catecholamines is not described. Herein, we present quantitative kinetic studies on the effect of dopamine (DA) and L-3,4-dihydroxyphenylalanine (L-DOPA) on the peroxidation of methyl linoleate dispersed in Triton X-100 micelles as a model heterogeneous lipid system. Experiments were performed at extended pH range 4.0-10.0 in order to study how protonation/deprotonation of catecholamine affect its antioxidant activity. At pH 4.0-7.0, the activity of catecholamines is limited to retardation of lipid peroxidation (caused by the reaction of catecholamines with initiating radicals in the aqueous phase). The effective suppression of lipid peroxidation can be achieved by applying catecholamines together with an analogue of α-tocopherol (2,2,5,7,8-pentamethyl-6-hydroxychroman, PMHC). For example, a mixture of 1 μM PMHC with 10 μM L-DOPA causes 18-fold elongation of suppression time as compared to 1 μM PMHC used alone. We suggest that catecholamines together with α-tocopherol efficiently enhance the protection of biological systems from oxidative stress. At pH above 8.0 a prooxidative effect caused by reaction of semiquinone radical anions with molecular oxygen is observed. However, this toxic action can be completely suppressed by PMHC acting as an agent removing the potentially harmful semiquinone radicals from the reaction environment.
Collapse
|
24
|
Maffei A, Segal AM, Alvarez-Perez JC, Garcia-Ocaña A, Harris PE. Anti-incretin, Anti-proliferative Action of Dopamine on β-Cells. Mol Endocrinol 2015; 29:542-57. [PMID: 25751312 DOI: 10.1210/me.2014-1273] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Human islet β-cells exploit an autocrine dopamine (DA)-mediated inhibitory circuit to regulate insulin secretion. β-Cells also express the DA active transporter and the large neutral amino acid transporter heterodimer enabling them to import circulating DA or its biosynthetic precursor, L-3,4-dihydroxyphenylalanine (L-DOPA). The capacity to import DA or L-DOPA from the extracellular space possibly indicates that DA may be an endocrine signal as well. In humans, a mixed meal stimulus is accompanied by contemporary serum excursions of incretins, DA and L-DOPA, suggesting that DA may act as an anti-incretin as postulated by the foregut hypothesis proposed to explain the early effects of bariatric surgery on type 2 diabetes. In this report, we take a translational step backwards and characterize the kinetics of plasma DA and incretin production after a mixed meal challenge in a rat model and study the integration of incretin and DA signaling at the biochemical level in a rodent β-cell line and islets. We found that there are similar excursions of incretins and DA in rats, as those reported in humans, after a mixed meal challenge and that DA counters incretin enhanced glucose-stimulated insulin secretion and intracellular signaling at multiple points from dampening calcium fluxes to inhibiting proliferation as well as apoptosis. Our data suggest that DA is an important regulator of insulin secretion and may represent 1 axis of a gut level circuit of glucose and β-cell mass homeostasis.
Collapse
Affiliation(s)
- Antonella Maffei
- Division of Endocrinology (A.M., P.H.), Department of Medicine, and Department of Surgery (A.M.S.), Columbia University Medical College, New York, New York 10032; Institute of Genetics and Biophysics (A.M.), Adriano Buzzati-Traverso, Consiglio Nazionale delle Ricerche, 80131 Naples, Italy; and Division of Endocrinology, Diabetes and Bone Diseases (J.C.A.-P., A.G.-O.), Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai and The Mindich Child Health and Development Institute, New York, New York 10029
| | | | | | | | | |
Collapse
|
25
|
Goldstein DS, Kopin IJ, Sharabi Y. Catecholamine autotoxicity. Implications for pharmacology and therapeutics of Parkinson disease and related disorders. Pharmacol Ther 2014; 144:268-82. [PMID: 24945828 PMCID: PMC4591072 DOI: 10.1016/j.pharmthera.2014.06.006] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 05/29/2014] [Indexed: 02/07/2023]
Abstract
Several neurodegenerative diseases involve loss of catecholamine neurons-Parkinson disease is a prototypical example. Catecholamine neurons are rare in the nervous system, and why they are vulnerable in PD and related disorders has been mysterious. Accumulating evidence supports the concept of "autotoxicity"-inherent cytotoxicity of catecholamines and their metabolites in the cells in which they are produced. According to the "catecholaldehyde hypothesis" for the pathogenesis of Parkinson disease, long-term increased build-up of 3,4-dihydroxyphenylacetaldehyde (DOPAL), the catecholaldehyde metabolite of dopamine, causes or contributes to the eventual death of dopaminergic neurons. Lewy bodies, a neuropathologic hallmark of PD, contain precipitated alpha-synuclein. Bases for the tendency of alpha-synuclein to precipitate in the cytoplasm of catecholaminergic neurons have also been mysterious. Since DOPAL potently oligomerizes and aggregates alpha-synuclein, the catecholaldehyde hypothesis provides a link between alpha-synucleinopathy and catecholamine neuron loss in Lewy body diseases. The concept developed here is that DOPAL and alpha-synuclein are nodes in a complex nexus of interacting homeostatic systems. Dysfunctions of several processes, including decreased vesicular sequestration of cytoplasmic catecholamines, decreased aldehyde dehydrogenase activity, and oligomerization of alpha-synuclein, lead to conversion from the stability afforded by negative feedback regulation to the instability, degeneration, and system failure caused by induction of positive feedback loops. These dysfunctions result from diverse combinations of genetic predispositions, environmental exposures, stress, and time. The notion of catecholamine autotoxicity has several implications for treatment, disease modification, and prevention. Conversely, disease modification clinical trials would provide key tests of the catecholaldehyde hypothesis.
Collapse
Affiliation(s)
- David S Goldstein
- Clinical Neurocardiology Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Irwin J Kopin
- Clinical Neurocardiology Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
26
|
Colamartino M, Santoro M, Duranti G, Sabatini S, Ceci R, Testa A, Padua L, Cozzi R. Evaluation of levodopa and carbidopa antioxidant activity in normal human lymphocytes in vitro: implication for oxidative stress in Parkinson's disease. Neurotox Res 2014; 27:106-17. [PMID: 25355370 DOI: 10.1007/s12640-014-9495-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/08/2014] [Accepted: 10/15/2014] [Indexed: 01/08/2023]
Abstract
The main pathochemical hallmark of Parkinson's disease (PD) is the loss of dopamine in the striatum of the brain, and the oral administration of levodopa (L-dopa) is a treatment that partially restores the dopaminergic transmission. In vitro assays have demonstrated both toxic and protective effects of L-dopa on dopaminergic cells, while in vivo studies have not provided any convincing data. The peripheral metabolic pathways significantly decrease the amount of L-dopa reaching the brain; therefore, all of the current commercial formulations require an association with an inhibitor of dopa-decarboxylase, such as carbidopa. However, the dosage and the actual effectiveness of carbidopa have not yet been well defined. PD patients exhibit a reduced efficiency of the endogenous antioxidant system, and peripheral blood lymphocytes (PBLs) represent a dopaminergic system for use as a cellular model to study the pharmacological treatments of neurodegenerative disorders in addition to analysing the systemic oxidative stress. According to our previous studies demonstrating a protective effect of both L-dopa and carbidopa on neuroblastoma cells in vitro, we used the PBLs of healthy donors to evaluate the modulation of DNA damage by different concentrations of L-dopa and carbidopa in the presence of oxidative stress that was exogenously induced by H2O2. We utilised a TAS assay to evaluate the in vitro direct scavenging activity of L-dopa and carbidopa and analysed the expression of genes that were involved in cellular oxidative metabolism. Our data demonstrate the antioxidant capacity of L-dopa and carbidopa and their ability to protect DNA against oxidative-induced damage that derives from different mechanisms of action.
Collapse
Affiliation(s)
- Monica Colamartino
- Department of Science, University "Roma Tre", Viale Guglielmo Marconi 446, 00146, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Li Y, Zhou Y, Qi B, Gong T, Sun X, Fu Y, Zhang Z. Brain-specific delivery of dopamine mediated by n,n-dimethyl amino group for the treatment of Parkinson's disease. Mol Pharm 2014; 11:3174-85. [PMID: 25072272 DOI: 10.1021/mp500352p] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Parkinson's disease (PD) has become one of the most deadly diseases due to a lack of effective treatment. Herein, N-3,4-bis(pivaloyloxy)dopamine-3-(dimethylamino)propanamide (PDDP), a brain-specific derivative of dopamine, was designed and synthesized, which consists of a brain targeted ligand, N,N-dimethyl amino group, and two dipivaloyloxy groups for lipophilic modification. PDDP was investigated both in vitro and in vivo by comparing with L-DOPA and another derivative (BPD) without N,N-dimethyl amino group. PDDP showed a more pronounced accumulation in mouse brain microvascular endothelial cells (bEnd.3) than BPD via an active transport process. The increased cellular uptake of PDDP was proven to be mediated by putative pyrilamine cationic transporters. Following intravenous administration, the concentration of PDDP in the brain was 269.28-fold and 6.41-fold higher than that of L-DOPA and BPD at 5 min, respectively. Additionally, PDDP effectively attenuated the striatum lesion caused by 6-hydroxydopamine (6-OHDA) in rats. More importantly, PDDP presented antioxidant and antiapoptotic effects on 6-OHDA-induced toxicity in human neuroblastoma cells (SH-SY5Y). Thus, N,N-dimethyl amino group-based PDDP represents an effective and safe treatment for PD.
Collapse
Affiliation(s)
- Yanping Li
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, Sichuan University , Sichuan, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
28
|
de Sousa RT, Machado-Vieira R, Zarate CA, Manji HK. Targeting mitochondrially mediated plasticity to develop improved therapeutics for bipolar disorder. Expert Opin Ther Targets 2014; 18:1131-47. [PMID: 25056514 DOI: 10.1517/14728222.2014.940893] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Bipolar disorder (BPD) is a severe illness with few treatments available. Understanding BPD pathophysiology and identifying potential relevant targets could prove useful for developing new treatments. Remarkably, subtle impairments of mitochondrial function may play an important role in BPD pathophysiology. AREAS COVERED This article focuses on human studies and reviews evidence of mitochondrial dysfunction in BPD as a promising target for the development of new, improved treatments. Mitochondria are crucial for energy production, generated mainly through the electron transport chain (ETC) and play an important role in regulating apoptosis and calcium (Ca²⁺) signaling as well as synaptic plasticity. Mitochondria move throughout the neurons to provide energy for intracellular signaling. Studies showed polymorphisms of mitochondria-related genes as risk factors for BPD. Postmortem studies in BPD also show decreased ETC activity/expression and increased nitrosative and oxidative stress (OxS) in patient brains. BPD has been also associated with increased OxS, Ca²⁺ dysregulation and increased proapoptotic signaling in peripheral blood. Neuroimaging studies consistently show decreased energy levels and pH in brains of BPD patients. EXPERT OPINION Targeting mitochondrial function, and their role in energy metabolism, synaptic plasticity and cell survival, may be an important avenue for development of new mood-stabilizing agents.
Collapse
Affiliation(s)
- Rafael T de Sousa
- University of Sao Paulo, Institute and Department of Psychiatry, Laboratory of Neuroscience, LIM-27, Faculty of Medicine , Paulo Rua Ovidio Pires de Campos 785, São Paulo, SP , Brazil
| | | | | | | |
Collapse
|
29
|
Dopamine Cytotoxicity Involves Both Oxidative and Nonoxidative Pathways in SH-SY5Y Cells: Potential Role of Alpha-Synuclein Overexpression and Proteasomal Inhibition in the Etiopathogenesis of Parkinson's Disease. PARKINSONS DISEASE 2014; 2014:878935. [PMID: 24804146 PMCID: PMC3996320 DOI: 10.1155/2014/878935] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 02/19/2014] [Accepted: 02/25/2014] [Indexed: 12/29/2022]
Abstract
Background. The cytotoxic effects of dopamine (DA) on several catecholaminergic cell lines involve DA oxidation products like reactive oxygen species (ROS) and toxic quinones and have implications in the pathogenesis of sporadic Parkinson's disease (PD). However, many molecular details are yet to be elucidated, and the possible nonoxidative mechanism of dopamine cytotoxicity has not been studied in great detail. Results. Cultured SH-SY5Y cells treated with DA (up to 400 μM) or lactacystin (5 μM) or DA (400 μM) plus N-acetylcysteine (NAC, 2.5 mM) for 24 h are processed accordingly to observe the cell viability, mitochondrial dysfunctions, oxidative stress parameters, proteasomal activity, expression of alpha-synuclein gene, and intracellular accumulation of the protein. DA causes mitochondrial dysfunction and extensive loss of cell viability partially inhibited by NAC, potent inhibition of proteasomal activity marginally prevented by NAC, and overexpression with accumulation of intracellular alpha-synuclein partially preventable by NAC. Under similar conditions of incubation, NAC completely prevents enhanced production of ROS and increased formation of quinoprotein adducts in DA-treated SH-SY5Y cells. Separately, proteasomal inhibitor lactacystin causes accumulation of alpha-synuclein as well as mitochondrial dysfunction and cell death. Conclusions. DA cytotoxicity includes both oxidative and nonoxidative modes and may involve overexpression and accumulation of alpha-synuclein as well as proteasomal inhibition.
Collapse
|
30
|
de Sousa RT, Zarate CA, Zanetti MV, Costa AC, Talib LL, Gattaz WF, Machado-Vieira R. Oxidative stress in early stage Bipolar Disorder and the association with response to lithium. J Psychiatr Res 2014; 50:36-41. [PMID: 24332923 PMCID: PMC4052827 DOI: 10.1016/j.jpsychires.2013.11.011] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 11/08/2013] [Accepted: 11/26/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND Several studies have described increased oxidative stress (OxS) parameters and imbalance of antioxidant enzymes in Bipolar Disorder (BD) but few is know about the impact of treatment at these targets. However, no study has evaluated OxS parameters in unmedicated early stage BD and their association with lithium treatment in bipolar depression. METHODS Patients with BD I or II (n = 29) in a depressive episode were treated for 6 weeks with lithium. Plasma samples were collected at baseline and endpoint, and were also compared to age-matched controls (n = 28). The thiobarbituric acid reactive substances (TBARS), and the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities were measured. RESULTS Subjects with BD depression at baseline presented a significant increase in CAT (p = 0.005) and GPx (p < 0.001) levels, with lower SOD/CAT ratio (p = 0.001) and no changes on SOD or TBARS compared to healthy controls. Regarding therapeutics, lithium only induced a decrease in TBARS (p = 0.023) and SOD (p = 0.029) levels, especially in BDII. Finally, TBARS levels were significantly lower at endpoint in lithium responders compared to non-responders (p = 0.018) with no difference in any biomarker regarding remission. CONCLUSION The present findings suggest a reactive increase in antioxidant enzymes levels during depressive episodes in early stage BD with minimal prior treatment. Also, decreased lipid peroxidation (TBARS) levels were observed, associated with lithium's clinical efficacy. Overall, these results reinforce the role for altered oxidative stress in the pathophysiology of BD and the presence of antioxidant effects of lithium in the prevention of illness progression and clinical efficacy.
Collapse
Affiliation(s)
- Rafael T. de Sousa
- Laboratory of Neuroscience, LIM-27, Institute and Department of Psychiatry, University of Sao Paulo, Brazil
| | - Carlos A. Zarate
- Experimental Therapeutics and Pathophysiology Branch (ETPB), National Institute of Mental Health, NIH, Bethesda, MD, USA
| | - Marcus V. Zanetti
- Laboratory of Neuroscience, LIM-27, Institute and Department of Psychiatry, University of Sao Paulo, Brazil
,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of Sao Paulo, Brazil
| | - Alana C. Costa
- Laboratory of Neuroscience, LIM-27, Institute and Department of Psychiatry, University of Sao Paulo, Brazil
| | - Leda L. Talib
- Laboratory of Neuroscience, LIM-27, Institute and Department of Psychiatry, University of Sao Paulo, Brazil
| | - Wagner F. Gattaz
- Laboratory of Neuroscience, LIM-27, Institute and Department of Psychiatry, University of Sao Paulo, Brazil
,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of Sao Paulo, Brazil
| | - Rodrigo Machado-Vieira
- Laboratory of Neuroscience, LIM-27, Institute and Department of Psychiatry, University of Sao Paulo, Brazil; Experimental Therapeutics and Pathophysiology Branch (ETPB), National Institute of Mental Health, NIH, Bethesda, MD, USA; Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of Sao Paulo, Brazil.
| |
Collapse
|
31
|
Fuzzati-Armentero MT, Ghezzi C, Nisticò R, Oda A, Blandini F. Single or combined treatment with L-DOPA and quinpirole differentially modulate expression and phosphorylation of key regulatory kinases in neuroblastoma cells. Neurosci Lett 2013; 552:168-73. [PMID: 23896526 DOI: 10.1016/j.neulet.2013.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 06/30/2013] [Accepted: 07/18/2013] [Indexed: 10/26/2022]
Abstract
In the past decades, the clinical use of dopamine agonists has expanded from adjunct therapy in patients with a deteriorating response to L-3,4-dihydroxyphenylalanine (L-DOPA) to monotherapy for the treatment of early PD. Dopamine agonists provide their antiparkinsonian benefit through stimulation of brain postsynaptic type 2 dopamine receptors that exert their effect through classical cAMP-dependent mechanisms, as well as cAMP-independent cellular signaling cascades, including the Akt/glycogen synthase kinase 3 (GSK3) pathway. Alterations of Akt/GSK3 have been observed and may contribute to the neurodegenerative processes and the development of L-DOPA-induced dyskinesia. The effects L-DOPA and quinpirole, a dopamine agonist, on the two key regulatory kinases, Akt and GSK3, were evaluated in neuroblastoma cell line. L-DOPA and dopamine agonist dose-dependently and differentially modulated Akt and GSK3 expression and phosphorylation when added alone or combined. The combined treatment inverted or potentiated the modulatory properties of the single compound. The drug- and concentration-dependent balance of dopamine receptor stimulation over auto-oxidation may distinctively modulate GSK3 isoforms and Akt. Our results indicate that particular attention must be given to drug concentration and combination when multiple therapies are applied for the clinical treatment of PD patients.
Collapse
|
32
|
Asanuma M, Miyazaki I, Diaz-Corrales FJ, Shimizu M, Tanaka KI, Ogawa N. Pramipexole has ameliorating effects on levodopa-induced abnormal dopamine turnover in parkinsonian striatum and quenching effects on dopamine-semiquinone generatedin vitro. Neurol Res 2013; 27:533-9. [PMID: 15978181 DOI: 10.1179/016164105x22093] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES AND METHODS To clarify the effects of a non-ergot dopamine agonist pramipexole on levodopa-induced abnormal dopamine metabolism in the parkinsonian model, we examined striatal changes in dopamine and its metabolites after repeated administration of pramipexole and/or levodopa using 6-hydroxydopamine-lesioned hemi-parkinsonian mice. Moreover, the effects of pramipexole on dopamine-semiquinones were also accessed using an in vitro dopamine-semiquinone generating system to elucidate its neuroprotective property against dopamine quinone-induced neurotoxicity that appears as dopamine neuron-specific oxidative stress. RESULTS Combined administration of pramipexole (0.5 or 1 mg/kg/day, 7 days) selectively suppressed the levodopa-induced (50 mg/kg/day) increase of striatal dopamine turnover in the parkinsonian side, but not in the non-lesioned side. In addition to the antioxidant properties previously reported, it was clarified that pramipexole scavenged dopamine-semiquinones generated in a dose-dependent manner either in simultaneous incubation or post-incubation. DISCUSSION The neurotoxicity of dopamine quinones that appear as dopaminergic neuron-specific oxidative stress has recently been known to play a role in the pathogenesis of Parkinson's disease and neurotoxin-induced parkinsonism. Therefore, the present results revealed that pramipexole possesses neuroprotective effects against abnormal dopamine metabolism in excessively levodopa-administered parkinsonian brains and against cytotoxic dopamine quinones generated from excess dopamine, preventing consequently dopaminergic neuronal damage induced by excess dopamine or levodopa.
Collapse
Affiliation(s)
- Masato Asanuma
- Department of Brain Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | | | | | | | | | | |
Collapse
|
33
|
Czerniczyniec A, Lores-Arnaiz S, Bustamante J. Mitochondrial susceptibility in a model of paraquat neurotoxicity. Free Radic Res 2013; 47:614-23. [DOI: 10.3109/10715762.2013.806797] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
34
|
Abstract
A variety of polyphenol antioxidant compounds derived from natural products have demonstrated neuroprotective activity against neuronal cell death. The objective of this study was to investigate the effect of resveratrol (RESV) and bioflavonoids in attenuating hydrogen peroxide (H(2)O(2))-induced oxidative stress in neuronal cells. H2O2 levels were increased by the addition of L-3,4-dihydroxyphenylalanine (L-DOPA) to cultured dopaminergic SKNSH cells. H(2)O(2) was monitored by peroxyfluor-1, a selective H(2)O(2) optical probe. To examine the neuroprotective effects of RESV and bioflavonoids against L-DOPA, we cotreated RESV, quercetin, or (-) epigallocatechin gallate with L-DOPA and monitored for H(2)O(2) levels. The combination of RESV and L-DOPA was 50% more effective at reducing H(2)O(2) levels than the combination of quercetin or epigallocatechin gallate with L-DOPA. However, the combination of each antioxidant with L-DOPA was effective at preserving cell viability.
Collapse
|
35
|
Allen GF, Ullah Y, Hargreaves IP, Land JM, Heales SJ. Dopamine but not l-dopa stimulates neural glutathione metabolism. Potential implications for Parkinson’s and other dopamine deficiency states. Neurochem Int 2013; 62:684-94. [DOI: 10.1016/j.neuint.2012.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Revised: 12/01/2012] [Accepted: 12/10/2012] [Indexed: 10/27/2022]
|
36
|
Kim HK, Andreazza AC. The relationship between oxidative stress and post-translational modification of the dopamine transporter in bipolar disorder. Expert Rev Neurother 2012; 12:849-59. [PMID: 22853792 DOI: 10.1586/ern.12.64] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bipolar disorder (BD) has been consistently associated with altered levels of oxidative stress markers, although the cause and consequences of these alterations remain to be elucidated. One of the main hypotheses regarding the pathogenesis of mania involves increased dopaminergic transmission. In this review, the authors aim to discuss a potential mechanism by which increased oxidative stress inhibits the uptake of dopamine through the post-translational modification of the dopamine transporter and its implications for BD. Within the next 5 years, the authors believe that the mechanisms of dopamine transporter oxidation and its impact on the pathophysiology of BD will be elucidated, which may open avenues for the development of more specific interventions for the treatment of this debilitating illness.
Collapse
|
37
|
May JM, Qu ZC, Nazarewicz R, Dikalov S. Ascorbic acid efficiently enhances neuronal synthesis of norepinephrine from dopamine. Brain Res Bull 2012; 90:35-42. [PMID: 23022576 DOI: 10.1016/j.brainresbull.2012.09.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 08/30/2012] [Accepted: 09/17/2012] [Indexed: 02/07/2023]
Abstract
Ascorbic acid enhances synthesis of norepinephrine from dopamine in adrenal chromaffin cells by serving as a co-factor for chromaffin granule dopamine β-hydroxylase (DβH). However, there is controversy regarding in situ kinetics of the ascorbate effect in chromaffin cells, as well as whether they apply to neuronal cells. In this study we evaluated the stimulation of norepinephrine synthesis from dopamine in cultured SH-SY5Y neuroblastoma cells. These cells contained neither ascorbate nor norepinephrine in culture, but when provided with dopamine, they generated intracellular norepinephrine at rates that were stimulated several-fold by intracellular ascorbate. Ascorbate-induced increases in norepinephrine synthesis in dopamine-treated cells were linear over 60 min, despite saturation of intracellular ascorbate. Norepinephrine accumulation after 60 min of incubation with 100 μM dopamine was half-maximal at intracellular ascorbate concentrations of 0.2-0.5 mM, which fits well with the literature K(m) for ascorbate of DβH using dopamine as a substrate. Moreover, these ascorbate concentrations were generated by initial extracellular ascorbate concentrations of less than 25 μM due to concentrative accumulation by the ascorbate transporter. Treatment with 100 μM dopamine acutely increased cellular superoxide generation, which was prevented by ascorbate loading, but associated with a decrease in intracellular ascorbate when the latter was present at concentrations under 1 mM. These results show that ascorbate promptly enhances norepinephrine synthesis from dopamine by neuronal cells that it does so at physiologic intracellular concentrations in accord with the kinetics of DβH, and that it both protects cells from superoxide and by providing electrons to DβH.
Collapse
Affiliation(s)
- James M May
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-6303, USA.
| | | | | | | |
Collapse
|
38
|
L-DOPA is incorporated into brain proteins of patients treated for Parkinson's disease, inducing toxicity in human neuroblastoma cells in vitro. Exp Neurol 2011; 238:29-37. [PMID: 22001774 DOI: 10.1016/j.expneurol.2011.09.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 08/23/2011] [Accepted: 09/26/2011] [Indexed: 11/20/2022]
Abstract
Levodopa (L-DOPA), a close structural analogue of the protein amino acid L-tyrosine, can substitute for L-tyrosine in protein synthesis and be mistakenly incorporated into newly synthesised proteins in vitro. We show that L-DOPA-containing proteins are present in the brain in L-DOPA-treated Parkinson's disease patients and accumulate in specific brain regions. In vitro studies demonstrate that substitution of L-tyrosine residues in proteins with L-DOPA causes protein misfolding and promotes protein aggregation in SH-SY5Y neuroblastoma cells resulting in the appearance of autofluorescent bodies. We show that the presence of L-DOPA-containing proteins causes profound changes in mitochondria and stimulates the formation of autophagic vacuoles in cells. Unlike L-DOPA, which is toxic to cells through its ability to generate radicals, proteins containing incorporated L-DOPA are toxic to SH-SY5Y cells by a mechanism independent of oxidative stress and resistant to antioxidants. These data suggest that the accumulation of L-DOPA-containing proteins in vulnerable cells might negatively impact on cell function.
Collapse
|
39
|
Lipski J, Nistico R, Berretta N, Guatteo E, Bernardi G, Mercuri NB. L-DOPA: a scapegoat for accelerated neurodegeneration in Parkinson's disease? Prog Neurobiol 2011; 94:389-407. [PMID: 21723913 DOI: 10.1016/j.pneurobio.2011.06.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 06/17/2011] [Accepted: 06/17/2011] [Indexed: 12/21/2022]
Abstract
There is consensus that amelioration of the motor symptoms of Parkinson's disease is most effective with L-DOPA (levodopa). However, this necessary therapeutic step is biased by an enduring belief that L-DOPA is toxic to the remaining substantia nigra dopaminergic neurons by itself, or by specific metabolites such as dopamine. The concept of L-DOPA toxicity originated from pre-clinical studies conducted mainly in cell culture, demonstrating that L-DOPA or its derivatives damage dopaminergic neurons due to oxidative stress and other mechanisms. However, the in vitro data remain controversial as some studies showed neuroprotective, rather than toxic action of the drug. The relevance of this debate needs to be considered in the context of the studies conducted on animals and in clinical trials that do not provide convincing evidence for L-DOPA toxicity in vivo. This review presents the current views on the pathophysiology of Parkinson's disease, focusing on mitochondrial dysfunction and oxidative/proteolytic stress, the factors that can be affected by L-DOPA or its metabolites. We then critically discuss the evidence supporting the two opposing views on the effects of L-DOPA in vitro, as well as the animal and human data. We also address the problem of inadequate experimental models used in these studies. L-DOPA remains the symptomatic 'hero' of Parkinson's disease. Whether it contributes to degeneration of nigral dopaminergic neurons, or is a 'scapegoat' for explaining undesirable or unexpected effects of the treatment, remains a hotly debated topic.
Collapse
Affiliation(s)
- Janusz Lipski
- Department of Physiology and Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Rd., Auckland 1142, New Zealand.
| | | | | | | | | | | |
Collapse
|
40
|
Jana S, Sinha M, Chanda D, Roy T, Banerjee K, Munshi S, Patro BS, Chakrabarti S. Mitochondrial dysfunction mediated by quinone oxidation products of dopamine: Implications in dopamine cytotoxicity and pathogenesis of Parkinson's disease. Biochim Biophys Acta Mol Basis Dis 2011; 1812:663-73. [DOI: 10.1016/j.bbadis.2011.02.013] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Revised: 12/31/2010] [Accepted: 02/25/2011] [Indexed: 11/24/2022]
|
41
|
Ramkissoon A, Wells PG. Human prostaglandin H synthase (hPHS)-1- and hPHS-2-dependent bioactivation, oxidative macromolecular damage, and cytotoxicity of dopamine, its precursor, and its metabolites. Free Radic Biol Med 2011; 50:295-304. [PMID: 21078384 DOI: 10.1016/j.freeradbiomed.2010.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 09/22/2010] [Accepted: 11/08/2010] [Indexed: 01/14/2023]
Abstract
The dopamine (DA) precursor l-dihydroxyphenylalanine (L-DOPA) and metabolites dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 3-methoxytyramine may serve as substrates for prostaglandin H synthase (PHS)-catalyzed bioactivation to free radical intermediates. We used CHO-K1 cells expressing human (h) PHS-1 or hPHS-2 to investigate hPHS isozyme-dependent oxidative damage and cytotoxicity. hPHS-1- and hPHS-2-expressing cells incubated with DA, L-DOPA, DOPAC, or HVA exhibited increased cytotoxicity compared to untransfected cells, and cytotoxicity was increased further by exogenous arachidonic acid (AA), which increased hPHS activity. Preincubation with catalase, which detoxifies reactive oxygen species, or acetylsalicylic acid, an inhibitor of hPHS-1 and -2, reduced the cytotoxicity caused by DA, L-DOPA, DOPAC, and HVA in hPHS-1 and -2 cells both with and without AA. Protein oxidation was increased in hPHS-1 and -2 cells exposed to DA or L-DOPA and further increased by AA addition. DNA oxidation was enhanced earlier and at lower substrate concentrations than protein oxidation in both hPHS-1 and -2 cells by DA, L-DOPA, DOPAC, and HVA and further enhanced by AA addition. hPHS-2 cells seemed more susceptible than hPHS-1 cells, whereas untransfected CHO-K1 cells were less susceptible. Thus, isozyme-specific, hPHS-dependent oxidative damage and cytotoxicity caused by neurotransmitters, their precursors, and their metabolites may contribute to neurodegeneration associated with aging.
Collapse
Affiliation(s)
- Annmarie Ramkissoon
- Division of Biomolecular Sciences, Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
42
|
Miyazaki I, Asanuma M, Kikkawa Y, Takeshima M, Murakami S, Miyoshi K, Sogawa N, Kita T. Astrocyte-derived metallothionein protects dopaminergic neurons from dopamine quinone toxicity. Glia 2010; 59:435-51. [DOI: 10.1002/glia.21112] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 10/28/2010] [Indexed: 11/10/2022]
|
43
|
Mansoor S, Gupta N, Luczy-Bachman G, Limb GA, Kuppermann BD, Kenney MC. Protective effects of memantine and epicatechin on catechol-induced toxicity on Müller cells in vitro. Toxicology 2010; 271:107-14. [DOI: 10.1016/j.tox.2010.03.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 03/06/2010] [Accepted: 03/20/2010] [Indexed: 11/29/2022]
|
44
|
Dopamine modifies oxygen consumption and mitochondrial membrane potential in striatal mitochondria. Mol Cell Biochem 2010; 341:251-7. [DOI: 10.1007/s11010-010-0456-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Accepted: 03/25/2010] [Indexed: 10/19/2022]
|
45
|
Macreadie IG, Bartone N, Sparrow L. Inhibition of Respiratory Growth and Survival in Yeast by Dopamine and Counteraction with Ascorbate or Glutathione. ACTA ACUST UNITED AC 2010; 15:297-301. [DOI: 10.1177/1087057109358920] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dopamine is a key monamine neurotransmitter, yet it can also exhibit toxicity to neuronal cells. There are suggestions that dopamine may be neurotoxic due to its propensity to induce the formation of reactive oxygen species, which may in turn adversely affect mitochondrial function and cell viability. In this study, the effects of dopamine or a dopamine reaction product on yeast growth and survival have been explored. Yeast is ideal for such a study because, unlike mammalian cells, yeast cells can be grown even when respiratory function is totally absent. Indeed, dopamine was found to be inhibitory to yeast growth in media where respiratory function was required and cytotoxic to yeast cells suspended in water. The inhibitory effects of dopamine were reduced greatly by the antioxidants ascorbate and glutathione, suggesting the involvement of reactive oxygen species in dopamine-mediated toxicity. It would appear that yeast may offer a convenient model to perform screens for further compounds that may provide protection against dopamine-mediated growth inhibition and toxicity.
Collapse
Affiliation(s)
- Ian G. Macreadie
- CSIRO Molecular and Health Technologies and P-Health Flagship, Parkville, Victoria, Australia
| | - Nick Bartone
- CSIRO Molecular and Health Technologies and P-Health Flagship, Parkville, Victoria, Australia
| | - Lindsay Sparrow
- CSIRO Molecular and Health Technologies and P-Health Flagship, Parkville, Victoria, Australia
| |
Collapse
|
46
|
Simultaneous determination of dopamine and its oxidized product (aminochrom), by hydrodynamic amperometry and anodic stripping voltammetry, using the metallic palladium and uranalyl hexacyanoferrate coated aluminum electrodes. Biosens Bioelectron 2010; 25:1481-6. [DOI: 10.1016/j.bios.2009.11.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 10/31/2009] [Accepted: 11/05/2009] [Indexed: 11/20/2022]
|
47
|
Asanuma M, Miyazaki I, Diaz-Corrales FJ, Kimoto N, Kikkawa Y, Takeshima M, Miyoshi K, Murata M. Neuroprotective effects of zonisamide target astrocyte. Ann Neurol 2010; 67:239-49. [DOI: 10.1002/ana.21885] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
48
|
Peripheral expression of key regulatory kinases in Alzheimer's disease and Parkinson's disease. Neurobiol Aging 2010; 32:2142-51. [PMID: 20106550 DOI: 10.1016/j.neurobiolaging.2010.01.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 10/27/2009] [Accepted: 01/07/2010] [Indexed: 11/23/2022]
Abstract
Alteration of key regulatory kinases may cause aberrant protein phosphorylation and aggregation in Alzheimer's disease (AD) and Parkinson's disease (PD). In this study, we investigated expression and phosphorylation status of glycogen synthase kinase 3 (GSK-3), protein kinase B (Akt) and tau protein in peripheral blood lymphocytes of 20 AD, 25 PD patients and 20 healthy controls. GSK-3 was increased in AD and PD patients. In these latter, GSK-3 levels were positively correlated with daily L-Dopa intake. Phosphorylated Akt expression was augmented in both groups; total Akt levels were increased only in AD patients and were positively correlated with disease duration and severity. Total and phosphorylated tau were increased only in AD, with phospho-tau levels being positively correlated with levels of total tau, Akt, and disease duration. No correlations between protein levels and clinical variables were found in PD patients. Investigation of peripheral changes in the expression of specific kinases may, therefore, lead to the development of innovative biomarkers of neurodegeneration, particularly for AD.
Collapse
|
49
|
Paraquat activates the IRE1/ASK1/JNK cascade associated with apoptosis in human neuroblastoma SH-SY5Y cells. Toxicol Lett 2009; 191:203-10. [PMID: 19735704 DOI: 10.1016/j.toxlet.2009.08.024] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 08/31/2009] [Accepted: 08/31/2009] [Indexed: 01/01/2023]
Abstract
Epidemiologic and laboratory studies suggest that paraquat can be an environmental etiologic factor in Parkinson's disease (PD). One mechanism by which paraquat may mediate cell death of dopaminergic neurons is by inducing endoplasmic reticulum (ER) stress, as suggested in a recent report. In this study, we further investigated this linkage by examining ER stress cascades. To this aim, human neuroblastoma cells (SH-SY5Y cells) were treated with paraquat and the signaling cascades through which ER stress results in apoptosis were examined. Then, it was examined whether ER stress is produced by paraquat. Paraquat increased ER stress biomarker proteins, glucose-regulated protein 78 (GRP78), ER degradation-enhancing alpha-mannosidae-like protein (EDEM), and C/EBP homologous protein (CHOP). Then, it was investigated which ER stress cascades are affected by paraquat. Paraquat activated inositol-requiring enzyme 1 (IRE1), apoptosis signal regulating kinase 1 (ASK1), and c-jun kinase (JNK). Also, paraquat activated calpain and caspase 3, but did not affect the levels of intracellular calcium and the activity of caspase 12. Finally, apoptotic DNA damage by paraquat was investigated and this damage was attenuated by salubrinal (ER stress inhibitor), thioredoxin (ASK1 inhibitor) and SP600125 (JNK inhibitor). Therefore, current data indicate that paraquat activates the IRE1/ASK1/JNK cascade associated with apoptosis in SY5Y cells.
Collapse
|
50
|
Cruciferous nutraceutical 3H-1,2-dithiole-3-thione protects human primary astrocytes against neurocytotoxicity elicited by MPTP, MPP(+), 6-OHDA, HNE and acrolein. Neurochem Res 2009; 34:1924-34. [PMID: 19408115 DOI: 10.1007/s11064-009-9978-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2009] [Accepted: 04/16/2009] [Indexed: 12/31/2022]
Abstract
Astrocytes possess important roles in maintaining normal brain function and providing trophic support to the neurons. They also suffer a range of toxic insults, being a chief target of prooxidants such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 1-methyl-4-phenylpyridinium (MPP(+)), 6-hydroxydopamine (6-OHDA), 4-hydroxy-2-nonenal (HNE), and acrolein. Recently, we have observed that the cellular antioxidants and phase 2 enzymes can be upregulated by 3H-1,2-dithiole-3-thione (D3T), a nutraceutical found in cruciferous vegetables, against many prooxidants in human neuroblastoma cell lines (SH-SY5Y). However, the regulation of the above cellular factors by D3T in astrocytes and their role in ameliorating the neurotoxic effects of the above neurotoxins have not been investigated. In this study, we show that incubation of human primary astrocytes with micromolar concentrations (5-100 microM) of D3T for 24 h resulted in significant increases in the levels of reduced glutathione (GSH), glutathione reductase (GR), and the phase 2 enzyme NAD(P)H:quinone oxidoreductase 1 (NQO1). D3T treatment also caused time-dependent increases in mRNA expression of the gamma-glutamylcysteine ligase catalytic subunit (GCLC), GR, and of NQO1 in these cells. Pretreatment of astrocytes with D3T was found to afford remarkable protection against the neurocytotoxicity elicited by MPTP, MPP(+), 6-OHDA, HNE and acrolein. Taken together, this study demonstrates for the first time that in human astrocytes, the cruciferous nutraceutical D3T potently induces the cellular GSH system and the phase 2 enzyme NQO1, which is accompanied by dramatically increased resistance of these cells to the damage induced by various neurotoxicants. The results of this study may have important implications for the development of novel neuroprotective strategies.
Collapse
|