1
|
AL-Noshokaty TM, Abdelhamid R, Abdelmaksoud NM, Khaled A, Hossam M, Ahmed R, Saber T, Khaled S, Elshaer SS, Abulsoud AI. Unlocking the multifaceted roles of GLP-1: Physiological functions and therapeutic potential. Toxicol Rep 2025; 14:101895. [PMID: 39911322 PMCID: PMC11795145 DOI: 10.1016/j.toxrep.2025.101895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 02/07/2025] Open
Abstract
Glucagon (GCG) like peptide 1 (GLP-1) has emerged as a powerful player in regulating metabolism and a promising therapeutic target for various chronic diseases. This review delves into the physiological roles of GLP-1, exploring its impact on glucose homeostasis, insulin secretion, and satiety. We examine the compelling evidence supporting GLP-1 receptor agonists (GLP-1RAs) in managing type 2 diabetes (T2D), obesity, and other diseases. The intricate molecular mechanisms underlying GLP-1RAs are explored, including their interactions with pathways like extracellular signal-regulated kinase 1/2 (ERK1/2), activated protein kinase (AMPK), cyclic adenine monophosphate (cAMP), mitogen-activated protein kinase (MAPK), and protein kinase C (PKC). Expanding our understanding, the review investigates the potential role of GLP-1 in cancers. Also, microribonucleic acid (RNA) (miRNAs), critical regulators of gene expression, are introduced as potential modulators of GLP-1 signaling. We delve into the link between miRNAs and T2D obesity and explore specific miRNA examples influencing GLP-1R function. Finally, the review explores the rationale for seeking alternatives to GLP-1RAs and highlights natural products with promising GLP-1 modulatory effects.
Collapse
Affiliation(s)
- Tohada M. AL-Noshokaty
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Rehab Abdelhamid
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | | | - Aya Khaled
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mariam Hossam
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Razan Ahmed
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Toka Saber
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Shahd Khaled
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Shereen Saeid Elshaer
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Ahmed I. Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt
- Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| |
Collapse
|
2
|
Yang J, Zhang CZ, Wang JJ, Zhang J. Metabolic improvement effects of jejunoileal side-to-side anastomosis in patients with type 2 diabetes and the glucagon-like peptide-1 mechanism. World J Diabetes 2025; 16:103567. [DOI: 10.4239/wjd.v16.i4.103567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/06/2025] [Accepted: 01/14/2025] [Indexed: 02/28/2025] Open
Abstract
Wang et al explored the metabolic improvement effects of jejunoileal side-to-side anastomosis in patients with type 2 diabetes mellitus (T2DM), focusing on its multitarget metabolic regulatory potential through enhanced secretion of glucagon-like peptide-1. This surgical procedure alters the direction of nutrient flow, activates distal ileal L cells, and increases endogenous glucagon-like peptide-1 levels, supporting glucose homeostasis, enhancing insulin sensitivity, regulating body weight, and improving cardiovascular health. This structural adjustment transforms the gastrointestinal tract into an active endocrine regulatory organ, providing a pathway for metabolic improvement in patients with T2DM and other complex metabolic disorders. Although this procedure demonstrates significant metabolic improvements within 3-6 months after surgery, integrating hormone level measurements, metabolic marker analysis, and long-term follow-up has become crucial for exploring the complex mechanisms of T2DM in the field of metabolic surgery and T2DM management. Multidisciplinary collaboration involving support from endocrinology, nutrition, and rehabilitation teams before and after surgery is becoming increasingly vital in the long-term management of patients with T2DM. This collaboration optimizes surgical outcomes and enhances metabolic management. Side-to-side anastomosis shows potential in the multitarget metabolic management of T2DM, providing an additional intervention option for patients with T2DM and metabolic disorders.
Collapse
Affiliation(s)
- Jian Yang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University and Yichang Central People’s Hospital, Yichang 443000, Hubei Province, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang 443000, Hubei Province, China
- Hubei Provincial Clinical Research Center for Ischemic Cardiovascular Disease, Yichang 443000, Hubei Province, China
| | - Cheng-Zhi Zhang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University and Yichang Central People’s Hospital, Yichang 443000, Hubei Province, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang 443000, Hubei Province, China
- Hubei Provincial Clinical Research Center for Ischemic Cardiovascular Disease, Yichang 443000, Hubei Province, China
- Central Laboratory, The First College of Clinical Medical Science, China Three Gorges University and Yichang Central People’s Hospital, Yichang 443000, Hubei Province, China
| | - Jiao-Jiao Wang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University and Yichang Central People’s Hospital, Yichang 443000, Hubei Province, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang 443000, Hubei Province, China
- Hubei Provincial Clinical Research Center for Ischemic Cardiovascular Disease, Yichang 443000, Hubei Province, China
- Central Laboratory, The First College of Clinical Medical Science, China Three Gorges University and Yichang Central People’s Hospital, Yichang 443000, Hubei Province, China
| | - Jing Zhang
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang 443000, Hubei Province, China
- Hubei Provincial Clinical Research Center for Ischemic Cardiovascular Disease, Yichang 443000, Hubei Province, China
- Central Laboratory, The First College of Clinical Medical Science, China Three Gorges University and Yichang Central People’s Hospital, Yichang 443000, Hubei Province, China
| |
Collapse
|
3
|
J C, Me C, Mt C. Renoprotective mechanisms of glucagon-like peptide-1 receptor agonists. DIABETES & METABOLISM 2025; 51:101641. [PMID: 40127835 DOI: 10.1016/j.diabet.2025.101641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 03/26/2025]
Abstract
Glucagon-like peptide-1 (GLP-1) is an incretin hormone, secreted from gut endocrine cells, which acts to potentiate nutrient-induced insulin secretion. Activation of its receptor, GLP-1R, decreases glucagon secretion and gastric emptying, thereby decreasing blood glucose and body weight. It is largely through these mechanisms that Glucagon-like peptide-1 receptor agonists (GLP-1RAs) have transformed the treatment of type 2 diabetes. More recently, preclinical and clinical studies have reported that these agents have potent extra-pancreatic effects, exhibiting cardioprotective and renoprotective actions. The recent FLOW trial was the first multicentre clinical trial investigating the effect of GLP-1RAs on a primary renal outcome and reported robust evidence that GLP-1RAs are renoprotective. Studies in rodent models of renal injury have shown that gain and loss of GLP-1R signalling improves or deteriorates kidney function. However, the precise mechanisms responsible for renal benefits of GLP-1RAs are not yet fully understood. While prolonged activation of GLP-1 receptors (GLP-1R) has been shown to reverse diabetes-related disruptions in gene expression across various renal cell populations, GLP-1R expression in both rodent and human kidneys is thought to be primarily confined to certain vascular smooth muscle cells. This review discusses recent advances in our understanding of the effects of GLP-1 medicines on the kidney with a focus on indirect and direct mechanisms of action.
Collapse
Affiliation(s)
- Chen J
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, 3004, Victoria, Australia
| | - Cooper Me
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, 3004, Victoria, Australia
| | - Coughlan Mt
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, 3004, Victoria, Australia; Baker Heart and Diabetes Institute, Melbourne, 3004, Victoria, Australia; Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University Parkville Campus, 381 Royal Parade, Parkville, 3052, Victoria, Australia.
| |
Collapse
|
4
|
Reiss AB, Gulkarov S, Lau R, Klek SP, Srivastava A, Renna HA, De Leon J. Weight Reduction with GLP-1 Agonists and Paths for Discontinuation While Maintaining Weight Loss. Biomolecules 2025; 15:408. [PMID: 40149944 PMCID: PMC11940170 DOI: 10.3390/biom15030408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
Worldwide, nearly 40% of adults are overweight and 13% are obese. Health consequences of excess weight include cardiovascular diseases, type 2 diabetes, dyslipidemia, and increased mortality. Treating obesity is challenging and calorie restriction often leads to rebound weight gain. Treatments such as bariatric surgery create hesitancy among patients due to their invasiveness. GLP-1 medications have revolutionized weight loss and can reduce body weight in obese patients by between 15% and 25% on average after about 1 year. Their mode of action is to mimic the endogenous GLP-1, an intestinal hormone that regulates glucose metabolism and satiety. However, GLP-1 drugs carry known risks and, since their use for weight loss is recent, may carry unforeseen risks as well. They carry a boxed warning for people with a personal or family history of medullary thyroid carcinoma or multiple endocrine neoplasia syndrome type 2. Gastrointestinal adverse events (nausea, vomiting, diarrhea) are fairly common while pancreatitis and intestinal obstruction are rarer. There may be a loss of lean body mass as well as premature facial aging. A significant disadvantage of using these medications is the high rate of weight regain when they are discontinued. Achieving success with pharmacologic treatment and then weaning to avoid future negative effects would be ideal.
Collapse
Affiliation(s)
- Allison B. Reiss
- Department of Medicine, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (R.L.); (S.P.K.); (J.D.L.)
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (S.G.); (A.S.); (H.A.R.)
| | - Shelly Gulkarov
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (S.G.); (A.S.); (H.A.R.)
| | - Raymond Lau
- Department of Medicine, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (R.L.); (S.P.K.); (J.D.L.)
| | - Stanislaw P. Klek
- Department of Medicine, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (R.L.); (S.P.K.); (J.D.L.)
| | - Ankita Srivastava
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (S.G.); (A.S.); (H.A.R.)
| | - Heather A. Renna
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (S.G.); (A.S.); (H.A.R.)
| | - Joshua De Leon
- Department of Medicine, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (R.L.); (S.P.K.); (J.D.L.)
| |
Collapse
|
5
|
Gaggini M, Sabatino L, Suman AF, Chatzianagnostou K, Vassalle C. Insights into the Roles of GLP-1, DPP-4, and SGLT2 at the Crossroads of Cardiovascular, Renal, and Metabolic Pathophysiology. Cells 2025; 14:387. [PMID: 40072115 PMCID: PMC11898734 DOI: 10.3390/cells14050387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/15/2025] Open
Abstract
In recent years, new drugs for the treatment of type 2 diabetes (T2D) have been proposed, including glucagon-like peptide 1 (GLP-1) agonists or sodium-glucose cotransporter 2 (SGLT2) inhibitors and dipeptidyl peptidase-4 (DPP-4) inhibitors. Over time, some of these agents (in particular, GLP-1 agonists and SGLT2 inhibitors), which were initially developed for their glucose-lowering actions, have demonstrated significant beneficial pleiotropic effects, thus expanding their potential therapeutic applications. This review aims to discuss the mechanisms, pleiotropic effects, and therapeutic potential of GLP-1, DPP-4, and SGLT2, with a particular focus on their cardiorenal benefits beyond glycemic control.
Collapse
Affiliation(s)
- Melania Gaggini
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (M.G.); (L.S.)
| | - Laura Sabatino
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (M.G.); (L.S.)
| | - Adrian Florentin Suman
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (M.G.); (L.S.)
| | | | - Cristina Vassalle
- Fondazione CNR-Regione Toscana G Monasterio, Via G. Moruzzi 1, 56124 Pisa, Italy;
| |
Collapse
|
6
|
Müller TD, Adriaenssens A, Ahrén B, Blüher M, Birkenfeld AL, Campbell JE, Coghlan MP, D'Alessio D, Deacon CF, DelPrato S, Douros JD, Drucker DJ, Figueredo Burgos NS, Flatt PR, Finan B, Gimeno RE, Gribble FM, Hayes MR, Hölscher C, Holst JJ, Knerr PJ, Knop FK, Kusminski CM, Liskiewicz A, Mabilleau G, Mowery SA, Nauck MA, Novikoff A, Reimann F, Roberts AG, Rosenkilde MM, Samms RJ, Scherer PE, Seeley RJ, Sloop KW, Wolfrum C, Wootten D, DiMarchi RD, Tschöp MH. Glucose-dependent insulinotropic polypeptide (GIP). Mol Metab 2025; 95:102118. [PMID: 40024571 PMCID: PMC11931254 DOI: 10.1016/j.molmet.2025.102118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/06/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND Glucose-dependent insulinotropic polypeptide (GIP) was the first incretin identified and plays an essential role in the maintenance of glucose tolerance in healthy humans. Until recently GIP had not been developed as a therapeutic and thus has been overshadowed by the other incretin, glucagon-like peptide 1 (GLP-1), which is the basis for several successful drugs to treat diabetes and obesity. However, there has been a rekindling of interest in GIP biology in recent years, in great part due to pharmacology demonstrating that both GIPR agonism and antagonism may be beneficial in treating obesity and diabetes. This apparent paradox has reinvigorated the field, led to new lines of investigation, and deeper understanding of GIP. SCOPE OF REVIEW In this review, we provide a detailed overview on the multifaceted nature of GIP biology and discuss the therapeutic implications of GIPR signal modification on various diseases. MAJOR CONCLUSIONS Following its classification as an incretin hormone, GIP has emerged as a pleiotropic hormone with a variety of metabolic effects outside the endocrine pancreas. The numerous beneficial effects of GIPR signal modification render the peptide an interesting candidate for the development of pharmacotherapies to treat obesity, diabetes, drug-induced nausea and both bone and neurodegenerative disorders.
Collapse
Affiliation(s)
- Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Munich, Germany; German Center for Diabetes Research, DZD, Germany; Walther-Straub Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University Munich (LMU), Germany.
| | - Alice Adriaenssens
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Bo Ahrén
- Department of Clinical Sciences, Lund, Lund University, Lund, Sweden
| | - Matthias Blüher
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Andreas L Birkenfeld
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen 72076, Germany; Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich, Tübingen, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA; Department of Medicine, Division of Endocrinology, Duke University, Durham, NC, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Matthew P Coghlan
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - David D'Alessio
- Department of Medicine, Division of Endocrinology, Duke University, Durham, NC, USA; Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Carolyn F Deacon
- School of Biomedical Sciences, Ulster University, Coleraine, UK; Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stefano DelPrato
- Interdisciplinary Research Center "Health Science", Sant'Anna School of Advanced Studies, Pisa, Italy
| | | | - Daniel J Drucker
- The Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, and the Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Natalie S Figueredo Burgos
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Peter R Flatt
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK
| | - Brian Finan
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Ruth E Gimeno
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Fiona M Gribble
- Institute of Metabolic Science-Metabolic Research Laboratories & MRC-Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Matthew R Hayes
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christian Hölscher
- Neurodegeneration Research Group, Henan Academy of Innovations in Medical Science, Xinzheng, China
| | - Jens J Holst
- Department of Biomedical Sciences and the Novo Nordisk Foundation Centre for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Patrick J Knerr
- Indianapolis Biosciences Research Institute, Indianapolis, IN, USA
| | - Filip K Knop
- Center for Clinical Metabolic Research, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christine M Kusminski
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Arkadiusz Liskiewicz
- Institute for Diabetes and Obesity, Helmholtz Munich, Germany; German Center for Diabetes Research, DZD, Germany; Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Guillaume Mabilleau
- Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS UMR 1229, Angers, France; CHU Angers, Departement de Pathologie Cellulaire et Tissulaire, Angers, France
| | | | - Michael A Nauck
- Diabetes, Endocrinology and Metabolism Section, Department of Internal Medicine I, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Aaron Novikoff
- Institute for Diabetes and Obesity, Helmholtz Munich, Germany; German Center for Diabetes Research, DZD, Germany
| | - Frank Reimann
- Institute of Metabolic Science-Metabolic Research Laboratories & MRC-Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Anna G Roberts
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences University of Copenhagen, Copenhagen, Denmark
| | - Ricardo J Samms
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Philip E Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Kyle W Sloop
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Christian Wolfrum
- Institute of Food, Nutrition and Health, ETH Zurich, 8092, Schwerzenbach, Switzerland
| | - Denise Wootten
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia; ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | | | - Matthias H Tschöp
- Helmholtz Munich, Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
7
|
Giraud EL, Krens SD, Böhringer S, Desar IME, Vermeulen SH, Kiemeney LA, Huitema ADR, Steeghs N, van Erp NP, Swen JJ. Exploring the contribution of genetic variants to high sunitinib exposure in patients with cancer. Br J Clin Pharmacol 2025; 91:297-305. [PMID: 39107874 PMCID: PMC11773116 DOI: 10.1111/bcp.16196] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/27/2024] [Accepted: 06/25/2024] [Indexed: 01/29/2025] Open
Abstract
AIMS Sunitinib exhibits considerable interindividual variability in exposure. While the target total plasma concentration of sunitinib and its active metabolite is 50-87.5 ng/mL for the intermittent dosing schedule, ~10-21% of patients experience higher exposures (>87.5 ng/mL), correlated with an increased risk for toxicity. Previous research identified single nucleotide variants (SNVs) in genes from the sunitinib pharmacokinetic pathway to be associated with efficacy and toxicity. However, significant interindividual variability in exposure remains unexplained. Our aim was to identify genetic variants associated with supratherapeutic exposure of sunitinib. METHODS This was a genome-wide association study. Cases were identified during routine therapeutic drug monitoring and consisted of patients with dose-normalized sunitinib plasma concentrations >87.5 ng/mL (intermittent dosing) or >75 ng/mL (continuous dosing). Controls were sampled from the historical cohort EuroTARGET who tolerated the standard dose of 50 mg in an intermittent schedule. SNVs were tested for an association with sunitinib exposure. A P-value ≤5 × 10-8 was considered significant and a P-value between 5 × 10-8 and 5 × 10-6 was considered suggestive. RESULTS Sixty-nine cases and 345 controls were included for association analysis. One SNV (rs6923761), located on the gene glucagon-like peptide 1 receptor, was significantly associated with increased sunitinib exposure (P = 7.86 × 10-19). Twelve SNVs were suggestive for an association with sunitinib exposure (P ≤ 5 × 10-6). CONCLUSIONS While rs6923761 is associated with high sunitinib exposure, the underlying mechanism is not yet clarified and warrants further investigation. [Corrections made on 23 September 2024, after first online publication: In the preceding sentence, identifier rs6923671 has been changed to rs6923761 in this version.] We could not confirm the earlier found associations between SNVs in candidate genes involved in the pharmacokinetic pathway of sunitinib and its efficacy and toxicity.
Collapse
Affiliation(s)
- Eline L. Giraud
- Department of PharmacyRadboud University Medical CentreNijmegenThe Netherlands
| | - Stefanie D. Krens
- Department of PharmacyRadboud University Medical CentreNijmegenThe Netherlands
- Department of Pharmacy and Clinical Pharmacology, Amsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
| | - Stefan Böhringer
- Department of Clinical Pharmacy and ToxicologyLeiden University Medical Centre (LUMC)LeidenThe Netherlands
- Department of Biomedical Data SciencesLeiden University Medical Centre (LUMC)LeidenThe Netherlands
| | - Ingrid M. E. Desar
- Department of Medical OncologyRadboud University Medical CentreNijmegenThe Netherlands
| | - Sita H. Vermeulen
- Department for Health EvidenceRadboud University Medical CentreNijmegenThe Netherlands
| | - Lambertus A. Kiemeney
- Department for Health EvidenceRadboud University Medical CentreNijmegenThe Netherlands
| | - Alwin D. R. Huitema
- Department of Pharmacy & PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Department of PharmacologyPrinces Máxima Centre for Pediatric OncologyUtrechtThe Netherlands
- University Medical Centre Utrecht, Department of Clinical PharmacyUtrecht UniversityUtrechtThe Netherlands
| | - Neeltje Steeghs
- Department of Clinical Pharmacology and Department of Medical OncologyThe Netherlands Cancer InstituteAmsterdamCXThe Netherlands
| | - Nielka P. van Erp
- Department of PharmacyRadboud University Medical CentreNijmegenThe Netherlands
| | - Jesse J. Swen
- Department of Clinical Pharmacy and ToxicologyLeiden University Medical Centre (LUMC)LeidenThe Netherlands
| |
Collapse
|
8
|
Catherino WH. From the Editor-in-Chief. F&S SCIENCE 2025; 6:1-3. [PMID: 39788292 DOI: 10.1016/j.xfss.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 01/03/2025] [Indexed: 01/12/2025]
|
9
|
Zhang X, Cao C, Zheng F, Liu C, Tian X. Therapeutic Potential of GLP-1 Receptor Agonists in Diabetes and Cardiovascular Disease: Mechanisms and Clinical Implications. Cardiovasc Drugs Ther 2025:10.1007/s10557-025-07670-9. [PMID: 39832069 DOI: 10.1007/s10557-025-07670-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/30/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND Glucagon-like peptide-1 (GLP-1) is a crucial incretin hormone secreted by intestinal endocrine L cells. Given its pivotal physiological role, researchers have developed GLP-1 receptor agonists (GLP-1 RAs) through structural modifications. These analogues display pharmacological effects similar to those of GLP-1 but with augmented stability and are regarded as an effective means of regulating blood glucose levels in clinical practice. OBJECTIVE This review aims to comprehensively summarize the role of GLP-1 RAs in the management of diabetes mellitus (DM) and cardiovascular disease (CVD), with a particular emphasis on the underlying signal transduction pathways and their therapeutic potential. METHODS A comprehensive review was carried out through literature research. RESULTS AND DISCUSSION In pancreatic β-cells, GLP-1 RAs regulate the secretion of insulin and glucagon in a glucosedependent manner by influencing signaling pathways such as cAMP, PI3K, and MAPK. They also contribute to the regulation of blood glucose levels by promoting the proliferation of β-cells and inhibiting apoptosis in these cells. Recent comprehensive studies have also demonstrated the favorable impact of GLP-1 RAs on cardiovascular wellbeing. In addition to the cardiovascular protection afforded by glucose metabolism regulation, a large body of evidence from animal and cellular studies has corroborated the beneficial effects of GLP-1 RAs on conditions such as heart failure (HF), hypertension, and ischemic cardiomyopathy. These benefits are mainly attributed to the alleviation of inflammatory responses, reduction of oxidative stress, and prevention of cell apoptosis. Clinical data shows that GLP-1 RAs can reduce the risk of major adverse cardiovascular events (MACE) in diabetic patients. CONCLUSION GLP-1 RAs play an important role in the management of both diabetes and cardiovascular diseases. They show potential therapeutic value through the modulation of multiple signal transduction pathways. However, there may still be some issues in practical applications that require further research and resolution.
Collapse
Affiliation(s)
- Xinyu Zhang
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 16766 Jingshi Road, Jinan City, 250014, China
- Shandong First Medical University (Shandong Academy of Medical Sciences), 6699 Qingdao Road, Jinan City, 250117, China
| | - Chao Cao
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 16766 Jingshi Road, Jinan City, 250014, China
| | - Fei Zheng
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 16766 Jingshi Road, Jinan City, 250014, China
| | - Chang Liu
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 16766 Jingshi Road, Jinan City, 250014, China
| | - Xiuqing Tian
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 16766 Jingshi Road, Jinan City, 250014, China.
- Shandong First Medical University (Shandong Academy of Medical Sciences), 6699 Qingdao Road, Jinan City, 250117, China.
| |
Collapse
|
10
|
He X, Zhao W, Li P, Zhang Y, Li G, Su H, Lu B, Pang Z. Research progress of GLP-1RAs in the treatment of type 2 diabetes mellitus. Front Pharmacol 2025; 15:1483792. [PMID: 39902077 PMCID: PMC11788294 DOI: 10.3389/fphar.2024.1483792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/23/2024] [Indexed: 02/05/2025] Open
Abstract
Glucagon-like peptide-1 (GLP-1) is a 30-amino acid intestinal insulin-stimulating factor, which is mainly secreted by L cells in the distal ileum and colon. It has various physiological functions, such as promoting insulin secretion and synthesis, stimulating β-cell proliferation, inducing islet regeneration, inhibiting β-cell apoptosis and glucagon release, delaying gastric emptying and controlling appetite, etc. It plays a role through a specific GLP-1 receptor (GLP-1R) distributed in many organs or tissues and participates in the regulation of glucose homeostasis in the body. GLP-1 receptor agonists (GLP-1RAs) has the similar physiological function of GLP-1. Because of its structural difference from natural GLP-1, it is not easy to be degraded by dipeptidyl peptidase-4 (DPP-4), thus prolonging the action time. GLP-1RAs have been recognized as a new type of hypoglycemic drugs and widely used in the treatment of type 2 diabetes mellitus (T2DM). Compared with other non-insulin hypoglycemic drugs, it can not only effectively reduce blood glucose and glycosylated hemoglobin (HbA1c), but also protect cardiovascular system, nervous system and kidney function without causing hypoglycemia and weight gain. Therefore, GLP-1RAs has good application prospects and potential for further development.
Collapse
Affiliation(s)
- Xu He
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
- Pharmacy Department, People’s Hospital of Dali Bai Autonomous Prefecture, Dali, China
| | - Wei Zhao
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
| | - PeiHang Li
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
| | - YinJiang Zhang
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
| | - GuoHua Li
- Pharmacy Department, People’s Hospital of Dali Bai Autonomous Prefecture, Dali, China
| | - HongYu Su
- Graduate School, Chengde Medical College, Chengde, China
| | - BiNan Lu
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
| | - ZongRan Pang
- School of Pharmacy, Minzu University of China, Beijing, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
| |
Collapse
|
11
|
Forouzanmehr B, Hemmati MA, Atkin SL, Jamialahmadi T, Yaribeygi H, Sahebkar A. GLP-1 mimetics and diabetic ketoacidosis: possible interactions and clinical consequences. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:351-362. [PMID: 39172148 DOI: 10.1007/s00210-024-03384-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
Diabetic ketoacidosis is a serious diabetes-related consequence that occurs in type 1 diabetes and less commonly in type 2 diabetes and is a major cause of death. It results from the metabolic consequences due to a lack of insulin secretion or impaired insulin activity in diabetes leading to dysregulated pathophysiologic pathways resulting in excessive ketone body formation. While ketone bodies are physiologic molecules, their high levels reduce the physiological pH of the blood and induce ketoacidosis, leading to increasing metabolic dysfunction. Glucagon-like peptide-1 (GLP-1) mimetics are a class of recently developed diabetes therapy that do not lead to hypoglycemic, but some reports have suggested a relationship between GLP-1 mimetics and ketogenesis. To clarify the possible interactions between GLP-1 mimetics and ketogenesis in diabetes, this review was undertaken to collate and interpret the literature.
Collapse
Affiliation(s)
- Behina Forouzanmehr
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Stephen L Atkin
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya, Bahrain
| | - Tannaz Jamialahmadi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
12
|
Zhang J, Sun J, Li J, Xia H. Targeting the GDF15 Signalling for Obesity Treatment: Recent Advances and Emerging Challenges. J Cell Mol Med 2024; 28:e70251. [PMID: 39700016 DOI: 10.1111/jcmm.70251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 12/21/2024] Open
Abstract
The growth differentiation factor 15 (GDF15)-glial cell-derived neurotrophic factor family receptor alpha-like (GFRAL) pathway plays a crucial role in the regulation of metabolism, appetite and body weight control. Obesity is an increasingly prevalent chronic disease worldwide, necessitating effective treatment strategies. Recent preclinical and clinical studies have highlighted that targeting the GDF15-GFRAL signalling pathway is a promising approach for treating obesity, particularly because it has minimal impact on skeletal muscle mass, which is essential to preserve during weight loss. Given its distinctive mechanisms, the GDF15-GFRAL axis represents an attractive target for addressing various metabolic disorders, especially obesity. In this review, we will explore how the GDF15-GFRAL axis is regulated, its distribution in the body and its role in the regulation of metabolism, appetite and obesity. Additionally, we will discuss recent advances and potential challenges in targeting the GDF15-GFRAL axis for obesity treatment.
Collapse
Affiliation(s)
- Jincheng Zhang
- Division of Abdominal Tumor Multimodality Treatment, Department of Medical Oncology, Cancer Center and National Clinical Research Center for Geriatrics and Laboratory of Molecular Targeted Therapy in Oncology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- School of Physical Education and Sports, Sichuan University, Chengdu, China
- Research Institute of Molecular Exercise Science, Hungarian University of Sports Science, Budapest, Hungary
| | - Jingquan Sun
- School of Physical Education and Sports, Sichuan University, Chengdu, China
| | - Jielang Li
- Division of Abdominal Tumor Multimodality Treatment, Department of Medical Oncology, Cancer Center and National Clinical Research Center for Geriatrics and Laboratory of Molecular Targeted Therapy in Oncology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Hongwei Xia
- Division of Abdominal Tumor Multimodality Treatment, Department of Medical Oncology, Cancer Center and National Clinical Research Center for Geriatrics and Laboratory of Molecular Targeted Therapy in Oncology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Ibrahim SS, Ibrahim RS, Arabi B, Brockmueller A, Shakibaei M, Büsselberg D. The effect of GLP-1R agonists on the medical triad of obesity, diabetes, and cancer. Cancer Metastasis Rev 2024; 43:1297-1314. [PMID: 38801466 PMCID: PMC11554930 DOI: 10.1007/s10555-024-10192-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) agonists have garnered significant attention for their therapeutic potential in addressing the interconnected health challenges of diabetes, obesity, and cancer. The role of GLP-1R in type 2 diabetes mellitus (T2DM) is highlighted, emphasizing its pivotal contribution to glucose homeostasis, promoting β-cell proliferation, and facilitating insulin release. GLP-1R agonists have effectively managed obesity by reducing hunger, moderating food intake, and regulating body weight. Beyond diabetes and obesity, GLP-1R agonists exhibit a multifaceted impact on cancer progression across various malignancies. The mechanisms underlying these effects involve the modulation of signaling pathways associated with cell growth, survival, and metabolism. However, the current literature reveals a lack of in vivo studies on specific GLP-1R agonists such as semaglutide, necessitating further research to elucidate its precise mechanisms and effects, particularly in cancer. While other GLP-1R agonists have shown promising outcomes in mitigating cancer progression, the association between some GLP-1R agonists and an increased risk of cancer remains a topic requiring more profound investigation. This calls for more extensive research to unravel the intricate relationships between the GLP-1R agonist and different cancers, providing valuable insights for clinicians and researchers alike.
Collapse
Affiliation(s)
| | | | - Batoul Arabi
- Weill Cornell Medicine-Qatar, Qatar Foundation, Education City, Doha, 24144, Qatar
| | - Aranka Brockmueller
- Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Pettenkoferstr. 11, D-80336, Munich, Germany
| | - Mehdi Shakibaei
- Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Pettenkoferstr. 11, D-80336, Munich, Germany
| | - Dietrich Büsselberg
- Weill Cornell Medicine-Qatar, Qatar Foundation, Education City, Doha, 24144, Qatar.
| |
Collapse
|
14
|
Ahmed I, Chakraborty R, Faizy AF, Moin S. Exploring the key role of DNA methylation as an epigenetic modulator in oxidative stress related islet cell injury in patients with type 2 diabetes mellitus: a review. J Diabetes Metab Disord 2024; 23:1699-1718. [PMID: 39610516 PMCID: PMC11599646 DOI: 10.1007/s40200-024-01496-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/21/2024] [Indexed: 11/30/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a multifactorial metabolic disorder characterised by impaired insulin secretion and action, often exacerbated by oxidative stress. Recent research has highlighted the intricate involvement of epigenetic mechanisms, particularly DNA methylation, in the pathogenesis of T2DM. This review aims to elucidate the role of DNA methylation as an epigenetic modifier in oxidative stress-mediated beta cell dysfunction, a key component of T2DM pathophysiology. Oxidative stress, arising from an imbalance between reactive oxygen species (ROS) production and antioxidant defence mechanisms, is a hallmark feature of T2DM. Beta cells, responsible for insulin secretion, are particularly vulnerable to oxidative damage due to their low antioxidant capacity. Emerging evidence suggests that oxidative stress can induce aberrant DNA methylation patterns in beta cells, leading to altered gene expression profiles associated with insulin secretion and cell survival. Furthermore, studies have identified specific genes involved in beta cell function and survival that undergo DNA methylation changes in response to oxidative stress in T2DM. These epigenetic modifications can perpetuate beta cell dysfunction by dysregulating key pathways essential for insulin secretion, such as the insulin signalling cascade and mitochondrial function. Understanding the interplay between DNA methylation, oxidative stress, and beta cell dysfunction holds promise for developing novel therapeutic strategies for T2DM. Targeting aberrant DNA methylation patterns may offer new avenues for restoring beta cell function and improving glycemic control in patients with T2DM. However, further research is needed to elucidate the complex mechanisms underlying epigenetic regulation in T2DM and to translate these findings into clinical interventions.
Collapse
Affiliation(s)
- Istiaque Ahmed
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College and Hospital Aligarh Muslim University, Aligarh, Uttar Pradesh 202002 India
| | - Ritoja Chakraborty
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College and Hospital Aligarh Muslim University, Aligarh, Uttar Pradesh 202002 India
| | - Abul Faiz Faizy
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College and Hospital Aligarh Muslim University, Aligarh, Uttar Pradesh 202002 India
| | - Shagufta Moin
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College and Hospital Aligarh Muslim University, Aligarh, Uttar Pradesh 202002 India
| |
Collapse
|
15
|
Raza FA, Altaf R, Bashir T, Asghar F, Altaf R, Tousif S, Goyal A, Mohammed A, Mohammad MF, Anan M, Ali S. Effect of GLP-1 receptor agonists on weight and cardiovascular outcomes: A review. Medicine (Baltimore) 2024; 103:e40364. [PMID: 39496023 PMCID: PMC11537668 DOI: 10.1097/md.0000000000040364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/15/2024] [Indexed: 11/06/2024] Open
Abstract
Diet and lifestyle modifications remain the foundation of obesity treatment, but they have historically proven insufficient for significant, long-term weight loss. As a result, there is a high demand for new pharmacologic treatments to promote weight loss and prevent life-threatening diseases associated with obesity. Researchers are particularly interested in 1 type of drug, glucagon-like peptide 1 receptor agonists (GLP-1 RAs), because of its promising potential in addressing the limitations of non-pharmacologic treatments. In addition to their role in weight loss, these drugs have shown promising early evidence of cardiovascular benefits in obese patients, further enhancing their clinical relevance. Semaglutide and liraglutide, which were initially approved for the treatment of type 2 diabetes, have since been approved by the Food and Drug Administration as weight loss medications due to their effectiveness in promoting significant and sustained weight loss. In this narrative review, we will explore the mechanism of GLP-1 RAs, their effects on weight loss, cardiovascular risk factors and outcomes, common adverse effects, and strategies for managing these effects.
Collapse
Affiliation(s)
- Fatima Ali Raza
- Department of Medicine, Karachi Medical and Dental College, Karachi, Pakistan
| | - Rafiya Altaf
- Department of Surgery, Dow International Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | - Talha Bashir
- Department of Medicine, Karachi Institute of Medical Sciences, Combined Military Hospital Malir, Karachi City, Pakistan
| | - Fatima Asghar
- Department of Medicine, Ras Al Khaimah College of Medical Sciences, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Rabiya Altaf
- Department of Medicine, Mersey and West Lancashire Teaching Hospitals NHS Trust, Prescot, United Kingdom
| | - Sohaib Tousif
- Department of Medicine, Ziauddin University, Karachi City, Pakistan
| | - Aman Goyal
- Department of Medicine, Seth Gordhandas Sunderdas Medical College and King Edward Memorial Hospital, Mumbai, India
| | - Aisha Mohammed
- Department of Medicine, Comanche County Memorial Hospital, Lawton, OK
| | | | - Mahfuza Anan
- Department of Medicine, Bangladesh Medical College, Dhaka, Bangladesh
| | - Sajjad Ali
- Department of Medicine, Ziauddin University, Karachi City, Pakistan
| |
Collapse
|
16
|
Khalifa AK, Abdelrahim DS, Mekawy DM, Hamed RMR, Mohamed WR, Ramadan NM, Wael M, Ellackany R, Albadawi EA, Osman WA. New horizon of the combined BCG vaccine with probiotic and liraglutide in augmenting beta cell survival via suppression of TXNIP/NLRP3 pyroptosis signaling in Streptozocin-Induced diabetes mellitestype-1 in rats. Heliyon 2024; 10:e38932. [PMID: 39640632 PMCID: PMC11620097 DOI: 10.1016/j.heliyon.2024.e38932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 12/07/2024] Open
Abstract
Background An ideal anti-diabetic type-1 pharmacotherapy should combine abrogation of beta cell pyroptosis with enhancement of beta cell mass. Objectives The study investigated the potential synergism from combining the Bacillus Calmette-Guerin (BCG) vaccine with liraglutide (LIR) and probiotics in mitigating Streptozocin (STZ)-induced Type1diabetes mellitus in albino rats via suppression of TXNIP/NLRP3 signaling. Methods: Induction of diabetes was performed by two I.V. injections of 50 mg/kg of STZ in male Wistar rats. Forty-eight rats were randomly allocated into six groups: Normal control group; STZ -diabetic group; BCG group; BCG + LIR group; BCG + probiotic group; BCG + LIR + probiotic group. The rats were sacrificed after 8 weeks of treatment. Results The STZ-diabetic group exhibited significant elevation of fasting blood sugar and HbA1c with remarkably decreased serum insulin along with a considerable increase in pancreatic proinflammatory cytokines (TNF-α, NLRP3, IL-1β, and NFκB) and apoptotic markers (ASK-1, IAPP, TXNIP, and Caspase-3) with prominently compromised oxidative scavenging capacity in addition to structural alteration in the pancreatic histoarchitecture with decreased insulin immunostaining. Conversely, diabetic-treated groups, especially the BCG + LIR + probiotic group, were superior in amelioration of STZ-induced pyroptosis of pancreatic islets evidenced by a significant decline in inflammatory cytokines and apoptotic markers with a remarkable upgrade in redox balance, Furthermore, the mitigation in the altered histopathological picture of the pancreas with enhanced insulin immunostaining has been was mirrored on the significant improvement of glucose homeostasis parameters. Conclusions Noteworthy, BCG combination with liraglutide and probiotic might be a promising repurposed therapeutic modality in the management of type-1 diabetes mellites via targeting pancreatic TXNIP/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Amira Karam Khalifa
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, El- Manial, Cairo 11562, Egypt
- Department of Medical Pharmacology, Faculty of Medicine, Nahda University, 62521, Beni Suef, Egypt
| | - Dina Sayed Abdelrahim
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Egypt
- Department of Pharmacology, Faculty of Medicine, Modern University for Technology and Information, Cairo, Egypt
| | - Dina Mohamed Mekawy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Badr University in Cairo, Badr City, Egypt
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Wafaa Rabee Mohamed
- Department of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, Egypt
- Department of Histology and Cell Biology, Faculty of Medicine, Modern University for Technology and Information, Egypt
| | - Nagwa Mahmoud Ramadan
- Department of Physiology, Faculty of Medicine, Cairo University, El Manial, Cairo 11562, Egypt
| | - Mostafa Wael
- Faculty of Medicine, Modern University for Technology and Information, Cairo, Egypt
| | - Rawan Ellackany
- Faculty of Medicine, Modern University for Technology and Information, Cairo, Egypt
| | - Emad Ali Albadawi
- Department of Basic Medical Science, College of Medicine, Taibah University, KSA, Saudi Arabia
| | - Walla'a A. Osman
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, El- Manial, Cairo 11562, Egypt
| |
Collapse
|
17
|
Zhang Q, Zhang C, Kang C, Zhu J, He Q, Li H, Tong Q, Wang M, Zhang L, Xiong X, Wang Y, Qu H, Zheng H, Zheng Y. Liraglutide Promotes Diabetic Wound Healing via Myo1c/Dock5. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405987. [PMID: 39159301 PMCID: PMC11497045 DOI: 10.1002/advs.202405987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/26/2024] [Indexed: 08/21/2024]
Abstract
Non-healing diabetic wounds and ulcer complications, with persistent cell dysfunction and obstructed cellular processes, are leading causes of disability and death in patients with diabetes. Currently, there is a lack of guideline-recommended hypoglycemic drugs in clinical practice, likely due to limited research and unclear mechanisms. In this study, it is demonstrated that liraglutide significantly accelerates wound closure in diabetic mouse models (db/db mice and streptozotocin-induced mice) by improving re-epithelialization, collagen deposition, and extracellular matrix remodeling, and enhancing the proliferation, migration, and adhesion functions of keratinocytes. However, these effects of improved healing by liraglutide are abrogated in dedicator of cytokinesis 5 (Dock5) keratinocyte-specific knockout mice. Mechanistically, liraglutide induces cellular function through stabilization of unconventional myosin 1c (Myo1c). Liraglutide directly binds to Myo1c at arginine 93, enhancing the Myo1c/Dock5 interaction by targeting Dock5 promoter and thus promoting the proliferation, migration, and adhesion of keratinocytes. Therefore, this study provides insights into liraglutide biology and suggests it may be an effective treatment for diabetic patients with wound-healing pathologies.
Collapse
Affiliation(s)
- Qian Zhang
- School of Life SciencesChongqing UniversityChongqing401331China
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
- Department of Pharmacythe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Chunlin Zhang
- School of Life SciencesChongqing UniversityChongqing401331China
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Changjiang Kang
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
- Department of Laboratory MedicineChongqing University Three Gorges HospitalSchool of MedicineChongqing UniversityChongqing404000China
| | - Jiaran Zhu
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Qingshan He
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Hongwei Li
- Department of Medicinal ChemistryArmy Medical UniversityChongqing400038China
| | - Qiang Tong
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Min Wang
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Linlin Zhang
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Xin Xiong
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Yuren Wang
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Hua Qu
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Hongting Zheng
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| | - Yi Zheng
- Department of EndocrinologyTranslational Research of Diabetes Key Laboratory of Chongqing Education Commission of Chinathe Second Affiliated Hospital of Army Medical UniversityChongqing400037China
| |
Collapse
|
18
|
Han L, Chen X, Wan D, Xie M, Ouyang S. One anastomosis gastric bypass ameliorates diabetic nephropathy via regulating the GLP-1-mediated Sirt1/AMPK/PGC1α pathway. Clin Exp Nephrol 2024; 28:1051-1061. [PMID: 38782822 DOI: 10.1007/s10157-024-02516-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Diabetic nephropathy (DN), a complication of diabetes, is the most leading cause of end-stage renal disease. Bariatric surgery functions on the remission of diabetes and diabetes-related complications. One anastomosis gastric bypass (OAGB), one of popular bariatric surgery, can improve diabetes and its complications by regulating the glucagon-like peptide-1 (GLP-1) level. Meanwhile, GLP-1 can alleviate renal damage in high-fat-diet-induced obese rats. However, the effect of OAGB on renal injury remains uncertain in DN. METHODS A diabetes model was elicited in rats via HFD feeding and STZ injection. The role and mechanism of OAGB were addressed in DN rats by the body and kidney weight and blood glucose supervision, oral glucose tolerance test (OGTT), enzyme-linked immunosorbent assay (ELISA), biochemistry detection, histopathological analysis, and western blot assays. RESULTS OAGB surgery reversed the increase in body weight and glucose tolerance indicators in diabetes rats. Also, OAGB operation neutralized the DN-induced average kidney weight, kidney weight/body weight, and renal injury indexes accompanied with reduced glomerular hypertrophy, alleviated mesangial dilation and decreased tubular and periglomerular collagen deposition. In addition, OAGB introduction reduced the DN-induced renal triglyceride and renal cholesterol with the regulation of fatty acids-related proteins expression. Mechanically, OAGB administration rescued the DN-induced expression of Sirt1/AMPK/PGC1α pathway mediated by GLP-1. Pharmacological block of GLP-1 receptor inverted the effect of OAGB operation on body weight, glucose tolerance, renal tissue damage, and fibrosis and lipids accumulation in DN rats. CONCLUSION OAGB improved renal damage and fibrosis and lipids accumulation in DN rats by GLP-1-mediated Sirt1/AMPK/PGC1α pathway.
Collapse
Affiliation(s)
- Lang Han
- Department of General Surgery, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Huichuan, Zunyi, 563000, Guizhou, China
| | - Xiaojiao Chen
- Department of General Surgery, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Huichuan, Zunyi, 563000, Guizhou, China
| | - Dianwei Wan
- Department of General Surgery, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Huichuan, Zunyi, 563000, Guizhou, China
| | - Min Xie
- Department of General Surgery, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Huichuan, Zunyi, 563000, Guizhou, China
| | - Shurui Ouyang
- Department of General Surgery, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Huichuan, Zunyi, 563000, Guizhou, China.
| |
Collapse
|
19
|
Ji L, He X, Min X, Yang H, Wu W, Xu H, Chen J, Mei A. Glucagon-like peptide-1 receptor agonists in neoplastic diseases. Front Endocrinol (Lausanne) 2024; 15:1465881. [PMID: 39371922 PMCID: PMC11449759 DOI: 10.3389/fendo.2024.1465881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/28/2024] [Indexed: 10/08/2024] Open
Abstract
Glucagon-like peptide-1 receptor agonist (GLP-1RA), a novel hypoglycemic agent for the treatment of type 2 diabetes, has well-known effects such as lowering blood sugar, ameliorating inflammation, reducing weight, and lowering blood lipids. It has also been shown that it can influence the proliferation and survival of cells and has a certain effect on the prognosis of some neoplastic diseases. In this study, the potential effects of GLP-1RAs on the occurrence and development of tumors were reviewed to provide new ideas for the prevention and treatment of tumors in patients.
Collapse
Affiliation(s)
- Lisan Ji
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Xianzhen He
- Children’s Medical Center, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xinwen Min
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Handong Yang
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Wenwen Wu
- School of Public Health, Hubei University of Medicine, Shiyan, Hubei, China
| | - Hao Xu
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Jun Chen
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
- Virology Key Laboratory of Shiyan City, Hubei University of Medicine, Shiyan, China
| | - Aihua Mei
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
20
|
Caturano A, Galiero R, Rocco M, Tagliaferri G, Piacevole A, Nilo D, Di Lorenzo G, Sardu C, Vetrano E, Monda M, Marfella R, Rinaldi L, Sasso FC. Modern Challenges in Type 2 Diabetes: Balancing New Medications with Multifactorial Care. Biomedicines 2024; 12:2039. [PMID: 39335551 PMCID: PMC11429233 DOI: 10.3390/biomedicines12092039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/01/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a prevalent chronic metabolic disorder characterized by insulin resistance and progressive beta cell dysfunction, presenting substantial global health and economic challenges. This review explores recent advancements in diabetes management, emphasizing novel pharmacological therapies and their physiological mechanisms. We highlight the transformative impact of Sodium-Glucose Cotransporter 2 inhibitor (SGLT2i) and Glucagon-Like Peptide 1 Receptor Agonist (GLP-1RA), which target specific physiological pathways to enhance glucose regulation and metabolic health. A key focus of this review is tirzepatide, a dual agonist of the glucose-dependent insulinotropic polypeptide (GIP) and GLP-1 receptors. Tirzepatide illustrates how integrating innovative mechanisms with established physiological pathways can significantly improve glycemic control and support weight management. Additionally, we explore emerging treatments such as glimins and glucokinase activators (GKAs), which offer novel strategies for enhancing insulin secretion and reducing glucose production. We also address future perspectives in diabetes management, including the potential of retatrutide as a triple receptor agonist and evolving guidelines advocating for a comprehensive, multifactorial approach to care. This approach integrates pharmacological advancements with essential lifestyle modifications-such as dietary changes, physical activity, and smoking cessation-to optimize patient outcomes. By focusing on the physiological mechanisms of these new therapies, this review underscores their role in enhancing T2DM management and highlights the importance of personalized care plans to address the complexities of the disease. This holistic perspective aims to improve patient quality of life and long-term health outcomes.
Collapse
Affiliation(s)
- Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (G.T.); (A.P.); (D.N.); (G.D.L.); (C.S.); (E.V.); (R.M.)
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (G.T.); (A.P.); (D.N.); (G.D.L.); (C.S.); (E.V.); (R.M.)
| | - Maria Rocco
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (G.T.); (A.P.); (D.N.); (G.D.L.); (C.S.); (E.V.); (R.M.)
| | - Giuseppina Tagliaferri
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (G.T.); (A.P.); (D.N.); (G.D.L.); (C.S.); (E.V.); (R.M.)
| | - Alessia Piacevole
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (G.T.); (A.P.); (D.N.); (G.D.L.); (C.S.); (E.V.); (R.M.)
| | - Davide Nilo
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (G.T.); (A.P.); (D.N.); (G.D.L.); (C.S.); (E.V.); (R.M.)
| | - Giovanni Di Lorenzo
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (G.T.); (A.P.); (D.N.); (G.D.L.); (C.S.); (E.V.); (R.M.)
| | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (G.T.); (A.P.); (D.N.); (G.D.L.); (C.S.); (E.V.); (R.M.)
| | - Erica Vetrano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (G.T.); (A.P.); (D.N.); (G.D.L.); (C.S.); (E.V.); (R.M.)
| | - Marcellino Monda
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (G.T.); (A.P.); (D.N.); (G.D.L.); (C.S.); (E.V.); (R.M.)
| | - Luca Rinaldi
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (R.G.); (G.T.); (A.P.); (D.N.); (G.D.L.); (C.S.); (E.V.); (R.M.)
| |
Collapse
|
21
|
Wai KM, Mishra K, Koo E, Ludwig CA, Parikh R, Mruthyunjaya P, Rahimy E. Impact of GLP-1 Agonists and SGLT-2 Inhibitors on Diabetic Retinopathy Progression: An Aggregated Electronic Health Record Data Study. Am J Ophthalmol 2024; 265:39-47. [PMID: 38636788 DOI: 10.1016/j.ajo.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/10/2024] [Accepted: 04/13/2024] [Indexed: 04/20/2024]
Abstract
PURPOSE To examine the effects of glucagon-like peptide-1 receptor (GLP-1) agonists compared to SGLT-2 inhibitors on diabetic retinopathy. DESIGN Retrospective clinical cohort study using TriNetX, a federated electronic health records network comprising multiple healthcare organizations. METHODS Patients with an International Classification of Diseases, Tenth Revision (ICD-10) code of nonproliferative diabetic retinopathy (PDR) and monotherapy treatment, excluding insulin, with GLP-1 agonists or SGLT-2 inhibitors. Patients with a history of PDR prior to initiation of treatment were excluded. The rate of progression to PDR and rate of development of diabetic macular edema (DME) were compared between patients on GLP-1 agonists compared to those on SGLT-2 inhibitors. The groups were propensity score matched for age, gender, ethnicity, race, type of diabetes, and severity of PDR. Main outcomes included rate and relative risk (RR) of progression to PDR and risk of DME in the GLP-1 agonist group versus the SGLT-2 inhibitor group. RESULTS A total of 6481 patients were identified in the GLP-1 cohort and the SGLT-2 inhibitor cohort after propensity score matching. At 1 and 3 years after initiation of therapy, a higher rate of progression of PDR was noted (RR: 1.26, CI 1.04-1.51, P = .017 at 1 year, RR: 1.284, CI 1.1-1.499, P = .002 at 3 years) in the GLP-1 agonist cohort compared to the SGLT-2 inhibitor cohort. There was a higher rate of DME noted at 3 months (RR: 1.192, CI 1.059-1.276, P = .002), 6 months (RR: 1.22, CI 1.13-1.32, P < .001), 1 year (RR: 1.24, CI 1.15-1.33, P < .001), and at 3 years (RR: 1.29, CI 1.21-1.38, P < .001) in the GLP-1 agonist cohort compared to the SGLT-2 inhibitor cohort. CONCLUSIONS A higher rate of progression of PDR and risk of new-onset DME was observed in patients on monotherapy with GLP-1 agonists compared to those on SGLT-2 inhibitors. It is important for clinicians to be aware of these potential effects and to consider the current retinopathy status when initiating treatment with newer hypoglycemic agents to ensure these patients are appropriately monitored for developing potential vision-threatening complications.
Collapse
Affiliation(s)
- Karen M Wai
- From the Department of Ophthalmology (K.M.W., E.K., C.A.L., P.M., E.R.), Byers Eye Institute, Stanford University, Palo Alto, California, USA
| | - Kapil Mishra
- Department of Ophthalmology, UCI Health (K.M.), Gavin Herbert Eye Institute, Irvine, California, USA
| | - Euna Koo
- From the Department of Ophthalmology (K.M.W., E.K., C.A.L., P.M., E.R.), Byers Eye Institute, Stanford University, Palo Alto, California, USA
| | - Cassie Ann Ludwig
- From the Department of Ophthalmology (K.M.W., E.K., C.A.L., P.M., E.R.), Byers Eye Institute, Stanford University, Palo Alto, California, USA
| | - Ravi Parikh
- Department of Ophthalmology, Grossman School of Medicine (R.P.), NYU Langone Health, New York, New York, USA; Manhattan Retina and Eye Consultants (R.P.), New York, New York, USA
| | - Prithvi Mruthyunjaya
- From the Department of Ophthalmology (K.M.W., E.K., C.A.L., P.M., E.R.), Byers Eye Institute, Stanford University, Palo Alto, California, USA
| | - Ehsan Rahimy
- From the Department of Ophthalmology (K.M.W., E.K., C.A.L., P.M., E.R.), Byers Eye Institute, Stanford University, Palo Alto, California, USA; Department of Ophthalmology (E.R.), Palo Alto Medical Foundation, Palo Alto, California, USA.
| |
Collapse
|
22
|
Zhou JX, Jie-Zhou, Jin WR, Li JY, Zhang XC, Zhao CY, Lin YY, Wang XY, Yan LF, Kai-Yan, Liu QW. Human amniotic mesenchymal stem cell-islet organoids enhance the efficiency of islet engraftment in a mouse diabetes model. Life Sci 2024; 351:122812. [PMID: 38862063 DOI: 10.1016/j.lfs.2024.122812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/10/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024]
Abstract
AIMS Despite islet transplantation has proved a great potential to become the standard therapy for type 1 diabetes mellitus (T1DM), this approach remains limited by ischemia, hypoxia, and poor revascularization in early post-transplant period as well as inflammation and life-long host immune rejection. Here, we investigate the potential and mechanism of human amniotic mesenchymal stem cells (hAMSCs)-islet organoid to improve the efficiency of islet engraftment in immunocompetent T1DM mice. MAIN METHODS We generated the hAMSC-islet organoid structure through culturing the mixture of hAMSCs and islets on 3-dimensional-agarose microwells. Flow cytometry, whole-body fluorescent imaging, immunofluorescence, Calcein-AM/PI staining, ELISA, and qPCR were used to assess the potential and mechanism of shielding hAMSCs to improve the efficiency of islet transplantation. KEY FINDINGS Transplant of hAMSC-islet organoids results in remarkably better glycemic control, an enhanced glucose tolerance, and a higher β cell mass in vivo compared with control islets. Our results show that hAMSCs shielding provides an immune privileged microenvironment for islets and promotes graft revascularization in vivo. In addition, hAMSC-islet organoids show higher viability and reduced dysfunction after exposure to hypoxia and inflammatory cytokines in vitro. Finally, our results show that shielding with hAMSCs leads to the activation of PKA-CREB-IRS2-PI3K and PKA-PDX1 signaling pathways, up-regulation of SIL1 mRNA levels, and down-regulation of MT1 mRNA levels in β cells, which ultimately promotes the synthesis, folding and secretion of insulin, respectively. SIGNIFICANCE hAMSC-islet organoids can evidently increase the efficiency of islet engraftment and might develop into a promising alternative for the clinical treatment of T1DM.
Collapse
Affiliation(s)
- Jia-Xin Zhou
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, PR China; Institute of Organoid Technology, Jiangxi Medical College, Nanchang University, Nanchang 330031, PR China; The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, PR China
| | - Jie-Zhou
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, PR China
| | - Wei-Ran Jin
- Huankui Academy, Jiangxi Medical College, Nanchang University, Nanchang 330031, PR China
| | - Jing-Yuan Li
- Normal College, East China University of Technology, Nanchang 330013, PR China
| | - Xiang-Cheng Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China
| | - Chu-Yu Zhao
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, PR China
| | - Ya-Yi Lin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, PR China; Institute of Organoid Technology, Jiangxi Medical College, Nanchang University, Nanchang 330031, PR China
| | - Xi-Yan Wang
- Institute of Organoid Technology, Jiangxi Medical College, Nanchang University, Nanchang 330031, PR China; School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China
| | - Ling-Fei Yan
- Department of Pathology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China
| | - Kai-Yan
- Department of Pediatrics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China
| | - Quan-Wen Liu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, PR China; Institute of Organoid Technology, Jiangxi Medical College, Nanchang University, Nanchang 330031, PR China; The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, PR China.
| |
Collapse
|
23
|
Peart LA, Draper M, Tarasov AI. The impact of GLP-1 signalling on the energy metabolism of pancreatic islet β-cells and extrapancreatic tissues. Peptides 2024; 178:171243. [PMID: 38788902 DOI: 10.1016/j.peptides.2024.171243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Glucagon-like peptide-1 signalling impacts glucose homeostasis and appetite thereby indirectly affecting substrate availability at the whole-body level. The incretin canonically produces an insulinotropic effect, thereby lowering blood glucose levels by promoting the uptake and inhibiting the production of the sugar by peripheral tissues. Likewise, GLP-1 signalling within the central nervous system reduces the appetite and food intake, whereas its gastric effect delays the absorption of nutrients, thus improving glycaemic control and reducing the risk of postprandial hyperglycaemia. We review the molecular aspects of the GLP-1 signalling, focusing on its impact on intracellular energy metabolism. Whilst the incretin exerts its effects predominantly via a Gs receptor, which decodes the incretin signal into the elevation of intracellular cAMP levels, the downstream signalling cascades within the cell, acting on fast and slow timescales, resulting in an enhancement or an attenuation of glucose catabolism, respectively.
Collapse
Affiliation(s)
- Leah A Peart
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK
| | - Matthew Draper
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK
| | - Andrei I Tarasov
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK.
| |
Collapse
|
24
|
Wang R, Mijiti S, Xu Q, Liu Y, Deng C, Huang J, Yasheng A, Tian Y, Cao Y, Su Y. The Potential Mechanism of Remission in Type 2 Diabetes Mellitus After Vertical Sleeve Gastrectomy. Obes Surg 2024; 34:3071-3083. [PMID: 38951388 DOI: 10.1007/s11695-024-07378-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024]
Abstract
In recent years, there has been a gradual increase in the prevalence of obesity and type 2 diabetes mellitus (T2DM), with bariatric surgery remaining the most effective treatment strategy for these conditions. Vertical sleeve gastrectomy (VSG) has emerged as the most popular surgical procedure for bariatric/metabolic surgeries, effectively promoting weight loss and improving or curing T2DM. The alterations in the gastrointestinal tract following VSG may improve insulin secretion and resistance by increasing incretin secretion (especially GLP-1), modifying the gut microbiota composition, and through mechanisms dependent on weight loss. This review focuses on the potential mechanisms through which the enhanced action of incretin and metabolic changes in the digestive system after VSG may contribute to the remission of T2DM.
Collapse
Affiliation(s)
- Rongfei Wang
- Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, No.57 Mei Hua East Road, Xiang Zhou District, Zhuhai, 519000, Guangdong, China
| | - Salamu Mijiti
- Department of General Surgery, The First People's Hospital of Kashi, Autonomous Region, Kashi, 844000, Xinjiang Uygur, China
| | - Qilin Xu
- Department of General Surgery, The First People's Hospital of Kashi, Autonomous Region, Kashi, 844000, Xinjiang Uygur, China
| | - Yile Liu
- Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, No.57 Mei Hua East Road, Xiang Zhou District, Zhuhai, 519000, Guangdong, China
| | - Chaolun Deng
- Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, No.57 Mei Hua East Road, Xiang Zhou District, Zhuhai, 519000, Guangdong, China
| | - Jiangtao Huang
- Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, No.57 Mei Hua East Road, Xiang Zhou District, Zhuhai, 519000, Guangdong, China
| | - Abudoukeyimu Yasheng
- Department of General Surgery, The First People's Hospital of Kashi, Autonomous Region, Kashi, 844000, Xinjiang Uygur, China
| | - Yunping Tian
- Department of General Surgery, The First People's Hospital of Kashi, Autonomous Region, Kashi, 844000, Xinjiang Uygur, China.
| | - Yanlong Cao
- Department of General Surgery, The First People's Hospital of Kashi, Autonomous Region, Kashi, 844000, Xinjiang Uygur, China.
| | - Yonghui Su
- Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, No.57 Mei Hua East Road, Xiang Zhou District, Zhuhai, 519000, Guangdong, China.
| |
Collapse
|
25
|
Hölscher C. Glucagon-like peptide-1 class drugs show clear protective effects in Parkinson's and Alzheimer's disease clinical trials: A revolution in the making? Neuropharmacology 2024; 253:109952. [PMID: 38677445 DOI: 10.1016/j.neuropharm.2024.109952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024]
Abstract
Parkinson's disease (PD) is a complex syndrome for which there is no disease-modifying treatment on the market. However, a group of drugs from the Glucagon-like peptide-1 (GLP-1) class have shown impressive improvements in clinical phase II trials. Exendin-4 (Bydureon), Liraglutide (Victoza, Saxenda) and Lixisenatide (Adlyxin), drugs that are on the market as treatments for diabetes, have shown clear effects in improving motor activity in patients with PD in phase II clinical trials. In addition, Liraglutide has shown improvement in cognition and brain shrinkage in a phase II trial in patients with Alzheimer disease (AD). Two phase III trials testing the GLP-1 drug semaglutide (Wegovy, Ozempic, Rybelsus) are ongoing. This perspective article will summarize the clinical results obtained so far in this novel research area. We are at a crossroads where GLP-1 class drugs are emerging as a new treatment strategy for PD and for AD. Newer drugs that have been designed to enter the brain easier are being developed already show improved effects in preclinical studies compared with the older GLP-1 class drugs that had been developed to treat diabetes. The future looks bright for new treatments for AD and PD.
Collapse
Affiliation(s)
- Christian Hölscher
- Henan Academy of Innovations in Medical Science, Neurodegeneration Research Group, 451100 Xinzheng, Henan province, China.
| |
Collapse
|
26
|
Dave BP, Chorawala MR, Shah IV, Shah NN, Bhagat SU, Prajapati BG, Thakkar PC. From diabetes to diverse domains: the multifaceted roles of GLP-1 receptor agonists. Mol Biol Rep 2024; 51:835. [PMID: 39042283 DOI: 10.1007/s11033-024-09793-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
Glucagon-like Peptide-1 (GLP-1) receptor agonists (GLP-1RAs) emerged as a primary treatment for type-2 diabetes mellitus (T2DM), however, their multifaceted effects on various target organs beyond glycemic control opened a new era of treatment. We conducted a comprehensive literature search using databases including Scopus, Google Scholar, PubMed, and the Cochrane Library to identify clinical, in-vivo, and in-vitro studies focusing on the diverse effects of GLP-1 receptor agonists. Eligible studies were selected based on their relevance to the varied roles of GLP-1RAs in T2DM management and their impact on other physiological functions. Numerous studies have reported the efficacy of GLP-1RAs in improving outcomes in T2DM, with demonstrated benefits including glucose-dependent insulinotropic actions, modulation of insulin signaling pathways, and reductions in glycemic excursions. Additionally, GLP-1 receptors are expressed in various tissues and organs, suggesting their widespread physiological functions beyond glycemic control potentially include neuroprotective, anti-inflammatory, cardioprotective, and metabolic benefits. However, further scientific studies are still underway to maximize the benefits of GLP-1RAs and to discover additional roles in improving health benefits. This article sought to review not only the actions of GLP1RAs in the treatment of T2DM but also explore its effects on potential targets in other disorders.
Collapse
Affiliation(s)
- Bhavarth P Dave
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Ishika V Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Nidhi N Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Shivam U Bhagat
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Bhupendra G Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education & Research, Ganpat University, Mehsana, Gujarat, India.
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| | - Pratik C Thakkar
- Department of Physiology, Faculty of Medical & Health Sciences, Manaaki Mānawa - The Centre for Heart Research, University of Auckland, 85 Park Road, Auckland, 1142, New Zealand.
| |
Collapse
|
27
|
Liiv M, Vaarmann A, Safiulina D, Choubey V, Gupta R, Kuum M, Janickova L, Hodurova Z, Cagalinec M, Zeb A, Hickey MA, Huang YL, Gogichaishvili N, Mandel M, Plaas M, Vasar E, Loncke J, Vervliet T, Tsai TF, Bultynck G, Veksler V, Kaasik A. ER calcium depletion as a key driver for impaired ER-to-mitochondria calcium transfer and mitochondrial dysfunction in Wolfram syndrome. Nat Commun 2024; 15:6143. [PMID: 39034309 PMCID: PMC11271478 DOI: 10.1038/s41467-024-50502-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 07/10/2024] [Indexed: 07/23/2024] Open
Abstract
Wolfram syndrome is a rare genetic disease caused by mutations in the WFS1 or CISD2 gene. A primary defect in Wolfram syndrome involves poor ER Ca2+ handling, but how this disturbance leads to the disease is not known. The current study, performed in primary neurons, the most affected and disease-relevant cells, involving both Wolfram syndrome genes, explains how the disturbed ER Ca2+ handling compromises mitochondrial function and affects neuronal health. Loss of ER Ca2+ content and impaired ER-mitochondrial contact sites in the WFS1- or CISD2-deficient neurons is associated with lower IP3R-mediated Ca2+ transfer from ER to mitochondria and decreased mitochondrial Ca2+ uptake. In turn, reduced mitochondrial Ca2+ content inhibits mitochondrial ATP production leading to an increased NADH/NAD+ ratio. The resulting bioenergetic deficit and reductive stress compromise the health of the neurons. Our work also identifies pharmacological targets and compounds that restore Ca2+ homeostasis, enhance mitochondrial function and improve neuronal health.
Collapse
Affiliation(s)
- Mailis Liiv
- Departments of Pharmacology and Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia
| | - Annika Vaarmann
- Departments of Pharmacology and Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia.
| | - Dzhamilja Safiulina
- Departments of Pharmacology and Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia
| | - Vinay Choubey
- Departments of Pharmacology and Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia
| | - Ruby Gupta
- Departments of Pharmacology and Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia
| | - Malle Kuum
- Departments of Pharmacology and Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia
| | - Lucia Janickova
- Departments of Pharmacology and Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia
- Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Ch. du Musée 14, 1700, Fribourg, Switzerland
- Department of Cell Pharmacology and Developmental Toxicology, Institute of Experimental Pharmacology and Toxicology, Dúbravská cesta 9, 84104, Bratislava, Slovakia
| | - Zuzana Hodurova
- Departments of Pharmacology and Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia
- Department of Cell Pharmacology and Developmental Toxicology, Institute of Experimental Pharmacology and Toxicology, Dúbravská cesta 9, 84104, Bratislava, Slovakia
| | - Michal Cagalinec
- Departments of Pharmacology and Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia
- Department of Cellular Cardiology, Institute of Experimental Endocrinology, Biomedical Research Center and Centre of Excellence for Advanced Materials Application, Slovak Academy of Sciences, Dúbravská cesta 9, 84505, Bratislava, Slovakia
| | - Akbar Zeb
- Departments of Pharmacology and Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia
| | - Miriam A Hickey
- Departments of Pharmacology and Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia
| | - Yi-Long Huang
- Department of Life Sciences, Institute of Genome Sciences and Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University, 155 Li-Nong St., Section 2, Peitou, Taipei, 11221, Taiwan
| | - Nana Gogichaishvili
- Departments of Pharmacology and Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia
| | - Merle Mandel
- Departments of Pharmacology and Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia
| | - Mario Plaas
- Departments of Pharmacology and Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia
| | - Eero Vasar
- Departments of Pharmacology and Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia
| | - Jens Loncke
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, O&N1 Herestraat 49, Leuven, Belgium
| | - Tim Vervliet
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, O&N1 Herestraat 49, Leuven, Belgium
| | - Ting-Fen Tsai
- Department of Life Sciences, Institute of Genome Sciences and Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University, 155 Li-Nong St., Section 2, Peitou, Taipei, 11221, Taiwan
| | - Geert Bultynck
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, O&N1 Herestraat 49, Leuven, Belgium
| | - Vladimir Veksler
- Laboratory of Signaling and Cardiovascular Pathophysiology, Université Paris-Saclay, Inserm, UMR-S 1180, 91400, Orsay, France
| | - Allen Kaasik
- Departments of Pharmacology and Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia.
| |
Collapse
|
28
|
Elshaer A, Chascsa DMH, Lizaola-Mayo BC. Exploring Varied Treatment Strategies for Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Life (Basel) 2024; 14:844. [PMID: 39063598 PMCID: PMC11278185 DOI: 10.3390/life14070844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/29/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a liver disorder characterized by steatosis with underlying metabolic risk factors. The prevalence of MASLD continues to rise, leading to increased patient risk of various complications. Recent research has been focused on new therapeutic strategies to reduce the incidence of MASLD and provide effective treatment plans to prevent further irreversible liver damage. The treatment approach is multifactorial, with a primary focus on weight loss and management of underlying comorbidities through lifestyle modifications, pharmacotherapy, or surgical options. Ongoing research is exploring new pharmacological therapies that could enhance the treatment of MASLD.
Collapse
Affiliation(s)
- Amani Elshaer
- Department of Internal Medicine, Mayo Clinic, Scottsdale, AZ 85054, USA
| | - David M. H. Chascsa
- Division of Gastroenterology and Hepatology, Mayo Clinic, Scottsdale, AZ 85054, USA
- Transplant Center, Department of Medicine, Mayo Clinic, Scottsdale, AZ 85054, USA
| | - Blanca C. Lizaola-Mayo
- Division of Gastroenterology and Hepatology, Mayo Clinic, Scottsdale, AZ 85054, USA
- Transplant Center, Department of Medicine, Mayo Clinic, Scottsdale, AZ 85054, USA
| |
Collapse
|
29
|
Ahmed A, Monir. Akl M. Exploring a Synergistic Approach: Dual GLP-1 Agonist Combined with Degludec Basal Insulin for Early Type 1 Diabetes Treatment and its Impact on Albumin-Insulin Producing Cells Expression. Adv Pharm Bull 2024; 14:262-265. [PMID: 39206389 PMCID: PMC11347740 DOI: 10.34172/apb.2024.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/07/2024] [Accepted: 03/17/2024] [Indexed: 09/04/2024] Open
Abstract
Purpose This manuscript explores the potential of dual glucagon-like peptide 1 (GLP-1) agonists combined with degludec basal insulin as a treatment approach for early type 1 diabetes. The study aims to evaluate the efficacy and mechanistic impact of semaglutide, a GLP-1 agonist, on newly diagnosed type 1 diabetes patients. Methods A retrospective analysis was conducted to assess the effects of semaglutide on individuals with early type 1 diabetes. The analysis focused on the elimination of prandial and basal insulin, changes in C-peptide levels, and overall glycemic control. The study also examined the potential for GLP-1 agonists to protect residual beta cells, stimulate cell proliferation, and reprogram liver cells into insulin-producing cells. Additionally, the modification of GLP-1 agonists with albumin ligands to extend their half-life and enhance their anti-diabetic effects was investigated. Results The findings demonstrate the elimination of both prandial and basal insulin requirements, an increase in C-peptide levels, and improved glycemic control among the patients. Despite the positive outcomes, the study's retrospective nature and absence of a control group highlight the necessity for larger, prospective trials. Conclusion GLP-1 agonists show considerable potential in the management of type 1 diabetes by protecting residual beta cells, promoting cell proliferation, and reprogramming hepatic cells. The integration of modified GLP-1 agonists with albumin ligands could further enhance these effects. The manuscript underscores the need for continued research to fully explore this therapeutic approach. The proposed treatment strategy, which combines the autoimmune hypothesis, the proliferative effects of GLP-1, and albumin ligand modifications, aims to restore beta cell mass and function, thereby improving the quality of life for individuals with type 1 diabetes. Clinical trials are planned for 2024 under the registration ‹Amr Ahmed, Maher M. Akl, Semaglutide GLP1 Agonists with Degludec Basal-bolus Insulin in Early Type 1 Diabetes to Basalbolus› (ClinicalTrials.gov Identifier NCT06057077).
Collapse
Affiliation(s)
- Amr Ahmed
- The public health department, MSc degree in gynecology and obstetrics, Riyadh First Health Cluster, Ministry of Health, Saudia Arabia
| | - Maher Monir. Akl
- Department of Chemistry, Faculty of Science, Mansoura University, 35516, Mansoura, Egypt
| |
Collapse
|
30
|
Fang Y, Zhu Y, Zhang M, Ying H, Xing Y. TLQP-21 facilitates diabetic wound healing by inducing angiogenesis through alleviating high glucose-induced injuries on endothelial progenitor cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4993-5004. [PMID: 38183447 PMCID: PMC11166834 DOI: 10.1007/s00210-023-02808-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/20/2023] [Indexed: 01/08/2024]
Abstract
Diabetes mellitus (DM) is a metabolic disease with multiple complications, including diabetic cutaneous wounds, which lacks effective treating strategies and severely influences the patients' life. Endothelial progenitor cells (EPCs) are reported to participate in maintaining the normal function of blood vessels, which plays a critical role in diabetic wound healing. TLQP-21 is a VGF-derived peptide with promising therapeutic functions on DM. Herein, the protective effects of TLQP-21 on diabetic cutaneous wound and the underlying mechanism will be investigated. Cutaneous wound model was established in T2DM mice, followed by administering 120 nmol/kg and 240 nmol/kg TLQP-21 once a day for 12 days. Decreased wound closure, reduced number of capillaries and EPCs, declined tube formation function of EPCs, and inactivated PI3K/AKT/eNOS signaling in EPCs were observed in T2DM mice, which were sharply alleviated by TLQP-21. Normal EPCs were extracted from mice and stimulated by high glucose (HG), followed by incubated with TLQP-21 in the presence or absence of LY294002, an inhibitor of PI3K. The declined cell viability, increased apoptotic rate, reduced number of migrated cells, declined migration distance, repressed tube formation function, and inactivated PI3K/AKT/eNOS signaling observed in HG-treated EPCs were markedly reversed by TLQP-21, which were dramatically abolished by the co-culture of LY294002. Collectively, TLQP-21 facilitated diabetic wound healing by inducing angiogenesis through alleviating HG-induced injuries on EPCs.
Collapse
Affiliation(s)
- Yaqi Fang
- Laboratory Medicine Center, Department of Clinical Laboratory, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, No. 158, Shangtang Road, Gongshu District, Hangzhou Zhejiang, 310053, China
| | - Yuexia Zhu
- Laboratory Medicine Center, Department of Clinical Laboratory, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, No. 158, Shangtang Road, Gongshu District, Hangzhou Zhejiang, 310053, China
| | - Minxia Zhang
- Laboratory Medicine Center, Department of Clinical Laboratory, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, No. 158, Shangtang Road, Gongshu District, Hangzhou Zhejiang, 310053, China
| | - Hua Ying
- Laboratory Medicine Center, Department of Clinical Laboratory, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, No. 158, Shangtang Road, Gongshu District, Hangzhou Zhejiang, 310053, China
| | - Yubo Xing
- Department of Endocrinology, Affiliated People's Hospital, Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou Medical College, No. 158, Shangtang Road, Gongshu District, Hangzhou Zhejiang, 310053, China.
| |
Collapse
|
31
|
Reed J, Bain SC, Kanamarlapudi V. The Regulation of Metabolic Homeostasis by Incretins and the Metabolic Hormones Produced by Pancreatic Islets. Diabetes Metab Syndr Obes 2024; 17:2419-2456. [PMID: 38894706 PMCID: PMC11184168 DOI: 10.2147/dmso.s415934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/07/2024] [Indexed: 06/21/2024] Open
Abstract
In healthy humans, the complex biochemical interplay between organs maintains metabolic homeostasis and pathological alterations in this process result in impaired metabolic homeostasis, causing metabolic diseases such as diabetes and obesity, which are major global healthcare burdens. The great advancements made during the last century in understanding both metabolic disease phenotypes and the regulation of metabolic homeostasis in healthy individuals have yielded new therapeutic options for diseases like type 2 diabetes (T2D). However, it is unlikely that highly desirable more efficacious treatments will be developed for metabolic disorders until the complex systemic regulation of metabolic homeostasis becomes more intricately understood. Hormones produced by pancreatic islet beta-cells (insulin) and alpha-cells (glucagon) are pivotal for maintaining metabolic homeostasis; the activity of insulin and glucagon are reciprocally correlated to achieve strict control of glucose levels (normoglycaemia). Metabolic hormones produced by other pancreatic islet cells and incretins produced by the gut are also crucial for maintaining metabolic homeostasis. Recent studies highlighted the incomplete understanding of metabolic hormonal synergism and, therefore, further elucidation of this will likely lead to more efficacious treatments for diseases such as T2D. The objective of this review is to summarise the systemic actions of the incretins and the metabolic hormones produced by the pancreatic islets and their interactions with their respective receptors.
Collapse
Affiliation(s)
- Joshua Reed
- Institute of Life Science, Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - Stephen C Bain
- Institute of Life Science, Medical School, Swansea University, Swansea, SA2 8PP, UK
| | | |
Collapse
|
32
|
Muñoz F, Fex M, Moritz T, Mulder H, Cataldo LR. Unique features of β-cell metabolism are lost in type 2 diabetes. Acta Physiol (Oxf) 2024; 240:e14148. [PMID: 38656044 DOI: 10.1111/apha.14148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/28/2024] [Accepted: 04/05/2024] [Indexed: 04/26/2024]
Abstract
Pancreatic β cells play an essential role in the control of systemic glucose homeostasis as they sense blood glucose levels and respond by secreting insulin. Upon stimulating glucose uptake in insulin-sensitive tissues post-prandially, this anabolic hormone restores blood glucose levels to pre-prandial levels. Maintaining physiological glucose levels thus relies on proper β-cell function. To fulfill this highly specialized nutrient sensor role, β cells have evolved a unique genetic program that shapes its distinct cellular metabolism. In this review, the unique genetic and metabolic features of β cells will be outlined, including their alterations in type 2 diabetes (T2D). β cells selectively express a set of genes in a cell type-specific manner; for instance, the glucose activating hexokinase IV enzyme or Glucokinase (GCK), whereas other genes are selectively "disallowed", including lactate dehydrogenase A (LDHA) and monocarboxylate transporter 1 (MCT1). This selective gene program equips β cells with a unique metabolic apparatus to ensure that nutrient metabolism is coupled to appropriate insulin secretion, thereby avoiding hyperglycemia, as well as life-threatening hypoglycemia. Unlike most cell types, β cells exhibit specialized bioenergetic features, including supply-driven rather than demand-driven metabolism and a high basal mitochondrial proton leak respiration. The understanding of these unique genetically programmed metabolic features and their alterations that lead to β-cell dysfunction is crucial for a comprehensive understanding of T2D pathophysiology and the development of innovative therapeutic approaches for T2D patients.
Collapse
Affiliation(s)
- Felipe Muñoz
- Clinical Research Center, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund, Sweden
| | - Malin Fex
- Clinical Research Center, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund, Sweden
| | - Thomas Moritz
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hindrik Mulder
- Clinical Research Center, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund, Sweden
| | - Luis Rodrigo Cataldo
- Clinical Research Center, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund, Sweden
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
33
|
Basile L, Cannarella R, Iuliano S, Calogero AE, Condorelli RA, Greco EA, Aversa A, LA Vignera S. Semaglutide and obesity: beyond the nutritional and lifestyle intervention? Minerva Endocrinol (Torino) 2024; 49:182-195. [PMID: 39028209 DOI: 10.23736/s2724-6507.23.04103-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Semaglutide is the second marketed glucagon-like peptide 1 receptor agonist that can be used safely and efficiently in non-diabetic people with excess weight, providing a new milestone in the pharmacological treatment of obesity. This narrative review aims to describe the clinical actions of this new drug in weight management in non-diabetic patients along with possible side-effects and dropout reasons. To accomplish this, the PubMed database was searched to retrieve the most relevant clinical studies published to date on this topic, using the following keywords "semaglutide and obesity". Currently, semaglutide is on the market in two formulations, the once-weekly subcutaneous (s.c.) semaglutide and once-daily oral semaglutide. Data in the literature on the anti-obesity action of semaglutide are available for both routes of administration of the drug, with a prevalence of studies using the s.c. one. However, given its dosage, oral semaglutide may provide greater attractiveness and better treatment adherence, but further research is needed in this field.
Collapse
Affiliation(s)
- Livia Basile
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Stefano Iuliano
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rosita A Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | | | - Antonio Aversa
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy -
| | - Sandro LA Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
34
|
Tao Y, Peng F, Wang L, Sun J, Ding Y, Xiong S, Tenzin U, MiMa, Nhamdriel T, Fan G. Ji-Ni-De-Xie ameliorates type 2 diabetes mellitus by modulating the bile acids metabolism and FXR/FGF15 signaling pathway. Front Pharmacol 2024; 15:1383896. [PMID: 38835663 PMCID: PMC11148236 DOI: 10.3389/fphar.2024.1383896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/22/2024] [Indexed: 06/06/2024] Open
Abstract
Introduction: Ji-Ni-De-Xie (JNDX) is a traditional herbal preparation in China. It is widely used to treat type 2 diabetes mellitus (T2DM) in traditional Tibetan medicine system. However, its antidiabetic mechanisms have not been elucidated. The aim of this study is to elucidate the underlying mechanism of JNDX on bile acids (BAs) metabolism and FXR/FGF15 signaling pathway in T2DM rats. Methods: High-performance liquid chromatography-triple quadrupole mass spectrometry (HPLC-QQQ-MS) and UPLC-Q-Exactive Orbitrap MS technology were used to identify the constituents in JNDX. High-fat diet (HFD) combined with streptozotocin (45 mg∙kg-1) (STZ) was used to establish a T2DM rat model, and the levels of fasting blood-glucose (FBG), glycosylated serum protein (GSP), homeostasis model assessment of insulin resistance (HOMA-IR), LPS, TNF-α, IL-1β, IL-6, TG, TC, LDL-C, HDL-C, and insulin sensitivity index (ISI) were measured to evaluate the anti-diabetic activity of JNDX. In addition, metagenomic analysis was performed to detect changes in gut microbiota. The metabolic profile of BAs was analyzed by HPLC-QQQ-MS. Moreover, the protein and mRNA expressions of FXR and FGF15 in the colon and the protein expressions of FGF15 and CYP7A1 in the liver of T2DM rats were measured by western blot and RT-qPCR. Results: A total of 12 constituents were identified by HPLC-QQQ-MS in JNDX. Furthermore, 45 chemical components in serum were identified from JNDX via UPLC-Q-Exactive Orbitrap MS technology, including 22 prototype components and 23 metabolites. Using a T2DM rat model, we found that JNDX (0.083, 0.165 and 0.33 g/kg) reduced the levels of FBG, GSP, HOMA-IR, LPS, TNF-α, IL-1β, IL-6, TG, TC, and LDL-C, and increased ISI and HDL-C levels in T2DM rats. Metagenomic results demonstrated that JNDX treatment effectively improved gut microbiota dysbiosis, including altering some bacteria (e.g., Streptococcus and Bacteroides) associated with BAs metabolism. Additionally, JNDX improved BAs disorder in T2DM rats, especially significantly increasing cholic acid (CA) levels and decreasing ursodeoxycholic acid (UDCA) levels. Moreover, the protein and mRNA expressions of FXR and FGF15 of T2DM rats were significantly increased, while the expression of CYP7A1 protein in the liver was markedly inhibited by JNDX. Discussion: JNDX can effectively improve insulin resistance, hyperglycemia, hyperlipidemia, and inflammation in T2DM rats. The mechanism is related to its regulation of BAs metabolism and activation of FXR/FGF15 signaling pathway.
Collapse
Affiliation(s)
- Yiwen Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lijie Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiayi Sun
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yin Ding
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuangfeng Xiong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ugen Tenzin
- Dege County Tibetan Hospital (Institute of Tibetan Medicine), Dege, China
| | - MiMa
- Department of Tibetan Medicine, University of Tibetan Medicine, Lhasa, China
| | - Tsedien Nhamdriel
- Department of Tibetan Medicine, University of Tibetan Medicine, Lhasa, China
| | - Gang Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, China
| |
Collapse
|
35
|
Kaur M, Misra S. A review of an investigational drug retatrutide, a novel triple agonist agent for the treatment of obesity. Eur J Clin Pharmacol 2024; 80:669-676. [PMID: 38367045 DOI: 10.1007/s00228-024-03646-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/02/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND Obesity is one of the critical public health problems in our society. It leads to various health conditions, such as type 2 diabetes mellitus, cardiovascular disease, hypertension, dyslipidaemia, and non-alcoholic fatty liver disease. With the rising incidence of obesity, there is a growing demand for new therapies which can effectively manage body weight and improve health. CURRENT EVIDENCE Currently under development, multi-receptor agonist drugs may offer a promising solution to meet this unmet medical need. Retatrutide is a novel triple receptor agonist peptide that targets the glucagon receptor (GCGR), glucose-dependent insulinotropic polypeptide receptor (GIPR), and glucagon-like peptide-1 receptor (GLP-1R). This novel drug has the potential to treat metabolic abnormalities associated with obesity as well as diseases resulting from it due to its distinct mechanism of action. The Phase III trial of this pipeline drug for treating type 2 diabetes mellitus, non-alcoholic fatty liver disease, and obesity started on August 28, 2023. The results of a Phase II clinical trial have demonstrated significant weight reduction in overweight and obese adults. Specifically, the trial reported an average weight loss of 17.5% and 24.4% at 24 and 48 weeks, respectively. CONCLUSIONS These findings hold promise for the development of effective weight loss interventions in this population group. There is a need for more phase III studies to provide sufficient clinical evidence for the effectiveness of retatrutide, as current evidence is limited to phase II studies and has yet to prove its worth in a larger population. Here, we aimed to provide an overview of retatrutide's safety and effectiveness in treating obesity.
Collapse
Affiliation(s)
- Manmeet Kaur
- Department of Pharmacology, Kalpana Chawla Government Medical College, Karnal, India
| | - Saurav Misra
- Department of Pharmacology, Kalpana Chawla Government Medical College, Karnal, India.
| |
Collapse
|
36
|
Alhajahjeh A, Al-Faouri R, Bahmad HF, Bader T, Dobbs RW, Abdulelah AA, Abou-Kheir W, Davicioni E, Lee DI, Shahait M. From Diabetes to Oncology: Glucagon-like Peptide-1 (GLP-1) Receptor Agonist's Dual Role in Prostate Cancer. Cancers (Basel) 2024; 16:1538. [PMID: 38672620 PMCID: PMC11048615 DOI: 10.3390/cancers16081538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Glucagon-like peptide-1 (GLP-1), an incretin hormone renowned for its role in post-meal blood sugar regulation and glucose-dependent insulin secretion, has gained attention as a novel treatment for diabetes through GLP-1 receptor agonists (GLP-1-RA). Despite their efficacy, concerns have been raised regarding the potential associations between GLP-1-RA and certain malignancies, including medullary thyroid cancer. However, evidence of its association with prostate cancer (PCa) remains inconclusive. This review delves into the intricate relationship between GLP-1-RA and PCa, exploring the mechanisms through which GLP-1-Rs may impact PCa cells. We discuss the potential pathways involving cAMP, ERK, AMPK, mTOR, and P27. Furthermore, we underscore the imperative for additional research to elucidate the impact of GLP-1-RA treatment on PCa progression, patient outcomes, and potential interactions with existing therapies. Translational studies and clinical trials are crucial for a comprehensive understanding of the role of GLP-1-RA in PCa management.
Collapse
Affiliation(s)
- Abdulrahman Alhajahjeh
- School of Medicine, The University of Jordan, Amman 11190, Jordan;
- King Hussein Cancer Center (KHCC), Internal Medicine Department, Amman 11190, Jordan;
| | - Raad Al-Faouri
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02120, USA;
| | - Hisham F. Bahmad
- Arkadi M. Rywlin Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA;
| | - Taima’ Bader
- King Hussein Cancer Center (KHCC), Internal Medicine Department, Amman 11190, Jordan;
| | - Ryan W. Dobbs
- Cook County Health and Hospitals System, Chicago, IL 60612, USA;
| | - Ahmed A. Abdulelah
- Edinburgh Medical School, The University of Edinburgh, Edinburgh EH8 9YL, UK;
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon;
| | | | - David I. Lee
- Department of Urology, University of California, Irvine, CA 92868, USA;
| | - Mohammed Shahait
- School of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| |
Collapse
|
37
|
Normand É, Franco A, Parent S, Lombardi G, Brayda-Bruno M, Colombini A, Moreau A, Marcil V. Association between the GLP1R A316T Mutation and Adolescent Idiopathic Scoliosis in French Canadian and Italian Cohorts. Genes (Basel) 2024; 15:481. [PMID: 38674415 PMCID: PMC11050147 DOI: 10.3390/genes15040481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Studies have revealed anthropometric discrepancies in girls with adolescent idiopathic scoliosis (AIS) compared to non-scoliotic subjects, such as a higher stature, lower weight, and lower body mass index. While the causes are still unknown, it was proposed that metabolic hormones could play a role in AIS pathophysiology. Our objectives were to evaluate the association of GLP1R A316T polymorphism in AIS susceptibility and to study its relationship with disease severity and progression. We performed a retrospective case-control association study with controls and AIS patients from an Italian and French Canadian cohort. The GLP1R rs10305492 polymorphism was genotyped in 1025 subjects (313 non-scoliotic controls and 712 AIS patients) using a validated TaqMan allelic discrimination assay. Associations were evaluated by odds ratio and 95% confidence intervals. In the AIS group, there was a higher frequency of the variant genotype A/G (4.2% vs. 1.3%, OR = 3.40, p = 0.016) and allele A (2.1% vs. 0.6%, OR = 3.35, p = 0.017) than controls. When the AIS group was stratified for severity (≤40° vs. >40°), progression of the disease (progressor vs. non-progressor), curve type, or body mass index, there was no statistically significant difference in the distribution of the polymorphism. Our results support that the GLP1R A316T polymorphism is associated with a higher risk of developing AIS, but without being associated with disease severity and progression.
Collapse
Affiliation(s)
- Émilie Normand
- Research Center, Sainte-Justine University Hospital Center, Montreal, QC H3T 1C5, Canada;
- Department of Nutrition, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1A8, Canada
| | - Anita Franco
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Research Center, Sainte-Justine University Hospital Center, Montreal, QC H3T 1C5, Canada; (A.F.); (A.M.)
| | - Stefan Parent
- Department of Surgery, Sainte-Justine University Hospital Center, Montreal, QC H3T 1C5, Canada;
- Department of Surgery, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy;
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, 61-871 Poznań, Poland
| | - Marco Brayda-Bruno
- Scoliosis Unit, Department of Orthopedics and Traumatology-Spine Surgery III, IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy;
| | - Alessandra Colombini
- Orthopaedic Biotechnology Lab, IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy;
| | - Alain Moreau
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Research Center, Sainte-Justine University Hospital Center, Montreal, QC H3T 1C5, Canada; (A.F.); (A.M.)
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
- Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montreal, QC H3A 1J4, Canada
| | - Valérie Marcil
- Research Center, Sainte-Justine University Hospital Center, Montreal, QC H3T 1C5, Canada;
- Department of Nutrition, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1A8, Canada
| |
Collapse
|
38
|
Shen R, Qin S, Lv Y, Liu D, Ke Q, Shi C, Jiang L, Yang J, Zhou Y. GLP-1 receptor agonist attenuates tubular cell ferroptosis in diabetes via enhancing AMPK-fatty acid metabolism pathway through macropinocytosis. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167060. [PMID: 38354757 DOI: 10.1016/j.bbadis.2024.167060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/24/2024] [Accepted: 02/04/2024] [Indexed: 02/16/2024]
Abstract
Kidney tubules are mostly responsible for pathogenesis of diabetic kidney disease. Actively reabsorption of iron, high rate of lipid metabolism and exposure to concentrated redox-active compounds constructed the three main pillars of ferroptosis in tubular cells. However, limited evidence has indicated that ferroptosis is indispensable for diabetic tubular injury. Glucagon-like peptide-1 receptor agonist (GLP-1RA) processed strong benefits on kidney outcomes in people with diabetes. Moreover, GLP-1RA may have additive effects by improving dysmetabolism besides glucose control and weight loss. Therefore, the present study aimed at exploring the benefits of exendin-4, a high affinity GLP-1RA on kidney tubular dysregulation in diabetes and the possible mechanisms involved, with focus on ferroptosis and adenosine 5'-monophosphate-activated protein kinase (AMPK)-mitochondrial lipid metabolism pathway. Our data revealed that exendin-4 treatment markedly improved kidney structure and function by reducing iron overload, oxidative stress, and ACSL4-driven lipid peroxidation taken place in diabetic kidney tubules, along with reduced GPX4 expression and GSH content. AMPK signaling was identified as the downstream target of exendin-4, and enhancement of AMPK triggered the transmit of its downstream signal to activate fatty acid oxidation in mitochondria and suppress lipid synthesis and glycolysis, and ultimately alleviated toxic lipid accumulation and ferroptosis. Further study suggested that exendin-4 was taken up by tubular cells via macropinocytosis. The protective effect of exendin-4 on tubular ferroptosis was abolished by macropinocytosis blockade. Taken together, present work demonstrated the beneficial effects of GLP-1RA treatment on kidney tubular protection in diabetes by suppressing ferroptosis through enhancing AMPK-fatty acid metabolic signaling via macropinocytosis.
Collapse
Affiliation(s)
- Rui Shen
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, China
| | - Songyan Qin
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, China
| | - Yunhui Lv
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, China
| | - Dandan Liu
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, China
| | - Qingqing Ke
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, China
| | - Caifeng Shi
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, China
| | - Lei Jiang
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, China.
| | - Junwei Yang
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, China.
| | - Yang Zhou
- Center for Kidney Disease, The Second Affiliated Hospital of Nanjing Medical University, China.
| |
Collapse
|
39
|
Urva S, Levine JA, Schneck K, Tang CC. Model-based simulation of glycaemic effect and body weight loss when switching from semaglutide or dulaglutide to once weekly tirzepatide. Curr Med Res Opin 2024; 40:567-574. [PMID: 38407177 DOI: 10.1080/03007995.2024.2322072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
OBJECTIVE To evaluate the efficacy endpoints of HbA1c and body weight loss after switching from the GLP-1 receptor agonists, semaglutide or dulaglutide, to treatment with the GIP/GLP-1 receptor agonist (RA) tirzepatide. METHODS Models were developed and validated to describe the HbA1c and weight loss time course for semaglutide (SUSTAIN 1-10), dulaglutide (AWARD-11) and tirzepatide (SURPASS 1-5, phase 3 global T2D program). The impact of switching from once weekly GLP-1 RAs to tirzepatide was described by simulating the efficacy time course. Semaglutide and dulaglutide doses were escalated in accordance with their respective labels. RESULTS Model-predicted mean decreases from baseline in HbA1c and body weight for semaglutide 0.5 mg, 1 mg, and 2 mg were 1.22 to 1.79% and 3.62 to 6.87 kg respectively, at Week 26. Model-predicted mean decreases from baseline in HbA1c and body weight for dulaglutide 1.5 mg, 3 mg and 4.5 mg were 1.53 to 1.84% and 2.55 to 3.71 kg respectively, at Week 26. After switching to tirzepatide 5, 10 and 15 mg HbA1c reductions were predicted to range between 1.95 to 2.46% and body weight reductions between 6.50 to 12.1 kg by Week 66. CONCLUSION In this model-based simulation, switching from approved maintenance doses of semaglutide or dulaglutide to tirzepatide, even at the lowest approved maintenance dose of 5 mg, showed the potential to further improve HbA1c and body weight reductions.
Collapse
Affiliation(s)
- Shweta Urva
- Global PK/PD & Pharmacometrics, Eli Lilly and Company, Indianapolis, IN, USA
| | - Joshua A Levine
- Diabetes and Obesity Global Medical Affairs, Eli Lilly and Company, Indianapolis, IN, USA
| | - Karen Schneck
- Pharmacometrics & QSP, Eli Lilly and Company, Indianapolis, IN, USA
| | - Cheng Cai Tang
- Clinical Pharmacology Modeling and Simulation (CPMS), Parexel International, Singapore
| |
Collapse
|
40
|
Prajapati N, Sharma D, Ashok Bidve P, Chouhan D, Allani M, Kumar Patel S, Ghosh Chowdhury M, Shard A, Tiwari V. Glucose regulation by newly synthesized boronic acid functionalized molecules as dipeptidyl peptidase IV inhibitor: a potential compound for therapeutic intervention in hyperglycaemia. J Biomol Struct Dyn 2024; 42:2859-2871. [PMID: 37254302 DOI: 10.1080/07391102.2023.2215319] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 04/19/2023] [Indexed: 06/01/2023]
Abstract
Management of type 2 diabetes mellitus (T2DM) using dipeptidyl peptidase IV (DPP IV) inhibitors is gaining precedence as this enzyme plays an indispensable role in cleaving and inactivating peptides, such as glucagon-like peptide-1 (GLP-1), incretin hormones, and glucose-dependent insulinotropic polypeptide (GIP). There are several DPP IV inhibitors used to treat T2DM, but limited by side effects such as disturbed GIT, flu-like symptoms, etc. Thus, there is an urgent need for the development of novel and better DPP IV inhibitors for the management of the same. In the present study, we investigated the effect of new boronic acid-based thiazole compounds as DPP IV inhibitors. We used substituted anilines that were progressively modified through a multi-step synthesis and then chemically characterised. These molecules have good binding affinity and molecular interactions at the active site of the DPP IV enzyme. Two boronic acid-based molecules, i.e. PC06R58 and PC06R108, were used for the assessment of their in-vitro enzymatic activities. Both molecules (PC06108 and PC06R58) exhibited potent uncompetitive DPP IV enzyme inhibition at two different concentrations of 90.9 and 15.6 nM, respectively, compared to sitagliptin having an IC50 of 17.3 nM. Furthermore, the oral glucose tolerance test suggested significantly reduced blood glucose levels at 20 mg/kg of the body weight upon administration of PC06R58 and PC06R108 molecules in rats after glucose ingestion (2 g/kg of the body weight). The compounds showed satisfactory DPP IV inhibition. Furthermore, DPP IV inhibitory activity and acceptable pre-ADME/Tox profile indicate it is a lead compound in this novel class of DPP IV inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Namrata Prajapati
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Dilip Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Pankaj Ashok Bidve
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Deepak Chouhan
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Meghana Allani
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Sagar Kumar Patel
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Moumita Ghosh Chowdhury
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Amit Shard
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Vinod Tiwari
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| |
Collapse
|
41
|
Qi R, Liang Y, Yu J, Chen B, Jiang J, Wu X, Lu W, Li Z. Liraglutide improved the reproductive function of obese mice by upregulating the testicular AC3/cAMP/PKA pathway. Reprod Biol Endocrinol 2024; 22:31. [PMID: 38509558 PMCID: PMC10953080 DOI: 10.1186/s12958-024-01202-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND The incidence of male reproductive dysfunction is increasing annually, and many studies have shown that obesity can cause severe harm to male reproductive function. The mechanism of male reproductive dysfunction caused by obesity is unclear, and there is no ideal treatment. Identification of effective therapeutic drugs and elucidation of the molecular mechanism involved in male reproductive health are meaningful. In this study, we investigated the effects of the GLP-1 receptor agonist liraglutide on sex hormones, semen quality, and testicular AC3/cAMP/PKA levels in high-fat-diet-induced obese mice. METHODS Obese mice and their lean littermates were treated with liraglutide or saline for 12 weeks. Body weight was measured weekly. Fasting blood glucose (FBG) was measured using a blood glucose test strip. The serum levels of insulin (INS), luteinizing hormone (LH), follicle stimulating hormone (FSH), testosterone (T), free testosterone (F-TESTO), estradiol (E2), and sex hormone binding globulin (SHBG) were detected using ELISA. The sperm morphology and sperm count were observed after Pap staining. The mRNA and protein expression levels of testicular GLP-1R and AC3 were measured by RT-qPCR and Western blot, respectively. Testicular cAMP levels and PKA activity were detected using ELISA. RESULTS Liraglutide treatment can decrease body weight, FBG, INS, HOMA-IR, E2 and SHBG levels; increase LH, FSH, T, and F-TESTO levels; increase sperm count; decrease the sperm abnormality rate; and increase GLP-1R and AC3 expression levels and cAMP levels and PKA activity in testicular tissue. CONCLUSIONS Liraglutide can improve the sex hormone levels and semen quality of obese male mice. In addition to its weight loss effect, liraglutide can improve the reproductive function of obese male mice, which may also be related to the upregulation of AC3/cAMP/PKA pathway in the testis. This work lays the groundwork for future clinical studies.
Collapse
Affiliation(s)
- Ruibing Qi
- Department of Endocrinology and Metabolism, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
- Department of Endocrinology and Metabolism, Wuming Hospital of Guangxi Medical University, Nanning, 530199, China
| | - Yuzhen Liang
- Department of Endocrinology, Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
| | - Jinming Yu
- Department of Endocrinology and Metabolism, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Bing Chen
- Department of Endocrinology and Metabolism, Wuming Hospital of Guangxi Medical University, Nanning, 530199, China
| | - Jiaqin Jiang
- Department of Endocrinology and Metabolism, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Xingye Wu
- Department of Endocrinology and Metabolism, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Wensheng Lu
- Department of Endocrinology and Metabolism, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China.
| | - Zhengming Li
- Department of Endocrinology and Metabolism, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China.
| |
Collapse
|
42
|
Zhou C, Zhou S, Wang J, Xie L, Lv Z, Zhao Y, Wang L, Luo H, Xie D, Shao F. Safety, tolerability, pharmacokinetics and pharmacokinetic-pharmacodynamic modeling of cetagliptin in patients with type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2024; 15:1359407. [PMID: 38529396 PMCID: PMC10961402 DOI: 10.3389/fendo.2024.1359407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/19/2024] [Indexed: 03/27/2024] Open
Abstract
Aims To evaluate the safety, tolerability, pharmacokinetics (PK), and pharmacodynamics (PD) of cetagliptin (CAS number:2243737-33-7) in Chinese patients with type 2 diabetes mellitus (T2DM). A population PK/PD model was developed to quantify the PK and PD characteristics of cetagliptin in patients. Materials and methods 32 Chinese adults with T2DM were enrolled in this study. The subjects were randomly assigned to receive either cetagliptin (50 mg or 100 mg), placebo, or sitagliptin (100 mg) once daily for 14 days. Blood samples were collected for PK and PD analysis. Effects on glucose, insulin, C-peptide, and glucagon were evaluated following an oral glucose tolerance test (OGTT) (day15). Effects on HbA1c and glycated albumin (GA), and safety assessments were also conducted. Meanwhile, a population PK/PD model was developed by a sequential two-step analysis approach using Phoenix. Results Following multiple oral doses, cetagliptin was rapidly absorbed and the mean half-life were 34.9-41.9 h. Steady-state conditions were achieved after 1 week of daily dosing and the accumulation was modest. The intensity and duration of DPP-4 inhibition induced by 50 mg cetagliptin were comparable with those induced by sitagliptin, and 100 mg cetagliptin showed a much longer sustained DPP-4 inhibition (≥80%) than sitagliptin. Compared with placebo group, plasma active GLP-1 AUEC0-24h increased by 2.20- and 3.36-fold in the 50 mg and 100 mg cetagliptin groups. A decrease of plasma glucose and increase of insulin and C-peptide were observed following OGTT in cetagliptin groups. Meanwhile, a tendency of reduced GA was observed, whereas no decreasing trend was observed in HbA1c. All adverse events related to cetagliptin and sitagliptin were assessed as mild. A population PK/PD model was successfully established. The two-compartment model and Sigmoid-Emax model could fit the observed data well. Total bilirubin (TBIL) was a covariate of volume of peripheral compartment distribution (V2), and V2 increased with the increase of TBIL. Conclusions Cetagliptin was well tolerated, inhibited plasma DPP-4 activity, increased plasma active GLP-1 levels, and exhibited a certain trend of glucose-lowering effect in patients with T2DM. The established population PK/PD model adequately described the PK and PD characteristics of cetagliptin.
Collapse
Affiliation(s)
- Chen Zhou
- Phase I Clinical Trial Unit, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Sufeng Zhou
- Phase I Clinical Trial Unit, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China
- Department of Clinical Pharmacology, Pharmacy College, Nanjing Medical University, Nanjing, China
| | - Jie Wang
- Phase I Clinical Trial Unit, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lijun Xie
- Phase I Clinical Trial Unit, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Zhanhui Lv
- Phase I Clinical Trial Unit, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China
- Department of Clinical Pharmacology, Pharmacy College, Nanjing Medical University, Nanjing, China
| | - Yuqing Zhao
- Phase I Clinical Trial Unit, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Lu Wang
- Phase I Clinical Trial Unit, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Huan Luo
- Clinical Development Department, Beijing Sun-novo Pharmaceutical Research Co., Ltd, Beijing, China
| | - Daosheng Xie
- Clinical Development Department, Beijing Sun-novo Pharmaceutical Research Co., Ltd, Beijing, China
- Clinical Development Department, Beijing Noahpharm Medical Technology Co., Ltd, Beijing, China
| | - Feng Shao
- Phase I Clinical Trial Unit, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China
- Department of Clinical Pharmacology, Pharmacy College, Nanjing Medical University, Nanjing, China
| |
Collapse
|
43
|
Scoccimarro D, Cipani G, Dicembrini I, Mannucci E. Predictors of efficacy of Sodium-GLucose Transporter-2 inhibitors and Glucagon-Like Peptide 1 receptor agonists: A retrospective cohort study. Diabetes Metab Res Rev 2024; 40:e3727. [PMID: 37776322 DOI: 10.1002/dmrr.3727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/18/2023] [Accepted: 07/24/2023] [Indexed: 10/02/2023]
Abstract
AIMS The aim of the present study was to verify predictors of HbA1c reduction with Sodium-GLucose Transporter-2 (SGLT2) inhibitors and Glucagon-Like Peptide 1 (GLP1) receptor agonists in routine clinical practice. MATERIALS AND METHODS A retrospective cohort study was performed, enrolling patients with type 2 diabetes aged ≥18 years who received a prescription of an SGLT2 inhibitor or a long-acting GLP1 receptor agonist with at least 6 months of persistence in therapy. Therapeutic success was defined as HbA1c reduction >10 mmol/mol or attainment of the recommended HbA1c target. RESULTS Out of 236 patients receiving SGLT2 inhibitors, 148 were categorised as successes: successes had a mean lower age and higher estimated Glomerular Filtration Rate than failures, but only age retained statistical significance at multivariate analysis (Odds Ratio with 95% confidence interval: 0.94 [0.91-0.98], p = 0.006). In the GLP1 receptor agonists cohort (N = 214) there were 146 successes, showing a significantly shorter duration of diabetes even after adjusting for age, and baseline HbA1c (HR 0.96 [0.91-0.99], p = 0.02). CONCLUSIONS The present study is a preliminary exploration of factors associated with HbA1c response to SGLT2 inhibitors and GLP1 receptor agonists. Differences in predictors of HbA1c changes across different classes of drugs could be useful in identifying the most suitable drug in individual patients. SGLT2 inhibitors seem to be associated with a greater reduction of HbA1c in younger subjects, and GLP1 agonists in those with a shorter duration of diabetes.
Collapse
Affiliation(s)
- Daniele Scoccimarro
- University of Florence, Diabetology and Metabolic Diseases, Careggi Hospital, Firenze, Italy
| | - Giacomo Cipani
- University of Florence, Diabetology and Metabolic Diseases, Careggi Hospital, Firenze, Italy
| | - Ilaria Dicembrini
- University of Florence, Diabetology and Metabolic Diseases, Careggi Hospital, Firenze, Italy
| | - Edoardo Mannucci
- University of Florence, Diabetology and Metabolic Diseases, Careggi Hospital, Firenze, Italy
| |
Collapse
|
44
|
Athar F, Karmani M, Templeman N. Metabolic hormones are integral regulators of female reproductive health and function. Biosci Rep 2024; 44:BSR20231916. [PMID: 38131197 PMCID: PMC10830447 DOI: 10.1042/bsr20231916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/29/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023] Open
Abstract
The female reproductive system is strongly influenced by nutrition and energy balance. It is well known that food restriction or energy depletion can induce suppression of reproductive processes, while overnutrition is associated with reproductive dysfunction. However, the intricate mechanisms through which nutritional inputs and metabolic health are integrated into the coordination of reproduction are still being defined. In this review, we describe evidence for essential contributions by hormones that are responsive to food intake or fuel stores. Key metabolic hormones-including insulin, the incretins (glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1), growth hormone, ghrelin, leptin, and adiponectin-signal throughout the hypothalamic-pituitary-gonadal axis to support or suppress reproduction. We synthesize current knowledge on how these multifaceted hormones interact with the brain, pituitary, and ovaries to regulate functioning of the female reproductive system, incorporating in vitro and in vivo data from animal models and humans. Metabolic hormones are involved in orchestrating reproductive processes in healthy states, but some also play a significant role in the pathophysiology or treatment strategies of female reproductive disorders. Further understanding of the complex interrelationships between metabolic health and female reproductive function has important implications for improving women's health overall.
Collapse
Affiliation(s)
- Faria Athar
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Muskan Karmani
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Nicole M. Templeman
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| |
Collapse
|
45
|
Adem MA, Decourt B, Sabbagh MN. Pharmacological Approaches Using Diabetic Drugs Repurposed for Alzheimer's Disease. Biomedicines 2024; 12:99. [PMID: 38255204 PMCID: PMC10813018 DOI: 10.3390/biomedicines12010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) are chronic, progressive disorders affecting the elderly, which fosters global healthcare concern with the growing aging population. Both T2DM and AD have been linked with increasing age, advanced glycosylation end products, obesity, and insulin resistance. Insulin resistance in the periphery is significant in the development of T2DM and it has been posited that insulin resistance in the brain plays a key role in AD pathogenesis, earning AD the name "type 3 diabetes". These clinical and epidemiological links between AD and T2DM have become increasingly pronounced throughout the years, and serve as a means to investigate the effects of antidiabetic therapies in AD, such as metformin, intranasal insulin, incretins, DPP4 inhibitors, PPAR-γ agonists, SGLT2 inhibitors. The majority of these drugs have shown benefit in preclinical trials, and have shown some promising results in clinical trials, with the improvement of cognitive faculties in participants with mild cognitive impairment and AD. In this review, we have summarize the benefits, risks, and conflicting data that currently exist for diabetic drugs being repurposed for the treatment of AD.
Collapse
Affiliation(s)
- Muna A. Adem
- Department of Neurology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, 350 W. Thomas Rd., Phoenix, AZ 85013, USA
| | - Boris Decourt
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - Marwan N. Sabbagh
- Department of Neurology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, 350 W. Thomas Rd., Phoenix, AZ 85013, USA
| |
Collapse
|
46
|
Ouassou H, Elhouda Daoudi N, Bouknana S, Abdnim R, Bnouham M. A Review of Antidiabetic Medicinal Plants as a Novel Source of Phosphodiesterase Inhibitors: Future Perspective of New Challenges Against Diabetes Mellitus. Med Chem 2024; 20:467-486. [PMID: 38265379 DOI: 10.2174/0115734064255060231116192839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/31/2023] [Accepted: 09/25/2023] [Indexed: 01/25/2024]
Abstract
Intracellular glucose concentration plays a crucial role in initiating the molecular secretory process of pancreatic β-cells through multiple messengers and signaling pathways. Cyclic nucleotides are key physiological regulators that modulate pathway interactions in β -cells. An increase of cyclic nucleotides is controled by hydrolysed phosphodiesterases (PDEs), which degrades cyclic nucleotides into inactive metabolites. Despite the undeniable therapeutic potential of PDE inhibitors, they are associated with several side effects. The treatment strategy for diabetes based on PDE inhibitors has been proposed for a long time. Hence, the world of natural antidiabetic medicinal plants represents an ideal source of phosphodiesterase inhibitors as a new strategy for developing novel agents to treat diabetes mellitus. This review highlights medicinal plants traditionally used in the treatment of diabetes mellitus that have been proven to have inhibitory effects on PDE activity. The contents of this review were sourced from electronic databases, including Science Direct, PubMed, Springer Link, Web of Science, Scopus, Wiley Online, Scifinder and Google Scholar. These databases were consulted to collect information without any limitation date. After comprehensive literature screening, this paper identified 27 medicinal plants that have been reported to exhibit anti-phosphodiesterase activities. The selection of these plants was based on their traditional uses in the treatment of diabetes mellitus. The review emphasizes the antiphosphodiesterase properties of 31 bioactive components derived from these plant extracts. Many phenolic compounds have been identified as PDE inhibitors: Brazilin, mesozygin, artonin I, chalcomaracin, norartocarpetin, moracin L, moracin M, moracin C, curcumin, gallic acid, caffeic acid, rutin, quercitrin, quercetin, catechin, kaempferol, chlorogenic acid, and ellagic acid. Moreover, smome lignans have reported as PDE inhibitors: (+)-Medioresinol di-O-β-d-glucopyranoside, (+)- Pinoresinol di-O-β-d-glucopyranoside, (+)-Pinoresinol-4-O-β-d-glucopyranosyl (1→6)-β-dglucopyranoside, Liriodendrin, (+)-Pinoresinol 4'-O-β-d-glucopyranoside, and forsythin. This review provides a promising starting point of medicinal plants, which could be further studied for the development of natural phosphodiesterase inhibitors to treat diabetes mellitus. Therefore, it is important to consider clinical studies for the identification of new targets for the treatment of diabetes.
Collapse
Affiliation(s)
- Hayat Ouassou
- Higher Institute of Nurses Professions and Health Techniques, Oujda 60000, Morocco
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, Mohammed First University, BP. 717, Oujda 60040, Morocco
| | - Nour Elhouda Daoudi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, Mohammed First University, BP. 717, Oujda 60040, Morocco
| | - Saliha Bouknana
- Department of Biology, Faculty of Sciences, University Mohammed First, Boulevard Mohamed VI BP 717, Oujda 60040, Morocco
| | - Rhizlan Abdnim
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, Mohammed First University, BP. 717, Oujda 60040, Morocco
| | - Mohamed Bnouham
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Department of Biology, Faculty of Sciences, Mohammed First University, BP. 717, Oujda 60040, Morocco
| |
Collapse
|
47
|
Pal B, Chattopadhyay M. Recent clinical and pharmacological advancements of incretin-based therapy and the effects of incretin on physiology. JOURNAL OF DIABETOLOGY 2024; 15:24-37. [DOI: 10.4103/jod.jod_117_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/03/2024] [Indexed: 12/11/2024] Open
Abstract
Abstract
A novel therapeutic target for diabetes mellitus is incretin-based therapies, glucagon-like peptide-1, and glucose-dependent insulinotropic polypeptides are released from the gastrointestinal (GI) tract and act on beta cells of pancreatic islets by increasing the secretion of insulin. The management and prevention of diabetes require habitual and pharmacological therapies along with quality and healthy lifestyle. This includes maintaining the body weight, blood glucose level, cardiovascular risk, complexity, and co-morbidities. The utilization of glucagon-like peptide-1 (GLP-1) agonists is an object of research with favorable hemoglobin A1C levels and weight loss in type 1 diabetic patients. However, cost-effectiveness and tolerability, remain significant barriers for patients to using these medications. The risk of suicidal tendencies and thoughts of self-harm have been increased in patients receiving GLP-1 receptor agonists. Tirzepatide treatment showed a potent glucose-lowering effect and promoted weight loss with minimum GI adverse effects in animal studies as well as phase I and II human trials, in comparison with established GLP-1 receptor agonists. The glucose-dependent insulinotropic polypeptide receptor (GIPR) peptide-antagonist effectively blocks the action of gastric-inhibitory-polypeptide (GIP) in vitro and ex vivo in human pancreas and in vivo in rodent models. However, incretin-based therapies have received enormous attention in the last few decades for the treatment of diabetes, obesity, and other repurposing including central nervous system disorders. Therefore, in this article, we demonstrate the overview, physiological, and pharmacological advances of incretin-based pharmacotherapies and their physiological roles. Furthermore, the recent updates of glucagon-like peptide-1 receptor agonist, Glucagon-like peptide-2 receptor agonist, GLP-1/GIP co-agonists, GIP/GLP-1/glucagon triple agonist and GIP-antagonist are also discussed.
Collapse
Affiliation(s)
- Bhaskar Pal
- Department of Pharmacology, Charaktala College of Pharmacy, Charaktala, Debipur, West Bengal, India
| | - Moitreyee Chattopadhyay
- Department of Pharmaceutical Technology, Maulana Abul Kalam Azad University of Technology, Nadia, West Bengal, India
| |
Collapse
|
48
|
Alayed KM. Glucagon-Like Peptide-1 (GLP-1) during Ramadan: Narrative Review of the Published Literature. J Obes 2023; 2023:8626081. [PMID: 38169925 PMCID: PMC10761230 DOI: 10.1155/2023/8626081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
Ramadan fasting, a religious practice observed by Muslims worldwide, involves abstaining from eating, drinking, smoking, and using oral medications from dawn to dusk during the ninth lunar month. Studies have demonstrated that fasting during Ramadan has been shown to increase HDL cholesterol, leptin, adiponectin, and insulin sensitivity, as well as lower several hemostatic risk factors for cardiovascular diseases. Additionally, it may result in a drop in blood sugar levels, especially in diabetics who are also on blood sugar-lowering medicine. Hypoglycemia, characterized by low blood sugar levels, could also result from fasting during Ramadan. The GLP-1 (glucagon-like peptide-1) hormone plays a significant role in regulating glucose metabolism and insulin secretion, and Ramadan fasting can affect its production and release in the gut. Research contributes to our understanding of the utilization of GL-1 medications during Ramadan among patients, broadening therapy alternatives and offering insightful information for well-informed decision-making. Therefore, this narrative review aims to explore the current evidence that studies the safety and efficacy of GLP-1 agonists during Ramadan for nondiabetic and diabetic patients to ensure healthy fasting during Ramadan.
Collapse
|
49
|
Wang ZJ, Li XR, Chai SF, Li WR, Li S, Hou M, Li JL, Ye YC, Cai HY, Hölscher C, Wu MN. Semaglutide ameliorates cognition and glucose metabolism dysfunction in the 3xTg mouse model of Alzheimer's disease via the GLP-1R/SIRT1/GLUT4 pathway. Neuropharmacology 2023; 240:109716. [PMID: 37730113 DOI: 10.1016/j.neuropharm.2023.109716] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 09/22/2023]
Abstract
Disorders of brain glucose metabolism is known to affect brain activity in neurodegenerative diseases including Alzheimer's disease (AD). Furthermore, recent evidence has shown an association between AD and type 2 diabetes. Numerous reports have found that glucagon-like peptide-1 (GLP-1) receptor agonists improve the cognitive behavior and pathological features in AD patients and animals, which may be related to the improvement of glucose metabolism in the brain. However, the mechanism by which GLP-1 agonists improve the brain glucose metabolism in AD patients remains unclear. In this study, we found that SIRT1 is closely related to expression of GLP-1R in hippocampus of 3xTg mice. Therefore, we used semaglutide, a novel GLP-1R agonist currently undergoing two phase 3 clinical trials in AD patients, to observe the effect of SIRT1 after semaglutide treatment in 3XTg mice and HT22 cells, and to explore the mechanism of SIRT1 in the glucose metabolism disorders of AD. The mice were injected with semaglutide on alternate days for 30 days, followed by behavioral experiments including open field test, new object recognition test, and Y-maze. The content of glucose in the brain was also measured by using 18FDG-PET-CT scans. We measured the expression of Aβ and tau in the hippocampus, observed the expression of GLUT4 which is downstream of SIRT1, and tested the Glucose oxidase assay (GOD-POD) and Hexokinase (HK) in HT22 cells. Here, we found in the 3xTg mouse model of AD and in cultured HT22 mouse neurons that SIRT1 signaling is involved in the impairment of glucose metabolism in AD. Semaglutide can increased the expression levels of SIRT1 and GLUT4 in the hippocampus of 3xTg mice, accompanied by an improvement in learning and memory, decreased in Aβ plaques and neurofibrillary tangles. In addition, we further demonstrated that semaglutide improved glucose metabolism in the brain of 3xTg mice in vitro, semaglutide promoted glycolysis and improved glycolytic disorders, and increased the membrane translocation of GLUT4 in cultured HT22 cells. These effects were blocked by the SIRT1 inhibitor (EX527). These findings indicate that semaglutide can regulate the expression of GLUT4 to mediate glucose transport through SIRT1, thereby improving glucose metabolism dysfunction in AD mice and cells. The present study suggests that SIRT1/GLUT4 signaling pathway may be an important mechanism for GLP-1R to promote glucose metabolism in the brain, providing a reliable strategy for effective therapy of AD.
Collapse
Affiliation(s)
- Zhao-Jun Wang
- Department of Physiology, Shanxi Medical University, Taiyuan, China; Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan, China; Key Laboratory of Cellular Physiology in Shanxi Province, Taiyuan, China; Shanxi Key Laboratory of Brain Disease Control, Shanxi Provincial People's Hospital, Taiyuan, China.
| | - Xin-Ru Li
- Department of Physiology, Shanxi Medical University, Taiyuan, China; Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan, China; Key Laboratory of Cellular Physiology in Shanxi Province, Taiyuan, China
| | - Shi-Fan Chai
- Department of Physiology, Shanxi Medical University, Taiyuan, China; Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan, China; Key Laboratory of Cellular Physiology in Shanxi Province, Taiyuan, China
| | - Wei-Ran Li
- Department of Physiology, Shanxi Medical University, Taiyuan, China; Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan, China; Key Laboratory of Cellular Physiology in Shanxi Province, Taiyuan, China
| | - Shuo Li
- Department of Neurology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Meng Hou
- Department of Neurology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jia-Lei Li
- Department of Physiology, Shanxi Medical University, Taiyuan, China; Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan, China; Key Laboratory of Cellular Physiology in Shanxi Province, Taiyuan, China
| | - Yu-Cai Ye
- Department of Physiology, Shanxi Medical University, Taiyuan, China; Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan, China; Key Laboratory of Cellular Physiology in Shanxi Province, Taiyuan, China
| | - Hong-Yan Cai
- Department of Microbiology and Immunology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Christian Hölscher
- Department of Neurology, Second Hospital of Shanxi Medical University, Taiyuan, China; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Mei-Na Wu
- Department of Physiology, Shanxi Medical University, Taiyuan, China; Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan, China; Key Laboratory of Cellular Physiology in Shanxi Province, Taiyuan, China.
| |
Collapse
|
50
|
Yau K, Odutayo A, Dash S, Cherney DZI. Biology and Clinical Use of Glucagon-Like Peptide-1 Receptor Agonists in Vascular Protection. Can J Cardiol 2023; 39:1816-1838. [PMID: 37429523 DOI: 10.1016/j.cjca.2023.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/28/2023] [Accepted: 07/04/2023] [Indexed: 07/12/2023] Open
Abstract
Glucagon-like peptide-1 receptor agonists (GLP1RA) are incretin agents initially designed for the treatment of type 2 diabetes mellitus but because of pleiotropic actions are now used to reduce cardiovascular disease in people with type 2 diabetes mellitus and in some instances as approved treatments for obesity. In this review we highlight the biology and pharmacology of GLP1RA. We review the evidence for clinical benefit on major adverse cardiovascular outcomes in addition to modulation of cardiometabolic risk factors including reductions in weight, blood pressure, improvement in lipid profiles, and effects on kidney function. Guidance is provided on indications and potential adverse effects to consider. Finally, we describe the evolving landscape of GLP1RA and including novel glucagon-like peptide-1-based dual/polyagonist therapies that are being evaluated for weight loss, type 2 diabetes mellitus, and cardiorenal benefit.
Collapse
Affiliation(s)
- Kevin Yau
- Department of Medicine, Division of Nephrology, University Health Network, and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ayodele Odutayo
- Department of Medicine, Division of Nephrology, University Health Network, and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Satya Dash
- Department of Medicine, Division of Nephrology, University Health Network, and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - David Z I Cherney
- Department of Medicine, Division of Nephrology, University Health Network, and Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|