1
|
Zhang C, Yin X, Jiang J, Wang P, Wang Y. Downregulation of GFPT2 enhances cisplatin chemotherapy sensitivity in STK11/KRAS mutant non-small cell lung cancer by regulating the hexosamine biosynthesis pathway, resisting tumor growth. Cytokine 2025; 191:156943. [PMID: 40253947 DOI: 10.1016/j.cyto.2025.156943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/21/2025] [Accepted: 04/13/2025] [Indexed: 04/22/2025]
Abstract
OBJECTIVE To explore the role of GFPT2 in the sensitivity of STK11/KRAS lung cancer cells to cisplatin chemotherapy, and its underlying mechanism. MATERIALS & METHODS A549 and H460 cells were used to analyze the effect of GFPT2 on cisplatin chemotherapy sensitivity, as both carry KRAS mutations and H460 has LKB1 inactivation mutations, meeting the requirements of a KRAS/LKB1 co mutant tumor model. The levels of UDP-GlcNAc, OGT, OGA, and O-GlcNAc in the HBP pathway were also determined. To verify the potential role of HBP, we added OGT inhibitors. In vivo, we constructed a nude mouse model bearing A549 tumor to further validate the results of in vitro cell experiments. RESULTS GFPT2 silencing can significantly inhibit cell proliferation, invasion, and migration, promote cell apoptosis, and enhance the effect of cisplatin (p < 0.05). After OSMI-1 processing, GFPT2 enhances O-GlcNAc modification levels via the OGT-mediated HBP, thereby decreasing the sensitivity of STK11/KRAS mutant cells to cisplatin chemotherapy. In addition, GFPT2 silencing enhances the chemotherapy sensitivity of cisplatin and inhibits tumor growth, while overexpression of GFPT2 weakens this effect (p < 0.05). The above results provide new targets and combination therapy options for the clinical treatment of KRAS/LKB1 mutant lung cancer. CONCLUSION Our study found that inhibiting GFPT2 can enhance the chemotherapy sensitivity of cisplatin to STK11/KRAS/LKB1 mutant NSCLCs cells through the OGT mediated HBP pathway, filling a key gap in the chemotherapy resistance mechanism of KRAS/LKB1 mutant lung cancer.
Collapse
Affiliation(s)
- Cheng Zhang
- Thoracic Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Xuelei Yin
- Yantai Keyou Biotechnology Co., Ltd, Yantai, Shandong, China
| | - Jun Jiang
- Key Laboratory of Genetics Research and Evaluation of the National Drug Administration, Shandong Food and Drug Inspection and Research Institute, Jinan, Shandong, China
| | - Peng Wang
- Ministry of Scientific and Technological Innovation, Yantai Hi-tech Industrial Development Zone, Yantai, Shandong, China
| | - Yirong Wang
- Department of Radiotherapy, Yantaishan Hospital, Yantai, Shandong, China.
| |
Collapse
|
2
|
Chen L, Jiang H, Licinio J, Wu H. Brain O-GlcNAcylation: Bridging physiological functions, disease mechanisms, and therapeutic applications. Mol Psychiatry 2025; 30:2754-2772. [PMID: 40033044 PMCID: PMC12092303 DOI: 10.1038/s41380-025-02943-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/13/2025] [Accepted: 02/25/2025] [Indexed: 03/05/2025]
Abstract
O-GlcNAcylation, a dynamic post-translational modification occurring on serine or threonine residues of numerous proteins, plays a pivotal role in various cellular processes, including gene regulation, metabolism, and stress response. Abundant in the brain, O-GlcNAcylation intricately governs neurodevelopment, synaptic assembly, and neuronal functions. Recent investigations have established a correlation between the dysregulation of brain O-GlcNAcylation and a broad spectrum of neurological disorders and injuries, spanning neurodevelopmental, neurodegenerative, and psychiatric conditions, as well as injuries to the central nervous system (CNS). Manipulating O-GlcNAcylation has demonstrated neuroprotective properties against these afflictions. This review delineates the roles and mechanisms of O-GlcNAcylation in the CNS under both physiological and pathological circumstances, with a focus on its neuroprotective effects in neurological disorders and injuries. We discuss the involvement of O-GlcNAcylation in key processes such as neurogenesis, synaptic plasticity, and energy metabolism, as well as its implications in conditions like Alzheimer's disease, Parkinson's disease, and ischemic stroke. Additionally, we explore prospective therapeutic approaches for CNS disorders and injuries by targeting O-GlcNAcylation, highlighting recent clinical developments and future research directions. This comprehensive overview aims to provide insights into the potential of O-GlcNAcylation as a therapeutic target and guide future investigations in this promising field.
Collapse
Affiliation(s)
- Liping Chen
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Huihui Jiang
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Julio Licinio
- Department of Psychiatry, Norton College of Medicine, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Haitao Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| |
Collapse
|
3
|
Guo Y, Hu Z, Bai L, Tang Y, Hu J, Zhang Q, Liu J, Feng S. Increased glucose utilization is a targetable vulnerability to overcome drug resistance associated with neddylation blockade. Biochem Pharmacol 2025; 236:116905. [PMID: 40158819 DOI: 10.1016/j.bcp.2025.116905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/12/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025]
Abstract
Gastric cancer, a leading cause of cancer-related mortality, has a median survival of just 15 months in advanced stages and currently lacks effective treatment options. Neddylation blockade is a promising therapeutic strategy, yet its clinical application faces challenge with the emergence of drug resistance. Currently, the underlying mechanisms behind the drug resistance are not fully understood. Our study uncovers the link between MLN4924-induced metabolic reprogramming and its antitumor efficacy in gastric cancer cells. We first demonstrated that MLN4924, a neddylation blocker, has multiple effects on gastric cancer cell growth, notably inducing mitochondrial damage. Untargeted metabolomic analysis revealed that MLN4924 enhances glucose utilization in gastric cancer cells in a concentration-dependent manner. Mechanistically, MLN4924 reduces the neddylation of cullin2, thereby inhibiting the degradation of HIF-1α. This leads to the accumulation of HIF-1α, which upregulates GLUT1 levels and facilitates increased glucose uptake. This metabolic adaptation allows gastric cancer cells to maintain their energy supply despite mitochondrial impairment. Based on the increased glucose dependency following neddylation inhibition by MLN4924, we propose a co-targeting strategy with GLUT1 inhibition, which significantly improves therapeutic efficacy in vitro and in vivo models without safety risks. This dual-targeting approach represents a potent new strategy for gastric cancer treatment.
Collapse
Affiliation(s)
- Yueyang Guo
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Zhuang Hu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Linyue Bai
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Yanjun Tang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Jingyi Hu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Qianqian Zhang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Jiali Liu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Siqi Feng
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
4
|
Qusairy Z, Rada M. Glycosylation in cancer: mechanisms, diagnostic markers, and therapeutic applications. Mol Cell Biochem 2025:10.1007/s11010-025-05303-1. [PMID: 40389792 DOI: 10.1007/s11010-025-05303-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 05/04/2025] [Indexed: 05/21/2025]
Abstract
Glycosylation, a key post-translational modification, plays a pivotal role in cancer progression by influencing critical processes such as protein folding, immune modulation, and intercellular signaling. Altered glycosylation patterns are increasingly recognized as fundamental drivers of tumorigenesis, contributing to key cancer hallmarks like enhanced tumor migration, metastasis, and immune evasion. These aberrant glycosylation signatures not only offer insights into cancer biology but also serve as valuable diagnostic markers and potential therapeutic targets across a range of malignancies. This review explores the mechanisms underlying glycosylation alterations in cancer. We discuss the molecular basis of these changes, including genetic mutations, epigenetic regulation, and oncogene-driven shifts in glycosylation pathways. Additionally, we highlight recent advancements in glycomics research, with a focus on how these alterations influence tumor progression, angiogenesis, and the tumor microenvironment. Furthermore, the review considers the clinical implications of glycosylation changes, including their role in resistance to anti-cancer therapies and their potential as biomarkers for personalized treatment strategies. By bridging fundamental glycosylation research with clinical applications, this review underscores the promise of glycosylation as both a diagnostic tool and a therapeutic target in oncology, offering new avenues for improved patient stratification and precision medicine.
Collapse
Affiliation(s)
- Zahraa Qusairy
- McGill University Health Center Research Institute, Montreal, QC, H4A 3J1, Canada
| | - Miran Rada
- Medical Laboratory Science, Komar University of Science and Technology, Qularaisi, Sulaimani, Sulaymaniyah, Kurdistan Region, Iraq.
- Komar Cancer Research Program, Komar University of Science and Technology, Qularaisi, Sulaimani, Sulaymaniyah, Kurdistan Region, Iraq.
| |
Collapse
|
5
|
Liu X, Huang S, Zhu K, Du L. OGT Enhances Adriamycin Resistance of Breast Cancer by Promoting Glycolysis through MDM4 Upregulation in an O-GlcNAcylation-Dependent Manner. Biochem Genet 2025:10.1007/s10528-025-11129-9. [PMID: 40372583 DOI: 10.1007/s10528-025-11129-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 05/05/2025] [Indexed: 05/16/2025]
Abstract
Adriamycin (ADR) is a chemotherapy drug for breast cancer, and its resistance is a major obstacle in the clinical treatment of breast cancer. O-GlcNAcylation is a post-translational modification that impacts chemotherapy resistance in cancers. This present study aims to investigate the mechanism of O-GlcNAcylation-mediated ADR resistance in breast cancer. Cell viability, proliferation, and apoptosis were performed to evaluate ADR resistance in breast cancer cells. O-GlcNAcylation, OGA and OGT levels in patients, and breast cancer cells resistant to ADR or not were detected by western blot and quantitative real-time PCR. Glycolysis of ADR-resistant cells was evaluated by measurement of glucose and lactic acid levels, and extracellular acidification rate and oxygen consumption rate. The underlying mechanism was explored by western blot and pathway enrichment analysis. Effects of OGT in vivo were assessed by xenograft tumor model. Results showed that OGT protein and mRNA levels were increased in MCF-7R and BT-549R cells and tumors of ADR-resistant patients with breast cancer. Moreover, O-GlcNAcylation was increased in ADR-resistant breast cancer cells. OGT knockdown inhibited glycolysis and O-GlcNAcylation and protein level of MDM4 at S96 site. Notably, MDM4 overexpression restored glycolysis in MCF-7R and BT-549R cells inhibited by OGT knockdown. Additionally, OGT knockdown inhibited tumor growth in vivo. Collectively, this study demonstrated that OGT promote breast cancer resistant to ADR through facilitating glycolysis in breast cancer cells by O-GlcNAcylation on MDM4. This study may provide a target for overcoming ADR resistance in breast cancer.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Breast and Nail Surgery, Quzhou People's Hospital, No. 100 Minjiang Avenue, Kecheng District, Quzhou, 324000, Zhejiang, China
| | - Sihao Huang
- Department of Breast and Nail Surgery, Quzhou People's Hospital, No. 100 Minjiang Avenue, Kecheng District, Quzhou, 324000, Zhejiang, China
| | - Kuangye Zhu
- Department of Breast and Nail Surgery, Quzhou People's Hospital, No. 100 Minjiang Avenue, Kecheng District, Quzhou, 324000, Zhejiang, China
| | - Ludi Du
- Department of Breast and Nail Surgery, Quzhou People's Hospital, No. 100 Minjiang Avenue, Kecheng District, Quzhou, 324000, Zhejiang, China.
| |
Collapse
|
6
|
Routila E, Salminen S, Mahran R, Toriseva M, Irjala H, Haapio E, Kytö E, Ventelä S, Pettersson K, Routila J, Gidwani K, Leivo J. Evaluation of Integrin Glycovariants as Biomarkers of Metastasis, Invasion, and Therapy Stratification in Head and Neck Squamous Cell Carcinoma. Cancer Med 2025; 14:e70717. [PMID: 40287842 PMCID: PMC12034151 DOI: 10.1002/cam4.70717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Integrin glycosylation is one mechanism regulating the invasion and metastasis of malignant tumors. Little information exists about integrin glycosylation in head and neck squamous cell carcinoma (HNSCC). In this study, we evaluated the glycosylation of integrins in HNSCC tumor and serum samples. METHODS Intraoperative fresh tumor and normal tissue samples and blood samples were collected from HNSCC patients (N = 24). Lectin-bioaffinity assays using six nanoparticle-bound lectins were used to evaluate the glycosylation of integrins ITGA2, ITGA3, ITGA5, ITGA6, ITGB1, and ITGB4. Associations with metastasis, therapy response, and clinical factors were analyzed. RESULTS Glycosylation profiles of the integrins were relatively similar. High intratumoral ITGB1-WFL results were associated with high T class, whereas none of the integrin glycovariant assays provided significant resolution in the detection of nodal metastasis. While the serum integrin glycovariant levels were low overall, serum ITGA2-UEA offered significant resolution in both radiotherapy response prediction and cancer recurrence prognostication. CONCLUSIONS We demonstrate that while integrin glycovariants are abundant in HNSCC tumors and ITGB1-WFL was associated with invasiveness, integrin glycovariants do not directly correlate with metastatic behavior. Further, serum ITGA2-UEA appeared as a potential radioresponse biomarker.
Collapse
Affiliation(s)
- Erica Routila
- Department of Life TechnologiesUniversity of TurkuTurkuFinland
- InFLAMES Research FlagshipUniversity of TurkuTurkuFinland
- FICAN West Cancer CentreTurkuFinland
| | - Sadie Salminen
- Department of Life TechnologiesUniversity of TurkuTurkuFinland
- FICAN West Cancer CentreTurkuFinland
| | - Randa Mahran
- Department of Life TechnologiesUniversity of TurkuTurkuFinland
- FICAN West Cancer CentreTurkuFinland
| | - Mervi Toriseva
- FICAN West Cancer CentreTurkuFinland
- Institute of Biomedicine, University of TurkuTurkuFinland
| | - Heikki Irjala
- Department for Otorhinolaryngology – Head and Neck SurgeryUniversity of Turku and Turku University HospitalTurkuFinland
| | - Eeva Haapio
- Department for Otorhinolaryngology – Head and Neck SurgeryUniversity of Turku and Turku University HospitalTurkuFinland
| | - Eero Kytö
- Department for Otorhinolaryngology – Head and Neck SurgeryUniversity of Turku and Turku University HospitalTurkuFinland
| | - Sami Ventelä
- FICAN West Cancer CentreTurkuFinland
- Department for Otorhinolaryngology – Head and Neck SurgeryUniversity of Turku and Turku University HospitalTurkuFinland
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| | - Kim Pettersson
- Department of Life TechnologiesUniversity of TurkuTurkuFinland
| | - Johannes Routila
- FICAN West Cancer CentreTurkuFinland
- Department for Otorhinolaryngology – Head and Neck SurgeryUniversity of Turku and Turku University HospitalTurkuFinland
| | - Kamlesh Gidwani
- Department of Life TechnologiesUniversity of TurkuTurkuFinland
| | - Janne Leivo
- Department of Life TechnologiesUniversity of TurkuTurkuFinland
- InFLAMES Research FlagshipUniversity of TurkuTurkuFinland
- FICAN West Cancer CentreTurkuFinland
| |
Collapse
|
7
|
Varadharaj V, Petersen W, Batra SK, Ponnusamy MP. Sugar symphony: glycosylation in cancer metabolism and stemness. Trends Cell Biol 2025; 35:412-425. [PMID: 39462722 PMCID: PMC12032065 DOI: 10.1016/j.tcb.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/29/2024]
Abstract
Glycosylation is a complex co-translational and post-translational modification (PTM) in eukaryotes that utilizes glycosyltransferases to generate a vast array of glycoconjugate structures. Recent studies have highlighted the role of glycans in regulating essential molecular, cellular, tissue, organ, and systemic biological processes with significant implications for human diseases, particularly cancer. The metabolic reliance of cancer, spanning tumor initiation, disease progression, and resistance to therapy, necessitates a range of uniquely altered cellular metabolic pathways. In addition, the intricate interplay between cell-intrinsic and -extrinsic mechanisms is exemplified by the communication between cancer cells, cancer stem cells (CSCs), cancer-associated fibroblasts (CAFs), and immune cells within the tumor microenvironment (TME). In this review article, we explore how differential glycosylation in cancer influences the metabolism and stemness features alongside new avenues in glycobiology.
Collapse
Affiliation(s)
- Venkatesh Varadharaj
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Wyatt Petersen
- Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center at Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center at Omaha, NE, USA.
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center at Omaha, NE, USA.
| |
Collapse
|
8
|
Li B, Jin N, Lu J, Wang M, Wang J, Chen S. Decreased OGT Attenuates Endometrial Decidualization and Embryo Implantation by Affecting HIF-1α Stability. Mol Reprod Dev 2025; 92:e70025. [PMID: 40342239 DOI: 10.1002/mrd.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 04/02/2025] [Accepted: 04/16/2025] [Indexed: 05/11/2025]
Abstract
Hypoxia-inducible factor 1-alpha (HIF-1α) is essential for glycolysis regulation. Its expression in the endometrium is significantly reduced in recurrent implantation failure (RIF), indicating that lower levels of HIF-1α may contribute to embryo implantation failure. O-GlcNAcylation is a dynamic posttranslational modification mediated by O-GlcNAc transferase (OGT), known to regulate HIF-1α in cancer cells. However, it remains unclear whether OGT affects glycolytic processes in uterine endometrial stromal cells (ESCs) and its potential role in embryo implantation. This study utilized In Vitro and In Vivo experiments to investigate the role of OGT in decidualization and embryo implantation, along with its underlying mechanisms. Our findings show that OGT expression is significantly reduced in the endometrium of patients with RIF. Additionally, OGT knockdown led to failed embryo implantation in mice. Further analysis revealed that OGT promotes decidualization by stabilizing HIF-1α, which enhances glycolytic activity. Inhibiting OGT resulted in insufficient decidualization among human ESCs. Moreover, our results indicate that OGT partially regulates CCL2 secretion by maintaining HIF-1α levels within human ESCs, which is essential for successful embryo implantation. Based on these findings, we propose that OGT represents a novel and promising therapeutic target for both the diagnosis and treatment of RIF.
Collapse
Affiliation(s)
- Bo Li
- Department of Obstetrics and Gynecology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Ni Jin
- Department of Obstetrics and Gynecology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jie Lu
- Department of Obstetrics and Gynecology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Ming Wang
- Department of Obstetrics and Gynecology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jun Wang
- Department of Obstetrics and Gynecology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Shuqiang Chen
- Department of Obstetrics and Gynecology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
9
|
Chen Y, Nian F, Chen J, Jiang Q, Yuan T, Feng H, Shen X, Dong L. Metagenomic Microbial Signatures for Noninvasive Detection of Pancreatic Cancer. Biomedicines 2025; 13:1000. [PMID: 40299688 PMCID: PMC12025148 DOI: 10.3390/biomedicines13041000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/03/2025] [Accepted: 04/10/2025] [Indexed: 05/01/2025] Open
Abstract
Background/Objectives: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy with poor early detection rates owing to the limited sensitivity and specificity of the current biomarker CA19-9. Gut microbiota dysbiosis plays a key role in PDAC pathogenesis. This study aimed to evaluate the noninvasive approach we developed, combining metagenome-derived microbial signatures with CA19-9, to improve PDAC detection. Methods: This study included 50 treatment-naïve patients with PDAC and their matched controls. Fecal samples were analyzed using shotgun metagenomic sequencing. Machine learning algorithms were used to develop and validate a diagnostic panel integrating microbial signatures and CA19-9 levels. Subgroup analyses were used to confirm the robustness of the microbial markers. Results: The combined models at both species and genus levels effectively distinguished patients with PDAC from healthy individuals, and their strong diagnostic efficacy and accuracy were demonstrated through rigorous validation. Conclusions: In conclusion, the combination of gut microbiome profiling and CA19-9 improves PDAC detection accuracy compared to the use of CA19-9 alone, showing promise for early and noninvasive diagnosis.
Collapse
Affiliation(s)
- Yueying Chen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Shanghai 200032, China
| | - Fulin Nian
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Shanghai 200032, China
| | - Jia Chen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Shanghai 200032, China
| | - Qiuyu Jiang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Shanghai 200032, China
| | - Tianli Yuan
- Department of Gastrointestinal Surgery, Renji Hospital Affiliated, University School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Haokang Feng
- Key Laboratory of Carcinogenesis and Cancer Invasion, Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Ministry of Education, Shanghai 200032, China
| | - Xizhong Shen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Shanghai 200032, China
| | - Ling Dong
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Liver Diseases, Shanghai 200032, China
| |
Collapse
|
10
|
Li J, Yu B, Xue Z, Liang Y, Chen S, Gui T, Liu Z, Zhang L, Peng R. LncRNA OLMALINC promotes osteosarcoma progression through USP1-mediated autophagy suppression. Hum Cell 2025; 38:91. [PMID: 40249458 DOI: 10.1007/s13577-025-01221-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/03/2025] [Indexed: 04/19/2025]
Abstract
Osteosarcoma (OS) remains a challenging malignancy with poor prognosis, especially in metastatic or recurrent cases. Despite progress, the molecular mechanisms driving OS, particularly the regulation of autophagy, are not fully understood. Here, through integrated analysis of single-cell and transcriptomic data, we identify a novel long non-coding RNA (lncRNA), OLMALINC, as a critical autophagy regulator in OS. OLMALINC is significantly upregulated in OS tissues, with its expression correlating to poor clinical outcomes. Functional studies show that altering OLMALINC expression impacts OS cell progression and autophagy. Mechanistically, transcriptome analysis and RNA immunoprecipitation reveal Ubiquitin-Specific Peptidase 1 (USP1) as a direct downstream target of OLMALINC. The OLMALINC-USP1 axis inhibits autophagy and activates the hypoxia-inducible factor 1 (HIF-1α) pathway, promoting OS progression. Therapeutically, combining the USP1 inhibitor ML-323 with doxorubicin demonstrated synergistic anti-tumor effects in vitro and in vivo, enhancing autophagy and apoptosis while inhibiting tumor growth. These findings uncover a novel OLMALINC-USP1-HIF-1α axis in OS progression and highlight the potential of combining autophagy modulation with chemotherapy for improved therapeutic outcomes.
Collapse
Affiliation(s)
- Jianping Li
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Bo Yu
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Zhaowen Xue
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Yiping Liang
- Department of Basic Research Department, Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Shanchuang Chen
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Tao Gui
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zitao Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| | - Lei Zhang
- Department of General Surgery, The Second Affiliated Hospital of Bengbu Medical University, Bengbu, 233080, Anhui, China.
| | - Rui Peng
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China.
| |
Collapse
|
11
|
Peng C, Wang J, Wang S, Zhao Y, Wang H, Wang Y, Ma Y, Yang J. Endoplasmic Reticulum Stress: Triggers Microenvironmental Regulation and Drives Tumor Evolution. Cancer Med 2025; 14:e70684. [PMID: 40035165 PMCID: PMC11877002 DOI: 10.1002/cam4.70684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/23/2024] [Accepted: 01/29/2025] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND The endoplasmic reticulum (ER) serves as a crucial hub for protein synthesis and processing, playing an essential role in maintaining protein homeostasis. Perturbations, such as hypoxia, oxidative stress, inadequate amino acid supply, Ca2+ imbalance, and acidosis, can disrupt cellular equilibrium and result in the accumulation of misfolded/unfolded proteins within the ER lumen. This triggers ER stress. In response to this stress, an unfolded protein response (UPR) is activated as a mechanism to cope with the stress and restore internal balance. The UPR is regulated by three sensors located in the ER: inositol-requiring enzyme 1 (IRE1), protein kinase RNA-like endoplasmic reticulum kinase (PERK), and activating transcription factor 6 (ATF6). However, the UPR can promote tumor growth in vivo by affecting tumor angiogenesis, cell migration, cell metabolism, and treatment resistance, and has a huge impact on the tumor microenvironment. MATERIALS AND METHODS We conducted a literature review of scientific papers on the topic of ER stress in the tumor microenvironment. RESULTS AND DISCUSSION This review focuses on the inducing factors of ER stress, the mechanism of the UPR signaling pathway induced by ER stress, and the effect of ER stress on the tumor microenvironment and immune-infiltrating cells. Tumors can regulate their evolution by affecting themselves and the tumor microenvironment through endoplasmic reticulum stress. This study reveals the important role of endoplasmic reticulum stress in the occurrence and development of tumors, and provides new ideas and potential therapeutic targets for the precision treatment of tumors. Future studies can further explore the molecular mechanism of ER stress regulating tumor microenvironment and explore its application potential in clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Chaosheng Peng
- Department of Digestive SurgeryXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
| | - Juan Wang
- Department of Digestive SurgeryXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
| | - Shu Wang
- Department of Digestive SurgeryXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
| | - Yan Zhao
- Department of Digestive SurgeryXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
| | - Haoyuan Wang
- Department of Digestive SurgeryXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
| | - Yuhao Wang
- Department of Digestive SurgeryXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
| | - Yuxuan Ma
- Department of Digestive SurgeryXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
| | - Jianjun Yang
- Department of Digestive SurgeryXijing Hospital of Digestive Diseases, Fourth Military Medical UniversityXi'anChina
| |
Collapse
|
12
|
Gao H, Ma B, Zhao Y, Pan Y, Zhang A. Implications and mechanisms of O-GlcNAcylation in cancer therapy resistance. TUMORI JOURNAL 2025; 111:41-54. [PMID: 39718082 DOI: 10.1177/03008916241299244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
O-linked-N-acetylglucosaminylation (O-GlcNAcylation), one of the protein post-translational modifications, is the process of adding O-linked-β-D-N-acetylglucosaminylation (O-GlcNAc) to serine and threonine residues of proteins. O-GlcNAcylation regulates various fundamental cell biological processes, including gene transcription, signal transduction, and cellular metabolism. The role of dysregulated O-GlcNAcylation in tumorigenesis has been recognized, but its role in cancer therapy tolerance has not been elucidated. Therefore, this paper provides the latest evidence on the role of O-GlcNAcylation in cancer therapy responsiveness to understand the impact of O-GlcNAcylation on cancer therapy outcomes, as well as analyzing several possible mechanisms by which O-GlcNAcylation dysregulation affects cancer therapy efficacy, and discusses the possibility of O-GlcNAcylation as a cancer therapy sensitizer.
Collapse
Affiliation(s)
- Hongwei Gao
- Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Binyuan Ma
- Healthy Examination & Management Center, First Hospital of Lanzhou University, Lanzhou, China
| | - Youli Zhao
- Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Yunyan Pan
- Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Anan Zhang
- Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| |
Collapse
|
13
|
Jia Y, Song Y, Xue H, Li X, Zhang Y, Fan S, Yang X, Ding Z, Qiu Y, Wu Z, Zhao P. Sevoflurane postconditioning mitigates neuronal hypoxic-ischemic injury via regulating reactive astrocytic STAT3 protein modification. Chem Biol Interact 2025; 405:111308. [PMID: 39536892 DOI: 10.1016/j.cbi.2024.111308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/01/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024]
Abstract
Astrocyte activation plays a pivotal role in accelerating the cascade of neuroinflammation associated with the development of hypoxic-ischemic brain injury. This study aimed to investigate the mechanism by which sevoflurane postconditioning mitigates neuronal damage through astrocytes by regulating reactive astrocytic Signal Transducer and Activator of Transcription 3 (STAT3) modifications. A modified Rice‒Vannucci model in rats and a conditioned culture system established by subjecting primary astrocytes to oxygen glucose deprivation, followed by using the conditioned medium to culture the neuron cell line SH-SY5Y were used to simulate HI insult in vivo and in vitro, respectively. These models were followed by 30 min of 2.5 % sevoflurane treatment. Stattic was used to inhibit STAT3 phosphorylation, and (Z)-PUGNAc or OSMI-1 was added to regulate O-linked-β-N-acetylglucosamine modification (O-GlcNAcylation) in primary astrocytes in vitro. Neurobehavioral tests, Nissl staining, CCK8 assay, and flow cytometry for apoptosis were used to assess neuronal function. Immunofluorescence staining was used to detect astrocyte reactivity and the intracellular distribution of STAT3. Immunoprecipitation combined with Western blotting was used to evaluate the O-GlcNAcylation of STAT3. Protein expression and phosphorylation levels were detected by Western blotting. ELISA was conducted to detect the detrimental cytokines IL-6 and IL-1β in astrocyte-conditioned medium. Sevoflurane postconditioning enhanced the O-GlcNAcylation of astrocytic STAT3 following HI insult via the manner of OGT. Crosstalk between O-GlcNAcylation and phosphorylation of STAT3 showed that O-GlcNAcylation inhibited STAT3 phosphorylation. The inhibitory effect on astrocytes suppressed STAT3 nuclear translocation, reduced astrocyte reactivity, decreased the release of the inflammatory cytokines IL6 and IL-1β, attenuated neuronal apoptosis following HI insult, and improved neuron viability. Sevoflurane postconditioning increased astrocytic STAT3 O-GlcNAcylation level to competitively inhibit STAT3 phosphorylation. This deactivated downstream inflammation pathways and reduced astrocyte reactivity, thereby mitigating HI insult in neurons both in vivo and in vitro.
Collapse
Affiliation(s)
- Yufei Jia
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yanhong Song
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Hang Xue
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xingyue Li
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yinong Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Shiyue Fan
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xu Yang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Zixuan Ding
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yue Qiu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Ziyi Wu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Ping Zhao
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
14
|
Weng Y, Wang Z, Sitosari H, Ono M, Okamura H, Oohashi T. O-GlcNAcylation regulates osteoblast differentiation through the morphological changes in mitochondria, cytoskeleton, and endoplasmic reticulum. Biofactors 2025; 51:e2131. [PMID: 39405562 DOI: 10.1002/biof.2131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/01/2024] [Indexed: 12/29/2024]
Abstract
To explore the potential mechanisms which O-linked-N-acetylglucosaminylation (O-GlcNAcylation) regulates osteogenesis, a publicly RNA-seq dataset was re-analyzed with literature-mining and showed the primary targets of O-GlcNAcylation in osteoblasts are mitochondria/cytoskeleton. Although the O-GlcNAcylation-regulated mitochondria/cytoskeleton has been extensively studied, its specific role during osteogenesis remains unclear. To address this, we knocked out Ogt (Ogt-KO) in MC3T3-E1 osteoblastic cells. Then, significantly reduced osteoblast differentiation, motility, proliferation, mitochondria-endoplasmic reticulum (Mito-ER) coupling, volume of ER, nuclear tubulins, and oxygen metabolism were observed in Ogt-KO cells. Through artificial intelligence (AI)-predicted cellular structures, the time-lapse live cells imaging with reactive-oxygen-species/hypoxia staining showed that lower cell proliferation and altered oxygen metabolism in the Ogt-KO cells were correlated with the Mito-ER coupling. Bioinformatics analysis, combined with correlated mRNA and protein expression, suggested that Ezh2 and its downstream targets (Opa1, Gsk3a, Wnt3a, Hif1a, and Hspa9) may be involved in O-GlcNAcylation-regulated Mito-ER coupling, ultimately impacting osteoblast differentiation. In conclusion, our findings indicate that O-GlcNAcylation-regulated osteoblast differentiation is linked to morphological changes in mitochondria, cytoskeleton, and ER, with Ezh2 potentially playing a crucial role.
Collapse
Affiliation(s)
- Yao Weng
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Ziyi Wang
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Heriati Sitosari
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Department of Oral Biology, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Mitsuaki Ono
- Department of Oral Rehabilitation and Implantology, Okayama University Hospital, Okayama, Japan
| | - Hirohiko Okamura
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Toshitaka Oohashi
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
15
|
Greene KS, Choi A, Yang N, Chen M, Li R, Qiu Y, Ezzatpour S, Rojas KS, Shen J, Wilson KF, Katt WP, Aguilar HC, Lukey MJ, Whittaker GR, Cerione RA. Glutamine metabolism is essential for coronavirus replication in host cells and in mice. J Biol Chem 2025; 301:108063. [PMID: 39662828 PMCID: PMC11750454 DOI: 10.1016/j.jbc.2024.108063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/21/2024] [Accepted: 11/30/2024] [Indexed: 12/13/2024] Open
Abstract
Understanding the fundamental biochemical and metabolic requirements for the replication of coronaviruses within infected cells is of notable interest for the development of broad-based therapeutic strategies, given the likelihood of the emergence of new pandemic-potential virus species, as well as future variants of SARS-CoV-2. Here we demonstrate members of the glutaminase family of enzymes (GLS and GLS2), which catalyze the hydrolysis of glutamine to glutamate (i.e., the first step in glutamine metabolism), play key roles in coronavirus replication in host cells. Using a range of human seasonal and zoonotic coronaviruses, we show three examples where GLS expression increases during coronavirus infection of host cells, and another where GLS2 is upregulated. The viruses hijack the metabolic machinery responsible for glutamine metabolism to generate the building blocks for biosynthetic processes and satisfy the bioenergetic requirements demanded by the "glutamine addiction" of virus-infected cells. We demonstrate that genetic silencing of glutaminase enzymes reduces coronavirus infection and that newer members of two classes of allosteric inhibitors targeting these enzymes, designated as SU1, a pan-GLS/GLS2 inhibitor, and UP4, a specific GLS inhibitor, block viral replication in epithelial cells. Moreover, treatment of SARS-CoV-2 infected K18-human ACE2 transgenic mice with SU1 resulted in their complete survival compared to untreated control animals, which succumbed within 10 days post-infection. Overall, these findings highlight the importance of glutamine metabolism for coronavirus replication in human cells and mice and show that glutaminase inhibitors can block coronavirus infection and thereby may represent a novel class of broad-based anti-viral drug candidates.
Collapse
Affiliation(s)
- Kai Su Greene
- Department of Molecular Medicine, Cornell University, Ithaca, New York, USA
| | - Annette Choi
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York, USA
| | - Nianhui Yang
- Department of Molecular Medicine, Cornell University, Ithaca, New York, USA
| | - Matthew Chen
- Department of Molecular Medicine, Cornell University, Ithaca, New York, USA
| | - Ruizhi Li
- Department of Molecular Medicine, Cornell University, Ithaca, New York, USA
| | - Yijian Qiu
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Shahrzad Ezzatpour
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York, USA
| | - Katherine S Rojas
- Department of Molecular Medicine, Cornell University, Ithaca, New York, USA
| | - Jonathan Shen
- Department of Molecular Medicine, Cornell University, Ithaca, New York, USA
| | - Kristin F Wilson
- Department of Molecular Medicine, Cornell University, Ithaca, New York, USA
| | - William P Katt
- Department of Molecular Medicine, Cornell University, Ithaca, New York, USA
| | - Hector C Aguilar
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York, USA
| | - Michael J Lukey
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Gary R Whittaker
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York, USA; Public & Ecosystem Health, Cornell University, Ithaca, New York, USA
| | - Richard A Cerione
- Department of Molecular Medicine, Cornell University, Ithaca, New York, USA; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA.
| |
Collapse
|
16
|
Wang W, Lu X, Zhu C, Li J, Liu Y, Yao Z, Li X. O-GlcNAcylation-related genes mediate tumor microenvironment characteristics and prediction of immunotherapy response in gastric cancer. Acta Biochim Biophys Sin (Shanghai) 2024; 57:588-603. [PMID: 39696985 PMCID: PMC12053408 DOI: 10.3724/abbs.2024222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/05/2024] [Indexed: 12/20/2024] Open
Abstract
We aim to identify molecular clusters related to O-GlcNAcylation and establish a novel scoring system for predicting prognosis and immunotherapy efficacy in patients with gastric cancer (GC). The transcriptomic and clinical data are obtained from XENA-UCSC and GEO databases. The O-GlcNAcylation-related genes are obtained from the GSEA database. Consensus clustering analysis is employed to identify O-GlcNAcylation-related molecular clusters, and principal component analysis (PCA) is utilized to develop a novel prognostic scoring system for predicting GC outcomes and immunotherapy efficacy. The prognostic accuracy of the scoring system is assessed across five real-world cohorts. The biological function of actin alpha 2, smooth muscle (ACTA2) in GC is determined through experimental verification. Using 34 O-GlcNAcylation-related genes associated with prognosis in GC patients, these individuals are divided into two distinct subgroups characterized by different outcomes, tumor microenvironment profiles, and clinical case characteristics. The DEGs between the two subgroups are subsequently used to further divide the GC patients into two subgroups by consensus cluster analysis. PCA is used to construct a prognostic scoring system, which reveal that patients in the low-score subgroup have a better prognosis and greater benefit from immunotherapy. The accuracy of the scoring system is confirmed through validation in a cohort of patients receiving immunotherapy in the real world. ACTA2 promotes proliferation and inhibits apoptosis in GC cells. These findings suggest that we successfully establish molecular clusters associated with O-GlcNAcylation and develop a scoring system that demonstrates strong performance in predicting the prognosis of patients with GC and the effect of immunotherapy interventions.
Collapse
Affiliation(s)
- Wangwen Wang
- Department of Geriatric Gastroenterologythe First Affiliated Hospital with Nanjing Medical
UniversityNanjing210029China
| | - Xi Lu
- Department of Geriatric Gastroenterologythe First Affiliated Hospital with Nanjing Medical
UniversityNanjing210029China
| | - Chengjun Zhu
- Department of General Surgerythe First Affiliated Hospital with Nanjing Medical
UniversityNanjing210029China
| | - Jie Li
- Department of Geriatric Gastroenterologythe First Affiliated Hospital with Nanjing Medical
UniversityNanjing210029China
| | - Yue Liu
- Department of Geriatric Gastroenterologythe First Affiliated Hospital with Nanjing Medical
UniversityNanjing210029China
| | - Zhangchao Yao
- Department of Geriatric Gastroenterologythe First Affiliated Hospital with Nanjing Medical
UniversityNanjing210029China
| | - Xiaolin Li
- Department of Geriatric Gastroenterologythe First Affiliated Hospital with Nanjing Medical
UniversityNanjing210029China
| |
Collapse
|
17
|
Chen H, Zhou X, Ma J, Shan A. Low-dose deoxynivalenol exposure triggers hepatic excessive ferritinophagy and mitophagy mitigated by hesperidin modulated O-GlcNAcylation. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135952. [PMID: 39341193 DOI: 10.1016/j.jhazmat.2024.135952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/08/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024]
Abstract
The level and breadth of deoxynivalenol (DON) contamination in foods made with cereals have increased due to global warming. Consumption of DON-contaminated food and feed poses significant risks to human health and animal production. However, the mechanism by which prolonged exposure to low-dose DON leads to liver damage in animals and effective treatments remain unclear. Our investigation focused on the impact of varying DON exposure times on AML12 cells as well as the long-term liver damage caused by low-dose DON exposure in mice. In addition, this article investigated the unique role of hesperidin in mitigating hepatic ferroptosis induced by low-dose DON exposure. Our results imply that DON's suppression of O-GlcNAcylation exacerbated mitophagy by encouraging ferritinophagy and causing labile iron to aggregate within mitochondria. Furthermore, DON could increase NCOA4-mediated ferritinophagy by De-O-GlcNAcylation FTH to trigger ferroptosis-associated liver injury in mice. Notably, hesperidin alleviated the susceptibility to ferroptosis by increasing O-GlcNAcylation levels and effectively attenuated the liver injury induced by low-dose DON exposure. This finding provides a new strategy for dealing with liver injury caused by low-dose DON exposure.
Collapse
Affiliation(s)
- Hao Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China; College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xintong Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jun Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin 150030, PR China.
| | - Anshan Shan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
18
|
Cheng SS, Mody AC, Woo CM. Opportunities for Therapeutic Modulation of O-GlcNAc. Chem Rev 2024; 124:12918-13019. [PMID: 39509538 DOI: 10.1021/acs.chemrev.4c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
O-Linked β-N-acetylglucosamine (O-GlcNAc) is an essential, dynamic monosaccharide post-translational modification (PTM) found on serine and threonine residues of thousands of nucleocytoplasmic proteins. The installation and removal of O-GlcNAc is controlled by a single pair of enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively. Since its discovery four decades ago, O-GlcNAc has been found on diverse classes of proteins, playing important functional roles in many cellular processes. Dysregulation of O-GlcNAc homeostasis has been implicated in the pathogenesis of disease, including neurodegeneration, X-linked intellectual disability (XLID), cancer, diabetes, and immunological disorders. These foundational studies of O-GlcNAc in disease biology have motivated efforts to target O-GlcNAc therapeutically, with multiple clinical candidates under evaluation. In this review, we describe the characterization and biochemistry of OGT and OGA, cellular O-GlcNAc regulation, development of OGT and OGA inhibitors, O-GlcNAc in pathophysiology, clinical progress of O-GlcNAc modulators, and emerging opportunities for targeting O-GlcNAc. This comprehensive resource should motivate further study into O-GlcNAc function and inspire strategies for therapeutic modulation of O-GlcNAc.
Collapse
Affiliation(s)
- Steven S Cheng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Alison C Mody
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Christina M Woo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Affiliate member of the Broad Institute, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
19
|
Zhang HY, Shu YQ, Li Y, Hu YL, Wu ZH, Li ZP, Deng Y, Zheng ZJ, Zhang XJ, Gong LF, Luo Y, Wang XY, Li HP, Liao XP, Li G, Ren H, Qiu W, Sun J. Metabolic disruption exacerbates intestinal damage during sleep deprivation by abolishing HIF1α-mediated repair. Cell Rep 2024; 43:114915. [PMID: 39527478 DOI: 10.1016/j.celrep.2024.114915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 09/22/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Sleep deprivation (SD) has been reported to induce intestinal damage by several mechanisms, yet its role in modulating epithelial repair remains unclear. In this study, we find that chronic SD leads to colonic damage through continuous hypoxia. However, HIF1α, which generally responds to hypoxia to modulate barrier integrity, was paradoxically dysregulated in the colon. Further investigation revealed that a metabolic disruption during SD causes accumulation of α-ketoglutarate in the colon. The excessive α-ketoglutarate degrades HIF1α protein through PHD2 (prolyl hydroxylase 2) to abolish the intestinal repair functions of HIF1α. Collectively, these findings provide insights into how SD can exacerbate intestinal damage by fine-tuning metabolism to abolish HIF1α-mediated repair.
Collapse
Affiliation(s)
- Hai-Yi Zhang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ya-Qing Shu
- The Third Affiliated Hospital of Sun Yat-sen University, Department of Neurology, Guangzhou, China
| | - Yan Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ya-Lin Hu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhi-Hong Wu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhi-Peng Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yao Deng
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zi-Jian Zheng
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiao-Jing Zhang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Liu-Fei Gong
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yang Luo
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiao-Yu Wang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | | | - Xiao-Ping Liao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Gong Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Hao Ren
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wei Qiu
- The Third Affiliated Hospital of Sun Yat-sen University, Department of Neurology, Guangzhou, China.
| | - Jian Sun
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
20
|
Wang M, Zhu W, Guo Y, Zeng H, Liu J, Liu J, Zou Y. Astragalus polysaccharide treatment relieves cerebral ischemia‒reperfusion injury by promoting M2 polarization of microglia by enhancing O-GlcNAcylation. Metab Brain Dis 2024; 40:16. [PMID: 39560836 DOI: 10.1007/s11011-024-01420-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/01/2024] [Indexed: 11/20/2024]
Abstract
Cerebral ischemia‒reperfusion (I/R) injury seriously threatens the lives of patients. Astragalus polysaccharide (APS) is the main active ingredient of Astragalus membranaceus and has a wide range of pharmacological activities. Here, we aimed to explore the impacts of APS on cerebral I/R injury and its specific mechanisms. We established a cerebral I/R injury model using middle cerebral artery occlusion (MCAO)-treated rats and oxygen glucose deprivation/reoxygenation (OGD/R)-treated BV2 cells. The interleukin 1β (IL-1β), interleukin 6 (IL-6) and interleukin (IL-10) levels were determined using corresponding ELISA kits and RT‒qPCR. The levels of M1 microglial markers (INOS and CD16) and M2 microglial markers (Arg-1 and CD206) were measured by RT‒qPCR. The O-linked N-acetylglucosamine modification (O-GlcNAcylation), O-GlcNAc transfer (OGT) and O-GlcNAc glycosidase (OGA) protein levels were measured by Western blot. Our results showed that APS treatment decreased IL-1β (179.72 ± 9.08 vs. 81.33 ± 6.30) and IL-6 (445.56 ± 33.09 vs. 234.75 ± 27.62) levels and increased IL-10 (41.95 ± 4.18 vs. 86.40 ± 7.16) levels in OGD/R-treated BV2 cells (p < 0.001). In addition, APS promoted the M2 polarization of OGD/R-treated BV2 cells, manifested by an increase in Arg-1 (0.43 ± 0.04 vs. 0.76 ± 0.03) and CD206 (0.36 ± 0.03 vs. 0.65 ± 0.06) and a decrease in INOS (2.84 ± 0.39 vs. 1.56 ± 0.19) and CD16 (4.04 ± 0.36 vs. 1.88 ± 0.09) in OGD/R-treated BV2 cells (p < 0.001). Additionally, APS treatment increased the O-GlcNAcylation and OGT levels in OGD/R-treated BV2 cells, while OGT knockdown reversed the effect of APS in OGD/R-treated BV2 cells and MCAO-treated rats (p < 0.05). Our study demonstrated that APS alleviated cerebral I/R injury by promoting the M2 polarization of microglia by enhancing OGT-mediated O-GlcNAcylation.
Collapse
Affiliation(s)
- Mingyi Wang
- Department of Rehabilitation Medicine, The Fifth People's Hospital of Shunde District, Foshan City (Longjiang Hospital of Shunde District, Foshan City), No.39, Donghua Road, Longjiang Town, Shunde District, Foshan City, Guangdong Province, 528318, China.
| | - Wenfeng Zhu
- Department of Ultrasound, The Fifth People's Hospital of Shunde District, Foshan City (Longjiang Hospital of Shunde District, Foshan City), Foshan City, China
| | - Yingmei Guo
- Department of Traditional Chinese Medicine, The Fifth People's Hospital of Shunde District, Foshan City (Longjiang Hospital of Shunde District, Foshan City), Foshan City, China
| | - Huan Zeng
- Endoscopy Center, The Fifth People's Hospital of Shunde District, Foshan City (Longjiang Hospital of Shunde District, Foshan City), Foshan City, China
| | - Jincan Liu
- Department of Rehabilitation Medicine, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Guangzhou, China
| | - Jiemei Liu
- Department of Rehabilitation Medicine, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Guangzhou, China
| | - Yucong Zou
- Department of Rehabilitation, Zhuhai Hospital of Integrated Traditional Chinese & Western Medicine, Zhuhai, China
| |
Collapse
|
21
|
Azhar HMF, Saeed MT, Jabeen I. Dynamics simulations of hypoxia inducible factor-1 regulatory network in cancer using formal verification techniques. Front Mol Biosci 2024; 11:1386930. [PMID: 39606028 PMCID: PMC11599740 DOI: 10.3389/fmolb.2024.1386930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1) regulates cell growth, protein translation, metabolic pathways and therefore, has been advocated as a promising biological target for the therapeutic interventions against cancer. In general, hyperactivation of HIF-1 in cancer has been associated with increases in the expression of glucose transporter type-1 (GLUT-1) thus, enhancing glucose consumption and hyperactivating metabolic pathways. The collective behavior of GLUT-1 along with previously known key players AKT, OGT, and VEGF is not fully characterized and lacks clarity of how glucose uptake through this pathway (HIF-1) probes the cancer progression. This study uses a Rene Thomas qualitative modeling framework to comprehend the signaling dynamics of HIF-1 and its interlinked proteins, including VEGF, ERK, AKT, GLUT-1, β-catenin, C-MYC, OGT, and p53 to elucidate the regulatory mechanistic of HIF-1 in cancer. Our dynamic model reveals that continuous activation of p53, β-catenin, and AKT in cyclic conditions, leads to oscillations representing homeostasis or a stable recovery state. Any deviation from this cycle results in a cancerous or pathogenic state. The model shows that overexpression of VEGF activates ERK and GLUT-1, leads to more aggressive tumor growth in a cancerous state. Moreover, it is observed that collective modulation of VEGF, ERK, and β-catenin is required for therapeutic intervention because these genes enhance the expression of GLUT-1 and play a significant role in cancer progression and angiogenesis. Additionally, SimBiology simulation unveils dynamic molecular interactions, emphasizing the need for targeted therapeutics to effectively regulate VEGF and ERK concentrations to modulate cancer cell proliferation.
Collapse
Affiliation(s)
| | | | - Ishrat Jabeen
- School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| |
Collapse
|
22
|
Wei JY, Liu H, Li Y, Zhao D, Wang B, Wang HJ, Wang L, Wang KJ, Yue JL, Zhang HY, Li TY, Miao YJ, Wang KL, Tong PG, Zhang Z, Li ZY, Shi Z, Yao JY, Liu DX, Fang WG, Li B, Shang DS, Lyu Y, Sun HZ, Zhao WD, Chen YH. Melatonin Protects Against Cocaine-Induced Blood-Brain Barrier Dysfunction and Cognitive Impairment by Regulating miR-320a-Dependent GLUT1 Expression. J Pineal Res 2024; 76:e70002. [PMID: 39539049 DOI: 10.1111/jpi.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Cocaine abuse has been strongly linked to blood-brain barrier (BBB) dysfunction, though the exact mechanism by which cocaine disrupts the BBB remains unclear. In this study, we found that cocaine treatment reduces the expression of glucose transporter 1 (GLUT1) in brain microvascular endothelial cells, a key factor in cocaine-induced brain glucose uptake, BBB leakage, and cognitive impairment. Mechanistically, our results show that cocaine upregulates miR-320a, which in turn suppresses GLUT1 expression via the beta 2-adrenergic receptor (ADRB2). Notably, the administration of adeno-associated viruses encoding full-length GLUT1 or miR-320a inhibitors to the brain microvascular endothelium significantly mitigated cocaine-induced BBB leakage and cognitive deficits. Additionally, we discovered that melatonin, a well-known neuroprotective hormone, alleviates cocaine-induced BBB disruption and cognitive impairment. This protective effect of melatonin was mediated through the upregulation of miR-320a-dependent GLUT1 expression in brain endothelial cells via MT1 receptor-mediated inhibition of the cAMP/PKA/CREB signaling pathway. In conclusion, our findings demonstrate that cocaine downregulates brain microvascular GLUT1, leading to BBB dysfunction, and highlight melatonin as a potential therapeutic agent for treating cocaine-related complications.
Collapse
Affiliation(s)
- Jia-Yi Wei
- Key Laboratory of Cell Biology and Key Laboratory of Medical Cell Biology, Department of Developmental Cell Biology, Ministry of Public Health and Ministry of Education, China Medical University, Shenyang, China
| | - Hui Liu
- Key Laboratory of Cell Biology and Key Laboratory of Medical Cell Biology, Department of Developmental Cell Biology, Ministry of Public Health and Ministry of Education, China Medical University, Shenyang, China
| | - Yuan Li
- Key Laboratory of Cell Biology and Key Laboratory of Medical Cell Biology, Department of Developmental Cell Biology, Ministry of Public Health and Ministry of Education, China Medical University, Shenyang, China
| | - Dan Zhao
- Key Laboratory of Cell Biology and Key Laboratory of Medical Cell Biology, Department of Developmental Cell Biology, Ministry of Public Health and Ministry of Education, China Medical University, Shenyang, China
| | - Bo Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hui-Jie Wang
- Key Laboratory of Cell Biology and Key Laboratory of Medical Cell Biology, Department of Developmental Cell Biology, Ministry of Public Health and Ministry of Education, China Medical University, Shenyang, China
| | - Li Wang
- Key Laboratory of Cell Biology and Key Laboratory of Medical Cell Biology, Department of Developmental Cell Biology, Ministry of Public Health and Ministry of Education, China Medical University, Shenyang, China
| | - Kang-Ji Wang
- Key Laboratory of Cell Biology and Key Laboratory of Medical Cell Biology, Department of Developmental Cell Biology, Ministry of Public Health and Ministry of Education, China Medical University, Shenyang, China
| | - Jin-Li Yue
- Key Laboratory of Cell Biology and Key Laboratory of Medical Cell Biology, Department of Developmental Cell Biology, Ministry of Public Health and Ministry of Education, China Medical University, Shenyang, China
| | - Hong-Yan Zhang
- Key Laboratory of Cell Biology and Key Laboratory of Medical Cell Biology, Department of Developmental Cell Biology, Ministry of Public Health and Ministry of Education, China Medical University, Shenyang, China
| | - Tian-Yue Li
- Key Laboratory of Cell Biology and Key Laboratory of Medical Cell Biology, Department of Developmental Cell Biology, Ministry of Public Health and Ministry of Education, China Medical University, Shenyang, China
| | - Yi-Jue Miao
- Key Laboratory of Cell Biology and Key Laboratory of Medical Cell Biology, Department of Developmental Cell Biology, Ministry of Public Health and Ministry of Education, China Medical University, Shenyang, China
| | - Kai-Li Wang
- Key Laboratory of Cell Biology and Key Laboratory of Medical Cell Biology, Department of Developmental Cell Biology, Ministry of Public Health and Ministry of Education, China Medical University, Shenyang, China
| | - Pai-Ge Tong
- Key Laboratory of Cell Biology and Key Laboratory of Medical Cell Biology, Department of Developmental Cell Biology, Ministry of Public Health and Ministry of Education, China Medical University, Shenyang, China
| | - Zhuo Zhang
- Key Laboratory of Cell Biology and Key Laboratory of Medical Cell Biology, Department of Developmental Cell Biology, Ministry of Public Health and Ministry of Education, China Medical University, Shenyang, China
| | - Ze-Ye Li
- Key Laboratory of Cell Biology and Key Laboratory of Medical Cell Biology, Department of Developmental Cell Biology, Ministry of Public Health and Ministry of Education, China Medical University, Shenyang, China
| | - Zheng Shi
- Key Laboratory of Cell Biology and Key Laboratory of Medical Cell Biology, Department of Developmental Cell Biology, Ministry of Public Health and Ministry of Education, China Medical University, Shenyang, China
| | - Jia-Yuan Yao
- Key Laboratory of Cell Biology and Key Laboratory of Medical Cell Biology, Department of Developmental Cell Biology, Ministry of Public Health and Ministry of Education, China Medical University, Shenyang, China
| | - Dong-Xin Liu
- Key Laboratory of Cell Biology and Key Laboratory of Medical Cell Biology, Department of Developmental Cell Biology, Ministry of Public Health and Ministry of Education, China Medical University, Shenyang, China
| | - Wen-Gang Fang
- Key Laboratory of Cell Biology and Key Laboratory of Medical Cell Biology, Department of Developmental Cell Biology, Ministry of Public Health and Ministry of Education, China Medical University, Shenyang, China
| | - Bo Li
- Key Laboratory of Cell Biology and Key Laboratory of Medical Cell Biology, Department of Developmental Cell Biology, Ministry of Public Health and Ministry of Education, China Medical University, Shenyang, China
| | - De-Shu Shang
- Key Laboratory of Cell Biology and Key Laboratory of Medical Cell Biology, Department of Developmental Cell Biology, Ministry of Public Health and Ministry of Education, China Medical University, Shenyang, China
| | - Yuan Lyu
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Department of Obstetrics and Gynecology, Research Center of China Medical University Birth Cohort, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hong-Zan Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wei-Dong Zhao
- Key Laboratory of Cell Biology and Key Laboratory of Medical Cell Biology, Department of Developmental Cell Biology, Ministry of Public Health and Ministry of Education, China Medical University, Shenyang, China
| | - Yu-Hua Chen
- Key Laboratory of Cell Biology and Key Laboratory of Medical Cell Biology, Department of Developmental Cell Biology, Ministry of Public Health and Ministry of Education, China Medical University, Shenyang, China
| |
Collapse
|
23
|
Wei J, Zhou S, Chen G, Chen T, Wang Y, Zou J, Zhou F, Liu J, Gong Q. GFPT2: A novel biomarker in mesothelioma for diagnosis and prognosis and its molecular mechanism in malignant progression. Br J Cancer 2024; 131:1529-1542. [PMID: 39317702 PMCID: PMC11519369 DOI: 10.1038/s41416-024-02830-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND Mesothelioma (MESO) is an insidious malignancy with a complex diagnosis and a poor prognosis. Our study unveils Glutamine-Fructose-6-Phosphate Transaminase 2 (GFPT2) as a valuable diagnostic and prognostic marker for MESO, exploring its role in MESO pathogenesis. METHODS We utilised tissue samples and clinicopathologic data to evaluate the diagnostic and prognostic significance of GFPT2 as a biomarker for MESO. The role of GFPT2 in the malignant progression of MESO was investigated through in vitro and in vivo experiments. The activation of NF-κB-p65 through O-GlcNAcylation at Ser75 was elucidated using experiments like HPLC-QTRAP-MS/MS and mass spectrometry analysis. RESULTS The study demonstrates that GFPT2 exhibits a sensitivity of 92.60% in diagnosing MESO. Overexpression of it has been linked to an unfavourable prognosis. Through rigorous verification, we have confirmed that elevated GFPT2 levels drive malignant proliferation, invasiveness, and metastasis in MESO. At the molecular level, GFPT2 augments p65 O-GlcNAcylation, orchestrating its nuclear translocation and activating the NF-κB signalling pathway. CONCLUSIONS Our insights suggest GFPT2's potential as a distinctive biomarker for MESO diagnosis and prognosis, and as an innovative therapeutic target, offering a new horizon for identification and treatment strategies in MESO management.
Collapse
Affiliation(s)
- Jia Wei
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Suiqing Zhou
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tingting Chen
- Department of Pathology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yan Wang
- Department of Pathology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jue Zou
- Department of Pathology, Nanjing Chest Hospital, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Fang Zhou
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Jiali Liu
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Qixing Gong
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
24
|
Lei Y, Liu Q, Chen B, Wu F, Li Y, Dong X, Ma N, Wu Z, Zhu Y, Wang L, Fu Y, Liu Y, Song Y, Du M, Zhang H, Zhu J, Lyons TJ, Wang T, Hu J, Xu H, Chen M, Yan H, Wang X. Protein O-GlcNAcylation coupled to Hippo signaling drives vascular dysfunction in diabetic retinopathy. Nat Commun 2024; 15:9334. [PMID: 39472558 PMCID: PMC11522279 DOI: 10.1038/s41467-024-53601-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/17/2024] [Indexed: 11/02/2024] Open
Abstract
Metabolic disorder significantly contributes to diabetic vascular complications, including diabetic retinopathy, the leading cause of blindness in the working-age population. However, the molecular mechanisms by which disturbed metabolic homeostasis causes vascular dysfunction in diabetic retinopathy remain unclear. O-GlcNAcylation modification acts as a nutrient sensor particularly sensitive to ambient glucose. Here, we observe pronounced O-GlcNAc elevation in retina endothelial cells of diabetic retinopathy patients and mouse models. Endothelial-specific depletion or pharmacological inhibition of O-GlcNAc transferase effectively mitigates vascular dysfunction. Mechanistically, we find that Yes-associated protein (YAP) and Transcriptional co-activator with PDZ-binding motif (TAZ), key effectors of the Hippo pathway, are O-GlcNAcylated in diabetic retinopathy. We identify threonine 383 as an O-GlcNAc site on YAP, which inhibits its phosphorylation at serine 397, leading to its stabilization and activation, thereby promoting vascular dysfunction by inducing a pro-angiogenic and glucose metabolic transcriptional program. This work emphasizes the critical role of the O-GlcNAc-Hippo axis in the pathogenesis of diabetic retinopathy and suggests its potential as a therapeutic target.
Collapse
Affiliation(s)
- Yi Lei
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Medical University General Hospital, Tianjin, China
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qiangyun Liu
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Medical University General Hospital, Tianjin, China
| | - Binggui Chen
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Fangfang Wu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yiming Li
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Medical University General Hospital, Tianjin, China
| | - Xue Dong
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Medical University General Hospital, Tianjin, China
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Nina Ma
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ziru Wu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yanfang Zhu
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Medical University General Hospital, Tianjin, China
| | - Lu Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yuxin Fu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yuming Liu
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Medical University General Hospital, Tianjin, China
| | - Yinting Song
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Medical University General Hospital, Tianjin, China
| | - Mei Du
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Medical University General Hospital, Tianjin, China
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Heng Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jidong Zhu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Timothy J Lyons
- Division of Endocrinology, Diabetes and Metabolic Diseases at the Medical University of South Carolina, Charleston, SC, USA
| | - Ting Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Junhao Hu
- Laboratory of Vascular Biology and Organ Homeostasis, Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Heping Xu
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Mei Chen
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Hua Yan
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Medical University General Hospital, Tianjin, China.
- School of Medicine, Nankai University, Tianjin, China.
| | - Xiaohong Wang
- Department of Ophthalmology, Laboratory of Molecular Ophthalmology and Tianjin Key Laboratory of Ocular Trauma, Ministry of Education International Joint Laboratory of Ocular Diseases, Tianjin Medical University General Hospital, Tianjin, China.
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
25
|
Wongprayoon P, Pengnam S, Srisuphan R, Opanasopit P, Jirawatnotai S, Charoensuksai P. The correlation between cellular O-GlcNAcylation and sensitivity to O-GlcNAc inhibitor in colorectal cancer cells. PLoS One 2024; 19:e0312173. [PMID: 39413067 PMCID: PMC11482669 DOI: 10.1371/journal.pone.0312173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/02/2024] [Indexed: 10/18/2024] Open
Abstract
The upregulation of O-GlcNAc signaling has long been implicated in the development and progression of numerous human malignancies, including colorectal cancer. In this study, we characterized eight colorectal cancer cell lines and one non-cancerous cell line for O-GlcNAc-related profiles such as the expression of OGT, OGA, and total protein O-GlcNAcylation, along with their sensitivity toward OSMI-1 (Os), an OGT inhibitor (OGTi). Indeed, Os dose-dependently suppressed the viability of all colorectal cancer cell lines tested. Among the three O-GlcNAc profiles, our results revealed that Os IC50 exhibited the strongest correlation with total protein O-GlcNAcylation (Pearson Correlation Coefficient r = -0.73), suggesting that total O-GlcNAcylation likely serves as a better predictive marker for OGTi sensitivity than OGT expression levels. Furthermore, we demonstrated that Os exhibited a synergistic relationship with regorafenib (Re). We believed that this synergism could be explained, at least in part, by the observed Re-mediated increase of cellular O-GlcNAcylation, which was counteracted by Os. Finally, we showed that the Os:Re combination suppressed the growth of NCI-H508 tumor spheroids. Overall, our findings highlighted OGTi as a potential anticancer agent that could be used in combination with other molecules to enhance the efficacy while minimizing adverse effects, and identified total cellular O-GlcNAcylation as a potential predictive marker for OGTi sensitivity.
Collapse
Affiliation(s)
- Pawaris Wongprayoon
- Faculty of Pharmacy, Department of Biomedicine and Health Informatics, Silpakorn University, Nakhon Pathom, Thailand
- Faculty of Pharmacy, Bioactives from Natural Resources Research Collaboration for Excellence in Pharmaceutical Sciences (BNEP), Silpakorn University, Nakhon Pathom, Thailand
| | - Supusson Pengnam
- Faculty of Pharmacy, Department of Biomedicine and Health Informatics, Silpakorn University, Nakhon Pathom, Thailand
- Faculty of Pharmacy, Center of Precision Medicine Innovation and Advanced Medicinal Product Development, Silpakorn University, Nakhon Pathom, Thailand
- Faculty of Pharmacy, Green Innovations Group (PDGIG), Silpakorn University, Nakhon Pathom, Thailand
| | - Roongtiwa Srisuphan
- Faculty of Pharmacy, Bioactives from Natural Resources Research Collaboration for Excellence in Pharmaceutical Sciences (BNEP), Silpakorn University, Nakhon Pathom, Thailand
| | - Praneet Opanasopit
- Faculty of Pharmacy, Center of Precision Medicine Innovation and Advanced Medicinal Product Development, Silpakorn University, Nakhon Pathom, Thailand
- Faculty of Pharmacy, Green Innovations Group (PDGIG), Silpakorn University, Nakhon Pathom, Thailand
- Faculty of Pharmacy, Department of Industrial Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
| | - Siwanon Jirawatnotai
- Faculty of Medicine Siriraj Hospital, Siriraj Center of Research Excellence for Precision Medicine and Systems Pharmacology, Mahidol University, Bangkok, Thailand
- Faculty of Medicine Siriraj Hospital, Department of Pharmacology, Mahidol University, Bangkok, Thailand
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
| | - Purin Charoensuksai
- Faculty of Pharmacy, Department of Biomedicine and Health Informatics, Silpakorn University, Nakhon Pathom, Thailand
- Faculty of Pharmacy, Bioactives from Natural Resources Research Collaboration for Excellence in Pharmaceutical Sciences (BNEP), Silpakorn University, Nakhon Pathom, Thailand
| |
Collapse
|
26
|
Morales MM, Pratt MR. The post-translational modification O-GlcNAc is a sensor and regulator of metabolism. Open Biol 2024; 14:240209. [PMID: 39474868 PMCID: PMC11523104 DOI: 10.1098/rsob.240209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
Cells must rapidly adapt to changes in nutrient conditions through responsive signalling cascades to maintain homeostasis. One of these adaptive pathways results in the post-translational modification of proteins by O-GlcNAc. O-GlcNAc modifies thousands of nuclear and cytoplasmic proteins in response to nutrient availability through the hexosamine biosynthetic pathway. O-GlcNAc is highly dynamic and can be added and removed from proteins multiple times throughout their life cycle, setting it up to be an ideal regulator of cellular processes in response to metabolic changes. Here, we describe the link between cellular metabolism and O-GlcNAc, and we explore O-GlcNAc's role in regulating cellular processes in response to nutrient levels. Specifically, we discuss the mechanisms of elevated O-GlcNAc levels in contributing to diabetes and cancer, as well as the role of decreased O-GlcNAc levels in neurodegeneration. These studies form a foundational understanding of aberrant O-GlcNAc in human disease and provide an opportunity to further improve disease identification and treatment.
Collapse
Affiliation(s)
- Murielle M. Morales
- Department of Biological Sciences, University of Southern California, Los Angeles, CA90089, USA
| | - Matthew R. Pratt
- Department of Chemistry, University of Southern California, Los Angeles, CA90089, USA
| |
Collapse
|
27
|
Liu B, Rui Y, Li M, Huang L. Cancer cell-derived exosomes promote NSCLC progression via the miR-199b-5p/HIF1AN axis. Mol Immunol 2024; 174:32-40. [PMID: 39154583 DOI: 10.1016/j.molimm.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/01/2024] [Accepted: 08/10/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Exosomes are mediators of intercellular communication. Cancer cell-secreted exosomes allow exosome donor cells to promote cancer growth, as well as metastasis. METHODS Here, exosomes were isolated from the serum of non-small cell lung cancer (NSCLC) patients and characterized by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA) and western blot analysis. NSCLC cell proliferation and migration were assessed using CCK-8, 5-ethynyl-2'-deoxyuridine (EdU) and Transwell assays. H1299 tumor formation and pulmonary metastasis were examined in a xenograft model in nude mice. RESULTS We found that exosomes derived from NSCLC (NSCLC-Exos) promoted NSCLC cell migration and proliferation, and that NSCLC-Exo-mediated malignant progression of NSCLC was mediated by miR-199b-5p. Inhibition of miR-199b-5p decreased the effects of NSCLC-Exos on NSCLC malignant progression. HIF1AN was identified as a downstream target of miR-199b-5p. Furthermore, overexpression of HIF1AN reversed the effects of miR-199b-5p on NSCLC malignant progression. CONCLUSION In summary, our findings demonstrated that exosomal-specific miR-199b-5p promoted proliferation in distant or neighboring cells via the miR-199b-5p/HIF1AN axis, resulting in enhanced tumor growth.
Collapse
Affiliation(s)
- Bangzhu Liu
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250000, China; The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Department of Respiratory Medicine, Wuhu Hospital, East China Normal University (The People's Second Hospital of Wuhu), Wuhu, Anhui, 241000, China
| | - Yan Rui
- Department of Respiration and Critical Care Medicine, Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, Clinical Research Center for Respiratory Disease in Anhui Province, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, 233000, China
| | - Miao Li
- Department of General Medicine, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233000, China
| | - Linan Huang
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250000, China; The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Department of Respiration and Critical Care Medicine, Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, Clinical Research Center for Respiratory Disease in Anhui Province, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, 233000, China.
| |
Collapse
|
28
|
Liu S, Zhou X, Zhang L, Luo W. Network pharmacology and bioinformatics approach to unravel the mechanism of Xiao-chai-hu-tang herbal formula in tinnitus treatment. Heliyon 2024; 10:e37584. [PMID: 39315211 PMCID: PMC11417242 DOI: 10.1016/j.heliyon.2024.e37584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/21/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024] Open
Abstract
Background Tinnitus treatment remains a global challenge, and current therapeutic approaches are still controversial. This study aims to elucidate the potential mechanisms of Xiao-Chai-Hu-Tang (XCHT) in treating tinnitus through the analysis of network pharmacology, mendelian randomization and molecular docking, and molecular dynamics simulation analysis. We hope to contribute to the research on the target of action of traditional Chinese medicine and exploration of the mechanism of tinnitus. Methods We utilized network pharmacology to screen potential targets of action of XCHT on tinnitus. Mendelian randomization was employed to determine the causal relationship between potential targets of action and tinnitus. Finally, molecular docking and molecular dynamics simulation with clear targets and the combination of the active ingredient in effectiveness. Results Through network pharmacology, we identified 38 potential targets of action. Mendelian randomization analysis revealed that HIF1A (OR [95 % CI] = 0.78 [0.65, 0.94], P = 0.008) and CCND1 (OR [95 % CI] = 1.22 [1.00, 1.49], P = 0.04) exhibited significant results with tinnitus. Molecular docking and molecular dynamics simulation of HIF1A and active ingredients demonstrated good binding efficacy. Conclusion HIF1A may play a key role in the treatment of tinnitus by XCHT, which may play a certain protective role in tinnitus patients and may inhibit the occurrence and development of tinnitus. However, the specific mechanism and effect need to be further studied and verified.
Collapse
Affiliation(s)
- Shihan Liu
- Department of Otorhinolaryngology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xintong Zhou
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lingli Zhang
- Department of Otorhinolaryngology, Central Hospital Affiliated to Chongqing University of Technology, Chongqing, China
| | - Wenlong Luo
- Department of Otorhinolaryngology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
29
|
Liu X, Wang J, Xiang Y, Wang K, Yan D, Tong Y. The roles of OGT and its mechanisms in cancer. Cell Biosci 2024; 14:121. [PMID: 39285476 PMCID: PMC11406787 DOI: 10.1186/s13578-024-01301-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024] Open
Abstract
O-linked-N-acetylglucosaminylation (O-GlcNAcylation) is a common and important post-translational modification (PTM) linking O-linked β-N-acetylglucosamine (O-GlcNAc) to serine and threonine residues in proteins. Extensive research indicates its impact on target protein stability, activity, and interactions. O-linked N-acetylglucosamine transferase (OGT) is a critical enzyme that catalyzes O-GlcNAc modification, responsible for adding O-GlcNAc to proteins. OGT and O-GlcNAcylation are overexpressed in many tumors and closely associated with tumor growth, invasion, metabolism, drug resistance, and immune evasion. This review delineates the biochemical functions of OGT and summarizes its effects and mechanisms in tumors. Targeting OGT presents a promising novel approach for treating human malignancies.
Collapse
Affiliation(s)
- Xin Liu
- Department of Oncology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, 101149, China
| | - Jing Wang
- Department of Oncology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, 101149, China
| | - Yaoxian Xiang
- Department of Oncology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, 101149, China
| | - Kangjie Wang
- Department of Oncology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, 101149, China
| | - Dong Yan
- Department of Oncology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, 101149, China
| | - Yingying Tong
- Department of Oncology, Beijing Luhe Hospital Affiliated to Capital Medical University, Beijing, 101149, China.
| |
Collapse
|
30
|
Chen R, Lin Z, Shen S, Zhu C, Yan K, Suo C, Liu R, Wei H, Gao L, Fan K, Zhang H, Sun L, Gao P. Citrullination modulation stabilizes HIF-1α to promote tumour progression. Nat Commun 2024; 15:7654. [PMID: 39227578 PMCID: PMC11372217 DOI: 10.1038/s41467-024-51882-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 08/21/2024] [Indexed: 09/05/2024] Open
Abstract
Citrullination plays an essential role in various physiological or pathological processes, however, whether citrullination is involved in regulating tumour progression and the potential therapeutic significance have not been well explored. Here, we find that peptidyl arginine deiminase 4 (PADI4) directly interacts with and citrullinates hypoxia-inducible factor 1α (HIF-1α) at R698, promoting HIF-1α stabilization. Mechanistically, PADI4-mediated HIF-1αR698 citrullination blocks von Hippel-Lindau (VHL) binding, thereby antagonizing HIF-1α ubiquitination and subsequent proteasome degradation. We also show that citrullinated HIF-1αR698, HIF-1α and PADI4 are highly expressed in hepatocellular carcinoma (HCC) tumour tissues, suggesting a potential correlation between PADI4-mediated HIF-1αR698 citrullination and cancer development. Furthermore, we identify that dihydroergotamine mesylate (DHE) acts as an antagonist of PADI4, which ultimately suppresses tumour progression. Collectively, our results reveal citrullination as a posttranslational modification related to HIF-1α stability, and suggest that targeting PADI4-mediated HIF-1α citrullination is a promising therapeutic strategy for cancers with aberrant HIF-1α expression.
Collapse
Affiliation(s)
- Rui Chen
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China
| | - Zhiyuan Lin
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China
| | - Shengqi Shen
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Chuxu Zhu
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Kai Yan
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Caixia Suo
- Department of Colorectal Surgery, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Rui Liu
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Haoran Wei
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Li Gao
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Kaixiang Fan
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Huafeng Zhang
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Linchong Sun
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Ping Gao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China.
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
31
|
Zhang D, Qi Y, Inuzuka H, Liu J, Wei W. O-GlcNAcylation in tumorigenesis and its implications for cancer therapy. J Biol Chem 2024; 300:107709. [PMID: 39178944 PMCID: PMC11417186 DOI: 10.1016/j.jbc.2024.107709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024] Open
Abstract
O-linked N-acetylglucosaminylation (O-GlcNAcylation) is a dynamic and reversible posttranslational modification that targets serine and threonine residues in a variety of proteins. Uridine diphospho-N-acetylglucosamine, which is synthesized from glucose via the hexosamine biosynthesis pathway, is the major donor of this modification. O-GlcNAc transferase is the sole enzyme that transfers GlcNAc onto protein substrates, while O-GlcNAcase is responsible for removing this modification. O-GlcNAcylation plays an important role in tumorigenesis and progression through the modification of specific protein substrates. In this review, we discuss the tumor-related biological functions of O-GlcNAcylation and summarize the recent progress in the development of pharmaceutical options to manipulate the O-GlcNAcylation of specific proteins as potential anticancer therapies.
Collapse
Affiliation(s)
- Dize Zhang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yihang Qi
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States
| | - Jing Liu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States.
| |
Collapse
|
32
|
Si Y, Ou H, Jin X, Gu M, Sheng S, Peng W, Yang D, Zhan X, Zhang L, Yu Q, Liu X, Liu Y. G protein pathway suppressor 2 suppresses aerobic glycolysis through RACK1-mediated HIF-1α degradation in breast cancer. Free Radic Biol Med 2024; 222:478-492. [PMID: 38942092 DOI: 10.1016/j.freeradbiomed.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/16/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Aerobic glycolysis has been recognized as a hallmark of human cancer. G protein pathway suppressor 2 (GPS2) is a negative regulator of the G protein-MAPK pathway and a core subunit of the NCoR/SMRT transcriptional co-repressor complex. However, how its biological properties intersect with cellular metabolism in breast cancer (BC) development remains poorly elucidated. Here, we report that GPS2 is low expressed in BC tissues and negatively correlated with poor prognosis. Both in vitro and in vivo studies demonstrate that GPS2 suppresses malignant progression of BC. Moreover, GPS2 suppresses aerobic glycolysis in BC cells. Mechanistically, GPS2 destabilizes HIF-1α to reduce the transcription of its downstream glycolytic regulators (PGK1, PGAM1, ENO1, PKM2, LDHA, PDK1, PDK2, and PDK4), and then suppresses cellular aerobic glycolysis. Notably, receptor for activated C kinase 1 (RACK1) is identified as a key ubiquitin ligase for GPS2 to promote HIF-1α degradation. GPS2 stabilizes the binding of HIF-1α to RACK1 by directly binding to RACK1, resulting in polyubiquitination and instability of HIF-1α. Amino acid residues 70-92 aa of the GPS2 N-terminus bind RACK1. A 23-amino-acid-long GPS2-derived peptide was developed based on this N-terminal region, which promotes the interaction of RACK1 with HIF-1α, downregulates HIF-1α expression and significantly suppresses BC tumorigenesis in vitro and in vivo. In conclusion, our findings indicate that GPS2 decreases the stability of HIF-1α, which in turn suppresses aerobic glycolysis and tumorigenesis in BC, suggesting that targeting HIF-1α degradation and treating with peptides may be a promising approach to treat BC.
Collapse
Affiliation(s)
- Yuan Si
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China.
| | - Hongling Ou
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xin Jin
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Institute of Modern Biology, Nanjing University, Nanjing, Jiangsu, China
| | - Manxiang Gu
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Songran Sheng
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Wenkang Peng
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Dan Yang
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xiangrong Zhan
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Liang Zhang
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Qingqing Yu
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xuewen Liu
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China.
| | - Ying Liu
- Laboratory of Molecular Target Therapy of Cancer, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, China.
| |
Collapse
|
33
|
Zhang Z, Zhao M, Wang Q, Wang X, Wang Y, Ge Y, Wu Z, Wang W, Shan L. Forkhead box protein FOXK1 disrupts the circadian rhythm to promote breast tumorigenesis in response to insulin resistance. Cancer Lett 2024; 599:217147. [PMID: 39094826 DOI: 10.1016/j.canlet.2024.217147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/09/2024] [Accepted: 07/27/2024] [Indexed: 08/04/2024]
Abstract
The dysregulation of circadian rhythm oscillation is a prominent feature of various solid tumors. Thus, clarifying the molecular mechanisms that maintain the circadian clock is important. In the present study, we revealed that the transcription factor forkhead box FOXK1 functions as an oncogene in breast cancer. We showed that FOXK1 recruits multiple transcription corepressor complexes, including NCoR/SMRT, SIN3A, NuRD, and REST/CoREST. Among them, the FOXK1/NCoR/SIN3A complex transcriptionally regulates a cohort of genes, including CLOCK, PER2, and CRY2, that are critically involved in the circadian rhythm. The complex promoted the proliferation of breast cancer cells by disturbing the circadian rhythm oscillation. Notably, the nuclear expression of FOXK1 was positively correlated with tumor grade. Insulin resistance gradually became more severe with tumor progression and was accompanied by the increased expression of OGT, which caused the nuclear translocation and increased expression of FOXK1. Additionally, we found that metformin downregulates FOXK1 and exports it from the nucleus, while HDAC inhibitors (HDACi) inhibit the FOXK1-related enzymatic activity. Combined treatment enhanced the expression of circadian clock genes through the regulation of FOXK1, thereby exerting an antitumor effect, indicating that highly nuclear FOXK1-expressing breast cancers are potential candidates for the combined application of metformin and HDACi.
Collapse
Affiliation(s)
- Zhaohan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Minghui Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Qian Wang
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute, and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China; National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China
| | - Xilin Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yu Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yuze Ge
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Zicheng Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Wenjuan Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Cancer Invasion and Metastasis Research, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Lin Shan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Cancer Invasion and Metastasis Research, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
34
|
Zhao Y, Li R, Wang W, Zhang H, Zhang Q, Jiang J, Wang Y, Li Y, Guan F, Nie Y. O-GlcNAc signaling: Implications for stress-induced adaptive response pathway in the tumor microenvironment. Cancer Lett 2024; 598:217101. [PMID: 38969156 DOI: 10.1016/j.canlet.2024.217101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/19/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
The tumor microenvironment (TME) consists of tumor cells, non-tumor cells, extracellular matrix, and signaling molecules, which can contribute to tumor initiation, progression, and therapy resistance. In response to starvation, hypoxia, and drug treatments, tumor cells undergo a variety of deleterious endogenous stresses, such as hypoxia, DNA damage, and oxidative stress. In this context, to survive the difficult situation, tumor cells evolve multiple conserved adaptive responses, including metabolic reprogramming, DNA damage checkpoints, homologous recombination, up-regulated antioxidant pathways, and activated unfolded protein responses. In the last decades, the protein O-GlcNAcylation has emerged as a crucial causative link between glucose metabolism and tumor progression. Here, we discuss the relevant pathways that regulate the above responses. These pathways are adaptive adjustments induced by endogenous stresses in cells. In addition, we systematically discuss the role of O-GlcNAcylation-regulated stress-induced adaptive response pathways (SARPs) in TME remodeling, tumor progression, and treatment resistance. We also emphasize targeting O-GlcNAcylation through compounds that modulate OGT or OGA activity to inhibit tumor progression. It seems that targeting O-GlcNAcylated proteins to intervene in TME may be a novel approach to improve tumor prognosis.
Collapse
Affiliation(s)
- Yu Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Renlong Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Weizhen Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Haohao Zhang
- Department of Digestive Surgery, Honghui Hospital, Xi'an Jiaotong University, 710054, Xi'an, Shaanxi, China
| | - Qiujin Zhang
- Second Clinical Medicine College, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Jialu Jiang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Ying Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Yan Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Feng Guan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China.
| | - Yongzhan Nie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China; State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
35
|
Zhang W, Zhao E, Li Z, Liu W, Wang J, Hou W, Zhang N, Yu Y, Li X, You B. Hexokinase HK3-mediated O-GlcNAcylation of EP300: a key regulator of PD-L1 expression and immune evasion in ccRCC. Cell Death Dis 2024; 15:613. [PMID: 39179546 PMCID: PMC11343739 DOI: 10.1038/s41419-024-06921-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 08/26/2024]
Abstract
Clear cell renal cell carcinoma (ccRCC) demonstrates enhanced glycolysis, critically contributing to tumor development. Programmed death-ligand 1 (PD-L1) aids tumor cells in evading T-cell-mediated immune surveillance. Yet, the specific mechanism by which glycolysis influences PD-L1 expression in ccRCC is not fully understood. Our research identified that the glycolysis-related gene (GRG) HK3 has a unique correlation with PD-L1 expression. HK3 has been identified as a key regulator of O-GlcNAcylation in ccRCC. O-GlcNAcylation exists on the serine 900 (Ser900) site of EP300 and can enhance its stability and oncogenic activity by preventing ubiquitination. Stably expressed EP300 works together with TFAP2A as a co-transcription factor to promote PD-L1 transcription and as an acetyltransferase to stabilize PD-L1 protein. Furthermore, ccRCC exhibits interactive dynamics with tumor-associated macrophages (TAMs). The uridine 5'-diphospho-N-acetylglucosamine (UDP-GlcNAc), which serves as a critical substrate for the O-GlcNAcylation process, facilitates TAMs polarization. In ccRCC cells, HK3 expression is influenced by IL-10 secreted by M2 TAMs. Our study elucidates that HK3-mediated O-GlcNAcylation of EP300 is involved in tumor immune evasion. This finding suggests potential strategies to enhance the efficacy of immune checkpoint blockade therapy.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Enyang Zhao
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhuolun Li
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Weiyang Liu
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jinpeng Wang
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenbin Hou
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Nan Zhang
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yang Yu
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuedong Li
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Bosen You
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
36
|
Kim DY, Kim SM, Han IO. Chronic rapid eye movement sleep deprivation aggravates the pathogenesis of Alzheimer's disease by decreasing brain O-GlcNAc cycling in mice. J Neuroinflammation 2024; 21:180. [PMID: 39044290 PMCID: PMC11264383 DOI: 10.1186/s12974-024-03179-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024] Open
Abstract
This study investigated the role of O-GlcNAc cycling in Alzheimer's disease-related changes in brain pathophysiology induced by chronic REM sleep deprivation (CSD) in mice. CSD increased amyloid beta (Aβ) and p-Tau accumulation and impaired learning and memory (L/M) function. CSD decreased dendritic length and spine density. CSD also increased the intensity of postsynaptic density protein-95 (PSD-95) staining. All of these Alzheimer's disease (AD) pathogenic changes were effectively reversed through glucosamine (GlcN) treatment by enhancing O-GlcNAcylation. Interestingly, the lelvel of O-GlcNAcylated-Tau (O-Tau) exhibited an opposite trend compared to p-Tau, as it was elevated by CSD and suppressed by GlcN treatment. CSD increased neuroinflammation, as indicated by elevated levels of glial fibrillary acidic protein and IBA-1-positive glial cells in the brain, which were suppressed by GlcN treatment. CSD promoted the phosphorylation of GSK3β and led to an upregulation in the expression of endoplasmic reticulum (ER) stress regulatory proteins and genes. These alterations were effectively suppressed by GlcN treatment. Minocycline not only suppressed neuroinflammation induced by CSD, but it also rescued the decrease in O-GlcNAc levels caused by CSD. Minocycline also reduced AD neuropathy without affecting CSD-induced ER stress. Notably, overexpressing O-GlcNAc transferase in the dentate gyrus region of the mouse brain rescued CSD-induced cognitive dysfunction, neuropathy, neuroinflammation, and ER stress responses. Collectively, our findings reveal that dysregulation of O-GlcNAc cycling underlies CSD-induced AD pathology and demonstrate that restoration of OGlcNAcylation protects against CSD-induced neurodegeneration.
Collapse
Affiliation(s)
- Dong Yeol Kim
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Department of Physiology and Biophysics, College of Medicine, Inha University, Incheon, Korea
| | - Sang-Min Kim
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Department of Physiology and Biophysics, College of Medicine, Inha University, Incheon, Korea
| | - Inn-Oc Han
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Department of Physiology and Biophysics, College of Medicine, Inha University, Incheon, Korea.
| |
Collapse
|
37
|
Zhang Y, Zhou S, Kai Y, Zhang YQ, Peng C, Li Z, Mughal MJ, Julie B, Zheng X, Ma J, Ma CX, Shen M, Hall MD, Li S, Zhu W. O-GlcNAcylation of MITF regulates its activity and CDK4/6 inhibitor resistance in breast cancer. Nat Commun 2024; 15:5597. [PMID: 38961064 PMCID: PMC11222436 DOI: 10.1038/s41467-024-49875-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 06/21/2024] [Indexed: 07/05/2024] Open
Abstract
Cyclin-dependent kinases 4 and 6 (CDK4/6) play a pivotal role in cell cycle and cancer development. Targeting CDK4/6 has demonstrated promising effects against breast cancer. However, resistance to CDK4/6 inhibitors (CDK4/6i), such as palbociclib, remains a substantial challenge in clinical settings. Using high-throughput combinatorial drug screening and genomic sequencing, we find that the microphthalmia-associated transcription factor (MITF) is activated via O-GlcNAcylation by O-GlcNAc transferase (OGT) in palbociclib-resistant breast cancer cells and tumors. Mechanistically, O-GlcNAcylation of MITF at Serine 49 enhances its interaction with importin α/β, thus promoting its translocation to nuclei, where it suppresses palbociclib-induced senescence. Inhibition of MITF or its O-GlcNAcylation re-sensitizes resistant cells to palbociclib. Moreover, clinical studies confirm the activation of MITF in tumors from patients who are palbociclib-resistant or undergoing palbociclib treatment. Collectively, our studies shed light on the mechanism regulating palbociclib resistance and present clinical evidence for developing therapeutic approaches to treat CDK4/6i-resistant breast cancer patients.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Biochemistry and Molecular Medicine, GWU Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Shuyan Zhou
- Department of Biochemistry and Molecular Medicine, GWU Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Yan Kai
- Department of Biochemistry and Molecular Medicine, GWU Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Ya-Qin Zhang
- Division of Preclinical Innovation (Intramural), National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Rockville, MD, USA
| | - Changmin Peng
- Department of Biochemistry and Molecular Medicine, GWU Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Zhuqing Li
- Department of Biochemistry and Molecular Medicine, GWU Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Muhammad Jameel Mughal
- Department of Biochemistry and Molecular Medicine, GWU Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Belmar Julie
- Department of Medicine, Washington University School of Medicine in St Louis, Siteman Cancer Center, St Louis, MO, USA
| | - Xiaoyan Zheng
- Department of Anatomy and Cell Biology, GWU Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Cynthia X Ma
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Min Shen
- Division of Preclinical Innovation (Intramural), National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Rockville, MD, USA
| | - Matthew D Hall
- Division of Preclinical Innovation (Intramural), National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Rockville, MD, USA
| | - Shunqiang Li
- Department of Medicine, Washington University School of Medicine in St Louis, Siteman Cancer Center, St Louis, MO, USA.
| | - Wenge Zhu
- Department of Biochemistry and Molecular Medicine, GWU Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
38
|
Wang F, Zhu L, Xiong F, Chai B, Wang J, Zhou G, Cao Y, Zheng C. Relaxin combined with transarterial chemoembolization achieved synergistic effects and inhibited liver cancer metastasis in a rabbit VX2 model. J Cancer Res Clin Oncol 2024; 150:333. [PMID: 38955827 PMCID: PMC11219380 DOI: 10.1007/s00432-024-05864-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
OBJECTIVE To explore the effect and mechanism of relaxin (RLX) in the growth and metastasis of livercancer after combination treatment with transarterial chemoembolization (TACE). MATERIALS AND METHODS HCCLM3 and Huh-7 cells were adopted to evaluate the effect of tumor proliferation, migration, and invasion after RLX administration in vitro. The rabbit VX2 model was used to evaluate the biosafety, doxorubicin penetration, local tumor response, tumor metastasis, and survival benefit of RLX combined with TACE treatment. RESULTS RLX did not affect the proliferation, migration, or invasion of HCCLM3 and Huh-7 cells, and the expression of E-cadherin and HIF-1α also remained unchanged while the MMP-9 protein was upregulated in vitro. In the rabbit VX2 model, compared to the normal saline group (NS), RLX group (RLX) and TACE mono-therapy group (TACE), the group that received TACE combined with RLX (TACE + RLX) showed an improved local tumor response and survival benefit. Furthermore, TACE combined with RLX was found to reduce tumor metastasis. This combination therapy reduced the fibrotic extracellular matrix in the tumor microenvironment, allowing for better penetration of doxorubicin, improved infiltration of CD8+ T cells and affected the secretion of cytokines. Additionally, RLX combined with TACE was able to decrease the expression of HIF-1α and PD-L1. The biosafety of TACE combined with RLX was also confirmed. CONCLUSION RLX synergized with TACE by mitigating the fibrotic extracellular matrix and tumor hypoxic microenvironment, improving the therapeutic effect and inhibiting metastasis during the treatment of liver cancer.
Collapse
Affiliation(s)
- Fuquan Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, Hubei, China
| | - Licheng Zhu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, Hubei, China
| | - Fu Xiong
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, Hubei, China
| | - Bin Chai
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, Hubei, China
| | - Jihua Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, Hubei, China
| | - Guofeng Zhou
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, Hubei, China
| | - Yanyan Cao
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, Hubei, China.
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, Hubei, China.
| |
Collapse
|
39
|
Peng T, Liu Z, Zhang Y, Liu X, Zhao L, Ma Y, Fan J, Song X, Wang L. The systematic identification of survival-related alternative splicing events and splicing factors in glioblastoma. Ann Hum Genet 2024; 88:320-335. [PMID: 38369937 DOI: 10.1111/ahg.12550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/21/2023] [Accepted: 12/30/2023] [Indexed: 02/20/2024]
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor, making it one of the most life-threatening human cancers. Nevertheless, research on the mechanism of action between alternative splicing (AS) and splicing factor (SF) or biomarkers in GBM is limited. AS is a crucial post-transcriptional regulatory mechanism. More than 95% of human genes undergo AS events. AS can diversify the expression patterns of genes, thereby increasing the diversity of proteins and playing a significant role in the occurrence and development of tumors. In this study, we downloaded 599 clinical data and 169 transcriptome analysis data from The Cancer Genome Atlas (TCGA) database. Besides, we collected AS data about GBM from TCGA-SpliceSeq. The overall survival (OS) related AS events in GBM were determined through least absolute shrinkage and selection operator (Lasso) and Cox analysis. Subsequently, the association of these 1825 OS-related AS events with patient survival was validated using the Kaplan-Meier survival analysis, receiver operating characteristic curve, risk curve analysis, and independent prognostic analysis. Finally, we depicted the AS-SF regulatory network, illustrating the interactions between splicing factors and various AS events in GBM. Additionally, we identified three splicing factors (RNU4-1, SEC31B, and CLK1) associated with patient survival. In conclusion, based on AS occurrences, we developed a predictive risk model and constructed an interaction network between GBM-related AS events and SFs, aiming to shed light on the underlying mechanisms of GBM pathogenesis and progression.
Collapse
Affiliation(s)
- Tao Peng
- College of Medicine, Xinyang Normal University, Xinyang, China
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Zhe Liu
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
| | - Yu Zhang
- College of Medicine, Xinyang Normal University, Xinyang, China
- School of medical, Southeast University, Nanjing, China
| | - Xudong Liu
- School of Medicine, Chongqing University, Chongqing, China
| | - Lijun Zhao
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Ying Ma
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Jinke Fan
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Xinqiang Song
- College of Medicine, Xinyang Normal University, Xinyang, China
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Lei Wang
- College of Medicine, Xinyang Normal University, Xinyang, China
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| |
Collapse
|
40
|
Chen X, Xu Y, Ju Y, Gu P. Metabolic Regulation of Endothelial Cells: A New Era for Treating Wet Age-Related Macular Degeneration. Int J Mol Sci 2024; 25:5926. [PMID: 38892113 PMCID: PMC11172501 DOI: 10.3390/ijms25115926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Wet age-related macular degeneration (wet AMD) is a primary contributor to visual impairment and severe vision loss globally, but the prevailing treatments are often unsatisfactory. The development of conventional treatment strategies has largely been based on the understanding that the angiogenic switch of endothelial cells (ECs) is mainly dictated by angiogenic growth factors. Even though treatments targeting vascular endothelial growth factor (VEGF), like ranibizumab, are widely administered, more than half of patients still exhibit inadequate or null responses, suggesting the involvement of other pathogenic mechanisms. With advances in research in recent years, it has become well recognized that EC metabolic regulation plays an active rather than merely passive responsive role in angiogenesis. Disturbances of these metabolic pathways may lead to excessive neovascularization in angiogenic diseases such as wet AMD, therefore targeted modulation of EC metabolism represents a promising therapeutic strategy for wet AMD. In this review, we comprehensively discuss the potential applications of EC metabolic regulation in wet AMD treatment from multiple perspectives, including the involvement of ECs in wet AMD pathogenesis, the major endothelial metabolic pathways, and novel therapeutic approaches targeting metabolism for wet AMD.
Collapse
Affiliation(s)
- Xirui Chen
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; (X.C.)
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Yang Xu
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; (X.C.)
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Yahan Ju
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; (X.C.)
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Ping Gu
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; (X.C.)
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| |
Collapse
|
41
|
Zhi S, Chen C, Huang H, Zhang Z, Zeng F, Zhang S. Hypoxia-inducible factor in breast cancer: role and target for breast cancer treatment. Front Immunol 2024; 15:1370800. [PMID: 38799423 PMCID: PMC11116789 DOI: 10.3389/fimmu.2024.1370800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Globally, breast cancer stands as the most prevalent form of cancer among women. The tumor microenvironment of breast cancer often exhibits hypoxia. Hypoxia-inducible factor 1-alpha, a transcription factor, is found to be overexpressed and activated in breast cancer, playing a pivotal role in the anoxic microenvironment by mediating a series of reactions. Hypoxia-inducible factor 1-alpha is involved in regulating downstream pathways and target genes, which are crucial in hypoxic conditions, including glycolysis, angiogenesis, and metastasis. These processes significantly contribute to breast cancer progression by managing cancer-related activities linked to tumor invasion, metastasis, immune evasion, and drug resistance, resulting in poor prognosis for patients. Consequently, there is a significant interest in Hypoxia-inducible factor 1-alpha as a potential target for cancer therapy. Presently, research on drugs targeting Hypoxia-inducible factor 1-alpha is predominantly in the preclinical phase, highlighting the need for an in-depth understanding of HIF-1α and its regulatory pathway. It is anticipated that the future will see the introduction of effective HIF-1α inhibitors into clinical trials, offering new hope for breast cancer patients. Therefore, this review focuses on the structure and function of HIF-1α, its role in advancing breast cancer, and strategies to combat HIF-1α-dependent drug resistance, underlining its therapeutic potential.
Collapse
Affiliation(s)
| | | | | | | | - Fancai Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Shujun Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
42
|
Mao Z, Mu J, Gao Z, Huang S, Chen L. Biological Functions and Potential Therapeutic Significance of O-GlcNAcylation in Hepatic Cellular Stress and Liver Diseases. Cells 2024; 13:805. [PMID: 38786029 PMCID: PMC11119800 DOI: 10.3390/cells13100805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
O-linked-β-D-N-acetylglucosamine (O-GlcNAc) glycosylation (O-GlcNAcylation), which is dynamically regulated by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), is a post-translational modification involved in multiple cellular processes. O-GlcNAcylation of proteins can regulate their biological functions via crosstalk with other post-translational modifications, such as phosphorylation, ubiquitination, acetylation, and methylation. Liver diseases are a major cause of death worldwide; yet, key pathological features of the disease, such as inflammation, fibrosis, steatosis, and tumorigenesis, are not fully understood. The dysregulation of O-GlcNAcylation has been shown to be involved in some severe hepatic cellular stress, viral hepatitis, liver fibrosis, nonalcoholic fatty acid liver disease (NAFLD), malignant progression, and drug resistance of hepatocellular carcinoma (HCC) through multiple molecular signaling pathways. Here, we summarize the emerging link between O-GlcNAcylation and hepatic pathological processes and provide information about the development of therapeutic strategies for liver diseases.
Collapse
Affiliation(s)
- Zun Mao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (Z.M.); (Z.G.)
| | - Junpeng Mu
- Department of Clinical Medicine, Xuzhou Medical University, Xuzhou 221004, China;
| | - Zhixiang Gao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (Z.M.); (Z.G.)
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
- Department of Hematology and Oncology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
| | - Long Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (Z.M.); (Z.G.)
| |
Collapse
|
43
|
Hsu YP, Huang TH, Liu ST, Huang SM, Chen YC, Wu CC. Glucosamine and Silibinin Alter Cartilage Homeostasis through Glycosylation and Cellular Stresses in Human Chondrocyte Cells. Int J Mol Sci 2024; 25:4905. [PMID: 38732122 PMCID: PMC11084729 DOI: 10.3390/ijms25094905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Osteoarthritis is more prevalent than any other form of arthritis and is characterized by the progressive mechanical deterioration of joints. Glucosamine, an amino monosaccharide, has been used for over fifty years as a dietary supplement to alleviate osteoarthritis-related discomfort. Silibinin, extracted from milk thistle, modifies the degree of glycosylation of target proteins, making it an essential component in the treatment of various diseases. In this study, we aimed to investigate the functional roles of glucosamine and silibinin in cartilage homeostasis using the TC28a2 cell line. Western blots showed that glucosamine suppressed the N-glycosylation of the gp130, EGFR, and N-cadherin proteins. Furthermore, both glucosamine and silibinin differentially decreased and increased target proteins such as gp130, Snail, and KLF4 in TC28a2 cells. We observed that both compounds dose-dependently induced the proliferation of TC28a2 cells. Our MitoSOX and DCFH-DA dye data showed that 1 µM glucosamine suppressed mitochondrial reactive oxygen species (ROS) generation and induced cytosol ROS generation, whereas silibinin induced both mitochondrial and cytosol ROS generation in TC28a2 cells. Our JC-1 data showed that glucosamine increased red aggregates, resulting in an increase in the red/green fluorescence intensity ratio, while all the tested silibinin concentrations increased the green monomers, resulting in decreases in the red/green ratio. We observed increasing subG1 and S populations and decreasing G1 and G2/M populations with increasing amounts of glucosamine, while increasing amounts of silibinin led to increases in subG1, S, and G2/M populations and decreases in G1 populations in TC28a2 cells. MTT data showed that both glucosamine and silibinin induced cytotoxicity in TC28a2 cells in a dose-dependent manner. Regarding endoplasmic reticulum stress, both compounds induced the expression of CHOP and increased the level of p-eIF2α/eIF2α. With respect to O-GlcNAcylation status, glucosamine and silibinin both reduced the levels of O-GlcNAc transferase and hypoxia-inducible factor 1 alpha. Furthermore, we examined proteins and mRNAs related to these processes. In summary, our findings demonstrated that these compounds differentially modulated cellular proliferation, mitochondrial and cytosol ROS generation, the mitochondrial membrane potential, the cell cycle profile, and autophagy. Therefore, we conclude that glucosamine and silibinin not only mediate glycosylation modifications but also regulate cellular processes in human chondrocytes.
Collapse
Affiliation(s)
- Yu-Pao Hsu
- Department of Orthopedics, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan City 330, Taiwan; (Y.-P.H.); (T.-H.H.)
| | - Tsung-Hsi Huang
- Department of Orthopedics, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan City 330, Taiwan; (Y.-P.H.); (T.-H.H.)
| | - Shu-Ting Liu
- Department of Biochemistry, National Defense Medical Center, Taipei City 114, Taiwan; (S.-T.L.); (S.-M.H.)
| | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taipei City 114, Taiwan; (S.-T.L.); (S.-M.H.)
| | - Yi-Chou Chen
- Department of Orthopedics, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan City 330, Taiwan; (Y.-P.H.); (T.-H.H.)
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei City 114, Taiwan
| | - Chia-Chun Wu
- Department of Orthopedics, Tri-Service General Hospital, National Defense Medical Center, Taipei City 114, Taiwan
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 237, Taiwan
| |
Collapse
|
44
|
Chen L, Hu M, Chen L, Peng Y, Zhang C, Wang X, Li X, Yao Y, Song Q, Li J, Pei H. Targeting O-GlcNAcylation in cancer therapeutic resistance: The sugar Saga continues. Cancer Lett 2024; 588:216742. [PMID: 38401884 DOI: 10.1016/j.canlet.2024.216742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/03/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
O-linked-N-acetylglucosaminylation (O-GlcNAcylation), a dynamic post-translational modification (PTM), holds profound implications in controlling various cellular processes such as cell signaling, metabolism, and epigenetic regulation that influence cancer progression and therapeutic resistance. From the therapeutic perspective, O-GlcNAc modulates drug efflux, targeting and metabolism. By integrating signals from glucose, lipid, amino acid, and nucleotide metabolic pathways, O-GlcNAc acts as a nutrient sensor and transmits signals to exerts its function on genome stability, epithelial-mesenchymal transition (EMT), cell stemness, cell apoptosis, autophagy, cell cycle. O-GlcNAc also attends to tumor microenvironment (TME) and the immune response. At present, several strategies aiming at targeting O-GlcNAcylation are under mostly preclinical evaluation, where the newly developed O-GlcNAcylation inhibitors markedly enhance therapeutic efficacy. Here we systematically outline the mechanisms through which O-GlcNAcylation influences therapy resistance and deliberate on the prospects and challenges associated with targeting O-GlcNAcylation in future cancer treatments.
Collapse
Affiliation(s)
- Lulu Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057, USA.
| | - Mengxue Hu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Luojun Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yihan Peng
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Cai Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xin Wang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiangpan Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yi Yao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jing Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, 100048, China.
| | - Huadong Pei
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057, USA.
| |
Collapse
|
45
|
Schauner R, Cress J, Hong C, Wald D, Ramakrishnan P. Single cell and bulk RNA expression analyses identify enhanced hexosamine biosynthetic pathway and O-GlcNAcylation in acute myeloid leukemia blasts and stem cells. Front Immunol 2024; 15:1327405. [PMID: 38601153 PMCID: PMC11004450 DOI: 10.3389/fimmu.2024.1327405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/13/2024] [Indexed: 04/12/2024] Open
Abstract
Introduction Acute myeloid leukemia (AML) is the most common acute leukemia in adults with an overall poor prognosis and high relapse rate. Multiple factors including genetic abnormalities, differentiation defects and altered cellular metabolism contribute to AML development and progression. Though the roles of oxidative phosphorylation and glycolysis are defined in AML, the role of the hexosamine biosynthetic pathway (HBP), which regulates the O-GlcNAcylation of cytoplasmic and nuclear proteins, remains poorly defined. Methods We studied the expression of the key enzymes involved in the HBP in AML blasts and stem cells by RNA sequencing at the single-cell and bulk level. We performed flow cytometry to study OGT protein expression and global O-GlcNAcylation. We studied the functional effects of inhibiting O-GlcNAcylation on transcriptional activation in AML cells by Western blotting and real time PCR and on cell cycle by flow cytometry. Results We found higher expression levels of the key enzymes in the HBP in AML as compared to healthy donors in whole blood. We observed elevated O-GlcNAc Transferase (OGT) and O-GlcNAcase (OGA) expression in AML stem and bulk cells as compared to normal hematopoietic stem and progenitor cells (HSPCs). We also found that both AML bulk cells and stem cells show significantly enhanced OGT protein expression and global O-GlcNAcylation as compared to normal HSPCs, validating our in silico findings. Gene set analysis showed substantial enrichment of the NF-κB pathway in AML cells expressing high OGT levels. Inhibition of O-GlcNAcylation decreased NF-κB nuclear translocation and the expression of selected NF-κB-dependent genes controlling cell cycle. It also blocked cell cycle progression suggesting a link between enhanced O-GlcNAcylation and NF-κB activation in AML cell survival and proliferation. Discussion Our study suggests the HBP may prove a potential target, alone or in combination with other therapeutic approaches, to impact both AML blasts and stem cells. Moreover, as insufficient targeting of AML stem cells by traditional chemotherapy is thought to lead to relapse, blocking HBP and O-GlcNAcylation in AML stem cells may represent a novel promising target to control relapse.
Collapse
Affiliation(s)
- Robert Schauner
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
- Department of Artificial Intelligence and Informatics, Mayo Clinic, Jacksonville, FL, United States
| | - Jordan Cress
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Changjin Hong
- Department of Artificial Intelligence and Informatics, Mayo Clinic, Jacksonville, FL, United States
| | - David Wald
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
- The Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Parameswaran Ramakrishnan
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
- The Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
- Department of Pathology, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States
| |
Collapse
|
46
|
Hao B, Dong H, Xiong R, Song C, Xu C, Li N, Geng Q. Identification of SLC2A1 as a predictive biomarker for survival and response to immunotherapy in lung squamous cell carcinoma. Comput Biol Med 2024; 171:108183. [PMID: 38422959 DOI: 10.1016/j.compbiomed.2024.108183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/20/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND As one of the common subtypes of non-small lung cancer, lung squamous cell carcinoma (LUSC) patients with advanced stage have few choices of treatment strategies. Therefore, it is urgent to discover genes that are associated with the survival and efficacy of immunotherapies. METHOD Differential gene expression analyses were conducted using TCGA LUSC bulk-sequencing and single-cell RNA-sequencing data. Prognostic genes were identified from the TCGA LUSC cohort. Protein expression validation and survival analyses were performed. Experiments were conducted to explore the underlying mechanisms. In addition, the correlation between gene expression and pathological response to adjuvant immunochemotherapy was also investigated. RESULTS After a series of bioinformatic analyses, solute carrier family 2 member 1(SLC2A1), encoding glucose transporter-1 (GLUT1), was found to be differentially expressed between tumor and normal tissues. GLUT1 was subsequently identified as an independent prognostic factor for LUSC. GSEA analysis revealed the glycolysis metabolism pathway of KEGG enriched in SLC2A1high tumor tissues. LASSO analyses revealed that tumor tissues with high expression of SLC2A1 were associated with high levels of protein lactylation. We found that SLC2A1 was preferentially expressed by SPP1+ macrophages in the tumor microenvironment, and the expression of SLC2A1 was associated with the abundance of SPP1+ macrophages. Immunofluorescence demonstrated GLUT1 and HIF1α colocalization in tumor-infiltrating macrophages. In vitro experiments showed HIF-1α-induced macrophage polarization under hypoxia, and GLUT1 inhibition blocked this polarization. In addition, SLC2A1 was negatively associated with the common immune checkpoint molecules, such as programmed cell death 1(PD-1), T cell immunoreceptor with Ig and ITIM domains (TIGIT), cytotoxic T-lymphocyte associated protein 4 (CTLA4) and lymphocyte activating 3 (LAG3), while showed a positive association with CD44. Finally, we observed that there was a significant correlation between pre-adjuvant-treatment GLUT1 expression and the pathological response. CONCLUSION SLC2A1 expression was differentially upregulated in tumor tissues, and elevated GLUT1 expression was associated with worse survival and poor pathological response to adjuvant immunochemotherapy. Upregulation of GLUT1 promoted macrophage polarization into the M2 phenotype. The findings will contribute to guiding the treatment selection for LUSC patients and providing personalized immunotherapy strategies.
Collapse
Affiliation(s)
- Bo Hao
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan 430060, China.
| | - Huixing Dong
- Department of Pulmonary and Critical Care Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai 200336, China.
| | - Rui Xiong
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan 430060, China.
| | - Congkuan Song
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan 430060, China.
| | - Chenzhen Xu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan 430060, China.
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuchang District, Wuhan 430060, China.
| |
Collapse
|
47
|
Zhang W, Zhou D, Song S, Hong X, Xu Y, Wu Y, Li S, Zeng S, Huang Y, Chen X, Liang Y, Guo S, Pan H, Li H. Prediction and verification of the prognostic biomarker SLC2A2 and its association with immune infiltration in gastric cancer. Oncol Lett 2024; 27:70. [PMID: 38192676 PMCID: PMC10773219 DOI: 10.3892/ol.2023.14203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 11/15/2023] [Indexed: 01/10/2024] Open
Abstract
Gastric cancer (GC) is the fifth most common cause of cancer-associated deaths; however, its treatment options are limited. Despite clinical improvements, chemotherapy resistance and metastasis are major challenges in improving the prognosis and quality of life of patients with GC. Therefore, effective prognostic biomarkers and targets associated with immunological interventions need to be identified. Solute carrier family 2 member 2 (SLC2A2) may serve a role in tumor development and invasion. The present study aimed to evaluate SLC2A2 as a prospective prognostic marker and chemotherapeutic target for GC. SLC2A2 expression in several types of cancer and GC was analyzed using online databases, and the effects of SLC2A2 expression on survival prognosis in GC were investigated. Clinicopathological parameters were examined to explore the association between SLC2A2 expression and overall survival (OS). Associations between SLC2A2 expression and immune infiltration, immune checkpoints and IC50 were estimated using quantification of the tumor immune contexture from human RNA-seq data, the Tumor Immune Estimation Resource 2.0 database and the Genomics of Drug Sensitivity in Cancer database. Differential SLC2A2 expression and the predictive value were validated using the Human Protein Atlas, Gene Expression Omnibus, immunohistochemistry and reverse transcription-quantitative PCR. SLC2A2 expression was downregulated in most types of tumor but upregulated in GC. Functional enrichment analysis revealed an association between SLC2A2 expression and lipid metabolism and the tumor immune microenvironment. According to Gene Ontology term functional enrichment analysis, SLC2A2-related differentially expressed genes were enriched predominantly in 'chylomicron assembly', 'plasma lipoprotein particle assembly', 'high-density lipoprotein particle', 'chylomicron', 'triglyceride-rich plasma lipoprotein particle', 'very-low-density lipoprotein particle'. 'intermembrane lipid transfer activity', 'lipoprotein particle receptor binding', 'cholesterol transporter activity' and 'intermembrane cholesterol transfer activity'. In addition, 'cholesterol metabolism', and 'fat digestion and absorption' were significantly enriched in the Kyoto Encyclopedia of Genes and Genomes pathway analysis. Patients with GC with high SLC2A2 expression had higher levels of neutrophil and M2 macrophage infiltration and a significant inverse correlation was observed between SLC2A2 expression and MYC targets, tumor mutation burden, microsatellite instability and immune checkpoints. Furthermore, patients with high SLC2A2 expression had worse prognosis, including OS, disease-specific survival and progression-free interval. Multivariate regression analysis demonstrated that SLC2A2 could independently prognosticate GC and the nomogram model showed favorable performance for survival prediction. SLC2A2 may be a prospective prognostic marker for GC. The prediction model may improve the prognosis of patients with GC in clinical practice, and SLC2A2 may serve as a novel therapeutic target to provide immunotherapy plans for GC.
Collapse
Affiliation(s)
- Weijian Zhang
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, P.R. China
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Dishu Zhou
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Shuya Song
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Xinxin Hong
- Department of Gastroenterology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, P.R. China
| | - Yifei Xu
- Department of Gastroenterology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, P.R. China
| | - Yuqi Wu
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, P.R. China
| | - Shiting Li
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, P.R. China
| | - Sihui Zeng
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, P.R. China
| | - Yanzi Huang
- Department of Gastroenterology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, P.R. China
| | - Xinbo Chen
- Department of Gastroenterology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, P.R. China
| | - Yizhong Liang
- Department of Gastroenterology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, P.R. China
| | - Shaoju Guo
- Department of Gastroenterology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, P.R. China
| | - Huafeng Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Haiwen Li
- Department of Gastroenterology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, P.R. China
| |
Collapse
|
48
|
Neja S, Dashwood WM, Dashwood RH, Rajendran P. Histone Acyl Code in Precision Oncology: Mechanistic Insights from Dietary and Metabolic Factors. Nutrients 2024; 16:396. [PMID: 38337680 PMCID: PMC10857208 DOI: 10.3390/nu16030396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Cancer etiology involves complex interactions between genetic and non-genetic factors, with epigenetic mechanisms serving as key regulators at multiple stages of pathogenesis. Poor dietary habits contribute to cancer predisposition by impacting DNA methylation patterns, non-coding RNA expression, and histone epigenetic landscapes. Histone post-translational modifications (PTMs), including acyl marks, act as a molecular code and play a crucial role in translating changes in cellular metabolism into enduring patterns of gene expression. As cancer cells undergo metabolic reprogramming to support rapid growth and proliferation, nuanced roles have emerged for dietary- and metabolism-derived histone acylation changes in cancer progression. Specific types and mechanisms of histone acylation, beyond the standard acetylation marks, shed light on how dietary metabolites reshape the gut microbiome, influencing the dynamics of histone acyl repertoires. Given the reversible nature of histone PTMs, the corresponding acyl readers, writers, and erasers are discussed in this review in the context of cancer prevention and treatment. The evolving 'acyl code' provides for improved biomarker assessment and clinical validation in cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Sultan Neja
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA; (S.N.); (W.M.D.)
| | - Wan Mohaiza Dashwood
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA; (S.N.); (W.M.D.)
| | - Roderick H. Dashwood
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA; (S.N.); (W.M.D.)
- Department of Translational Medical Sciences, Texas A&M College of Medicine, Houston, TX 77030, USA
| | - Praveen Rajendran
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA; (S.N.); (W.M.D.)
- Department of Translational Medical Sciences, Texas A&M College of Medicine, Houston, TX 77030, USA
- Antibody & Biopharmaceuticals Core, Texas A&M Health, Houston, TX 77030, USA
| |
Collapse
|
49
|
Liang S, Bai YM, Zhou B. Identification of key ferroptosis genes and mechanisms associated with breast cancer using bioinformatics, machine learning, and experimental validation. Aging (Albany NY) 2024; 16:1781-1795. [PMID: 38244591 PMCID: PMC10866432 DOI: 10.18632/aging.205459] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/07/2023] [Indexed: 01/22/2024]
Abstract
OBJECTIVE The aim of this paper is to mine ferroptosis genes associated with breast cancer based on bioinformatics and machine learning, and to perform in vitro functional validation. METHODS Transcriptional and clinical data of breast cancer patients were downloaded from TCGA database and ferroptosis-related genes were obtained from FerrDB database. Significant differentially expressed ferroptosis-related genes between breast cancer tissues and adjacent normal tissues were selected. Functional enrichment analysis was performed on these differentially expressed genes. Four machine learning algorithms were used to identify key ferroptosis-related genes associated with breast cancer. A multi-factor Cox regression analysis was used to construct a risk score model for the key ferroptosis-related genes. The accuracy of the risk score model was validated using Kaplan-Meier survival curve analysis and receiver operating characteristic (ROC) curve analysis. Finally, cell experiments were conducted to validate the biological functions of the key ferroptosis-related genes in breast cancer cells MCF-7, further confirming the accuracy of the analysis results. RESULTS A total of 52 significantly differentially expressed ferroptosis-related genes were identified, which were mainly enriched in cancer pathways, central carbon metabolism in cancer, HIF-1 signaling pathway, and NOD-like receptor signaling pathway. Three key ferroptosis-related genes (TXNIP, SLC2A1, ATF3) closely related to the occurrence, development, and prognosis of breast cancer were identified using machine learning algorithms. The risk model constructed using these three key ferroptosis-related genes showed that the prognosis of the low-risk group was better than that of the high-risk group (P < 0.001). The ROC curve analysis showed that the prognosis model had good predictive ability. In vitro experiments validated the reliability of the bioinformatics and machine learning screening results. Downregulation of SLC2A1 expression promoted ferroptosis and suppressed tumor cell growth in breast cancer cells (P < 0.01), while overexpression of TXNIP or ATF3 had the same effect (P < 0.01). CONCLUSION This study identified three key ferroptosis-related genes (TXNIP, SLC2A1, ATF3) associated with breast cancer, which are closely related to the occurrence, development, and prognosis of breast cancer.
Collapse
Affiliation(s)
- Shuang Liang
- Department of Yinchuan Traditional Chinese Medicine Hospital, Ningxia Medical University, Yinchuan 750001, China
| | - Yan-Ming Bai
- School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Bo Zhou
- School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, China
- Ningxia Regional Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of High Incidence, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
50
|
Nazar NSBM, Ramanathan A, Ghani WMN, Rokhani FB, Jacob PS, Sabri NEB, Hassan MS, Kadir K, Dharmarajan L. Salivary metabolomics in oral potentially malignant disorders and oral cancer patients-a systematic review with meta-analysis. Clin Oral Investig 2024; 28:98. [PMID: 38225483 DOI: 10.1007/s00784-023-05481-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/27/2023] [Indexed: 01/17/2024]
Abstract
OBJECTIVES The aim of this systematic review and meta-analysis is to assess the diagnostic potential of salivary metabolomics in the detection of oral potentially malignant disorders (OPMDs) and oral cancer (OC). MATERIALS AND METHODS A systematic review was performed in accordance with the 3rd edition of the Centre for Reviews and Dissemination (CRD) and Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement. Electronic searches for articles were carried out in the PubMed, Web of Science, and Scopus databases. The quality assessment of the included studies was evaluated using the Newcastle-Ottawa Quality Assessment Scale (NOS) and the new version of the QUADOMICS tool. Meta-analysis was conducted whenever possible. The effect size was presented using the Forest plot, whereas the presence of publication bias was examined through Begg's funnel plot. RESULTS A total of nine studies were included in the systematic review. The metabolite profiling was heterogeneous across all the studies. The expression of several salivary metabolites was found to be significantly altered in OPMDs and OCs as compared to healthy controls. Meta-analysis was able to be conducted only for N-acetylglucosamine. There was no significant difference (SMD = 0.15; 95% CI - 0.25-0.56) in the level of N-acetylglucosamine between OPMDs, OC, and the control group. CONCLUSION Evidence for N-acetylglucosamine as a salivary biomarker for oral cancer is lacking. Although several salivary metabolites show changes between healthy, OPMDs, and OC, their diagnostic potential cannot be assessed in this review due to a lack of data. Therefore, further high-quality studies with detailed analysis and reporting are required to establish the diagnostic potential of the salivary metabolites in OPMDs and OC. CLINICAL RELEVANCE While some salivary metabolites exhibit significant changes in oral potentially malignant disorders (OPMDs) and oral cancer (OC) compared to healthy controls, the current evidence, especially for N-acetylglucosamine, is inadequate to confirm their reliability as diagnostic biomarkers. Additional high-quality studies are needed for a more conclusive assessment of salivary metabolites in oral disease diagnosis.
Collapse
Affiliation(s)
- Nur Syahirah Binti Mohd Nazar
- Department of Oral and Maxillofacial Clinical Sciences, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia
- Department of Oral and Maxillofacial Surgery, Medicine and Pathology, Faculty of Dentistry, Universiti Sains Islam Malaysia, Kuala Lumpur, Malaysia
| | - Anand Ramanathan
- Department of Oral and Maxillofacial Clinical Sciences, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia.
- Oral Cancer Research & Coordinating Center, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia.
| | - Wan Maria Nabillah Ghani
- Oral Cancer Research & Coordinating Center, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Faezah Binti Rokhani
- Department of Oral and Maxillofacial Surgery, Medicine and Pathology, Faculty of Dentistry, Universiti Sains Islam Malaysia, Kuala Lumpur, Malaysia
| | - Pulikkotil Shaju Jacob
- Division of Clinical Dentistry, School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - Nurul Elma Binti Sabri
- Department of Agrotechnology and Bioscience, Malaysian Nuclear Agency, Bangi, Selangor, Malaysia
| | - Mohd Sukri Hassan
- Faculty of Science and Technology, Universiti Sains Islam Malaysia, Kuala Lumpur, Malaysia
| | - Kathreena Kadir
- Department of Oral and Maxillofacial Clinical Sciences, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia
- Oral Cancer Research & Coordinating Center, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia
| | | |
Collapse
|