1
|
Peña-Espinoza BI, Torre-Horta E, Ortiz-López MG, Menjivar M. ABCA1 variant rs9282541 is associated with metabolic syndrome in Maya children. Ann Hum Genet 2024; 88:279-286. [PMID: 38192238 DOI: 10.1111/ahg.12546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 11/17/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
INTRODUCTION Metabolic syndrome (MetS) is a metabolic disorder encompassing risk factors for cardiovascular disease and type 2 diabetes (T2D). In Mexico, the MetS is a national health problem in adults and children. Environmental and genetic factors condition the MetS. However, studies to elucidate the contribution of genetic factors to MetS in Mexico are scarce. A recent study showed that variant rs9282541 (A-allele) in ATP-binding cassette transporter A1 (ABCA1) was associated with T2D in the Maya population in addition to low levels of high-density lipoprotein cholesterol (HDL-C). Thus, this study aimed to determine whether the genetic variant of ABCA1 A-allele (rs9282541, NM_005502.4:c.688C > T, NP_005493.2:p.Arg230Cys) is associated with MetS and its components in Mexican Maya children. METHODS The study was conducted in 508 children aged 9-13 from the Yucatán Peninsula. MetS was identified according to the de Ferranti criteria. Genotyping was performed using TaqMan assay by real-time PCR. Evaluation of genetic ancestry group was included. RESULTS The frequency of MetS and overweight-obesity was 45.9% and 41.6%, respectively. The genetic variant rs9282541 was associated with low HDL-C and high glucose concentrations. Remarkably, for the first time, this study showed the association of ABCA1 rs9282541 with MetS in Maya children with an OR of 3.076 (95% CI = 1.16-8.13 p = 0.023). Finally, this study reveals a high prevalence of MetS and suggests that variant rs9282541 of the ABCA1 gene plays an important role in the developing risk of MetS in Maya children.
Collapse
Affiliation(s)
- Barbara I Peña-Espinoza
- Laboratorio de Genómica de la Diabetes, Facultad de Química en la Unidad Académica de Ciencia y Tecnología de la UNAM en Yucatán, Ciudad de Mexico, Mexico
| | | | - María G Ortiz-López
- Laboratorio de Endocrinología, Hospital Juárez de México, Mexico City, Mexico
| | - Marta Menjivar
- Laboratorio de Genómica de la Diabetes, Facultad de Química en la Unidad Académica de Ciencia y Tecnología de la UNAM en Yucatán, Ciudad de Mexico, Mexico
- Laboratorio de diabetes, Facultad de Química de la Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
2
|
An YD, Ma GX, Cai XK, Yang Y, Wang F, Zhang ZL. Examining the association between delay discounting, delay aversion and physical activity in Chinese adults with type-2 diabetes mellitus. World J Diabetes 2024; 15:675-685. [PMID: 38680691 PMCID: PMC11045427 DOI: 10.4239/wjd.v15.i4.675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/05/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND The role of physical activity in diabetes is critical, influencing this disease's development, man-agement, and overall outcomes. In China, 22.3% of adults do not meet the minimum level of physical activity recommended by the World Health Organization. Therefore, it is imperative to identify the factors that contributing to lack of physical activity must be identified. AIM To investigate the relationship among delay discounting, delay aversion, glycated hemoglobin (HbA1c), and various levels of physical activity in Chinese adults diagnosed with type 2 diabetes mellitus (T2DM). METHODS In 2023, 400 adults with T2DM were recruited from the People's Hospital of Linxia Hui Autonomous Prefecture of Gansu Province. A face-to-face questionnaire was used to gather demographic data and details on physical activity, delay discounting, and delay aversion. In addition, HbA1c levels were measured in all 400 participants. The primary independent variables considered were delay discounting and delay aversion. The outcome variables included HbA1c levels and different intensity levels of physical activity, including walking, moderate physical activity, and vigorous physical activity. Multiple linear regression models were utilized to assess the relationship between delay discounting, delay aversion, and HbA1c levels, along with the intensity of different physical activity measured in met-hours per week. RESULTS After controlling for the sample characteristics, delay discounting was negatively associated with moderate physical activity (β = -2.386, 95%CI: -4.370 to -0.401). Meanwhile, delay aversion was negatively associated with the level of moderate physical activity (β = -3.527, 95% CI: -5.578 to -1.476) in the multiple linear regression model, with statistically significant differences. CONCLUSION Elevated delay discounting and increased delay aversion correlated with reduced levels of moderate physical activity. Result suggests that delay discounting and aversion may influence engagement in moderate physical activity. This study recommends that health administration and government consider delay discounting and delay aversion when formulating behavioral intervention strategies and treatment guidelines involving physical activity for patients with T2DM, which may increase participation in physical activity. This study contributes a novel perspective to the research on physical activity in adults with T2DM by examining the significance of future health considerations and the role of emotional responses to delays.
Collapse
Affiliation(s)
- Yong-Dong An
- Department of Endocrinology, People's Hospital of Linxia Hui Autonomous Prefecture, Linxia Hui Autonomous Prefecture 731100, Gansu Province, China
| | - Guo-Xia Ma
- Department of Gynecology, People's Hospital of Linxia Hui Autonomous Prefecture, Linxia Hui Autonomous Prefecture 731100, Gansu Province, China
- The First Clinical Medical College, Lanzhou University, Lanzhou 730013, Gansu Province, China
| | - Xing-Kui Cai
- Department of Internal Medicine, People's Hospital of Hezheng, Linxia Hui Autonomous Prefecture 731200, Gansu Province, China
| | - Ying Yang
- Department of Endocrinology, People's Hospital of Linxia Hui Autonomous Prefecture, Linxia Hui Autonomous Prefecture 731100, Gansu Province, China
| | - Fang Wang
- Department of Geratology, People's Hospital of Linxia Hui Autonomous Prefecture, Linxia Hui Autonomous Prefecture 731100, Gansu Province, China
| | - Zhan-Lin Zhang
- Department of Medical, People's Hospital of Linxia Hui Autonomous Prefecture, Linxia Hui Autonomous Prefecture 731100, Gansu Province, China
| |
Collapse
|
3
|
Karkhaneh L, Tabatabaei-Malazy O, Bandarian F, Mohseni S, Larijani B. Pharmacogenomics of sulfonylureas in type 2 diabetes mellitus; a systematic review. J Diabetes Metab Disord 2022; 21:863-879. [PMID: 35673432 PMCID: PMC9167353 DOI: 10.1007/s40200-021-00908-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/23/2021] [Indexed: 11/25/2022]
Abstract
Purpose Genetic factors have a role in response to a target medication (personalized medicine). This study aimed to review available evidence about the relationship between gene variants and therapeutic response to sulfonylureas in type 2 diabetes, systematically. Methods An extensive search was done in Scopus, PubMed, and Web of Science with specific search strategy in the field from the beginning until the 1st of Jan. 2021. After sending records to endnote software and removing duplicate records remained documents were screened by title and abstract. Full texts of remained documents were assessed after removing un-related records. Required data was extracted from remained documents and records were categorized according to gene/SNP studied. Results Finally, 26 studies with 9170 T2DM patients with a mean age of 59.47 ± 6.67 (49.7-75.2 years) remained. The most contribution was from China, Slovakia and Greece, respectively and the most genes studied were CYP2C9, KCNJ11, and both KCNQ1 and ABCC8 with 10, 7, and 4 articles, respectively. Also, rs1799853 and rs1057910 (each with seven studies), rs5219 with six studies and CYP2C9*1(with four articles), respectively were the most common variants investigated. Studies about each gene obtained different positive or negative results and were not consistent. Conclusion Considering heterogeneity between SFUs pharmacogenomic studies regarding the method, sample size, population, gene/variant studied, and outcome and findings, these studies are not conclusive and need further studies.
Collapse
Affiliation(s)
- Leyla Karkhaneh
- Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Physiology Department, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ozra Tabatabaei-Malazy
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Bandarian
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, 5th Flat, Diabetes Clinic, Cross Heyat Ave., Shahrivar Ave., North Kargar St., Tehran, Iran
| | - Shahrzad Mohseni
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Behl T, Sehgal A, Grover M, Singh S, Sharma N, Bhatia S, Al-Harrasi A, Aleya L, Bungau S. Uncurtaining the pivotal role of ABC transporters in diabetes mellitus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:41533-41551. [PMID: 34085197 DOI: 10.1007/s11356-021-14675-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
The metabolic disorders are the edge points for the initiation of various diseases. These disorders comprised of several diseases including diabetes, obesity, and cardiovascular complications. Worldwide, the prevalence of these disorders is increasing day by day. The world's population is at higher threat of developing metabolic disease, especially diabetes. Therefore, there is an impregnable necessity of searching for a newer therapeutic target to reduce the burden of these disorders. Diabetes mellitus (DM) is marked with the dysregulated insulin secretion and resistance. The lipid and glucose transporters portray a pivotal role in the metabolism and transport of both of these. The excess production of lipid and glucose and decreased clearance of these leads to the emergence of DM. The ATP-binding cassette transporters (ABCT) are important for the metabolism of glucose and lipid. Various studies suggest the key involvement of ABCT in the pathologic process of different diseases. In addition, the involvement of other pathways, including IGF signaling, P13-Akt/PKC/MAPK signaling, and GLP-1 via regulation of ABCT, may help develop new treatment strategies to cope with insulin resistance dysregulated glucose metabolism, key features in DM.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Madhuri Grover
- BS Anangpuria Institute of Pharmacy, Faridabad, Haryana, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Saurabh Bhatia
- Amity Institute of Pharmacy, Amity University, Gurugram, Haryana, India
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa, Oman
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | - Simona Bungau
- Department of Pharmacy, Faculty of Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
5
|
Li H, Yu XH, Ou X, Ouyang XP, Tang CK. Hepatic cholesterol transport and its role in non-alcoholic fatty liver disease and atherosclerosis. Prog Lipid Res 2021; 83:101109. [PMID: 34097928 DOI: 10.1016/j.plipres.2021.101109] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a quickly emerging global health problem representing the most common chronic liver disease in the world. Atherosclerotic cardiovascular disease represents the leading cause of mortality in NAFLD patients. Cholesterol metabolism has a crucial role in the pathogenesis of both NAFLD and atherosclerosis. The liver is the major organ for cholesterol metabolism. Abnormal hepatic cholesterol metabolism not only leads to NAFLD but also drives the development of atherosclerotic dyslipidemia. The cholesterol level in hepatocytes reflects the dynamic balance between endogenous synthesis, uptake, esterification, and export, a process in which cholesterol is converted to neutral cholesteryl esters either for storage in cytosolic lipid droplets or for secretion as a major constituent of plasma lipoproteins, including very-low-density lipoproteins, chylomicrons, high-density lipoproteins, and low-density lipoproteins. In this review, we describe decades of research aimed at identifying key molecules and cellular players involved in each main aspect of hepatic cholesterol metabolism. Furthermore, we summarize the recent advances regarding the biological processes of hepatic cholesterol transport and its role in NAFLD and atherosclerosis.
Collapse
Affiliation(s)
- Heng Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Xiao-Hua Yu
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 460106, China
| | - Xiang Ou
- Department of Endocrinology, the First Hospital of Changsha, Changsha, Hunan 410005, China
| | - Xin-Ping Ouyang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China.
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
6
|
Marta M, Sánchez-Pozos K, Jaimes-Santoyo J, Monroy-Escutia J, Rivera-Santiago C, de Los Ángeles Granados-Silvestre M, Ortiz-López MG. Pharmacogenetic Evaluation of Metformin and Sulphonylurea Response in Mexican Mestizos with Type 2 Diabetes. Curr Drug Metab 2021; 21:291-300. [PMID: 32407269 DOI: 10.2174/1389200221666200514125443] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/19/2020] [Accepted: 04/08/2020] [Indexed: 01/20/2023]
Abstract
BACKGROUND In Mexico, approximately 25% of patients with type 2 diabetes (T2D) have adequate glycemic control. Polymorphisms in pharmacogenetic genes have been shown to have clinical consequences resulting in drug toxicity or therapeutic inefficacy. OBJECTIVE The study aimed to evaluate the impact of variants in genes known to be involved in response to oral hypoglycemic drugs, such as CYP2C9, OCT, MATE, ABCA1 and C11orf65, in the Mexican Mestizo population of T2D patients. METHODS In this study, 265 patients with T2D were enrolled from the Hospital Juárez de México, Mexico City. Genotyping was performed by TaqMan® assays. SNP-SNP interactions were analyzed using the multifactor dimensionality reduction (MDR) method. RESULTS Carriers of the del allele of rs72552763 could achieve better glycemic control than noncarriers. There was a significant difference in plasma glucose and HbA1c levels among rs622342 genotypes. The results suggested an SNP-SNP interaction between rs72552763 and rs622342 OCT1 and rs12943590 MATE2. CONCLUSION The interaction between rs72552763 and rs622342 in OCT1, and rs12943590 in MATE2 suggested an important role of these polymorphisms in metformin response in T2D Mexican Mestizo population.
Collapse
Affiliation(s)
- Menjivar Marta
- Laboratorio de Diabetes, Facultad de Quimica de la Universidad Nacional Autonoma de México, CDMX, Mexico
| | - Katy Sánchez-Pozos
- Laboratorio de Endocrinologia Molecular, Research Division, Hospital Juarez de Mexico, CDMX, Mexico
| | - Joel Jaimes-Santoyo
- Laboratorio de Endocrinologia Molecular, Research Division, Hospital Juarez de Mexico, CDMX, Mexico
| | - Jazmin Monroy-Escutia
- Laboratorio de Endocrinologia Molecular, Research Division, Hospital Juarez de Mexico, CDMX, Mexico
| | - Carolina Rivera-Santiago
- Laboratorio de Endocrinologia Molecular, Research Division, Hospital Juarez de Mexico, CDMX, Mexico
| | | | | |
Collapse
|
7
|
Haerian BS, Haerian MS, Roohi A, Mehrad-Majd H. ABCA1 genetic polymorphisms and type 2 diabetes mellitus and its complications. Meta Gene 2017. [DOI: 10.1016/j.mgene.2017.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
8
|
Gamboa-Meléndez MA, Galindo-Gómez C, Juárez-Martínez L, Gómez FE, Diaz-Diaz E, Ávila-Arcos MA, Ávila-Curiel A. Novel association of the R230C variant of the ABCA1 gene with high triglyceride levels and low high-density lipoprotein cholesterol levels in Mexican school-age children with high prevalence of obesity. Arch Med Res 2015; 46:495-501. [PMID: 26256050 DOI: 10.1016/j.arcmed.2015.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 07/31/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIMS Metabolic syndrome (MetS) is a disorder that includes a cluster of several risk factors for the development of type 2 diabetes and cardiovascular disease. The R230C variant of the ABCA1 gene has been associated with low HDL-cholesterol in several studies, but its association with MetS in children remains to be determined. The aim of this study was to analyze the association of the R230C variant with MetS and other metabolic traits in school-aged Mexican children. METHODS The study was performed in seven urban primary schools in the State of Mexico. Four hundred thirty-two Mexican school-age children 6-13 years old were recruited. MetS was identified using the International Diabetes Federation definition. The R230C variant of the ABCA1 gene was genotyped to seek associations with MetS and other metabolic traits. RESULTS The prevalence of MetS was 29% in children aged 10-13 years. The R230C variant was not associated with MetS (OR = 1.65; p = 0.139). Furthermore, in the whole population, the R230C variant was associated with low HDL-cholesterol levels (β coefficient = -3.28, p <0.001). Interestingly, in the total population we found a novel association of this variant with high triglyceride levels (β coefficient = 14.34; p = 0.027). CONCLUSIONS We found a new association of the R230C variant of the ABCA1 gene with high triglyceride levels. Our findings also replicate the association of this variant with low HDL-cholesterol levels in Mexican school-age children.
Collapse
Affiliation(s)
| | - Carlos Galindo-Gómez
- Dirección de Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, D.F., Mexico
| | - Liliana Juárez-Martínez
- Dirección de Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, D.F., Mexico
| | - F Enrique Gómez
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, D.F., Mexico
| | - Eulises Diaz-Diaz
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, D.F., Mexico
| | - Marco Antonio Ávila-Arcos
- Dirección de Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, D.F., Mexico
| | - Abelardo Ávila-Curiel
- Dirección de Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, D.F., Mexico.
| |
Collapse
|
9
|
Koldamova R, Fitz NF, Lefterov I. ATP-binding cassette transporter A1: from metabolism to neurodegeneration. Neurobiol Dis 2014; 72 Pt A:13-21. [PMID: 24844148 PMCID: PMC4302328 DOI: 10.1016/j.nbd.2014.05.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 05/01/2014] [Accepted: 05/06/2014] [Indexed: 01/04/2023] Open
Abstract
ATP-binding cassette transporter A1 (ABCA1) mediates cholesterol efflux to lipid-free apolipoprotein A-I (apoA-I) and apolipoprotein E (apoE). ABCA1 is an essential regulator of high density lipoproteins (HDL) and reverse cholesterol transport - a role that determines its importance for atherosclerosis. Over the last 10 years studies have provided convincing evidence that ABCA1, via its control of apoE lipidation, also has a role in Alzheimer's disease (AD). A series of reports have revealed a significant impact of ABCA1 on Aβ deposition and clearance in AD model mice, as well as an association of common and rare ABCA1 gene variants with the risk for AD. Since APOE is the major genetic risk factor for late onset AD, the regulation of apoE level or its functionality by ABCA1 may prove significant for AD pathogenesis. ABCA1 is transcriptionally regulated by Liver X Receptors (LXR) and Retinoic X Receptors (RXR) which provides a starting point for drug discovery and development of synthetic LXR and RXR agonists for treatment of metabolic and neurodegenerative disorders. This review summarizes the recent results of research on ABCA1, particularly relevant to atherosclerosis and AD.
Collapse
Affiliation(s)
- Radosveta Koldamova
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| | - Nicholas F Fitz
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Iliya Lefterov
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| |
Collapse
|
10
|
Liu H, Lin J, Zhu X, Li Y, Fan M, Zhang R, Fang D. Effects of R219K polymorphism of ATP-binding cassette transporter 1 gene on serum lipids ratios induced by a high-carbohydrate and low-fat diet in healthy youth. Biol Res 2014; 47:4. [PMID: 25027185 PMCID: PMC4060374 DOI: 10.1186/0717-6287-47-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 12/20/2013] [Indexed: 12/13/2022] Open
Abstract
Background Diets are the important players in regulating plasma lipid profiles. And the R219K polymorphism at the gene of ATP-binding cassette transporter 1(ABCA1) was reported to be associated with the profiles. However, no efforts have been made to investigate the changes of lipid profiles after a high-carbohydrate and low-fat diet in different subjects with different genotypes of this polymorphism. This study was to evaluate the effects of ABCA1 R219K polymorphism on serum lipid and apolipoprotein (apo) ratios induced by a high-carbohydrate/low-fat (high-CHO) diet. After a washout diet of 54.1% carbohydrate for 7 days, 56 healthy young subjects (22.89 ± 1.80 years old) were given a high-CHO diet of 70.1% carbohydrate for 6 days. Height, weight, waist circumference, hip circumference, glucose (Glu), triglyceride (TG), total cholesterol (TC), high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), apoA-1 and apoB-100 were measured on the 1st, 8th and 14th days of this study. Body mass index (BMI), waist-to-hip ratios (WHR), log(TG/HDL-C), TC/HDL-C, LDL-C/HDL-C and apoA-1/apoB-100 were calculated. ABCA1 R219K was analyzed by a PCR-RFLP method. Results The results indicate that the male subjects of all the genotypes had higher WHR than their female counterparts on the 1st, 8th and 14th days of this study. The male K carriers had higher log(TG/HDL-C) and TC/HDL-C than the female carriers on the 1st and 14th days, and higher LDL-C/HDL-C on the 14th day. When compared with that on the 8th day, TC/HDL-C was decreased regardless of the genotypes and genders on the 14th day. Log(TG/HDL-C) was increased in the males with the RR genotype and the female K carriers. Lowered BMI, Glu and LDL-C/HDL-C were found in the male K carriers, but only lowered BMI in the female K carriers and only lowered LDL-C/HDL-C in the females with the RR genotype. Conclusions These results suggest that ABCA1 R219K polymorphism is associated differently in males and females with elevated log(TG/HDL-C) and decreased LDL-C/HDL-C induced by the high-CHO diet.
Collapse
|