1
|
Shetty S, Suvarna R, Ambrose Fistus V, Modi S, Pappachan JM. Cardiovascular implications of metabolic dysfunction-associated fatty liver disease and type 2 diabetes mellitus: A meta-analysis. World J Hepatol 2025; 17:105706. [DOI: 10.4254/wjh.v17.i5.105706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/31/2025] [Accepted: 04/22/2025] [Indexed: 05/27/2025] Open
Abstract
BACKGROUND Metabolic dysfunction-associated fatty liver disease (MAFLD) and type 2 diabetes mellitus (T2DM) are independent risk factors for the development of cardiovascular disease (CVD) and an exaggerated CVD risk is expected when both diseases co-exist. Therefore, thorough risk stratification is important to inform better clinical practice decisions based on good quality evidence for patient with MAFLD and T2DM.
AIM To identify the CVD and cardiovascular event (CVE) risk in a systematic review when MAFLD and T2DM co-exist to inform better clinical practice decisions.
METHODS A systematic review was performed by compiling data by searching PubMed, EMBASE and Cochrane Library databases. Quality appraisal of retrieved studies and the meta-analysis were performed using Joanna Briggs Institute (JBI) tool and RevMan 5.4 software respectively. The effect indicators for CVE and CVD risk were expressed as odds ratios (OR) and 95%CI with P-values < 0.05 as significant.
RESULTS Fourteen (5 cohort and 9 cross-sectional) studies with 370013 participants were included in this review. The meta-analysis of CVE showed that the risk of CVE in T2DM was higher in the MAFLD group when compared to the non-MAFLD group [OR 1.28 (95%CI, 1.04–1.56) P = 0.02] with follow up duration ranging between 5-6 years. The prevalence of CVD in the metanalysis of cross-sectional studies was found to be higher [OR 1.47 (95%CI, 1.21–1.78) P = 0.0001] in T2DM with MAFLD when compared to T2DM without MAFLD. Significant heterogeneity exists due to variations in study design, methodologies, and MAFLD diagnostic criteria, which may have influenced the study's findings.
CONCLUSION The presence of MAFLD in T2DM increased the risk of CVE. The prevalence of CVD is higher in T2DM with MAFLD as compared to T2DM without MAFLD. Large well-designed multicentric long-term prospective studies are necessary to appropriately risk stratify the cardiovascular effect of the MAFLD in T2DM patients.
Collapse
Affiliation(s)
- Sahana Shetty
- Department of Endocrinology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Renuka Suvarna
- Department of Endocrinology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Vanessa Ambrose Fistus
- Department of Medicine, Royal Preston Hospital, Lancashire Teaching Hospitals National Health Service Trust, Preston PR2 9HT, Lancashire, United Kingdom
| | - Shivam Modi
- Department of Endocrinology and Metabolism, Lancashire Teaching Hospitals National Health Service Trust, Preston PR2 9HT, Lancashire, United Kingdom
| | - Joseph M Pappachan
- Faculty of Science, Manchester Metropolitan University, Manchester M15 6BH, United Kingdom
- Department of Endocrinology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, India
| |
Collapse
|
2
|
Xiao Y, Sun B, Yu G, Chen L, Luo F, Xu J, Luo J, Xue T, Xu Y. Impact of Hemoglobin Glycation Index on Complications Following Orthopedic Surgery: A Retrospective Comparative Propensity Score-Matched Study. Orthop Surg 2025. [PMID: 40365639 DOI: 10.1111/os.70071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/26/2025] [Accepted: 04/27/2025] [Indexed: 05/15/2025] Open
Abstract
OBJECTIVE Patients with impaired glucose metabolism have an increased incidence of post-operative complications. The best marker for glycemic control prior to elective orthopedic surgery remains unclear. We aimed to assess the utility of the hemoglobin glycation index (HGI) in predicting early complications following elective orthopedic surgery. METHODS We retrospectively enrolled 1496 patients who underwent elective orthopedic surgery at Fujian Provincial Hospital in China from Jan 2015 to Jan 2023. Restricted cubic spline (RCS) was used to select the cutoff value of HGI. Propensity score matching (PSM) was performed to reduce confounding bias, and multivariate logistic regression models (with and without adjustment) for complication outcomes were applied to evaluate the odds ratios of HGI. RESULTS The U-shaped curve in RCS analysis suggested dividing HGI into three subgroups: the reference interval (-0.76 to -0.10), the lower group (≤ -0.76), and the higher group (> -0.10). The incidence of early complications significantly increased from the lower (12.5%) and higher (12.2%) subgroups to the reference interval (6.9%). Following PSM, total postoperative complications were more common in patients with lower HGI (OR: 3.272, 95% CI: 1.417-7.556), but patients in the higher HGI subgroup had a higher risk of incision complications (OR: 3.735, 95% CI: 1.295-10.769). CONCLUSIONS After adjusting for HbA1c levels, higher HGI (> -0.1) was a risk factor for incision complications, but not for other complications. The risk of overall postoperative complications in patients with lower HGIs (≤ -0.76) should not be ignored.
Collapse
Affiliation(s)
- Yuhua Xiao
- Department of Orthopedics, Fujian Provincial Hospital; Shengli Clinical Medical College, Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
- Fujian Provincial Clinical Medical Research Center for Diseases of Spine and Joint, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Bochen Sun
- Department of Orthopedics, Fujian Provincial Hospital; Shengli Clinical Medical College, Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
- Department of Orthopedics, Yunxiao County Hospital, Zhangzhou, China
| | - Guoyu Yu
- Department of Orthopedics, Fujian Provincial Hospital; Shengli Clinical Medical College, Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
- Fujian Provincial Clinical Medical Research Center for Diseases of Spine and Joint, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Long Chen
- Department of Orthopedics, Fujian Provincial Hospital; Shengli Clinical Medical College, Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
- Fujian Provincial Clinical Medical Research Center for Diseases of Spine and Joint, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Fenqi Luo
- Department of Orthopedics, Fujian Provincial Hospital; Shengli Clinical Medical College, Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
- Fujian Provincial Clinical Medical Research Center for Diseases of Spine and Joint, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Jie Xu
- Department of Orthopedics, Fujian Provincial Hospital; Shengli Clinical Medical College, Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
- Fujian Provincial Clinical Medical Research Center for Diseases of Spine and Joint, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Jun Luo
- Department of Orthopedics, Fujian Provincial Hospital; Shengli Clinical Medical College, Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
- Fujian Provincial Clinical Medical Research Center for Diseases of Spine and Joint, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Ting Xue
- Center of Health Management, Fujian Provincial Hospital; Shengli Clinical Medical College, Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Yiyang Xu
- Department of Orthopedics, Fujian Provincial Hospital; Shengli Clinical Medical College, Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
- Fujian Provincial Clinical Medical Research Center for Diseases of Spine and Joint, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| |
Collapse
|
3
|
Muñoz-Carrillo JL, Palomeque-Molina PI, Villacis-Valencia MS, Gutiérrez-Coronado O, Chávez-Ruvalcaba F, Vázquez-Alcaraz SJ, Villalobos-Gutiérrez PT, Palomeque-Molina J. Relationship between periodontitis, type 2 diabetes mellitus and COVID-19 disease: a narrative review. Front Cell Infect Microbiol 2025; 15:1527217. [PMID: 40406515 PMCID: PMC12095153 DOI: 10.3389/fcimb.2025.1527217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 04/16/2025] [Indexed: 05/26/2025] Open
Abstract
Inflammation plays a fundamental role in the development and bidirectional association of di-verse diseases, such as periodontitis and type 2 diabetes mellitus (T2DM), which generates important clinical complications, where chronic exposure to high levels of blood glucose affects the repair process of periodontal tissues. Likewise, it has been observed that comorbidity, between these two diseases, influences the development of the COVID-19 disease towards a more severe course. However, there is currently very little scientific evidence on the relationship between periodontitis, T2DM and COVID-19 disease. This narrative review aims to provide an understanding of the current and most relevant aspects of the relationship between periodontitis, T2DM and COVID-19 disease. A narrative review was performed through a systematic search of published studies, without date restrictions, indexed in the electronic databases of PubMed, for the inclusion of articles in English, and LILACS for the inclusion of articles in Spanish. This review included different articles, which addressed the most important aspects to present a current perspective on the relationship and influence between periodontitis, T2DM and COVID-19 disease. Comorbidity between periodontitis and T2DM represents a greater risk of developing a more severe course of COVID-19 disease, because these three diseases share three important axes: a clinicopathological axis; an axis associated with glycemia, and an immunological axis associated with inflammation.
Collapse
Affiliation(s)
- José Luis Muñoz-Carrillo
- Laboratorio de Inmunología, Centro Universitario de los Lagos, Universidad de Guadalajara, Lagos de Moreno, Jalisco, Mexico
- Escuela de Odontología, Global University, Aguascalientes, Aguascalientes, Mexico
| | | | | | - Oscar Gutiérrez-Coronado
- Laboratorio de Inmunología, Centro Universitario de los Lagos, Universidad de Guadalajara, Lagos de Moreno, Jalisco, Mexico
| | | | | | | | | |
Collapse
|
4
|
Ji Y, Lyu Z, Cui B, Wang W. Diabetes Status and Cardiovascular Complications Risk in Noncardiac Surgery: A Population-Based Cohort Study. Endocr Pract 2025; 31:585-591. [PMID: 40015631 DOI: 10.1016/j.eprac.2025.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 03/01/2025]
Abstract
OBJECTIVE Patients with diabetes are considered to be at high surgical risk due to the potential occurrence of cardiovascular and diabetes-related complications. Limited research exists on the cardiovascular risk profiles of patients with prediabetes and undiagnosed diabetes in noncardiac surgery. In this population-based cohort study, we investigated different glycated hemoglobin levels and their associated postoperative cardiovascular risks. METHODS In this perioperative cohort study, participants were categorized into four groups: nondiabetes, prediabetes, undiagnosed diabetes, and diagnosed diabetes. The primary endpoint was the occurrence of major adverse cardiovascular events (MACE) at 30 days postoperatively, with secondary outcomes assessed at 90 days. The association between various groups and postoperative MACE was evaluated using Cox proportional hazards models and Kaplan-Meier curves. Subgroup analyses and sensitivity analyses were also performed. RESULTS We enrolled 13 207 eligible patients undergoing noncardiac surgeries, among whom 3841 (29.08%) had prediabetes and 1521 (11.52%) had undiagnosed diabetes. In the 30-day postoperative period, the prediabetes group (hazard ratio [HR] [95% CI]: 1.70 [1.15, 2.52]), undiagnosed diabetes group (HR [95% CI]: 2.36 [1.15, 3.68]), and diagnosed diabetes group (HR [95% CI]: 2.33 [1.54, 3.53]) exhibited increased risks of MACE compared to the nondiabetes group. Similar findings were observed for the 90-day postoperative MACE. Further subgroup analysis revealed a significant interaction between sex and states of glycemic regulation (P for interaction < 0.005). CONCLUSION In this cohort, a notable proportion of patients with prediabetes or undiagnosed diabetes were found to be undergoing noncardiac surgeries. They were associated with an increased risk of developing postoperative MACE.
Collapse
Affiliation(s)
- Yunxi Ji
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhihan Lyu
- Department of General Medicine, Shanghai Ninth People 's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Cui
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Villalva M, García-Díez E, López de Las Hazas MDC, Lo Iacono O, Vicente-Díez JI, García-Cabrera S, Alonso-Bernáldez M, Dávalos A, Martín MÁ, Ramos S, Pérez-Jiménez J. Cocoa-carob blend acute intake modifies miRNAs related to insulin sensitivity in type 2 diabetic subjects: a randomised controlled nutritional trial. Food Funct 2025; 16:3211-3226. [PMID: 40190095 DOI: 10.1039/d4fo04498c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Postprandial metabolic disturbances are exacerbated in type 2 diabetes (T2D). Cocoa and carob, despite showing promising effects on these alterations in preclinical studies, have not yet been jointly tested in a clinical trial. Therefore, this acute, randomised, controlled, crossover nutritional trial evaluated the postprandial effects of a cocoa-carob blend (CCB) in participants with T2D (n = 20) and overweight/obesity. The subjects followed three treatments: hypercaloric breakfast (high-sugar and high-saturated fat, 900 kcal) as the control (treatment C); the same breakfast together with 10 g of the CCB, with 5.6 g of dietary fibre and 1.6 g of total polyphenols (treatment A); and the same breakfast after consuming the CCB (10 g) the night before (treatment B). Various analyses were performed, including the determination of the clinical markers of T2D (fasting and postprandial glucose and insulin, GLP-1, and glycaemic profile), satiety evaluation, analysis of exosomal miRNA expression and ex vivo determination of inflammation modulation. No effect on glucose homeostasis (glucose, insulin, and GLP-1) was found in the study population. However, eight exosomal miRNAs were found to be significantly modified owing to CCB supplementation compared with treatment C, with three of them (miR-20A-5p, miR-23A-3p, and miR-17-5p) associated with an improvement in insulin sensitivity. Furthermore, the CCB caused a decrease in hunger feelings (0-120 min), as assessed by the visual analogue scale (VAS). Finally, treatment A caused a significant decrease in the glucose increment within 0-30 min of treatment in subjects with overweight. No significant modifications were found in the other assessed parameters. The acute intake of the CCB by subjects with T2D showed modest although significant results, which need to be validated in a long-term randomised controlled trial.
Collapse
Affiliation(s)
- Marisol Villalva
- Institute of Food Science Research (CIAL), Universidad Autónoma de Madrid, CEI UAM + CSIC, Madrid, Spain
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition, Spanish Research Council (ICTAN-CSIC), Calle Jose Antonio Novais, 6, 28040 Madrid, Spain.
| | - Esther García-Díez
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition, Spanish Research Council (ICTAN-CSIC), Calle Jose Antonio Novais, 6, 28040 Madrid, Spain.
| | | | - Oreste Lo Iacono
- Servicio de Aparato Digestivo, Hospital General Universitario/Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | | | - Sara García-Cabrera
- Monóvar Health Center, Primary Care Management, Madrid Region Health Service, Madrid, Spain
| | - Marta Alonso-Bernáldez
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM + CSIC, Madrid, Spain
| | - Alberto Dávalos
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM + CSIC, Madrid, Spain
- Consorcio CIBER de la Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - María Ángeles Martín
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition, Spanish Research Council (ICTAN-CSIC), Calle Jose Antonio Novais, 6, 28040 Madrid, Spain.
- CIBER Diabetes and Associated Metabolic Diseases: Diabetes and Associated Metabolic Diseases Networking Biomedical Research Centre | CIBERDEM, Carlos III Health Institute (ISCIII), Madrid, Spain
| | - Sonia Ramos
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition, Spanish Research Council (ICTAN-CSIC), Calle Jose Antonio Novais, 6, 28040 Madrid, Spain.
- CIBER Diabetes and Associated Metabolic Diseases: Diabetes and Associated Metabolic Diseases Networking Biomedical Research Centre | CIBERDEM, Carlos III Health Institute (ISCIII), Madrid, Spain
| | - Jara Pérez-Jiménez
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition, Spanish Research Council (ICTAN-CSIC), Calle Jose Antonio Novais, 6, 28040 Madrid, Spain.
- CIBER Diabetes and Associated Metabolic Diseases: Diabetes and Associated Metabolic Diseases Networking Biomedical Research Centre | CIBERDEM, Carlos III Health Institute (ISCIII), Madrid, Spain
| |
Collapse
|
6
|
Bora J, Malik S, Mishra R, Rustagi S, Slama P, Lata S, Talukdar N, Alghamdi S, Aldairi A, Habiballah FN, Almehmadi M, Abdulaziz O, Alsiwiehri N, Ramniwas S. GC-MS analysis, the in vitro and in vivo protective effect of Phlogacanthus thyrsiflorus Nees. on hyperglycaemia-induced diabetic mice model. Arch Physiol Biochem 2025:1-12. [PMID: 40183332 DOI: 10.1080/13813455.2025.2483501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 02/11/2025] [Accepted: 03/18/2025] [Indexed: 04/05/2025]
Abstract
Objective: This study investigates the in-vitro and in-vivo antioxidant capacities showed by Phlogacanthus thyrsiflorus Nees. (P. thyrsiflorus) in alloxan-administered diabetic mice. Materials and Methods: The screening of phytochemical of methanolic flower extract (MFE), Gas Chromatography Mass Spectrometry (GC-MS) profiling was utilized to identify bioactive compounds. In-vitro antioxidant studies were performed. Acute toxicity was evaluated in mice. Glucose Transporter type 4 (GLUT4) protein expression and antioxidant enzyme activities were assessed. Histopathological examination of heart tissue was performed. Results: GC-MS analysis revealed the presence of various bioactive compounds consisting of antioxidant, anti-inflammatory activities. The results also showed a noteworthy increase in in-vitro and in-vivo antioxidant enzymes activities. Moreover, MFE suppress hyperglycaemia by upregulating GLUT4 protein expression. In histological study MFE was found to restore cellular alterations in diabetic tissue. Discussion and Conclusion: It is inferred from the study that MFE of P. thyrsiflorus can exert a protective effect by suppressing hyperglycaemia and modulating oxidative stress in alloxan-administered diabetic mice.
Collapse
Affiliation(s)
- Jutishna Bora
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand, India
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand, India
- University Centre for Research and Development, University of Biotechnology, Chandigarh University, Mohali, Punjab, India
| | - Richa Mishra
- Department of Computer Engineering, Parul University, Vadodara, Gujarat, India
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, India
| | - Petr Slama
- Department of Animal Morphology, Physiology and Genetics, Mendel University in Brno, Brno, Czechia
| | - Smita Lata
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand, India
| | - Nayan Talukdar
- Program of Biotechnology, Faculty of Science, Assam down town University, Guwahati, India
| | - Saad Alghamdi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdullah Aldairi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Faten Noor Habiballah
- Laboratory and Blood Bank Department, Alnoor Specialist Hospital, Ministry of Health, Makkah, Saudi Arabia
| | - Mazen Almehmadi
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Osama Abdulaziz
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Naif Alsiwiehri
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Seema Ramniwas
- Marwadi University Research Center, Faculty of Sciences, Marwadi University, Rajkot, Gujarat, India
| |
Collapse
|
7
|
Zhang B, Xu K, Deng W, Liu C, Xu Q, Sheng H, Feng J, Yuan Q. Protective effects of Sulforaphene on kidney damage and gut dysbiosis in high-fat diet plus streptozotocin-induced diabetic mice. Food Chem 2025; 469:142558. [PMID: 39709924 DOI: 10.1016/j.foodchem.2024.142558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
Diabetic nephropathy (DN) is one of the most serious and prevalent complications associated with diabetes. Consequently, antidiabetic drugs or foods potentially protecting the kidneys are of significant therapeutic value. Sulforaphene (SFE) is a natural isothiocyanate derived from radish seeds, known for its anti-inflammatory and antioxidant properties. However, no studies have investigated on the ability of SFE to prevent or treat DN. This study established a high-fat diet combined with a streptozotocin-induced type II diabetes mellitus mouse model. We administered SFE treatment to examine its protective effects on renal and intestinal homeostasis in DN mice. After 4 weeks of treatment, SFE (50 mg/kg b.w.) not only reduced blood glucose concentration (20.3 %, P < 0.001), kidney to body weight ratio (26.2 %, P < 0.01), and levels of serum total cholesterol (40.6 %, P < 0.001), triglycerides (38.2 %, P < 0.01), creatinine (36.7 %, P < 0.01), and urea nitrogen (45.0 %, P < 0.001) in DN mice compared to control mice but also increased the kidney superoxide dismutase (72.7 %, P < 0.001), catalase (51.1 %, P < 0.001), and glutathione peroxidase activities (31.6 %, P < 0.01), as well as glutathione levels (39.2 %, P < 0.01) in comparison to DN mice. Furthermore, SFE decreased levels of reactive oxygen species (55.4 %, P < 0.01), 4-hydroxyalkenals (36.9 %, P < 0.001), malondialdehyde (42.6 %, P < 0.001), and 8-hydroxy-deoxyguanosine (26.3 %, P < 0.001), accompanied by a meliorating kidney morphological abnormalities. Notably, a reduction in renal inflammatory factors was also observed in SFE-treated DN mice compared to untreated DN mice, particularly in the C-X-C motif chemokine ligand 8 factors (54.8 %, P < 0.001). Western blotting results indicated that SFE significantly down-regulated the protein expression of TLR4 and MyD88 (1.9, 1.7-fold, P < 0.001). Additionally, SFE improved gut microbiota (GM) dysbiosis and intestinal homeostasis, as evidenced by increased expression of antimicrobial peptides and tight junction proteins in colon tissue. SFE appeared to enhance the proliferation of probiotics, such as Bacteroidota, Lachnospiraceae_NK4A136_group and norank_f__Muribaculaceae, while also decreasing harmful bacteria to a greater extent compared to STZ treatment. These findings suggest that SFE modulates GM and improves intestinal homeostasis, providing a theoretical basis for its use in the treatment of DN.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Kang Xu
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Wenlei Deng
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ce Liu
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qianmin Xu
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huakang Sheng
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jialu Feng
- School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
8
|
Wu Y, Dong D, Liu Y, Xie X. Prognostic nutritional index and diabetic peripheral neuropathy in type 2 diabetes: a machine learning approach. Nutr Metab (Lond) 2025; 22:26. [PMID: 40134014 PMCID: PMC11938582 DOI: 10.1186/s12986-025-00917-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/14/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND The prognostic nutritional index (PNI), an indicator of nutritional status, has been linked to various diabetic complications. However, its relationship with diabetic peripheral neuropathy (DPN) remains unclear. This study aimed to explore the association between PNI and DPN using machine learning (ML) approaches. METHODS A total of 625 patients with type 2 diabetes (T2D) were enrolled, with 282 diagnosed with DPN. PNI was calculated based on serum albumin and lymphocyte count. Random forest (RF) and eXtreme Gradient Boosting (XGBoost) models were developed to predict DPN using clinical and biochemical data. SHapley Additive exPlanations (SHAP) were applied to determine feature importance. Multivariate logistic regression was used to evaluate the relationship between PNI quartile and DPN risks. RESULTS Both RF and XGBoost models exhibited strong performance. The RF model achieved a recall of 78.4%, specificity of 87.8%, and accuracy of 84.0%, while the XGBoost model showed a recall of 77.4%, specificity of 92.1%, and accuracy of 84.8%. SHAP analysis identified lower PNI as a key factor for DPN. Multivariate logistic regression revealed that patients in the lowest PNI quartile had a significantly higher DPN risk compared to those in the highest quartile (OR: 3.271, 95% CI: 1.782-6.006, P < 0.001). Additionally, lower PNI levels were associated with impaired peripheral nerve function, including reduced motor and sensory nerve conduction velocity and action potential amplitudes. CONCLUSIONS Lower PNI levels were associated with increased DPN risk and poorer nerve function, highlighting the importance of nutritional status in DPN management. Further longitudinal studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Ya Wu
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Danmeng Dong
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| | - Yang Liu
- Department of Geriatrics, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Xiaoyun Xie
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
9
|
Martin R, Fedders D, Winzer R, Roos J, Isaak A, Luetkens J, Thomas D, Kuetting D. Searching for Infectious Foci in Intensive Care Patients: Diagnostic Yield of Computed Tomography and Prognostic Value of Clinical and Laboratory Chemical Parameters. J Clin Med 2025; 14:2180. [PMID: 40217630 PMCID: PMC11990058 DOI: 10.3390/jcm14072180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/03/2025] [Accepted: 03/20/2025] [Indexed: 04/14/2025] Open
Abstract
Background/Objectives: Radiological imaging is crucial in intensive care settings, particularly for the differential diagnosis of fever and sepsis. Computed tomography (CT) is the preferred method for detecting infectious foci in critically ill ICU patients. Methods: This study prospectively analyzed non-ECG-gated chest and abdominal CT scans from ICU patients to assess CT's diagnostic utility. Data from prior imaging modalities (CT, radiography, MRI, ultrasound), microbiological assays (blood cultures, bronchoalveolar lavage, urinalysis), and enzymatic profiles (transaminases, pancreatic enzymes) were included. The predictive value of clinical and laboratory parameters was evaluated via correlation analysis. Results: A total of 112 patients were evaluated, with 99 exhibiting 147 inflammatory foci (92 thoracic, 55 abdominal). Definitive diagnoses were made in 58.5% of cases, while 41.5% remained classified as possible. Prior diagnostic procedures identified inflammatory origins in 57.1% of cases. Fewer CT-detected foci were observed in patients with bronchial asthma or type 2 diabetes mellitus (p = 0.049 and p = 0.006). Conclusions: CT imaging plays a central role in identifying infectious foci in ICU patients with unexplained syndromes, particularly in the thoracic region. CT scanning is recommended for sepsis management when other diagnostic evidence is lacking. Conditions such as bronchial asthma or diabetes mellitus may prompt earlier suspicion of infectious foci due to elevated inflammatory markers.
Collapse
Affiliation(s)
- Ron Martin
- Department of Plastic and Hand Surgery, Burn Care Center, BG Klinikum Bergmannstrost Halle, Merseburger Str. 165, 06112 Halle, Germany
| | - Dieter Fedders
- Department of Radiology and Neuroradiology, Chemnitz Hospital, 09116 Chemnitz, Germany
| | - Robert Winzer
- Department of Nuclear Medicine, University Hospital of Dresden, 01307 Dresden, Germany
| | - Jonas Roos
- Department of Orthopedics and Trauma Surgery, University Hospital of Bonn, 53127 Bonn, Germany
| | - Alexander Isaak
- Department of Radiology, University Hospital of Bonn, 53127 Bonn, Germany
| | - Julian Luetkens
- Department of Radiology, University Hospital of Bonn, 53127 Bonn, Germany
| | - Daniel Thomas
- Department of Radiology, St.-Vinzenz Hospital Cologne, 50733 Cologne, Germany;
| | - Daniel Kuetting
- Department of Radiology, University Hospital of Bonn, 53127 Bonn, Germany
| |
Collapse
|
10
|
Zhang LS, Yu P, Yao F, Lu ZQ, Li XM, Chen H. Insulin autoantibodies, D-dimer and microalbuminuria: A cross-sectional, case-control study of type 2 diabetes. World J Diabetes 2025; 16:101501. [PMID: 39959270 PMCID: PMC11718470 DOI: 10.4239/wjd.v16.i2.101501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/10/2024] [Accepted: 12/02/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) often leads to vascular complications, such as albuminuria. The role of insulin autoantibodies (IAA) and their interaction with D-dimer in this context remains unclear. AIM To investigate the characteristics of IAA and its effect on albuminuria in T2DM patients. METHODS We retrospectively analyzed clinical data from 115 T2DM patients with positive IAA induced by exogenous insulin, and 115 age- and sex-matched IAA-negative T2DM patients as controls. Propensity scores were calculated using multivariate logistic regression. Key variables were selected using the least absolute shrinkage and selection operator (LASSO) algorithm. We constructed a prediction model and analyzed the association between IAA and albuminuria based on demographic and laboratory parameters. RESULTS The IAA-positive group had significantly higher D-dimer levels [0.30 (0.19-0.55) mg/L vs 0.21 (0.19-0.33) mg/L, P = 0.008] and plasma insulin levels [39.1 (12.0-102.7) μU/mL vs 9.8 (5.5-17.6) μU/mL, P < 0.001] compared to the IAA-negative group. Increases in the insulin dose per weight ratio, diabetes duration, and urinary albumin-to-creatinine ratio (UACR) were observed but did not reach statistical significance. The LASSO model identified plasma insulin and D-dimer as key factors with larger coefficients. D-dimer was significantly associated with UACR in the total and IAA-positive groups but not in the IAA-negative group. The odds ratio for D-dimer elevation (> 0.5 g/L) was 2.88 (95% confidence interval: 1.17-7.07) in the IAA-positive group (P interaction < 0.05). CONCLUSION D-dimer elevation is an independent risk factor for abnormal albuminuria and interacts with IAA in the development of abnormal albuminuria in T2DM patients.
Collapse
Affiliation(s)
- Lin-Shan Zhang
- Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Peng Yu
- Department of Endocrinology, Shanghai Geriatric Medical Center, Shanghai 201104, China
| | - Fei Yao
- Department of Endocrinology, Fuzhou Hospital of Traditional Chinese Medicine, Fuzhou 350000, Fujian Province, China
| | - Zhi-Qiang Lu
- Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiao-Mu Li
- Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hong Chen
- Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
11
|
Oe Y, Tanaka T, Takahashi N. The Many Faces of Protease-Activated Receptor 2 in Kidney Injury. Biomedicines 2025; 13:414. [PMID: 40002827 PMCID: PMC11852827 DOI: 10.3390/biomedicines13020414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/15/2025] [Accepted: 02/02/2025] [Indexed: 02/27/2025] Open
Abstract
Protease-activated receptor 2 (PAR2) is a seven-transmembrane, G-protein-coupled receptor that is activated by coagulation proteases such as factor VIIa and factor Xa and other serine proteases. It is a potential therapeutic target for kidney injury, as it enhances inflammatory and fibrotic responses via the nuclear factor-kappa B and mitogen-activated protein kinase cascades. The body of knowledge regarding the role of PAR2 in kidney disease is currently growing, and its role in various kidney disease models, such as acute kidney injury, renal fibrosis, diabetic kidney disease, aging, and thrombotic microangiopathy, has been reported. Here, we review the literature to better understand the various aspects of PAR2 in kidney disease.
Collapse
Affiliation(s)
- Yuji Oe
- Department of Nephrology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Tetsuhiro Tanaka
- Department of Nephrology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Nobuyuki Takahashi
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences & Faculty of Pharmaceutical Sciences, Sendai 980-0845, Japan
| |
Collapse
|
12
|
Seddio AE, Moran J, Gouzoulis MJ, Garbis NG, Salazar DH, Grauer JN, Jimenez AE. Lower Risk of Postoperative Complications and Rotator Cuff Retear Associated With Semaglutide Use in Patients with Type II Diabetes Mellitus Undergoing Arthroscopic Rotator Cuff Repair. Arthroscopy 2025; 41:199-206. [PMID: 39490542 DOI: 10.1016/j.arthro.2024.09.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 11/05/2024]
Abstract
PURPOSE To investigate the potential impact of preoperative semaglutide use (the active agent in Ozempic and Wegovy) on 90-day postoperative outcomes and 2-year rotator cuff retear after arthroscopic rotator cuff repair (ARCR) in patients with type II diabetes mellitus (T2DM). METHODS Patients with T2DM undergoing primary ARCR were identified from the PearlDiver database using administrative billing codes. Exclusion criteria included patients <18 years old; previous RCR; concurrent nonrotator cuff-related arthroscopic shoulder procedures; any traumatic, neoplastic, or infectious diagnoses within 90 days before surgery; and <90-days follow-up. Patients with T2DM using semaglutide within 1 year of ARCR ([+]semaglutide) were matched 1:4 with patients with T2DM who did not ([-]semaglutide) by age, sex, Elixhauser Comorbidity Index, diabetes complications, obesity, tobacco, insulin, and metformin use. Occurrence of any adverse events (AAE), severe adverse events (SAE), and minor adverse events (MAE) within 90 days were compared by multivariable logistic regression. The 2-year retear was assessed by Kaplan-Meier survival analysis and compared by log-rank test. RESULTS There were 1,094 ARCR (+)semaglutide and 4,110 ARCR (-)semaglutide patients meeting inclusion criteria after matching. The incidence of AAE for the ARCR (-)semaglutide versus ARCR (+)semaglutide patients was 27.4% versus 11.0%, SAE was 10.5% versus 3.5%, and MAE was 22.0% versus 8.5%, respectively (P < .001 for all). ARCR (-)semaglutide patients had a greater odds ratio of AAE (3.65, P < .001) and SAE (3.62, P < .001), including surgical-site infection (2.22, P = .049), venous thromboembolism (3.10, P < .001), sepsis (3.87, P < .001), and cardiac events (3.96, P < .001), as well as greater odds of MAE (3.59, P < .001), including urinary tract infection (3.27), pneumonia (3.88), acute kidney injury (3.91), and emergency department visits (2.51) (P < .001 for all). In addition, (-)semaglutide patients revealed greater 2-year retear vs (+)semaglutide patients (18.3% vs 12.5%, respectively) (P < .001). CONCLUSIONS Preoperative semaglutide use for patients with T2DM undergoing ARCR was associated with decreased odds of minor and serious 90-day adverse events and lower 2-year rotator cuff retear. LEVEL OF EVIDENCE Level III, retrospective comparative study.
Collapse
Affiliation(s)
- Anthony E Seddio
- Department of Orthopaedics & Rehabilitation, Yale School of Medicine, New Haven, Connecticut, U.S.A
| | - Jay Moran
- Department of Orthopaedics & Rehabilitation, Yale School of Medicine, New Haven, Connecticut, U.S.A
| | - Michael J Gouzoulis
- Department of Orthopaedics & Rehabilitation, Yale School of Medicine, New Haven, Connecticut, U.S.A
| | - Nickolas G Garbis
- Department of Orthopaedic Surgery and Rehabilitation, Loyola University Chicago, Maywood, Illinois, U.S.A
| | - Dane H Salazar
- Department of Orthopaedic Surgery and Rehabilitation, Loyola University Chicago, Maywood, Illinois, U.S.A
| | - Jonathan N Grauer
- Department of Orthopaedics & Rehabilitation, Yale School of Medicine, New Haven, Connecticut, U.S.A
| | - Andrew E Jimenez
- Department of Orthopaedics & Rehabilitation, Yale School of Medicine, New Haven, Connecticut, U.S.A..
| |
Collapse
|
13
|
Caturano A, Rocco M, Tagliaferri G, Piacevole A, Nilo D, Di Lorenzo G, Iadicicco I, Donnarumma M, Galiero R, Acierno C, Sardu C, Russo V, Vetrano E, Conte C, Marfella R, Rinaldi L, Sasso FC. Oxidative Stress and Cardiovascular Complications in Type 2 Diabetes: From Pathophysiology to Lifestyle Modifications. Antioxidants (Basel) 2025; 14:72. [PMID: 39857406 PMCID: PMC11759781 DOI: 10.3390/antiox14010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/30/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder that significantly increases the risk of cardiovascular disease, which is the leading cause of morbidity and mortality among diabetic patients. A central pathophysiological mechanism linking T2DM to cardiovascular complications is oxidative stress, defined as an imbalance between reactive oxygen species (ROS) production and the body's antioxidant defenses. Hyperglycemia in T2DM promotes oxidative stress through various pathways, including the formation of advanced glycation end products, the activation of protein kinase C, mitochondrial dysfunction, and the polyol pathway. These processes enhance ROS generation, leading to endothelial dysfunction, vascular inflammation, and the exacerbation of cardiovascular damage. Additionally, oxidative stress disrupts nitric oxide signaling, impairing vasodilation and promoting vasoconstriction, which contributes to vascular complications. This review explores the molecular mechanisms by which oxidative stress contributes to the pathogenesis of cardiovascular disease in T2DM. It also examines the potential of lifestyle modifications, such as dietary changes and physical activity, in reducing oxidative stress and mitigating cardiovascular risks in this high-risk population. Understanding these mechanisms is critical for developing targeted therapeutic strategies to improve cardiovascular outcomes in diabetic patients.
Collapse
Affiliation(s)
- Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Maria Rocco
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Giuseppina Tagliaferri
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Alessia Piacevole
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Davide Nilo
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Giovanni Di Lorenzo
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Ilaria Iadicicco
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Mariarosaria Donnarumma
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Carlo Acierno
- Azienda Ospedaliera Regionale San Carlo, 85100 Potenza, Italy;
| | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Vincenzo Russo
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
- Division of Cardiology, Department of Medical Translational Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Erica Vetrano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Caterina Conte
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy;
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, 20099 Milan, Italy
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| | - Luca Rinaldi
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (A.C.); (M.R.); (G.T.); (A.P.); (D.N.); (G.D.L.); (I.I.); (M.D.); (R.G.); (C.S.); (E.V.); (R.M.)
| |
Collapse
|
14
|
Zhang TY, Wang XN, Kuang HY, Zhang ZM, Xu CY, Zhao KQ, Ha-Si WY, Zhang C, Hao M. Association between all-cause mortality and vascular complications in U.S. adults with newly diagnosed type 2 diabetes (NHANES 1999-2018). Acta Diabetol 2025; 62:113-121. [PMID: 39096329 DOI: 10.1007/s00592-024-02342-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/15/2024] [Indexed: 08/05/2024]
Abstract
AIMS The impact of macrovascular and microvascular complications, the common vascular complications of type 2 diabetes, on long-term mortality has been well evaluated, but the impact of different complications of newly diagnosed type 2 diabetes (diagnosed within the past 2 years) on long-term mortality has not been reported. We aimed to investigate the relationship between all-cause mortality and vascular complications in U.S. adults (aged ≥ 20 years) with newly diagnosed type 2 diabetes. METHODS We used data from the 1999-2018 National Health and Nutritional Examination Surveys (NHANES). Cox proportional hazard models was used to assess hazard ratios (HR) and 95% confidence intervals for all-cause mortality. RESULTS A total of 928 participants were enrolled in this study. At a mean follow-up of 10.8 years, 181 individuals died. In the fully adjusted model, the hazard ratio (HR) (95% confidence interval [CI]) of all-cause mortality for individuals with any single complication compared with those with newly diagnosed type 2 diabetes without complications was 2.24 (1.37, 3.69), and for individuals with two or more complications was 5.34 (3.01, 9.46).Co-existing Chronic kidney disease (CKD) and diabetic retinopathy (DR) at baseline were associated with the highest risk of death (HR 6.07[2.92-12.62]), followed by CKD and cardiovascular disease (CVD) (HR 4.98[2.79-8.89]) and CVD and DR (HR 4.58 [1.98-10.57]). CONCLUSION The presence of single and combined diabetes complications exerts a long-term synergistic adverse impact on overall mortality in newly diagnosed U.S. adults with type 2 diabetes, underscoring the importance of comprehensive complication screening to enhance risk stratification and treatment.
Collapse
Affiliation(s)
- Tian-Yu Zhang
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, People's Republic of China
| | - Xue-Ning Wang
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, People's Republic of China
| | - Hong-Yu Kuang
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, People's Republic of China
| | - Zi-Meng Zhang
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, People's Republic of China
| | - Cheng-Ye Xu
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, People's Republic of China
| | - Kang-Qi Zhao
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, People's Republic of China
| | - Wu-Ying Ha-Si
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, People's Republic of China
| | - Cong Zhang
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, People's Republic of China
| | - Ming Hao
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, People's Republic of China.
| |
Collapse
|
15
|
Chahal S, Raj RG, Kumar R. Risk of Type 1 Diabetes Mellitus in SARS-CoV-2 Patients. Curr Diabetes Rev 2025; 21:e240524230298. [PMID: 38798206 DOI: 10.2174/0115733998290807240522045553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/19/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024]
Abstract
Recent studies have found that a link between people with type 1 diabetes mellitus (T1DM) are at higher risk of morbidity as well as mortality from COVID-19 infection, indicating a need for vaccination. T1DM appears to impair innate and adaptive immunity. The overabundance of pro-inflammatory cytokines produced in COVID-19 illness that is severe and potentially fatal is known as a "cytokine storm." Numerous cohorts have revealed chronic inflammation as a key risk factor for unfavorable COVID-19 outcomes. TNF-α, interleukin (IL)-1a, IL-1, IL-2, IL-6, and other cytokines were found in higher concentrations in patients with T1DM. Even more importantly, oxidative stress contributes significantly to the severity and course of COVID- 19's significant role in the progression and severity of COVID-19 diseases. Severe glucose excursions, a defining characteristic of type 1 diabetes, are widely recognized for their potent role as mediating agents of oxidative stress via several routes, such as heightened production of advanced glycation end products (AGEs) and activation of protein kinase C (PKC). Furthermore, persistent endothelial dysfunction and hypercoagulation found in T1DM may impair microcirculation and endothelium, which could result in the development of various organ failure and acute breathing syndrome.
Collapse
Affiliation(s)
- Shweta Chahal
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Rojin G Raj
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Ranjeet Kumar
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, Punjab, 142001, India
| |
Collapse
|
16
|
Dai H, Liu L, Xu W. Association of Albumin-To-Creatinine Ratio With Diabetic Retinopathy Among US Adults (NHANES 2009-2016). Endocrinol Diabetes Metab 2025; 8:e70029. [PMID: 39826101 PMCID: PMC11742259 DOI: 10.1002/edm2.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/31/2024] [Accepted: 01/04/2025] [Indexed: 01/20/2025] Open
Abstract
OBJECTIVE This study investigates the relationship between the albumin-to-creatinine ratio and diabetic retinopathy (DR) in US adults using NHANES data from 2009 to 2016. This study assesses the predictive efficacy of the urinary serum albumin-to-creatinine ratio (UACR/SACR Ratio) against traditional biomarkers such as the serum albumin-to-creatinine ratio (SACR) and urinary albumin-to-creatinine ratio (UACR) for evaluating DR risk. Additionally, the study explores the potential of these biomarkers, both individually and in combination with HbA1c, for early detection and risk stratification of DR. METHODS This cross-sectional study analysed data from 2594 diabetic adults in the National Health and Nutrition Examination Survey (NHANES 2009-2016). Multivariate logistic regression models, adjusted for demographic (sex, age, race and education) and clinical factors (WBC, PLT, RDW, HbA1c, HBP and CHD), examined the associations between biomarkers and DR. Biomarkers were analysed both continuously and in quartiles to assess dose-response relationships. Receiver operating characteristic (ROC) curve analysis evaluated the predictive accuracy of individual biomarkers and combined models. RESULTS Elevated SACR levels were inversely related to DR risk, while UACR showed a positive correlation. The UACR/SACR ratio demonstrated superior predictive capability for DR compared to SACR and UACR alone. The most accurate predictive model combined SACR, UACR, UACR/SACR ratio and HbA1c (AUC = 0.614), highlighting DR development complexity. Subgroup analyses revealed stronger associations in participants aged < 60 years and those with hypertension (both p < 0.05), with more pronounced effects observed in males and Mexican Americans, while lifestyle factors showed no significant modifying effect. CONCLUSION The UACR/SACR Ratio emerged as a potentially superior DR predictor, particularly in younger patients and those with hypertension, suggesting its utility in enhancing early detection and risk stratification. Comprehensive evaluation of renal function and glycaemic control biomarkers, considering age- and comorbidity-specific patterns, could improve DR risk prediction and management. Future longitudinal studies should validate these findings, particularly in identified high-risk subgroups, and investigate underlying mechanisms, potentially advancing personalised DR prediction and management strategies.
Collapse
Affiliation(s)
- Han Dai
- Department of Endocrinology and MetabolismSecond Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Ling Liu
- Department of OphthalmologyChongqing University Central Hospital, Chongqing Emergency Medical CenterChongqingChina
| | - Weiwei Xu
- Department of Endocrinology and MetabolismSecond Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| |
Collapse
|
17
|
Parikh R, Patel I, Patel V, Vyas P, Joshi H, Patel U, Ghetiya S. Clinical profile and long-term predictors of mortality in idiopathic acute pulmonary thromboembolism. Glob Cardiol Sci Pract 2024; 2024:e202457. [PMID: 40026585 PMCID: PMC11871557 DOI: 10.21542/gcsp.2024.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 12/01/2024] [Indexed: 03/05/2025] Open
Abstract
Background: Unprovoked venous thromboembolism is a poorly understood entity. Clinical risk factors and future outcomes are not well recognized in this subgroup of patients. Various pathogenic mechanisms like inflammation and athero-thrombosis have been put forth but remain investigative. Our study aimed to determine the clinical profile and predictors of mortality in patients with idiopathic pulmonary embolism. Methods: Our single centre observational study included 510 consecutive patients with symptomatic unprovoked venous thromboembolism. Pulmonary embolism (PE) patients were initially categorized based on the presence or absence of deep vein thrombosis (DVT). Subsequently, the patients were further sub-grouped according to mortality, and the association between clinical parameters and death was evaluated through regression analysis. Results: The in-hospital mortality of patients with unprovoked pulmonary embolism was 15.9% and 25.76% at three year follow up. Significantly higher number of patients with diabetes, hypertension, dyslipidaemia, lower TAPSE (tricuspid annular plane systolic excursion) and PASP (pulmonary arterial systolic pressure) were found in mortality patients compared to survivor patients. On regression analysis we found significant association of higher odds of age OR = 1.1 (1.05-1.23), diabetes OR = 2.47 (1.28-4.79), hypertension OR = 2.25 (1.19-4.26) and lower odds of thrombolysis OR = 0.38 (0.11-0.59) with mortality. On Kaplan Meier survival analysis, the log value of <0.05 showed significantly higher mortality in patients who were not thrombolyzed. Conclusion: Various short and long-term predictors of mortality exist for pulmonary embolism. Cardiovascular risk factors play a mediating role in venous thromboembolism and also serve as predictors for long-term mortality. Therefore, modifying these risk factors can potentially result in a reduction in long-term mortality.
Collapse
Affiliation(s)
- Rujuta Parikh
- U. N. Mehta Institute of Cardiology and Research Centre (UNMICRC), Civil Hospital CampusAsarwa, Ahmedabad-380016, GujaratIndia
| | - Iva Patel
- U. N. Mehta Institute of Cardiology and Research Centre (UNMICRC), Civil Hospital CampusAsarwa, Ahmedabad-380016, GujaratIndia
| | - Vishal Patel
- U. N. Mehta Institute of Cardiology and Research Centre (UNMICRC), Civil Hospital CampusAsarwa, Ahmedabad-380016, GujaratIndia
| | - Pooja Vyas
- U. N. Mehta Institute of Cardiology and Research Centre (UNMICRC), Civil Hospital CampusAsarwa, Ahmedabad-380016, GujaratIndia
| | - Hasit Joshi
- U. N. Mehta Institute of Cardiology and Research Centre (UNMICRC), Civil Hospital CampusAsarwa, Ahmedabad-380016, GujaratIndia
| | - Utsav Patel
- U. N. Mehta Institute of Cardiology and Research Centre (UNMICRC), Civil Hospital CampusAsarwa, Ahmedabad-380016, GujaratIndia
| | - Sagar Ghetiya
- U. N. Mehta Institute of Cardiology and Research Centre (UNMICRC), Civil Hospital CampusAsarwa, Ahmedabad-380016, GujaratIndia
| |
Collapse
|
18
|
Lupu VV, Miron I, Trandafir LM, Jechel E, Starcea IM, Ioniuc I, Frasinariu OE, Mocanu A, Petrariu FD, Danielescu C, Nedelcu AH, Salaru DL, Revenco N, Lupu A. Challenging directions in pediatric diabetes - the place of oxidative stress and antioxidants in systemic decline. Front Pharmacol 2024; 15:1472670. [PMID: 39744134 PMCID: PMC11688324 DOI: 10.3389/fphar.2024.1472670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/04/2024] [Indexed: 01/06/2025] Open
Abstract
Diabetes is a complex condition with a rising global incidence, and its impact is equally evident in pediatric practice. Regardless of whether we are dealing with type 1 or type 2 diabetes, the development of complications following the onset of the disease is inevitable. Consequently, contemporary medicine must concentrate on understanding the pathophysiological mechanisms driving systemic decline and on finding ways to address them. We are particularly interested in the effects of oxidative stress on target cells and organs, such as pancreatic islets, the retina, kidneys, and the neurological or cardiovascular systems. Our goal is to explore, using the latest data from international scientific databases, the relationship between oxidative stress and the development or persistence of systemic damage associated with diabetes in children. Additionally, we highlight the beneficial roles of antioxidants such as vitamins, minerals, polyphenols, and other bioactive molecules; in mitigating the pathogenic cascade, detailing how they intervene and their bioactive properties. As a result, our study provides a comprehensive exploration of the key aspects of the oxidative stress-antioxidants-pediatric diabetes triad, expanding understanding of their significance in various systemic diseases.
Collapse
Affiliation(s)
- Vasile Valeriu Lupu
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Ingrith Miron
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | | | - Elena Jechel
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | | | - Ileana Ioniuc
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | | | - Adriana Mocanu
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | | | - Ciprian Danielescu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Alin Horatiu Nedelcu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Delia Lidia Salaru
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Ninel Revenco
- Pediatrics, “Nicolae Testemitanu” State University of Medicine and Pharmacy, Chisinau, Moldova
| | - Ancuta Lupu
- Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| |
Collapse
|
19
|
Yaribeygi H, Maleki M, Forouzanmehr B, Kesharwani P, Jamialahmadi T, Karav S, Sahebkar A. Exploring the antioxidant properties of semaglutide: A comprehensive review. J Diabetes Complications 2024; 38:108906. [PMID: 39549371 DOI: 10.1016/j.jdiacomp.2024.108906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/02/2024] [Accepted: 11/09/2024] [Indexed: 11/18/2024]
Abstract
Patients with diabetes commonly experience an aberrant production of free radicals and weakened antioxidative defenses, making them highly susceptible to oxidative stress development. This, in turn, can induce and promote diabetic complications. Therefore, utilizing antidiabetic agents with antioxidative properties can offer dual benefits by addressing hyperglycemia and reducing oxidative damage. Semaglutide, a recently approved oral form of glucagon-like peptide-1 (GLP-1) analogues, has shown potent antidiabetic effects. Additionally, recent studies have suggested that it possesses antioxidative properties. However, the exact effects and the molecular pathways involved are not well understood. In this review, we present the latest findings on the antioxidative impacts of semaglutide and draw conclusions about the mechanisms involved.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Mina Maleki
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behina Forouzanmehr
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
20
|
Hoca M, Becer E, Vatansever HS. Carvacrol is potential molecule for diabetes treatment. Arch Physiol Biochem 2024; 130:823-830. [PMID: 38019023 DOI: 10.1080/13813455.2023.2288537] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023]
Abstract
Diabetes is an important chronic disease that can lead to various negative consequences and complications. In recent years, several new alternative treatments have been developed to improve diabetes. Carvacrol found in essential oils of numerous plant species and has crucial potential effects on diabetes. The anti-diabetic effects of carvacrol have also been comprehensively studied in diabetic animal and cell models. In addition, carvacrol could improve diabetes through affecting diabetes-related enzymes, insulin resistance, insulin sensitivity, glucose uptake, anti-oxidant, and anti-inflammatory mechanisms. The use of carvacrol alone or in combination with anti-diabetic therapies could show a significant potential effect in the treatment of diabetes. This review contributes an overview of the effect of carvacrol in diabetes and anti-diabetic mechanisms.
Collapse
Affiliation(s)
- Mustafa Hoca
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Near East University, Nicosia, Mersin, Turkey
| | - Eda Becer
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, Mersin, Turkey
| | - Hafize Seda Vatansever
- DESAM Institute, Near East University, Nicosia, Mersin, Turkey
- Department of Histology and Embryology, Faculty of Medicine, Manisa Celal Bayar University, Manisa, Turkey
| |
Collapse
|
21
|
Nan G, Wang B, Lv X, Wang W, Luo Z, Yang G, Ding R, Wang J, Lin R, Wang H. Effects of Rhaponticum carthamoides (Willd.) Iljin on endothelial dysfunction and the inflammatory response in type 2 diabetes mellitus mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156134. [PMID: 39418973 DOI: 10.1016/j.phymed.2024.156134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/29/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Diabetes mellitus (DM) and its complications seriously threaten human life and health. Rhaponticum carthamoides (Willd.) Iljin (RC) is widely used to treat cardiovascular diseases. Previous studies reported that RC reduces blood glucose levels in rats with type 1 DM. However, the effects of RC on type 2 diabetes and vascular complications, as well as its related active components and underlying mechanisms, remain unclear. PURPOSE This study aimed to investigate the effects of RC on endothelial dysfunction and the inflammatory response in type 2 DM mice and to explore its underlying mechanism and active ingredients. STUDY DESIGN/METHODS Male C57BL/6J mice were used to establish a type 2 DM mouse model. After 12 weeks of oral administration of RC extract (60, 120, and 240 mg/kg) to mice, blood glucose and lipid levels were assessed. The morphological structures of the liver and kidney tissues were observed using hematoxylin and eosin (HE) staining, and their functions were evaluated by detecting relevant biochemical indicators in the serum. Then, aorta morphology was observed via HE staining. In addition, serum levels of markers of endothelial function and inflammatory factors were detected, and the expression of inflammatory factors and the phosphorylation levels of key proteins in the aorta were examined. Furthermore, prediction and enrichment analyses of potential targets of RC acting on diabetic vascular lesions were performed on the basis of pharmacophore matching using various databases. Then, the expression, localization and phosphorylation levels of potential targets in the aortas of DM mice treated with RC were assessed using Western blotting, immunofluorescence, and RT‒PCR. Finally, the active components of RC were identified through virtual screening, and their ability to improve endothelial cell dysfunction was verified. RESULTS RC reduced blood glucose levels and serum lipid levels of total triglyceride (TG), total cholesterol (TC), and low density lipoprotein cholesterol (LDL-c), increased high density lipoprotein cholesterol (HDL-c) levels, and improved liver and kidney function in type 2 DM mice. RC decreased endothelial cell shedding in the aortas of type 2 DM mice, increased serum nitric oxide (NO) and nitric oxide synthase (NOS) levels, and reduced soluble cluster of differentiation 40 ligand (sCD40L), tumor necrosis factor α (TNF-α), and interleukin-1β (IL-1β) levels. Further findings indicated that RC reduced the expression of aortic inflammatory factors, namely, CD40, CD40L, IL-1β, and interleukin-6 (IL-6), and increased endothelial NOS (eNOS) phosphorylation levels. Sirtuin 6 (SIRT6), protein kinase B (AKT), and eNOS were predicted to be key node targets of RC acting on DM vascular lesions, and it was confirmed that RC increased SIRT6 expression and AKT phosphorylation levels in aortic endothelial cells. 20-Hydroxyecdysone (20E), daucosterol (Dau), euscaphic acid (Eus), and syringin (Syr) were identified as active components of RC. These components protect against TNF-α-induced human umbilical vein endothelial cell (HUVEC) damage and decrease the release of lactate dehydrogenase (LDH) and IL-1β and increased the release of NO in TNF-α-induced HUVECs in a dose-dependent manner. CONCLUSION RC reduced blood glucose and lipid levels in mice with type 2 DM and protected liver and kidney function. RC promotes SIRT6 expression in endothelial cells; upregulates the NO/NOS system by increasing AKT/eNOS phosphorylation levels to regulate vascular tone factors; and reduces the levels of inflammatory factors such as CD40, TNF-α, and IL-1β to inhibit endothelial inflammatory responses. Based on these mechanisms, RC improves endothelial dysfunction.
Collapse
Affiliation(s)
- Guanjun Nan
- School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, PR China
| | - Bo Wang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, PR China
| | - Xiaohan Lv
- Department of Pharmacy, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, PR China
| | - Weirong Wang
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, PR China
| | - Zhimin Luo
- School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, PR China
| | - Guangde Yang
- School of Pharmacy, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, PR China
| | - Rongcheng Ding
- Xinjiang Rongcheng Hake Pharmaceutical Co. Ltd, Altay region, 836500, Xinjiang, PR China
| | - Jianjiang Wang
- Xinjiang Rongcheng Hake Pharmaceutical Co. Ltd, Altay region, 836500, Xinjiang, PR China
| | - Rong Lin
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, PR China.
| | - Haichen Wang
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, PR China.
| |
Collapse
|
22
|
Nkhumeleni Z, Phoswa WN, Mokgalaboni K. Purslane Ameliorates Inflammation and Oxidative Stress in Diabetes Mellitus: A Systematic Review. Int J Mol Sci 2024; 25:12276. [PMID: 39596339 PMCID: PMC11595026 DOI: 10.3390/ijms252212276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/04/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Type 2 diabetes (T2D) is characterised by insulin resistance and leads to hyperglycaemia. Its prevalence and associated complications continue to rise exponentially, despite the existence of pharmaceutical drugs, and this has prompted research into exploring safer herbal remedies. Portulaca oleracea (purslane) has been investigated in animal and clinical trials to explore its effects on diabetes, yielding conflicting results. This study aimed to evaluate the effects of purslane on inflammation and oxidative stress in diabetes mellitus. We conducted a comprehensive literature search on Scopus PubMed, and through a manual bibliographical search to find relevant studies from inception to 13 September 2024. The search terms included purslane, portulaca oleracea, and type 2 diabetes mellitus. Of the 38 retrieved studies, 12 were considered relevant and underwent critical review. Evidence from rodent studies showed decreased inflammatory markers such as interleukin-6 (IL-6), tumour necrosis factor-alpha (TNF-α), nuclear factor kappa-beta (NF-κβ), and C-reactive (CRP), while interleukin-10 (IL-10) was increased after intervention with purslane. The markers of oxidative stress such as superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), glutathione peroxidase (GPx), and total antioxidant capacity (TAC) levels increased, thiobarbituric acid reactive substances (TBARS), reactive oxygen species (ROS) and malondialdehyde (MDA) decreased. Notably, the evidence from clinical trials showed a significant reduction in NF-κβ and CRP after purslane treatment; however, no effect was observed on MDA and TAC. The evidence gathered in this study suggests that purslane exerts anti-inflammatory properties by downregulating NF-κβ, thus suppressing the production of associated pro-inflammatory cytokines. Therefore, purslane may be used as an antioxidant and inflammatory agent for diabetes. However, further clinical evidence with a broader population is required to validate the therapeutic properties of purslane in diabetes.
Collapse
Affiliation(s)
| | - Wendy N. Phoswa
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Florida Campus, Roodepoort 1710, South Africa; (Z.N.); (K.M.)
| | | |
Collapse
|
23
|
Flores-Roco A, Lago BM, Villa-Bellosta R. Elevated glucose levels increase vascular calcification risk by disrupting extracellular pyrophosphate metabolism. Cardiovasc Diabetol 2024; 23:405. [PMID: 39529124 PMCID: PMC11555999 DOI: 10.1186/s12933-024-02502-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Vascular calcification is a major contributor to cardiovascular disease, especially diabetes, where it exacerbates morbidity and mortality. Although pyrophosphate is a recognized natural inhibitor of vascular calcification, there have been no prior studies examining its specific deficiency in diabetic conditions. This study is the first to analyze the direct link between elevated glucose levels and disruptions in extracellular pyrophosphate metabolism. METHODS Rat aortic smooth muscle cells, streptozotocin (STZ)-induced diabetic rats, and diabetic human aortic smooth muscle cells were used to assess the effects of elevated glucose levels on pyrophosphate metabolism and vascular calcification. The techniques used include extracellular pyrophosphate metabolism assays, thin-layer chromatography, phosphate-induced calcification assays, BrdU incorporation for DNA synthesis, aortic smooth muscle cell viability and proliferation assays, and quantitative PCR for enzyme expression analysis. Additionally, extracellular pyrophosphate metabolism was examined through the use of radiolabeled isotopes to track ATP and pyrophosphate transformations. RESULTS Elevated glucose led to a significant reduction in extracellular pyrophosphate across all diabetic models. This metabolic disruption was marked by notable downregulation of both the expression and activity of ectonucleotide pyrophosphatase/phosphodiesterase 1, a key enzyme that converts ATP to pyrophosphate. We also observed an upregulation of ectonucleoside triphosphate diphosphohydrolase 1, which preferentially hydrolyzes ATP to inorganic phosphate rather than pyrophosphate. Moreover, tissue-nonspecific alkaline phosphatase activity was markedly elevated across all diabetic models. This shift in enzyme activity significantly reduced the pyrophosphate/phosphate ratio. In addition, we noted a marked downregulation of matrix Gla protein, another inhibitor of vascular calcification. The impaired pyrophosphate metabolism was further corroborated by calcification experiments across all three diabetic models, which demonstrated an increased propensity for vascular calcification. CONCLUSIONS This study demonstrated that diabetes-induced high glucose disrupts extracellular pyrophosphate metabolism, compromising its protective role against vascular calcification. These findings identify pyrophosphate deficiency as a potential mechanism in diabetic vascular calcification, highlighting a new therapeutic target. Strategies aimed at restoring or enhancing pyrophosphate levels may offer significant potential in mitigating cardiovascular complications in diabetic patients, meriting further investigation.
Collapse
MESH Headings
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
- Diphosphates/metabolism
- Animals
- Humans
- Phosphoric Diester Hydrolases/metabolism
- Diabetes Mellitus, Experimental/metabolism
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/drug effects
- Pyrophosphatases/metabolism
- Pyrophosphatases/genetics
- Cells, Cultured
- Male
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/drug effects
- Rats, Sprague-Dawley
- Alkaline Phosphatase/metabolism
- Alkaline Phosphatase/blood
- Extracellular Matrix Proteins/metabolism
- Extracellular Matrix Proteins/genetics
- Blood Glucose/metabolism
- Matrix Gla Protein
- Calcium-Binding Proteins/metabolism
- Calcium-Binding Proteins/genetics
- Cell Proliferation/drug effects
- GPI-Linked Proteins/metabolism
- Rats
- Aortic Diseases/metabolism
- Aortic Diseases/pathology
- Aortic Diseases/genetics
- Aortic Diseases/prevention & control
- Aorta/metabolism
- Aorta/pathology
- Aorta/drug effects
- 5'-Nucleotidase
Collapse
Affiliation(s)
- Alicia Flores-Roco
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS). Campus Vida, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
- Health Research Institute of Santiago de Compostela (IDIS), Travesia da Choupana S/N, 15706, Santiago de Compostela, Spain
| | - Belinda M Lago
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS). Campus Vida, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
- Health Research Institute of Santiago de Compostela (IDIS), Travesia da Choupana S/N, 15706, Santiago de Compostela, Spain
| | - Ricardo Villa-Bellosta
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS). Campus Vida, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.
- Health Research Institute of Santiago de Compostela (IDIS), Travesia da Choupana S/N, 15706, Santiago de Compostela, Spain.
- Department of Biochemistry and Molecular Biology, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS). Campus Vida, University of Santiago de Compostela, Avenida de Barcelona S/N, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
24
|
Damasceno ROS, Pinheiro JLS, Rodrigues LHM, Gomes RC, Duarte ABS, Emídio JJ, Diniz LRL, de Sousa DP. Anti-Inflammatory and Antioxidant Activities of Eugenol: An Update. Pharmaceuticals (Basel) 2024; 17:1505. [PMID: 39598416 PMCID: PMC11597765 DOI: 10.3390/ph17111505] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 11/29/2024] Open
Abstract
Medicinal plants are a rich source of bioactive compounds that possess pharmacological properties for preventing and treating inflammation-related diseases. Essential oils is a chemical class that contains many bioactive compounds, such as eugenol, which is capable of inhibiting or modulating the inflammatory response. This natural product emerges as a compound that promotes various biological activities, including antioxidant activity, which makes it useful in the food industry. Recently, its pharmacological applications have also been highlighted. So, this review aims to update and discuss the most recent findings on the anti-inflammatory and antioxidant activities of eugenol, along with its mechanisms of action and therapeutic potential for treating inflammation and oxidative imbalance conditions.
Collapse
Affiliation(s)
- Renan Oliveira Silva Damasceno
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil; (R.O.S.D.); (J.L.S.P.); (L.H.M.R.)
| | - João Lucas Silva Pinheiro
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil; (R.O.S.D.); (J.L.S.P.); (L.H.M.R.)
| | - Lucas Henrique Marques Rodrigues
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil; (R.O.S.D.); (J.L.S.P.); (L.H.M.R.)
| | - Rebeca Carneiro Gomes
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-970, Paraíba, Brazil; (R.C.G.); (A.B.S.D.); (J.J.E.)
| | - Allana Brunna Sucupira Duarte
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-970, Paraíba, Brazil; (R.C.G.); (A.B.S.D.); (J.J.E.)
| | - Jeremias Justo Emídio
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-970, Paraíba, Brazil; (R.C.G.); (A.B.S.D.); (J.J.E.)
| | | | - Damião Pergentino de Sousa
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-970, Paraíba, Brazil; (R.C.G.); (A.B.S.D.); (J.J.E.)
| |
Collapse
|
25
|
Lin J, Zhao D, Liang Y, Liang Z, Wang M, Tang X, Zhuang H, Wang H, Yin X, Huang Y, Yin L, Shen L. Proteomic analysis of plasma total exosomes and placenta-derived exosomes in patients with gestational diabetes mellitus in the first and second trimesters. BMC Pregnancy Childbirth 2024; 24:713. [PMID: 39478498 PMCID: PMC11523606 DOI: 10.1186/s12884-024-06919-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is the first spontaneous hyperglycemia during pregnancy. Early diagnosis and intervention are important for the management of the disease. This study compared and analyzed the proteins of total plasma exosomes (T-EXO) and placental-derived exosomes (PLAP-EXO) in pregnant women who subsequently developed GDM (12-16 weeks), GDM patients (24-28 weeks) and their corresponding controls to investigate the pathogenesis and biomarkers of GDM associated with exosomes. The exosomal proteins were extracted and studied by proteomics approach, then bioinformatics analysis was applied to the differentially expressed proteins (DEPs) between the groups. At 12-16 and 24-28 weeks of gestation, 36 and 21 DEPs were identified in T-EXO, while 34 and 20 DEPs were identified in PLAP-EXO between GDM and controls, respectively. These proteins are mainly involved in complement pathways, immunity, inflammation, coagulation and other pathways, most of them have been previously reported as blood or exosomal proteins associated with GDM. The findings suggest that the development of GDM is a progressive process and that early changes promote the development of the disease. Maternal and placental factors play a key role in the pathogenesis of GDM. These proteins especially Hub proteins have the potential to become predictive and diagnostic biomarkers for GDM.
Collapse
Affiliation(s)
- Jing Lin
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, P. R. China
| | - Danqing Zhao
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, P. R. China
| | - Yi Liang
- Department of Clinical Nutrition, Affiliated Hospital of Guizhou Medical University, Guiyang, P.R. China
| | - Zhiyuan Liang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, P. R. China
| | - Mingxian Wang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, P. R. China
| | - Xiaoxiao Tang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, P. R. China
| | - Hongbin Zhuang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, P. R. China
| | - Hanghang Wang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, P. R. China
| | - Xiaoping Yin
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, P. R. China
| | - Yuhan Huang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, P. R. China
| | - Li Yin
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, P. R. China
| | - Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, P. R. China.
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, P. R. China.
| |
Collapse
|
26
|
Lu X, Xie Q, Pan X, Zhang R, Zhang X, Peng G, Zhang Y, Shen S, Tong N. Type 2 diabetes mellitus in adults: pathogenesis, prevention and therapy. Signal Transduct Target Ther 2024; 9:262. [PMID: 39353925 PMCID: PMC11445387 DOI: 10.1038/s41392-024-01951-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/21/2024] [Accepted: 08/06/2024] [Indexed: 10/03/2024] Open
Abstract
Type 2 diabetes (T2D) is a disease characterized by heterogeneously progressive loss of islet β cell insulin secretion usually occurring after the presence of insulin resistance (IR) and it is one component of metabolic syndrome (MS), and we named it metabolic dysfunction syndrome (MDS). The pathogenesis of T2D is not fully understood, with IR and β cell dysfunction playing central roles in its pathophysiology. Dyslipidemia, hyperglycemia, along with other metabolic disorders, results in IR and/or islet β cell dysfunction via some shared pathways, such as inflammation, endoplasmic reticulum stress (ERS), oxidative stress, and ectopic lipid deposition. There is currently no cure for T2D, but it can be prevented or in remission by lifestyle intervention and/or some medication. If prevention fails, holistic and personalized management should be taken as soon as possible through timely detection and diagnosis, considering target organ protection, comorbidities, treatment goals, and other factors in reality. T2D is often accompanied by other components of MDS, such as preobesity/obesity, metabolic dysfunction associated steatotic liver disease, dyslipidemia, which usually occurs before it, and they are considered as the upstream diseases of T2D. It is more appropriate to call "diabetic complications" as "MDS-related target organ damage (TOD)", since their development involves not only hyperglycemia but also other metabolic disorders of MDS, promoting an up-to-date management philosophy. In this review, we aim to summarize the underlying mechanism, screening, diagnosis, prevention, and treatment of T2D, especially regarding the personalized selection of hypoglycemic agents and holistic management based on the concept of "MDS-related TOD".
Collapse
Affiliation(s)
- Xi Lu
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Qingxing Xie
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaohui Pan
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Ruining Zhang
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyi Zhang
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Ge Peng
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Yuwei Zhang
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Sumin Shen
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Nanwei Tong
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
27
|
Han J, van Hylckama Vlieg A, de Mutsert R, Rosendaal FR, van der Velde JH, Boone SC, Winters-van Eekelen E, le Cessie S, Li-Gao R. Associations of coagulation parameters and thrombin generation potential with the incidence of type 2 diabetes: mediating role of glycoprotein acetylation. Eur J Epidemiol 2024; 39:1171-1181. [PMID: 39404973 PMCID: PMC11599431 DOI: 10.1007/s10654-024-01162-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/30/2024] [Indexed: 11/27/2024]
Abstract
Hypercoagulability is characterized by abnormal elevations of coagulation factor levels and increased thrombin generation potential. Prior studies demonstrated links between impaired glucose metabolism, endothelial dysfunction, and hypercoagulability. However, the associations between hypercoagulability and incident type 2 diabetes as well as its underlying mechanism remain unclear. We aimed to assess the associations between coagulation parameters including coagulation factor (F) VIII, FIX, FXI, fibrinogen, thrombin generation potential (lag time, endogenous thrombin potential [ETP], peak, time-to-peak, velocity) and incident type 2 diabetes, and to study the underlying mechanism by examining the mediating role of glycoprotein acetylation (GlycA). In the Netherlands Epidemiology of Obesity study, we applied a Cox Proportional-Hazards Model in 5718 participants after adjustment for confounders. We further conducted a mediation analysis investigating the mediation effect of GlycA on the observed associations. During a median follow-up of 6.7 years, 281 incident type 2 diabetes diagnoses were reported. Compared with the lowest quartile, hazard ratio (95% confidence interval) of the highest quartile was 2.47 (1.48-4.14) for FIX, 1.37 (0.85-2.20) for FVIII, 1.11 (0.76-1.63) for FXI, 0.98 (0.65-1.48) for fibrinogen, 1.56 (1.07-2.28) for ETP, 1.84 (1.23-2.74) for peak, 1.59 (1.08-2.33) for velocity, 0.92 (0.62-1.38) for lag time, and 1.21 (0.86-1.70) for time-to-peak. GlycA mediated only a small proportion of all observed associations. In conclusion, elevated levels of coagulation factor and thrombin generation potential are associated with incident type 2 diabetes, suggesting the involvement of hypercoagulability in the pathogenesis of type 2 diabetes.
Collapse
Affiliation(s)
- Jihee Han
- Department of Clinical Epidemiology, C7-P, Leiden University Medical Center, PO Box 9600, Leiden, 2300 RC, The Netherlands
| | - Astrid van Hylckama Vlieg
- Department of Clinical Epidemiology, C7-P, Leiden University Medical Center, PO Box 9600, Leiden, 2300 RC, The Netherlands
| | - Renée de Mutsert
- Department of Clinical Epidemiology, C7-P, Leiden University Medical Center, PO Box 9600, Leiden, 2300 RC, The Netherlands
| | - Frits R Rosendaal
- Department of Clinical Epidemiology, C7-P, Leiden University Medical Center, PO Box 9600, Leiden, 2300 RC, The Netherlands
| | - Jeroen Hpm van der Velde
- Department of Clinical Epidemiology, C7-P, Leiden University Medical Center, PO Box 9600, Leiden, 2300 RC, The Netherlands
| | - Sebastiaan C Boone
- Department of Clinical Epidemiology, C7-P, Leiden University Medical Center, PO Box 9600, Leiden, 2300 RC, The Netherlands
| | - Esther Winters-van Eekelen
- Department of Clinical Epidemiology, C7-P, Leiden University Medical Center, PO Box 9600, Leiden, 2300 RC, The Netherlands
| | - Saskia le Cessie
- Department of Clinical Epidemiology, C7-P, Leiden University Medical Center, PO Box 9600, Leiden, 2300 RC, The Netherlands
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Ruifang Li-Gao
- Department of Clinical Epidemiology, C7-P, Leiden University Medical Center, PO Box 9600, Leiden, 2300 RC, The Netherlands.
| |
Collapse
|
28
|
Yutani R, Venketaraman V, Sheren N. Treatment of Acute and Long-COVID, Diabetes, Myocardial Infarction, and Alzheimer's Disease: The Potential Role of a Novel Nano-Compound-The Transdermal Glutathione-Cyclodextrin Complex. Antioxidants (Basel) 2024; 13:1106. [PMID: 39334765 PMCID: PMC11429141 DOI: 10.3390/antiox13091106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Oxidative stress (OS) occurs from excessive reactive oxygen species or a deficiency of antioxidants-primarily endogenous glutathione (GSH). There are many illnesses, from acute and post-COVID-19, diabetes, myocardial infarction to Alzheimer's disease, that are associated with OS. These dissimilar illnesses are, in order, viral infections, metabolic disorders, ischemic events, and neurodegenerative disorders. Evidence is presented that in many illnesses, (1) OS is an early initiator and significant promotor of their progressive pathophysiologic processes, (2) early reduction of OS may prevent later serious and irreversible complications, (3) GSH deficiency is associated with OS, (4) GSH can likely reduce OS and restore adaptive physiology, (5) effective administration of GSH can be accomplished with a novel nano-product, the GSH/cyclodextrin (GC) complex. OS is an overlooked pathological process of many illnesses. Significantly, with the GSH/cyclodextrin (GC) complex, therapeutic administration of GSH is now available to reduce OS. Finally, rigorous prospective studies are needed to confirm the efficacy of this therapeutic approach.
Collapse
Affiliation(s)
- Ray Yutani
- Department of Family Medicine, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Vishwanath Venketaraman
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Nisar Sheren
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA;
| |
Collapse
|
29
|
Naderi-Meshkin H, Wahyu Setyaningsih WA, Yacoub A, Carney G, Cornelius VA, Nelson CA, Kelaini S, Donaghy C, Dunne PD, Amirkhah R, Zampetaki A, Zeng L, Stitt AW, Lois N, Grieve DJ, Margariti A. Unveiling impaired vascular function and cellular heterogeneity in diabetic donor-derived vascular organoids. Stem Cells 2024; 42:791-808. [PMID: 39049437 PMCID: PMC11384901 DOI: 10.1093/stmcls/sxae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/06/2024] [Indexed: 07/27/2024]
Abstract
Vascular organoids (VOs), derived from induced pluripotent stem cells (iPSCs), hold promise as in vitro disease models and drug screening platforms. However, their ability to faithfully recapitulate human vascular disease and cellular composition remains unclear. In this study, we demonstrate that VOs derived from iPSCs of donors with diabetes (DB-VOs) exhibit impaired vascular function compared to non-diabetic VOs (ND-VOs). DB-VOs display elevated levels of reactive oxygen species (ROS), heightened mitochondrial content and activity, increased proinflammatory cytokines, and reduced blood perfusion recovery in vivo. Through comprehensive single-cell RNA sequencing, we uncover molecular and functional differences, as well as signaling networks, between vascular cell types and clusters within DB-VOs. Our analysis identifies major vascular cell types (endothelial cells [ECs], pericytes, and vascular smooth muscle cells) within VOs, highlighting the dichotomy between ECs and mural cells. We also demonstrate the potential need for additional inductions using organ-specific differentiation factors to promote organ-specific identity in VOs. Furthermore, we observe basal heterogeneity within VOs and significant differences between DB-VOs and ND-VOs. Notably, we identify a subpopulation of ECs specific to DB-VOs, showing overrepresentation in the ROS pathway and underrepresentation in the angiogenesis hallmark, indicating signs of aberrant angiogenesis in diabetes. Our findings underscore the potential of VOs for modeling diabetic vasculopathy, emphasize the importance of investigating cellular heterogeneity within VOs for disease modeling and drug discovery, and provide evidence of GAP43 (neuromodulin) expression in ECs, particularly in DB-VOs, with implications for vascular development and disease.
Collapse
Affiliation(s)
- Hojjat Naderi-Meshkin
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, United Kingdom
| | - Wiwit A Wahyu Setyaningsih
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, United Kingdom
- Department of Anatomy, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Sleman, D.I. Yogyakarta, 55281, Indonesia
| | - Andrew Yacoub
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, United Kingdom
| | - Garrett Carney
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, United Kingdom
| | - Victoria A Cornelius
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, United Kingdom
| | - Clare-Ann Nelson
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, United Kingdom
| | - Sophia Kelaini
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, United Kingdom
| | - Clare Donaghy
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, United Kingdom
| | - Philip D Dunne
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7AE, United Kingdom
| | - Raheleh Amirkhah
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7AE, United Kingdom
| | - Anna Zampetaki
- School of Cardiovascular Medicine and Sciences, BHF Centre of Research Excellence, King's College London, London, SE5 9NU, United Kingdom
| | - Lingfang Zeng
- School of Cardiovascular Medicine and Sciences, BHF Centre of Research Excellence, King's College London, London, SE5 9NU, United Kingdom
| | - Alan W Stitt
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, United Kingdom
| | - Noemi Lois
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, United Kingdom
| | - David J Grieve
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, United Kingdom
| | - Andriana Margariti
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, United Kingdom
| |
Collapse
|
30
|
Zhang W, Feng J, Ni Y, Li G, Wang Y, Cao Y, Zhou M, Zhao C. The role of SLC7A11 in diabetic wound healing: novel insights and new therapeutic strategies. Front Immunol 2024; 15:1467531. [PMID: 39290692 PMCID: PMC11405230 DOI: 10.3389/fimmu.2024.1467531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Diabetic wounds are a severe complication of diabetes, characterized by persistent, non-healing ulcers due to disrupted wound-healing mechanisms in a hyperglycemic environment. Key factors in the pathogenesis of these chronic wounds include unresolved inflammation and antioxidant defense imbalances. The cystine/glutamate antiporter SLC7A11 (xCT) is crucial for cystine import, glutathione production, and antioxidant protection, positioning it as a vital regulator of diabetic wound healing. Recent studies underscore the role of SLC7A11 in modulating immune responses and oxidative stress in diabetic wounds. Moreover, SLC7A11 influences critical processes such as insulin secretion and the mTOR signaling pathway, both of which are implicated in delayed wound healing. This review explores the mechanisms regulating SLC7A11 and its impact on immune response, antioxidant defenses, insulin secretion, and mTOR pathways in diabetic wounds. Additionally, we highlight the current advancements in targeting SLC7A11 for treating related diseases and conceptualize its potential applications and value in diabetic wound treatment strategies, along with the challenges encountered in this context.
Collapse
Affiliation(s)
- Wei Zhang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiawei Feng
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Ni
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gen Li
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuqing Wang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yemin Cao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingmei Zhou
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Zhao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
31
|
Wilson P, Patton D, O'Connor T, Boland F, Budri AM, Moore Z, Phelan N. Biomarkers of local inflammation at the skin's surface may predict both pressure and diabetic foot ulcers. J Wound Care 2024; 33:630-635. [PMID: 39287043 DOI: 10.12968/jowc.2024.0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
This commentary considers the similarities which exist between pressure ulcers (PUs) and diabetic foot ulcers (DFUs). It aims to describe what is known to be shared-both in theory and practice-by these wound types. It goes on to detail the literature surrounding the role of inflammation in both wound types. PUs occur following prolonged exposure to pressure or pressure in conjunction with shear, either due to impaired mobility or medical devices. As a result, inflammation occurs, causing cell damage. While DFUs are not associated with immobility, they are associated with altered mobility occurring as a result of complications of diabetes. The incidence and prevalence of both types of lesions are increased in the presence of multimorbidity. The prediction of either type of ulceration is challenging. Current risk assessment practices are reported to be ineffective at predicting when ulceration will occur. While systemic inflammation is easily measured, the presence of local or subclinical inflammation is harder to discern. In patients at risk of either DFUs or PUs, clinical signs and symptoms of inflammation may be masked, and systemic biomarkers of inflammation may not be elevated sufficiently to predict imminent damage until ulceration appears. The current literature suggests that the use of local biomarkers of inflammation at the skin's surface, namely oedema and temperature, may identify early tissue damage.
Collapse
Affiliation(s)
- Pauline Wilson
- St. James's Hospital, Dublin, Ireland
- Skin Wounds and Trauma Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
- Health Service Executive, Dublin, Ireland
| | - Declan Patton
- Skin Wounds and Trauma Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
- School of Nursing and Midwifery, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
- Fakeeh College of Health Sciences, Jeddah, Saudi Arabia
- School of Nursing and Midwifery, Griffith University, Queensland, Australia
- Faculty of Science, Medicine and Health, University of Wollongong, Australia
| | - Tom O'Connor
- Skin Wounds and Trauma Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
- School of Nursing and Midwifery, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
- Fakeeh College of Health Sciences, Jeddah, Saudi Arabia
- School of Nursing and Midwifery, Griffith University, Queensland, Australia
- Lida Institute, Shanghai, China
| | - Fiona Boland
- Data Science, School of Population Health, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - Aglecia Mv Budri
- Skin Wounds and Trauma Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
- School of Nursing and Midwifery, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
- São Paulo State University (UNESP), Faculty of Medicine, Department of Nursing, São Paulo, Brazil
| | - Zena Moore
- Skin Wounds and Trauma Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
- School of Nursing and Midwifery, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
- Fakeeh College of Health Sciences, Jeddah, Saudi Arabia
- School of Nursing and Midwifery, Griffith University, Queensland, Australia
- Lida Institute, Shanghai, China
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Australia
- Department of Public Health, Faculty of Medicine and Health Sciences, Ghent University, Belgium
- University of Wales, Cardiff, UK
- National Health and Medical Research Council Centre of Research Excellence in Wiser Wound Care, Menzies Health Institute Queensland, Queensland, Australia
| | | |
Collapse
|
32
|
Xie J, Yu X, Chen L, Cheng Y, Li K, Song M, Chen Y, Feng F, Cai Y, Tong S, Qian Y, Xu Y, Zhang H, Yang J, Xu Z, Cui C, Yu H, Deng B. Whether coagulation dysfunction influences the onset and progression of diabetic peripheral neuropathy: A multicenter study in middle-aged and aged patients with type 2 diabetes. CNS Neurosci Ther 2024; 30:e70040. [PMID: 39258827 PMCID: PMC11388410 DOI: 10.1111/cns.70040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Nearly half of patients with diabetes experience diabetic peripheral neuropathy (DPN), resulting in a mere 53% survival rate within 3 years. Aberrations in coagulation function have been implicated in the pathogenesis of microvascular complications, prompting the need for a thorough investigation into its role as a contributing factor in the development and progression of DPN. METHODS Data were gathered from 1211 type 2 diabetes patients admitted to five centers from September 2018 to October 2022 in China. DPN was evaluated by symptoms and electromyography. Motor and sensory nerve conduction velocity (NCV) was appraised and the NCV sum score was calculated for the median, ulnar, and peroneal motor or sensory nerves. RESULTS Patients with DPN exhibited alterations in coagulation function. (i) Specifically, they exhibited prolonged thrombin time (p = 0.012), elevated fibrinogen (p < 0.001), and shortened activated partial thromboplastin time (APTT; p = 0.026) when compared to the control group. (ii) After accounting for potential confounders in linear regression, fibrinogen, and D-dimer were negatively related to the motor NCV, motor amplitude values, and mean velocity and amplitude. Also, fibrinogen was associated with higher Michigan neuropathy screening instrument (MNSI) scores (β 0.140; p = 0.001). This result of fibrinogen can be validated in the validation cohort with 317 diabetic patients. (iii) Fibrinogen was independently associated with the risk of DPN (OR 1.172; p = 0.035). In the total age group, DPN occurred at a slower rate until the predicted fibrinogen level reached around 3.75 g/L, after which the risk sharply escalated. CONCLUSIONS Coagulation function is warranted to be concerned in patients with type 2 diabetes to predict and prevent the occurrence of DPN in clinical practice.
Collapse
Affiliation(s)
- Jiali Xie
- Department of NeurologyFirst Affiliated Hospital of Wenzhou Medical UniversityWenzhouP.R. China
- Department of Neurology, Shanghai East HospitalTongji University School of MedicineShanghaiP.R. China
| | - Xinyue Yu
- Alberta InstituteWenzhou Medical UniversityWenzhouChina
| | - Luowei Chen
- Department of NeurologyFirst Affiliated Hospital of Wenzhou Medical UniversityWenzhouP.R. China
- Department of NeurologyThe Second Affiliated Hospital of Zhejiang University, School of MedicineHangzhouChina
| | - Yifan Cheng
- Department of NeurologyCenter for Rehabilitation Medicine Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical CollegeHangzhouChina
| | - Kezheng Li
- Department of NeurologyFirst Affiliated Hospital of Wenzhou Medical UniversityWenzhouP.R. China
| | - Mengwan Song
- Department of Neurology, First Clinical College of Wenzhou Medical UniversityWenzhouP.R. China
- Department of NeurologyRuian People's HospitalWenzhouP.R. China
| | - Yinuo Chen
- Department of NeurologyFirst Affiliated Hospital of Wenzhou Medical UniversityWenzhouP.R. China
- Department of Neurology, First Clinical College of Wenzhou Medical UniversityWenzhouP.R. China
| | - Fei Feng
- Department of Neurology, First Clinical College of Wenzhou Medical UniversityWenzhouP.R. China
- Department of NeurologyShaoxing People's HospitalShaoxingP.R. China
| | - Yunlei Cai
- Department of Neurology, Anyang District Hospital, Beiguan DistrictAnyangHenanChina
| | - Shuting Tong
- Department of NeurologyFirst Affiliated Hospital of Wenzhou Medical UniversityWenzhouP.R. China
| | - Yuqin Qian
- Department of NeurologyFirst Affiliated Hospital of Wenzhou Medical UniversityWenzhouP.R. China
- Department of NeurologyInstitute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yiting Xu
- Department of NeurologyFirst Affiliated Hospital of Wenzhou Medical UniversityWenzhouP.R. China
| | - Haiqin Zhang
- Department of NeurologyFirst Affiliated Hospital of Wenzhou Medical UniversityWenzhouP.R. China
- Department of Neurology, First Clinical College of Wenzhou Medical UniversityWenzhouP.R. China
| | - Junjie Yang
- Department of NeurologyFirst Affiliated Hospital of Wenzhou Medical UniversityWenzhouP.R. China
- Department of Neurology, First Clinical College of Wenzhou Medical UniversityWenzhouP.R. China
| | - Zirui Xu
- Department of NeurologyFirst Affiliated Hospital of Wenzhou Medical UniversityWenzhouP.R. China
- Department of Neurology, First Clinical College of Wenzhou Medical UniversityWenzhouP.R. China
| | - Can Cui
- Institute of Environmental MedicineKarolinska InstitutetStockholmSweden
| | - Huan Yu
- Department of PediatricsSecond Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouP.R. China
| | - Binbin Deng
- Department of NeurologyFirst Affiliated Hospital of Wenzhou Medical UniversityWenzhouP.R. China
| |
Collapse
|
33
|
Li Y, Lai Y, Geng T, Zhang YB, Xia PF, Chen JX, Yang K, Zhou XT, Liao YF, Franco OH, Liu G, Pan A. Association of ultraprocessed food consumption with risk of microvascular complications among individuals with type 2 diabetes in the UK Biobank: a prospective cohort study. Am J Clin Nutr 2024; 120:674-684. [PMID: 39067859 DOI: 10.1016/j.ajcnut.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/10/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND The poor nutritional characteristics and potentially harmful molecules in ultraprocessed foods (UPFs) are risk factors for diabetic microvascular complications. However, the evidence regarding UPFs and diabetic microvascular complications remains limited. OBJECTIVES We aimed to evaluate the associations between UPF consumption and risk of diabetic microvascular complications, to examine the underlying biological pathways (e.g., inflammation and lipid profile), and to identify whether the associations differ by type of UPF dietary patterns. METHODS We included a prospective cohort of UK Biobank participants with type 2 diabetes (T2D) having at least one 24-h dietary recall (N = 5685). UPFs were defined using the Nova classification. Principal component analysis was used to derive UPF consumption patterns. Associations of UPFs and their consumption patterns with microvascular complications were assessed using Cox proportional hazards regression models. Mediation analyses were used to estimate the mediating effects of 22 biomarkers. RESULTS During a median of 12.7 y of follow-up, 1243 composite microvascular complications events occurred (599 diabetic retinopathy, 237 diabetic neuropathy, and 662 diabetic kidney disease events). Five consumption patterns were identified (spread and bread, cereal prepared with liquids, dairy-based products, sugary beverage and snack, and mixed beverage and savory snack patterns). A 10% increment in the proportion of UPF was associated with higher hazards of the composite microvascular complications (hazard ratio [HR]: 1.08; 95% confidence interval [CI]: 1.03, 1.13) and diabetic kidney disease (HR: 1.13; 95% CI: 1.06, 1.20). Triglycerides, C-reactive protein, and body mass index collectively explained 22.0% (9.6%-43.0%) of the association between UPF intake and composite microvascular complications. Pattern high in mixed beverage and savory snack was associated with a higher risk of composite microvascular complications. CONCLUSIONS Higher UPF consumption was associated with higher risks of diabetic microvascular complications, and the association was partly mediated through multiple potential ways.
Collapse
Affiliation(s)
- Yue Li
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuwei Lai
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Geng
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan-Bo Zhang
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Peng-Fei Xia
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun-Xiang Chen
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Yang
- Department of Endocrinology, Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, China
| | - Xiao-Tao Zhou
- Public Health Service Center of Bao'an District, Shenzhen, China
| | - Yun-Fei Liao
- Department of Endocrinology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Oscar H Franco
- University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Gang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - An Pan
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
34
|
Zhen J, Zhang Y, Li Y, Zhou Y, Cai Y, Huang G, Xu A. The gut microbiota intervenes in glucose tolerance and inflammation by regulating the biosynthesis of taurodeoxycholic acid and carnosine. Front Cell Infect Microbiol 2024; 14:1423662. [PMID: 39206042 PMCID: PMC11351283 DOI: 10.3389/fcimb.2024.1423662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/15/2024] [Indexed: 09/04/2024] Open
Abstract
Objective This study aims to investigate the pathogenesis of hyperglycemia and its associated vasculopathy using multiomics analyses in diabetes and impaired glucose tolerance, and validate the mechanism using the cell experiments. Methods In this study, we conducted a comprehensive analysis of the metagenomic sequencing data of diabetes to explore the key genera related to its occurrence. Subsequently, participants diagnosed with impaired glucose tolerance (IGT), and healthy subjects, were recruited for fecal and blood sample collection. The dysbiosis of the gut microbiota (GM) and its associated metabolites were analyzed using 16S rDNA sequencing and liquid chromatograph mass spectrometry, respectively. The regulation of gene and protein expression was evaluated through mRNA sequencing and data-independent acquisition technology, respectively. The specific mechanism by which GM dysbiosis affects hyperglycemia and its related vasculopathy was investigated using real-time qPCR, Western blotting, and enzyme-linked immunosorbent assay techniques in HepG2 cells and neutrophils. Results Based on the published data, the key alterable genera in the GM associated with diabetes were identified as Blautia, Lactobacillus, Bacteroides, Prevotella, Faecalibacterium, Bifidobacterium, Ruminococcus, Clostridium, and Lachnoclostridium. The related metabolic pathways were identified as cholate degradation and L-histidine biosynthesis. Noteworthy, Blautia and Faecalibacterium displayed similar alterations in patients with IGT compared to those observed in patients with diabetes, and the GM metabolites, tauroursodeoxycholic acid (TUDCA) and carnosine (CARN, a downstream metabolite of histidine and alanine) were both found to be decreased, which in turn regulated the expression of proteins in plasma and mRNAs in neutrophils. Subsequent experiments focused on insulin-like growth factor-binding protein 3 and interleukin-6 due to their impact on blood glucose regulation and associated vascular inflammation. Both proteins were found to be suppressed by TUDCA and CARN in HepG2 cells and neutrophils. Conclusion Dysbiosis of the GM occurred throughout the entire progression from IGT to diabetes, characterized by an increase in Blautia and a decrease in Faecalibacterium, leading to reduced levels of TUDCA and CARN, which alleviated their inhibition on the expression of insulin-like growth factor-binding protein 3 and interleukin-6, contributing to the development of hyperglycemia and associated vasculopathy.
Collapse
Affiliation(s)
| | | | | | | | | | - Guangrui Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Anlong Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
35
|
Zhang Q, Shen C, Zhang L, Wang M. Causal Relationship between Chronic Hepatitis B and Stroke in East Asians: A Mendelian Randomization Study. J Cardiovasc Dev Dis 2024; 11:247. [PMID: 39195155 DOI: 10.3390/jcdd11080247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024] Open
Abstract
Both chronic hepatitis B (CHB) and stroke contribute to a high burden of disease in the majority of low- and middle-income countries. Epidemiological studies yield conflicting results on the association between CHB and stroke, and the causal relationship remains inconclusive. This study aimed to assess the causal effects of CHB on stroke and its subtypes in East Asians by Mendelian randomization (MR) analysis. Variants associated with CHB were obtained from a genome-wide association study (GWAS) of Chinese samples as instrumental variables. The summary statistics for stroke in East Asians were derived from the largest published GWAS to date. Two-sample MR analyses were implemented to evaluate the causal effects of CHB on stroke and its subtypes by using the canonical inverse variance weighting method and other supplementary approaches. We observed an association between genetic predisposition to CHB and a decreased risk of large-artery atherosclerotic stroke (odds ratio = 0.872, 95% confidence interval = 0.786-0.967, p = 0.010). The causal effects of CHB on other stroke outcomes were not statistically significant. Evidence for heterogeneity and horizontal pleiotropy were not found in our analyses. This study provides genetic evidence for a negative association between CHB and stroke in East Asians, which helps improve our understanding of the etiology of stroke.
Collapse
Affiliation(s)
- Qi Zhang
- School of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Cancong Shen
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Lei Zhang
- School of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Maiqiu Wang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| |
Collapse
|
36
|
Laddha AP, Kulkarni YA. Daidzein ameliorates peripheral neuropathy in Sprague Dawley rats. Front Pharmacol 2024; 15:1385419. [PMID: 39166118 PMCID: PMC11333240 DOI: 10.3389/fphar.2024.1385419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/08/2024] [Indexed: 08/22/2024] Open
Abstract
Neuropathy is the most common disorder comprising peripheral nerve damage in diabetic patients. Prolonged hyperglycaemia and oxidative stress cause metabolic imbalance and are the key reasons for the development of diabetic neuropathy. Daidzein, a soy isoflavone possesses potent anti-hyperglycaemic and antioxidant activity. The present study aims to check the protective effect of Daidzein in diabetic neuropathy in rats. The experimental animal model involved induction of diabetes in rats by intraperitoneal injection of streptozotocin (55 mg/kg). Following confirmation of diabetes, the diabetic rats were subjected to oral treatment with varying doses of Daidzein (25, 50, and 100 mg/kg) and pregabalin (30 mg/kg) for a duration of 4 weeks, initiated 6 weeks after diabetes induction. Results indicated that Daidzein treatment led to a significant reduction in plasma glucose levels and an improvement in body weight among diabetic animals. Moreover, Daidzein demonstrated a positive impact on sensory functions, as evidenced by the effect on tail withdrawal and response latency. Mechanical hyperalgesia and allodynia, common symptoms of diabetic neuropathy, were also significantly reduced with both Daidzein and pregabalin treatment. Notably, nerve conduction velocities exhibited improvement following the administration of Daidzein and pregabalin. Further investigation into the molecular mechanisms revealed that Daidzein treatment resulted in a notable enhancement of antioxidant enzyme levels and a reduction in the overexpression of NOX-4 in the sciatic nerve. This suggests that Daidzein's therapeutic effect is associated with the inhibition of oxidative stress via NOX-4. In summary, the findings of study suggests that, Daidzein treatment significantly attenuated diabetic neuropathy by inhibiting oxidative stress via NOX-4 inhibition.
Collapse
Affiliation(s)
| | - Yogesh A. Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM’s NMIMS, Mumbai, India
| |
Collapse
|
37
|
Zhang J, Li X, Cui W, Lu D, Zhang Y, Liao J, Guo L, Jiao C, Tao L, Xu Y, Shen X. 1,8-cineole ameliorates experimental diabetic angiopathy by inhibiting NLRP3 inflammasome-mediated pyroptosis in HUVECs via SIRT2. Biomed Pharmacother 2024; 177:117085. [PMID: 38972150 DOI: 10.1016/j.biopha.2024.117085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/09/2024] Open
Abstract
Accumulating evidence strongly support the key role of NLRP3-mediated pyroptosis in the pathogenesis and progression of vascular endothelial dysfunction associated with diabetes mellitus. Various studies have demonstrated that the activation or upregulation of Silent Information Regulation 2 homolog 2 (SIRT2) exerts inhibitory effect on the expression of NLRP3. Although 1,8-cineole has been found to protect against endothelial dysfunction and cardiovascular diseases, its role and mechanism in diabetic angiopathy remain unknown. Therefore, the aim of this study was to investigate the ameliorative effect of 1,8-cineole through SIRT2 on pyroptosis associated with diabetic angiopathy in human umbilical vein endothelial cells (HUVECs) and to elucidate the underlying mechanism. The findings revealed that 1,8-cineole exhibited a protective effect against vascular injury and ameliorated pathological alterations in the thoracic aorta of diabetic mice. Moreover, it effectively mitigated pyroptosis induced by palmitic acid-high glucose (PA-HG) in HUVECs. Treatment with 1,8-cineole effectively restored the reduced levels of SIRT2 and suppressed the elevated expression of pyroptosis-associated proteins. Additionally, our findings demonstrated the occurrence of NLRP3 deacetylation and the physical interaction between NLRP3 and SIRT2. The SIRT2 inhibitor AGK2 and siRNA-SIRT2 effectively attenuated the effect of 1,8-cineole on NLRP3 deacetylation in HUVECs and compromised its inhibitory effect against pyroptosis in HUVECs. However, overexpression of SIRT2 inhibited PA-HG-induced pyroptosis in HUVECs. 1,8-Cineole inhibited the deacetylation of NLRP3 by regulating SIRT2, thereby reducing pyroptosis in HUVECs. In conclusion, our findings suggest that PA-HG-induced pyroptosis in HUVECs plays a crucial role in the development of diabetic angiopathy, which can be mitigated by 1,8-cineole.
Collapse
Affiliation(s)
- Jian Zhang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue,Guiyang city and Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The high educational key laboratory of Guizhou province for natural medicianl Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources,The Department of Pharmacology of Materia Medica, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China
| | - Xinlin Li
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue,Guiyang city and Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The high educational key laboratory of Guizhou province for natural medicianl Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources,The Department of Pharmacology of Materia Medica, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China
| | - Wenqing Cui
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue,Guiyang city and Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The high educational key laboratory of Guizhou province for natural medicianl Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources,The Department of Pharmacology of Materia Medica, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China
| | - Dingchun Lu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue,Guiyang city and Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The high educational key laboratory of Guizhou province for natural medicianl Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources,The Department of Pharmacology of Materia Medica, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China
| | - Yanyan Zhang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue,Guiyang city and Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The high educational key laboratory of Guizhou province for natural medicianl Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources,The Department of Pharmacology of Materia Medica, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China
| | - Jiajia Liao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue,Guiyang city and Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The high educational key laboratory of Guizhou province for natural medicianl Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources,The Department of Pharmacology of Materia Medica, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China
| | - Linlin Guo
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue,Guiyang city and Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The high educational key laboratory of Guizhou province for natural medicianl Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources,The Department of Pharmacology of Materia Medica, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China
| | - Chunen Jiao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue,Guiyang city and Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The high educational key laboratory of Guizhou province for natural medicianl Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources,The Department of Pharmacology of Materia Medica, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China
| | - Ling Tao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue,Guiyang city and Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The high educational key laboratory of Guizhou province for natural medicianl Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China
| | - Yini Xu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue,Guiyang city and Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The high educational key laboratory of Guizhou province for natural medicianl Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources,The Department of Pharmacology of Materia Medica, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China.
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, No.6 Ankang Avenue,Guiyang city and Guian New District, Guizhou 561113, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province (The high educational key laboratory of Guizhou province for natural medicianl Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources,The Department of Pharmacology of Materia Medica, School of Pharmaceutical Sciences, Guizhou Medical University, No.6 Ankang Avenue, Guiyang city and Guian New District, Guizhou 561113, China.
| |
Collapse
|
38
|
Joshi P, Mohr F, Rumig C, Kliemank E, Krenning G, Kopf S, Hecker M, Wagner AH. Impact of the -1T>C single-nucleotide polymorphism of the CD40 gene on the development of endothelial dysfunction in a pro-diabetic microenvironment. Atherosclerosis 2024; 394:117386. [PMID: 38030458 DOI: 10.1016/j.atherosclerosis.2023.117386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/23/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND AND AIMS Hyperglycemia reinforces pro-inflammatory conditions that enhance CD40 expression in endothelial cells (EC). Thymine to cytosine transition (-1T > C) in the promoter of the CD40 gene (rs1883832) further increases the abundance of CD40 protein on the EC surface. This study examines potential associations of the -1T > C SNP of the CD40 gene with type 1 (T1D) or type 2 (T2D) diabetes. Moreover, it investigates the impact of a pro-inflammatory diabetic microenvironment on gene expression in human cultured umbilical vein EC (HUVEC) derived from CC- vs. TT-genotype donors. METHODS Tetra-ARMS-PCR was used to compare genotype distribution in 252 patients with diabetes. Soluble CD40 ligand (sCD40L) and soluble CD40 receptor (sCD40) plasma levels were monitored using ELISA. RNA-sequencing was performed with sCD40L-stimulated CC- and TT-genotype HUVEC. Quantitative PCR, Western blot, multiplex-sandwich ELISA array, and immunocytochemistry were used to analyse changes in gene expression in these cells. RESULTS Homozygosity for the C-allele was associated with a significant 4.3-fold higher odds of developing T2D as compared to individuals homozygous for the T-allele. Inflammation and endothelial-to-mesenchymal transition (EndMT) driving genes were upregulated in CC-genotype but downregulated in TT-genotype HUVEC when exposed to sCD40L. Expression of EndMT markers significantly increased while that of endothelial markers decreased in HUVEC following exposure to hyperglycemia, tumour necrosis factor-α and sCD40L. CONCLUSIONS The -1T > C SNP of the CD40 gene is a risk factor for T2D. Depending on the genotype, it differentially affects gene expression in human cultured EC. CC-genotype HUVEC adopt a pro-inflammatory and intermediate EndMT-like phenotype in a pro-diabetic microenvironment.
Collapse
Affiliation(s)
- Pooja Joshi
- Department of Cardiovascular Physiology, Heidelberg University, Germany
| | - Franziska Mohr
- Department of Cardiovascular Physiology, Heidelberg University, Germany
| | - Cordula Rumig
- Department of Cardiovascular Physiology, Heidelberg University, Germany
| | - Elisabeth Kliemank
- Department of Internal Medicine I, Heidelberg University Hospital, Germany
| | - Guido Krenning
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, the Netherlands
| | - Stefan Kopf
- Department of Internal Medicine I, Heidelberg University Hospital, Germany
| | - Markus Hecker
- Department of Cardiovascular Physiology, Heidelberg University, Germany
| | - Andreas H Wagner
- Department of Cardiovascular Physiology, Heidelberg University, Germany.
| |
Collapse
|
39
|
Sun M, Yan G, Sun S, Li X, Sun W, Wang Y. Malondialdehyde and Zinc May Relate to Severity of Microvascular Complications in Diabetes: A Preliminary Study on Older Adults with Type 2 Diabetes Mellitus in Northeast China. Clin Interv Aging 2024; 19:1141-1151. [PMID: 38948168 PMCID: PMC11214795 DOI: 10.2147/cia.s464615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/07/2024] [Indexed: 07/02/2024] Open
Abstract
Background Serum trace elements and oxidative stress factors are related to diabetic microvascular complications. The study was to investigate the complex relationship between trace elements, oxidative stress factors, and the severity of microvascular complications of diabetes in older adults. Methods The present study included patients with or without type 2 diabetes, and blood glucose, blood lipids, trace elements (iron, magnesium, zinc), oxidative stress factors (malondialdehyde (MDA), nitric oxide (NO), superoxide dismutase (SOD), and total antioxidant capacity (T-AOC)) were evaluated. Risk factors for the severity of diabetic microvascular complications in older adults with diabetes were also estimated. Results There were statistically significant differences in fasting blood glucose (FBG), triglycerides (TG), low density lipoprotein (LDL), glycated hemoglobin (HbAlc), MDA, NO, SOD, T-AOC, magnesium, and zinc between the two groups (P<0.05). Iron (rZinc = 0.147, rSOD = 0.180, rT-AOC = 0.193, P < 0.05) was positively correlated with zinc, SOD and T-AOC. Iron was negatively correlated with MDA (rMDA = -0.146, P < 0.05). Magnesium was positively correlated with SOD (rMagnesium = 0.147, P < 0.05). Zinc (rSOD = 0.616, rT-AOC = 0.575, P < 0.01) was positively correlated with SOD and T-AOC. Zinc (rMDA =-0.636, rNO=-0.616, P<0.01) was positively correlated with MDA and negatively correlated with NO. The course of disease (18.653, [5.726; 60.764], P <0.01), FBG (1.265, [1.059; 1.511], P <0.05), HbAlc (1.545, [1.431; 1.680], P <0.01), MDA (2.989, [1.900; 4.702], P <0.01) were risk factor for the severity of diabetic microvascular complications. Zinc (0.680, [0.503; 0.919], P < 0.05) and SOD (0.820, [0.698; 0.964], P < 0.05) were protective factors for the severity of diabetic microvascular complications. Conclusion Serum trace elements are related to oxidative stress levels in older adults with type 2 diabetes. The more stable trace element in older adults with diabetes, the lower the oxidative stress and the fewer microvascular complications of diabetes.
Collapse
Affiliation(s)
- Min Sun
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Guanchi Yan
- Department of Endocrinology and Metabolism, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Siming Sun
- Department of Clinical Research, The First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Xiaonan Li
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Wei Sun
- Education Department, The First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Yuehui Wang
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
40
|
Dabla PK, Upreti K, Shrivastav D, Mehta V, Singh D. Discovering hidden patterns: Association rules for cardiovascular diseases in type 2 diabetes mellitus. World J Methodol 2024; 14:92608. [PMID: 38983667 PMCID: PMC11229869 DOI: 10.5662/wjm.v14.i2.92608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/15/2024] [Accepted: 04/09/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND It is increasingly common to find patients affected by a combination of type 2 diabetes mellitus (T2DM) and coronary artery disease (CAD), and studies are able to correlate their relationships with available biological and clinical evidence. The aim of the current study was to apply association rule mining (ARM) to discover whether there are consistent patterns of clinical features relevant to these diseases. ARM leverages clinical and laboratory data to the meaningful patterns for diabetic CAD by harnessing the power help of data-driven algorithms to optimise the decision-making in patient care. AIM To reinforce the evidence of the T2DM-CAD interplay and demonstrate the ability of ARM to provide new insights into multivariate pattern discovery. METHODS This cross-sectional study was conducted at the Department of Biochemistry in a specialized tertiary care centre in Delhi, involving a total of 300 consented subjects categorized into three groups: CAD with diabetes, CAD without diabetes, and healthy controls, with 100 subjects in each group. The participants were enrolled from the Cardiology IPD & OPD for the sample collection. The study employed ARM technique to extract the meaningful patterns and relationships from the clinical data with its original value. RESULTS The clinical dataset comprised 35 attributes from enrolled subjects. The analysis produced rules with a maximum branching factor of 4 and a rule length of 5, necessitating a 1% probability increase for enhancement. Prominent patterns emerged, highlighting strong links between health indicators and diabetes likelihood, particularly elevated HbA1C and random blood sugar levels. The ARM technique identified individuals with a random blood sugar level > 175 and HbA1C > 6.6 are likely in the "CAD-with-diabetes" group, offering valuable insights into health indicators and influencing factors on disease outcomes. CONCLUSION The application of this method holds promise for healthcare practitioners to offer valuable insights for enhancing patient treatment targeting specific subtypes of CAD with diabetes. Implying artificial intelligence techniques with medical data, we have shown the potential for personalized healthcare and the development of user-friendly applications aimed at improving cardiovascular health outcomes for this high-risk population to optimise the decision-making in patient care.
Collapse
Affiliation(s)
- Pradeep Kumar Dabla
- Department of Biochemistry, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research, Delhi 110002, India
| | - Kamal Upreti
- Department of Computer Science, CHRIST, Ghaziabad 201003, India
| | - Dharmsheel Shrivastav
- Department of Biochemistry, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research, Delhi 110002, India
| | - Vimal Mehta
- Department of Cardiology, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research, Delhi 110002, India
| | - Divakar Singh
- Barkatullah University Institute of Technology, Barkatullah University, Bhopal 462026, India
| |
Collapse
|
41
|
Yesuf HA, Molla MD, Malik T, Seyoum Wendimagegn Z, Yimer Y. MicroRNA-29-mediated cross-talk between metabolic organs in the pathogenesis of diabetes mellitus and its complications: A narrative review. Cell Biochem Funct 2024; 42:e4053. [PMID: 38773932 DOI: 10.1002/cbf.4053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/27/2024] [Accepted: 05/07/2024] [Indexed: 05/24/2024]
Abstract
Diabetes mellitus (DM) is a heterogeneous group of disorders characterized by hyperglycemia. Microribonucleic acids (microRNAs) are noncoding RNA molecules synthesized in the nucleus, modified, and exported to the extracellular environment to bind to their complementary target sequences. It regulates protein synthesis in the targeted cells by inhibiting translation or triggering the degradation of the target messenger. MicroRNA-29 is one of noncoding RNA that can be secreted by adipose tissue, hepatocytes, islet cells, and brain cells. The expression level of the microRNA-29 family in several metabolic organs is regulated by body weight, blood concentrations of inflammatory mediators, serum glucose levels, and smoking habits. Several experimental studies have demonstrated the effect of microRNA-29 on the expression of target genes involved in glucose metabolism, insulin synthesis and secretion, islet cell survival, and proliferation. These findings shed new light on the role of microRNA-29 in the pathogenesis of diabetes and its complications, which plays a vital role in developing appropriate therapies. Different molecular pathways have been proposed to explain how microRNA-29 promotes the development of diabetes and its complications. However, to the best of our knowledge, no published review article has summarized the molecular mechanism of microRNA-29-mediated initiation of DM and its complications. Therefore, this narrative review aims to summarize the role of microRNA-29-mediated cross-talk between metabolic organs in the pathogenesis of diabetes and its complications.
Collapse
Affiliation(s)
- Hassen Ahmed Yesuf
- Department of Biomedical Science, School of Medicine, College of Health Sciences, Woldia University, Woldia, Ethiopia
| | - Meseret Derbew Molla
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
- Division of Research and Development, Lovely Professional University, Phagwara, India
| | - Zeru Seyoum Wendimagegn
- Department of Biomedical Science, School of Medicine, College of Health Sciences, Woldia University, Woldia, Ethiopia
| | - Yadelew Yimer
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
42
|
Kour N, Bhagat G, Singh S, Bhatti SS, Arora S, Singh B, Bhatia A. Polyphenols mediated attenuation of diabetes associated cardiovascular complications: A comprehensive review. J Diabetes Metab Disord 2024; 23:73-99. [PMID: 38932901 PMCID: PMC11196529 DOI: 10.1007/s40200-023-01326-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/29/2023] [Indexed: 06/28/2024]
Abstract
Background Diabetes mellitus is a common chronic metabolic disorder that is characterized by increased levels of glucose for prolonged periods of time. Incessant hyperglycemia leads to diabetic complications such as retinopathy, nephropathy, and neuropathy, and cardiovascular complications such as ischemic heart disease, peripheral vascular disease, diabetic cardiomyopathy, stroke, etc. There are many studies that suggest that various polyphenols affect glucose homeostasis and can help to attenuate the complications associated with diabetes. Objective This review focuses on the possible role of various dietary polyphenols in palliating diabetes-induced cardiovascular complications. This review also aims to give an overview of the interrelationship among ROS production (due to diabetes), inflammation, glycoxidative stress, and cardiovascular complications as well as the anti-hyperglycemic effects of dietary polyphenols. Methods Various scientific databases including Scopus, Web of Science, Google Scholar, PubMed, Science Direct, Springer Link, and Wiley Online Library were used for searching articles that complied with the inclusion and exclusion criteria. Results This review lists several polyphenols based on various pre-clinical and clinical studies that have anti-hyperglycemic potential as well as a protective function against cardiovascular complications. Conclusion Several pre-clinical and clinical studies suggest that various dietary polyphenols can be a promising intervention for the attenuation of diabetes-associated cardiovascular complications.
Collapse
Affiliation(s)
- Navdeep Kour
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005 Punjab India
| | - Gulshan Bhagat
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005 Punjab India
| | - Simran Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005 Punjab India
| | - Sandip Singh Bhatti
- Department of Chemistry, Lovely Professional University, Phagwara, 144001 India
| | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005 Punjab India
| | - Balbir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005 Punjab India
| | - Astha Bhatia
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005 Punjab India
| |
Collapse
|
43
|
Zhang Y, Yu Y, Han Z, Diao L, Zhao R, Liu J, Luo Y, Wu H, Yang Y. Incidence and associated factors of delirium after primary total joint arthroplasty in elderly patients: A systematic review and meta-analysis. Medicine (Baltimore) 2024; 103:e38395. [PMID: 39259060 PMCID: PMC11142822 DOI: 10.1097/md.0000000000038395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND A total of 1.5% to 20.2% of total joint arthroplasty patients experience delirium. Until now, no formal systematic review or meta-analysis was performed to summarize the risk factors of delirium after primary total joint arthroplasty (TJA). METHODS A comprehensive search encompassing Medline, Embase, and the Cochrane central database was conducted, incorporating studies available up to June 2023. We systematically reviewed research on the risk factors contributing to delirium following TJA in elderly patients, without language restrictions. The methodological quality of the included studies was evaluated using the Newcastle-Ottawa Scale. Data synthesis through pooling and a meta-analysis were performed to analyze the findings. RESULTS A total of 23 studies altogether included 71,095 patients with primary TJA, 2142 cases of delirium occurred after surgery, suggesting the accumulated incidence of 3.0%. The results indicated that age, current smoker, heavy drinker, mini-mental state examination score, hypertension, diabetes mellitus, chronic kidney disease, history of stroke, coronary arterial disease, dementia, history of psychiatric illness, American Society of Anesthesiologists physical status III-IV, general anesthesia, anesthesia time, operative time, intraoperative blood loss, blood transfusion, β-blockers, ACEI drugs, use of psychotropic drugs, preoperative C-reactive protein level, and preoperative albumin level were significantly associated with postoperative delirium after primary TJA. CONCLUSIONS Related prophylaxis strategies should be implemented in the elderly involved with above-mentioned risk factors to prevent delirium after primary TJA.
Collapse
Affiliation(s)
- Yanju Zhang
- Nursing Department, Cangzhou People’s Hospital, Cangzhou, Hebei, People’s Republic of China
| | - Yanjie Yu
- Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Ziyu Han
- Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Li Diao
- Pharmacy Department, Cangzhou People’s Hospital, Cangzhou, Hebei, People’s Republic of China
| | - Runping Zhao
- Nursing Department, Cangzhou People’s Hospital, Cangzhou, Hebei, People’s Republic of China
| | - Jinzhu Liu
- Nursing Department, Cangzhou People’s Hospital, Cangzhou, Hebei, People’s Republic of China
| | - Yuhong Luo
- Oncology Department, Cangzhou People’s Hospital, Cangzhou, Hebei, People’s Republic of China
| | - Huiyuan Wu
- Nursing Department, Cangzhou People’s Hospital, Cangzhou, Hebei, People’s Republic of China
| | - Yanjiang Yang
- Trauma Emergency Center, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| |
Collapse
|
44
|
Yang T, Qi F, Guo F, Shao M, Song Y, Ren G, Linlin Z, Qin G, Zhao Y. An update on chronic complications of diabetes mellitus: from molecular mechanisms to therapeutic strategies with a focus on metabolic memory. Mol Med 2024; 30:71. [PMID: 38797859 PMCID: PMC11128119 DOI: 10.1186/s10020-024-00824-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Diabetes mellitus, a chronic metabolic disease, often leads to numerous chronic complications, significantly contributing to global morbidity and mortality rates. High glucose levels trigger epigenetic modifications linked to pathophysiological processes like inflammation, immunity, oxidative stress, mitochondrial dysfunction, senescence and various kinds of cell death. Despite glycemic control, transient hyperglycemia can persistently harm organs, tissues, and cells, a latent effect termed "metabolic memory" that contributes to chronic diabetic complications. Understanding metabolic memory's mechanisms could offer a new approach to mitigating these complications. However, key molecules and networks underlying metabolic memory remain incompletely understood. This review traces the history of metabolic memory research, highlights its key features, discusses recent molecules involved in its mechanisms, and summarizes confirmed and potential therapeutic compounds. Additionally, we outline in vitro and in vivo models of metabolic memory. We hope this work will inform future research on metabolic memory's regulatory mechanisms and facilitate the development of effective therapeutic compounds to prevent diabetic complications.
Collapse
Affiliation(s)
- Tongyue Yang
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Feng Qi
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Research Institute of Nephrology, Zhengzhou University, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Feng Guo
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Mingwei Shao
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yi Song
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Gaofei Ren
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhao Linlin
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Guijun Qin
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yanyan Zhao
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
45
|
Li Y, Lai Y, Geng T, Xia PF, Chen JX, Tu ZZ, Yang K, Liao YF, Liu G, Pan A. Association of Ultraprocessed Food Consumption with Risk of Cardiovascular Disease Among Individuals with Type 2 Diabetes: Findings from the UK Biobank. Mol Nutr Food Res 2024; 68:e2300314. [PMID: 38639304 DOI: 10.1002/mnfr.202300314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 02/28/2024] [Indexed: 04/20/2024]
Abstract
SCOPE Among patients with diabetes, who have modified nutritional behavior and a higher risk of cardiovascular disease (CVD), the influence of ultraprocessed foods (UPFs) on CVD remains unknown. The study aims to evaluate the association between UPF intake and the risk of CVD among individuals with type 2 diabetes (T2D) and further examine the potential biological pathways linking the association. METHODS AND RESULTS This study includes 5405 participants with T2D who provided at least one 24-h dietary recall from the UK Biobank study. In the fully adjusted models, a 10% increase in the proportion of UPFs is associated with higher hazards of overall CVD (hazard ratio [HR]: 1.10; 95% confidence interval [CI]: 1.04, 1.15), coronary heart disease (HR: 1.10; 95% CI: 1.04, 1.16), heart failure (HR: 1.14; 95% CI: 1.05, 1.25), but not stroke (HR: 1.01; 95% CI: 0.90, 1.12). Cystatin C, high-density lipoprotein cholesterol (HDL-C), apolipoprotein A, C-reactive protein, and body mass index collectively explain 26.9% (12.8%, 48.5%) of the association between UPF intake and the risk of overall CVD. CONCLUSION Higher UPF intakes are associated with increased hazards of CVD among individuals with T2D, and the association is partly mediated through worsening biomarkers of renal function, lipid metabolism, inflammation, and body weight.
Collapse
Affiliation(s)
- Yue Li
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuwei Lai
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Geng
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nutrition and Food Hygiene, School of Public Health, Institute of Nutrition, Fudan University, Shanghai, China
| | - Peng-Fei Xia
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun-Xiang Chen
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhou-Zheng Tu
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Yang
- Department of Endocrinology, Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, China
| | - Yun-Fei Liao
- Department of Endocrinology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - An Pan
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
46
|
Putra A, Plowgian C. Uncommon dermatologic manifestation (paronychia) in a cat with diabetes mellitus. Top Companion Anim Med 2024; 60:100874. [PMID: 38616020 DOI: 10.1016/j.tcam.2024.100874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 03/15/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
A 3.5-year-old male intact domestic short hair cat presented for a chronic wound and crusts over the claw and claw folds over several months. The cat was diagnosed with diabetes mellitus based on the presence of persistent hyperglycemia, glucosuria, and compatible clinical signs which consist of polyuria, polydipsia, polyphagia, and weight loss. Glipizide (Glucotrol XL, Pfizer, Indonesia) 2.5 mg orally twice daily was prescribed. By the seventeenth day, the patient's claws and skin around the paw had normalized and the abnormal claw sloughed off, revealing a normal claw underneath. Blood glucose, urinalysis and serum fructosamine were also normalized by the thirtieth day. The patient underwent diabetic remission, and the skin and claw lesions have remained in remission and not recurred since the treatment of the diabetes mellitus. This is the first report of a diabetic cat with dermatologic changes to the skin and claw regions. As the diabetes mellitus went into clinical remission, so too did the dermatologic manifestations, even without any specific dermatologic treatment.
Collapse
|
47
|
Gao J, Zhou X, Gao H, Xu G, Xie C, Xie H. Investigation of the hypoglycemic mechanism of the ShenQi compound formula through metabonomics and 16S rRNA sequencing. Front Pharmacol 2024; 15:1349244. [PMID: 38708085 PMCID: PMC11066276 DOI: 10.3389/fphar.2024.1349244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/19/2024] [Indexed: 05/07/2024] Open
Abstract
Introduction: Herbal formulations are renowned for their complex biological activities, acting on multiple targets and pathways, as evidenced by in vitro studies. However, the hypoglycemic effect and underlying mechanisms of Shenqi Compound (SQ), a traditional Chinese herbal formula, remain elusive. This study aimed to elucidate the hypoglycemic effects of SQ and explore its mechanisms of action, focusing on intestinal flora and metabolomics. Methods: A Type 2 diabetes mellitus (T2DM) rat model was established through a high-fat diet, followed by variable glucose and insulin injections to mimic the fluctuating glycemic conditions seen in diabetes. Results: An eight-week regimen of SQ significantly mitigated hyperglycemia, inflammation, and insulin resistance in these rats. Notably, SQ beneficially modulated the gut microbiota by increasing populations of beneficial bacteria, such as Lachnospiraceae_NK4A136_group and Akkermansia, while reducing and inhibiting harmful strains such as Ruminococcus and Phascolarctobacterium. Metabolomics analyses revealed that SQ intervention corrected disturbances in Testosterone enanthate and Glycerophospholipid metabolism. Discussion: Our findings highlight the hypoglycemic potential of SQ and its mechanisms via modulation of the gut microbiota and metabolic pathways, offering a theoretical foundation for the use of herbal medicine in diabetes management.
Collapse
Affiliation(s)
- Juan Gao
- Chengdu University of Traditional Chinese Medicine School of Clinical Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiujuan Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong Gao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guiping Xu
- Chengdu University of Traditional Chinese Medicine School of Clinical Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunguang Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongyan Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
48
|
Pérez Unanua MP, López Simarro F, Novillo López CI, Olivares Loro AG, Yáñez Freire S. [Diabetes and women, why are we different?]. Semergen 2024; 50:102138. [PMID: 38052103 DOI: 10.1016/j.semerg.2023.102138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/30/2023] [Accepted: 10/29/2023] [Indexed: 12/07/2023]
Abstract
Diabetes affects men and women differently and the mistaken assumption of equality in its clinical expression can lead to errors and delays in the diagnostic process and the therapeutic strategy adopted. The objective is to show the gender differences that influence the approach to this pathology and what the role of the family doctor is in the monitoring of women with diabetes. It is a review of the impact of diabetes at different stages of a woman's life, how hormonal changes affect glycemic control, gestational diabetes, how diabetes affects the development of chronic complications in women and their consequences, the existing differences in the control of cardiovascular risk factors and the differential aspects by sex of the different families of drugs used in the treatment of diabetes.
Collapse
Affiliation(s)
- M P Pérez Unanua
- Medicina de Familia, Centro de Salud Dr. Castroviejo, Madrid, España.
| | | | | | - A G Olivares Loro
- Medicina de Familia, Centro de Salud Esperanza Macarena, Sevilla, España
| | - S Yáñez Freire
- Medicina de Familia, Centro de Salud A Estrada, Santiago de Compostela, A Coruña, España
| |
Collapse
|
49
|
Sharma P, Ma JX, Karamichos D. Effects of hypoxia in the diabetic corneal stroma microenvironment. Exp Eye Res 2024; 240:109790. [PMID: 38224848 DOI: 10.1016/j.exer.2024.109790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/15/2023] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
Corneal dysfunctions associated with Diabetes Mellitus (DM), termed diabetic keratopathy (DK), can cause impaired vision and/or blindness. Hypoxia affects both Type 1 (T1DM) and Type 2 (T2DM) surprisingly, the role of hypoxia in DK is unexplored. The aim of this study was to examine the impact of hypoxia in vitro on primary human corneal stromal cells derived from Healthy (HCFs), and diabetic (T1DMs and T2DMs) subjects, by exposing them to normoxic (21% O2) or hypoxic (2% O2) conditions through 2D and 3D in vitro models. Our data revealed that hypoxia affected T2DMs by slowing their wound healing capacity, leading to significant alterations in oxidative stress-related markers, mitochondrial health, cellular homeostasis, and endoplasmic reticulum health (ER) along with fibrotic development. In T1DMs, hypoxia significantly modulated markers related to membrane permeabilization, oxidative stress via apoptotic marker (BAX), and protein degradation. Hypoxic environment induced oxidative stress (NOQ1 mediated reduction of superoxide in T1DMs and Nrf2 mediated oxidative stress in T2DMs), modulation in mitochondrial health (Heat shock protein 27 (HSP27), and dysregulation of cellular homeostasis (HSP90) in both T1DMs and T2DMs. This data underscores the significant impact of hypoxia on the diabetic cornea. Further studies are warranted to delineate the complex interactions.
Collapse
Affiliation(s)
- Purnima Sharma
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX, 76107, USA; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX, 76107, USA.
| | - Jian-Xing Ma
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Dimitrios Karamichos
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX, 76107, USA; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX, 76107, USA; Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX, 76107, USA.
| |
Collapse
|
50
|
Wang Z, Mao X, Guo Z, Che G, Xiang C, Xiang C. Establishment and validation of a nomogram predicting the risk of deep vein thrombosis before total knee arthroplasty. Thromb J 2024; 22:21. [PMID: 38365683 PMCID: PMC10873976 DOI: 10.1186/s12959-024-00588-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/29/2024] [Indexed: 02/18/2024] Open
Abstract
PURPOSE This study aimed to analyze the independent risk factors contributing to preoperative DVT in TKA and constructed a predictive nomogram to accurately evaluate its occurrence based on these factors. METHODS The study encompassed 496 patients who underwent total knee arthroplasty at our hospital between June 2022 and June 2023. The dataset was randomly divided into a training set (n = 348) and a validation set (n = 148) in a 7:3 ratio. The least absolute shrinkage and selection operator (LASSO) and multivariate logistic regression analysis were used to screen the predictors of preoperative DVT occurrence in TKA and construct a nomogram. The performance of the predictive models was evaluated using the concordance index (C-index), calibration curves, and the receiver operating characteristic (ROC) curves. Decision curve analysis was used to analyze the clinical applicability of nomogram. RESULTS A total of 496 patients who underwent TKA were included in this study, of which 28 patients were examined for lower extremity DVT preoperatively. Platelet crit, Platelet distribution width, Procalcitonin, prothrombin time, and D-dimer were predictors of preoperative occurrence of lower extremity DVT in the nomograms of the TKA patients. In addition, the areas under the curve of the ROC of the training and validation sets were 0.935 (95%CI: 0.880-0.990) and 0.854 (95%CI: 0.697-1.000), and the C-indices of the two sets were 0.919 (95%CI: 0.860-0.978) and 0.900 (95%CI: 0.791-1.009). The nomogram demonstrated precise risk prediction of preoperative DVT occurrence in TKA as confirmed by the calibration curve and decision curve analysis. CONCLUSIONS This Nomogram demonstrates great differentiation, calibration and clinical validity. By assessing individual risk, clinicians can promptly detect the onset of DVT, facilitating additional life monitoring and necessary medical interventions to prevent the progression of DVT effectively.
Collapse
Affiliation(s)
- Zehua Wang
- Department of Orthopedic, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xingjia Mao
- Department of Basic Medicine Sciences, and Department of Orthopaedics of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zijian Guo
- Department of Orthopedic, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Guoyu Che
- School of Health, Yuncheng Vocational and Technical University, Yuncheng, China
| | - Changxin Xiang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Chuan Xiang
- Department of Orthopedic, The Second Hospital of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|