1
|
Gao M, Dai MT, Gong GH. Dysfunctional glucose metabolism triggers oxidative stress to induce kidney injury in diabetes. World J Diabetes 2025; 16:102554. [DOI: 10.4239/wjd.v16.i4.102554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/14/2025] [Accepted: 02/05/2025] [Indexed: 02/28/2025] Open
Abstract
In this editorial, we discussed the article published in the recent issue of the World Journal of Diabetes. To understand the effect of mizagliflozin on kidney injury induced by diabetes, we focused on the mechanisms by which high glucose triggers oxidative stress and contributes to kidney injury in diabetes. The high level of unmetabolized glucose reaching the kidney triggers glucose reabsorption by renal tubules, which elevates the cellular glucose level of renal cells. High glucose induces lactate dehydrogenase overexpression and thus shifts glucose metabolism, which causes mitochondrial dysfunction. Mitochondria generate approximately 90% of the reactive oxygen species in cells, whose dysfunction further alters glucose metabolism and enhances reactive oxygen species generation. Oxidative stress stimulates proinflammatory factor production and kidney inflammatory injury. Mizagliflozin decreases glucose reabsorption and thus ameliorates diabetes-induced kidney injury.
Collapse
Affiliation(s)
- Meng Gao
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Meng-Ting Dai
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Guo-Hua Gong
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| |
Collapse
|
2
|
Liu B, Chen L, Gao M, Dai M, Zheng Y, Qu L, Zhang J, Gong G. A comparative study of the efficiency of mitochondria-targeted antioxidants MitoTEMPO and SKQ1 under oxidative stress. Free Radic Biol Med 2024; 224:117-129. [PMID: 39178922 DOI: 10.1016/j.freeradbiomed.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
MitoTEMPO (MT) and Visomitin (SKQ1) are regareded as mitochondria-targeted antioxidants, which inhibit production of mitochondrial reactive oxygen species (ROS). However, the differences in function between MT and SKQ1 remain unexplored. Herein, we investigated the differential potency of MT and SKQ1 in mitigating oxidative stress under different conditions. The results indicated that high levels of SKQ1 induced cell death. The appropriate concentrations of MT and SKQ1 can prevent or rescue cell damage triggered by hydrogen peroxide (H2O2) and menadione (MEN). MT and SKQ1 reduced ROS levels and reversed the down-regulation of antioxidant defence genes and enzymes. These effects can alleviate the damage to lipids, proteins, and deoxyribonucleic acid (DNA) caused by oxidative stress and restore adenosine 5' triphosphate (ATP) generation. Subsequently, we found that MT administration in ischemic reperfusion kidney injury in mice provided superior renal protection compared to SKQ1, as evidenced by reduced plasma levels of kidney injury markers, improved renal morphology, decreased apoptosis, restored mitochondrial function, and enhanced antioxidant capacity. Overall, our findings suggest that MT is safer and has greater potential than SKQ1 as a therapeutic agent to mitigate oxidative stress damage or oxidative renal injury.
Collapse
Affiliation(s)
- Bilin Liu
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, PR China; Institute of Biophysics, Chinese Academy of Science, Beijing 100101, PR China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China; Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Lei Chen
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, PR China; Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Meng Gao
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, PR China; Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Mengting Dai
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Yejing Zheng
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, PR China; Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Linke Qu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Junming Zhang
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Guohua Gong
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China; Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Tongji University, Shanghai, 200120, PR China.
| |
Collapse
|
3
|
Snyder CA, Dwyer KD, Coulombe KLK. Advancing Human iPSC-Derived Cardiomyocyte Hypoxia Resistance for Cardiac Regenerative Therapies through a Systematic Assessment of In Vitro Conditioning. Int J Mol Sci 2024; 25:9627. [PMID: 39273573 PMCID: PMC11395605 DOI: 10.3390/ijms25179627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Acute myocardial infarction (MI) is a sudden, severe cardiac ischemic event that results in the death of up to one billion cardiomyocytes (CMs) and subsequent decrease in cardiac function. Engineered cardiac tissues (ECTs) are a promising approach to deliver the necessary mass of CMs to remuscularize the heart. However, the hypoxic environment of the heart post-MI presents a critical challenge for CM engraftment. Here, we present a high-throughput, systematic study targeting several physiological features of human induced pluripotent stem cell-derived CMs (hiPSC-CMs), including metabolism, Wnt signaling, substrate, heat shock, apoptosis, and mitochondrial stabilization, to assess their efficacy in promoting ischemia resistance in hiPSC-CMs. The results of 2D experiments identify hypoxia preconditioning (HPC) and metabolic conditioning as having a significant influence on hiPSC-CM function in normoxia and hypoxia. Within 3D engineered cardiac tissues (ECTs), metabolic conditioning with maturation media (MM), featuring high fatty acid and calcium concentration, results in a 1.5-fold increase in active stress generation as compared to RPMI/B27 control ECTs in normoxic conditions. Yet, this functional improvement is lost after hypoxia treatment. Interestingly, HPC can partially rescue the function of MM-treated ECTs after hypoxia. Our systematic and iterative approach provides a strong foundation for assessing and leveraging in vitro culture conditions to enhance the hypoxia resistance, and thus the successful clinical translation, of hiPSC-CMs in cardiac regenerative therapies.
Collapse
Affiliation(s)
- Caroline A Snyder
- Institute for Biology, Engineering and Medicine, School of Engineering, Brown University, Providence, RI 02912, USA
| | - Kiera D Dwyer
- Institute for Biology, Engineering and Medicine, School of Engineering, Brown University, Providence, RI 02912, USA
| | - Kareen L K Coulombe
- Institute for Biology, Engineering and Medicine, School of Engineering, Brown University, Providence, RI 02912, USA
| |
Collapse
|
4
|
Li A, Qin Y, Zhang Y, Zhen X, Gong G. Evaluation of Oxygen Consumption Rates In Situ. Methods Mol Biol 2024; 2755:215-226. [PMID: 38319581 DOI: 10.1007/978-1-0716-3633-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
An analysis of the mitochondrial respiration function represented by the oxygen consumption rate is necessary to assess mitochondrial bioenergetics and redox function. This protocol describes two alternative techniques to evaluate mitochondrial respiration function in situ: (1) measure oxygen consumption rates via an electrode; (2) measure oxygen consumption rates via a seahorse instrument. These in situ approaches provide more physiological access to mitochondria to evaluate mitochondrial respiration function in a relatively integrated cellular system.
Collapse
Affiliation(s)
- Anqi Li
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yuan Qin
- Department of Pharmacy, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Ying Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiaoqun Zhen
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guohua Gong
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
5
|
Muñoz JP, Sànchez-Fernàndez-de-Landa P, Diarte-Añazco EMG, Zorzano A, Blanco-Vaca F, Julve J. FTY720-P, a Biased S1PR Ligand, Increases Mitochondrial Function through STAT3 Activation in Cardiac Cells. Int J Mol Sci 2023; 24:ijms24087374. [PMID: 37108539 PMCID: PMC10139230 DOI: 10.3390/ijms24087374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
FTY720 is an FDA-approved sphingosine derivative drug for the treatment of multiple sclerosis. This compound blocks lymphocyte egress from lymphoid organs and autoimmunity through sphingosine 1-phosphate (S1P) receptor blockage. Drug repurposing of FTY720 has revealed improvements in glucose metabolism and metabolic diseases. Studies also demonstrate that preconditioning with this compound preserves the ATP levels during cardiac ischemia in rats. The molecular mechanisms by which FTY720 promotes metabolism are not well understood. Here, we demonstrate that nanomolar concentrations of the phosphorylated form of FTY720 (FTY720-P), the active ligand of S1P receptor (S1PR), activates mitochondrial respiration and the mitochondrial ATP production rate in AC16 human cardiomyocyte cells. Additionally, FTY720-P increases the number of mitochondrial nucleoids, promotes mitochondrial morphology alterations, and induces activation of STAT3, a transcription factor that promotes mitochondrial function. Notably, the effect of FTY720-P on mitochondrial function was suppressed in the presence of a STAT3 inhibitor. In summary, our results suggest that FTY720 promotes the activation of mitochondrial function, in part, through a STAT3 action.
Collapse
Affiliation(s)
- Juan Pablo Muñoz
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Paula Sànchez-Fernàndez-de-Landa
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Institute for Research in Biomedicine (IRB Barcelona), 08028 Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | | | - Antonio Zorzano
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Institute for Research in Biomedicine (IRB Barcelona), 08028 Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Francisco Blanco-Vaca
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Department of Clinical Biochemistry, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
- Department de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Josep Julve
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Department of Endocrinology and Nutrition, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| |
Collapse
|