1
|
Zhang H, Hu Q, Zhang Y, Yang L, Tian S, Zhang X, Shen H, Shu H, Xie L, Wu D, Zhou L, Wei X, Cheng C, Jiang J, Wang H, Shen C, Kong D, Xu L. Lachnospiraceae bacterium alleviates alcohol-associated liver disease by enhancing N-acetyl-glutamic acid levels and inhibiting ferroptosis through the KEAP1-NRF2 pathway. Gut Microbes 2025; 17:2517821. [PMID: 40511521 DOI: 10.1080/19490976.2025.2517821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 04/08/2025] [Accepted: 06/04/2025] [Indexed: 06/18/2025] Open
Abstract
Alcohol-associated liver disease (ALD) is a prevalent global health issue primarily caused by excessive alcohol consumption. Recent studies have highlighted the gut-liver axis's protective role against ALD, mainly through gut microbiota. However, the precise mechanism remains ill-defined. Our results showed a significant reduction in Lachnospiraceae bacterium in the gut microbiota of ALD patients and ethanol (EtOH)-fed mice, as revealed by 16S rDNA sequencing. Supplementation with Lachnospiraceae bacterium strains in mice significantly reduced inflammation, hepatic neutrophil infiltration, oxidative stress, and improved gut microbiota and intestinal permeability. Multi-omics analysis identified N-Acetyl-glutamic acid (NAG) as the most significantly altered metabolite following Lachnospiraceae bacterium supplementation, with levels positively correlated to Lachnospiraceae bacterium colonization. NAG treatment exhibited significant protective effects in EtOH-exposed hepatocyte cell lines and EtOH-fed mice. Mechanistically, NAG confers hepatoprotection against ALD by activating the KEAP1-NRF2 pathway, inhibiting ferroptosis. Notably, the protective effects of NAG were reversed by the NRF2 inhibitor. In conclusion, oral supplementation with Lachnospiraceae bacterium mitigates alcohol-induced liver damage both in vivo and in vitro by inhibiting ferroptosis through NAG-mediated activation of the KEAP1-NRF2 pathway. Lachnospiraceae bacterium may serve as promising probiotics for future clinical applications.
Collapse
Affiliation(s)
- Hejiao Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qiang Hu
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yong Zhang
- Department of Orthopedics and Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lei Yang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Shanfei Tian
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Xinru Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Haiyuan Shen
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hang Shu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Linxi Xie
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Dongqing Wu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Liangliang Zhou
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaoli Wei
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chen Cheng
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jiali Jiang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Cailiang Shen
- Department of Orthopedics and Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Derun Kong
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Long Xu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
- Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
2
|
Wang W, Thomas ER, Xiao R, Chen T, Guo Q, Liu K, Yang Y, Li X. Targeting mitochondria-regulated ferroptosis: A new frontier in Parkinson's disease therapy. Neuropharmacology 2025; 274:110439. [PMID: 40174689 DOI: 10.1016/j.neuropharm.2025.110439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/16/2025] [Accepted: 03/28/2025] [Indexed: 04/04/2025]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantial nigra. Mitochondrial dysfunction and mitochondrial oxidative stress are central to the pathogenesis of PD, with recent evidence highlighting the role of ferroptosis - a type of regulated cell death dependent on iron metabolism and lipid peroxidation. Mitochondria, the central organelles for cellular energy metabolism, play a pivotal role in PD pathogenesis through the production of Reactive oxygen species (ROS) and the disruption of iron homeostasis. This review explores the intricate interplay between mitochondrial dysfunction and ferroptosis in PD, focusing on key processes such as impaired electron transport chain function, tricarboxylic acid (TCA) cycle dysregulation, disruption of iron metabolism, and altered lipid peroxidation. We discuss key pathways, including the role of glutathione (GSH), mitochondrial ferritin, and the regulation of the mitochondrial labile iron pool (mLIP), which collectively influence the susceptibility of neurons to ferroptosis. Furthermore, this review emphasizes the importance of mitochondrial quality control mechanisms, such as mitophagy and mitochondrial biogenesis, in mitigating ferroptosis-induced neuronal death. Understanding these mechanisms linking the interplay between mitochondrial dysfunction and ferroptosis may pave the way for novel therapeutic approaches aimed at preserving mitochondrial integrity and preventing neuronal loss in PD.
Collapse
Affiliation(s)
- Wenjun Wang
- Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646000, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | | | - Ruyue Xiao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Tianshun Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Qulian Guo
- Department of Pediatrics, Birth Defects and Childhood Hematological Oncology Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Kezhi Liu
- The Zigong Affiliated of Hospital of Southwest Medical University, Zigong mental health Center, Zigong Institute of Brain Science, Zigong, Sichuan Province, 643020, China
| | - You Yang
- Department of Pediatrics, Birth Defects and Childhood Hematological Oncology Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| | - Xiang Li
- Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646000, China; The Zigong Affiliated of Hospital of Southwest Medical University, Zigong mental health Center, Zigong Institute of Brain Science, Zigong, Sichuan Province, 643020, China; Health Science Center, Xi'an Jiaotong University, 710061, China.
| |
Collapse
|
3
|
Duan J, Pei F, Miao J, Liu S, Tan L, Lu M, Liu Y, Zhang C. Swietenine improved the progression of diabetic nephropathy through inhibiting ferroptosis via activating Akt/GSK-3β/Nrf2 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 349:119981. [PMID: 40378934 DOI: 10.1016/j.jep.2025.119981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 05/10/2025] [Accepted: 05/14/2025] [Indexed: 05/19/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Swietenia macrophylla King is a traditional medicinal plant extensively utilized in Asia and its pharmacological properties primarily involve antidiabetic, anti-inflammatory, antioxidant, antibacterial, and antitumor effects. Swietenine (Swi), the major bioactive compound presents in the fruits of S. macrophylla, has demonstrated beneficial therapeutic effects on diabetic nephropathy (DN). However, the underlying mechanism through which Swi influences DN remains unclear. AIM OF THE STUDY The current research aims to investigate the effects of Swi on DN and explore its underlying mechanisms associated with ferroptosis, both in vivo and in vitro. METHODS A model of streptozotocin/high-fat diet (STZ/HFD)-induced Sprague-Dawley (SD) rats was employed to assess the effect of Swi on improving DN and resisting ferroptosis in vivo. Additionally, mouse podocyte cells (MPC-5 cells) were induced by high glucose (HG) and cultured to explore the potential mechanisms of Swi in treating DN in vitro. To further validate the protective effects of Swi, pathway-specific inhibitors were administered to HG-induced MPC-5 cells to confirm the involvement of the Akt/GSK-3β/Nrf2 signaling pathway in the inhibition of ferroptosis. A combination of proteomics, immunohistochemical staining, western blotting, and cell culture techniques was utilized to explore the pharmacological mechanisms of Swi. Furthermore, network pharmacology and molecular docking analyses were conducted to predict the targets of Swi in relation to DN, which were subsequently validated through Western blotting analysis. RESULTS Administration of Swi significantly enhanced renal function and ameliorated pathological alterations in DN rats, as well as improved oxidative stress and inhibited ferroptosis. In vitro studies revealed that Swi dramatically improved the cell viability and mitigated oxidative stress, and inhibited ferroptosis via activating the Akt/GSK-3β/Nrf2 signaling pathway in HG-induced MPC-5 cells. CONCLUSION This study demonstrates that Swi improves DN by inhibiting ferroptosis via activating Akt/GSK-3β/Nrf2 signaling pathway for the first time, thereby providing a scientific basis that Swi is expected to be a promising candidate drug for the treatment of DN.
Collapse
Affiliation(s)
- Jingyu Duan
- School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, PR China.
| | - Feilong Pei
- School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, PR China.
| | - Jiale Miao
- School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, PR China.
| | - Shuang Liu
- School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, PR China.
| | - Lin Tan
- School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, PR China.
| | - Mengyuan Lu
- School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, PR China.
| | - Yaowu Liu
- School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, PR China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, PR China.
| | - Chunping Zhang
- School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, PR China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, PR China.
| |
Collapse
|
4
|
Wang HQ, Zhu YW, Dou ZY, Chen Z, Tong CC, He X, Ma XH, Guan J, Xu DX, Chen X. 1,25(OH) 2D 3 Ameliorates DSS-induced Intestinal Ferroptosis through the SIRT3-SOD2-mtROS Pathway. J Nutr Biochem 2025:109999. [PMID: 40513839 DOI: 10.1016/j.jnutbio.2025.109999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 05/29/2025] [Accepted: 06/09/2025] [Indexed: 06/16/2025]
Abstract
Ferroptosis has been shown to play a significant role in the pathogenesis of ulcerative colitis (UC). This study investigated the effects of 1,25(OH)2D3 supplementation on ferroptosis in dextran sulfate sodium (DSS)-evoked colitis. Intestinal VDR was reduced in UC patients. Accordingly, GPX4 was downregulated and ACSL4 was upregulated in the intestine of UC patients. Animal experiments indicated that vitamin D deficiency exacerbated DSS-induced intestinal ferroptosis in mice. Conversely, pretreatment with 1,25(OH)2D3 alleviated DSS-induced ferroptosis in mouse intestine. Similarly, 1,25(OH)2D3 supplementation inhibited DSS-induced ferroptosis in HT-29 cells. Furthermore, we found decreased intestinal SIRT3 protein and increased acetylated superoxide dismutase 2 (Ac-SOD2) in UC patients. Pretreatment with 1,25(OH)2D3 attenuated DSS-induced downregulation of SIRT3 and acetylation of SOD2 in both mouse intestine and HT-29 cells. Moreover, 1,25(OH)2D3 pretreatment inhibited mitochondrial reactive oxygen species (mtROS) in DSS-treated HT-29 cells. Finally, transfection with SIRT3 siRNA antagonized the protective effect of 1,25(OH)2D3 on ferroptosis in DSS-treated HT-29 cells. Overall, our results suggest that 1,25(OH)2D3 alleviates DSS-induced intestinal ferroptosis via the SIRT3-SOD2-mtROS pathway, further supporting the potential use of 1,25(OH)2D3 supplementation in UC treatment.
Collapse
Affiliation(s)
- Hong-Qian Wang
- Department of Gastroenterology, First Affiliated Hospital of Anhui Medical University, Hefei, China; Anhui Provincial Key Laboratory of Digestive Diseases, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ya-Wen Zhu
- Department of Gastroenterology, First Affiliated Hospital of Anhui Medical University, Hefei, China; Anhui Provincial Key Laboratory of Digestive Diseases, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zi-Yue Dou
- Department of Gastroenterology, First Affiliated Hospital of Anhui Medical University, Hefei, China; Anhui Provincial Key Laboratory of Digestive Diseases, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhuo Chen
- Department of Gastroenterology, First Affiliated Hospital of Anhui Medical University, Hefei, China; Anhui Provincial Key Laboratory of Digestive Diseases, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Cheng-Cheng Tong
- Department of Gastroenterology, First Affiliated Hospital of Anhui Medical University, Hefei, China; Anhui Provincial Key Laboratory of Digestive Diseases, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xue He
- Department of Gastroenterology, First Affiliated Hospital of Anhui Medical University, Hefei, China; Anhui Provincial Key Laboratory of Digestive Diseases, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiao-Han Ma
- Department of Gastroenterology, First Affiliated Hospital of Anhui Medical University, Hefei, China; Anhui Provincial Key Laboratory of Digestive Diseases, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jing Guan
- Department of Gastroenterology, First Affiliated Hospital of Anhui Medical University, Hefei, China; Anhui Provincial Key Laboratory of Digestive Diseases, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - De-Xiang Xu
- Department of Toxicology, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China.
| | - Xi Chen
- Department of Gastroenterology, First Affiliated Hospital of Anhui Medical University, Hefei, China; Anhui Provincial Key Laboratory of Digestive Diseases, First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
5
|
Li Q, Su L, Guo P, Liao J, Tang Z. Copper-Induced DRP1 Activation Disrupts Mitochondrial-Lipid Droplet Contact to Promote Hepatic Steatosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:13006-13020. [PMID: 40387024 DOI: 10.1021/acs.jafc.5c02147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Copper (Cu) is a vital dietary element for both humans and animals and is widely supplemented in food. However, excessive consumption of this trace element can adversely affect the overall well-being. Previous studies have demonstrated that long-term Cu intake can lead to severe hepatotoxicity. The underlying mechanism by which Cu induces disturbances in hepatic energy metabolism through modulation of mitochondria-lipid droplet (LD) contacts, however, is not known. In this study, we found that Cu exposure significantly disrupted the interaction between mitochondria and LDs, leading to the downregulation of perilipin 2 (PLIN2), perilipin 5 (PLIN5), synaptosomal-associated protein 23 (SNAP23), diacylglycerol acyltransferase 2 (DGAT2), and caveolin-1 (Cav-1) proteins in chicken livers. Mechanistically, we demonstrated that Cu exposure-induced dynamin-related protein 1 (DRP1) protein activation disrupted mitochondria-LD contacts by regulating PLIN2. DRP1 knockdown and PLIN2 overexpression efficiently promoted the mitochondria-LD contacts, alleviating Cu-induced LD accumulation in chicken primary hepatocytes. However, PLIN2 knockdown significantly exacerbated the mitochondria-LD contact disorder induced by Cu exposure. Moreover, PLIN2 knockdown dramatically reversed the ability of DRP1 knockdown to promote mitochondria-LD contacts, while overexpression of PLIN2 had the opposite effect. Overall, our study revealed that the DRP1-PLIN2 axis regulates the connections between mitochondria and LDs under Cu exposure, which may provide a new perspective on Cu exposure-induced lipid metabolism disorders in hepatocytes.
Collapse
Affiliation(s)
- Quanwei Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P.R. China
| | - Luna Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P.R. China
| | - Pan Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P.R. China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P.R. China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P.R. China
| |
Collapse
|
6
|
Gao K, Liu Y, Li K, Liu L, Cai Y, Zhang X, Zhao Z. Nrf2-Mediated Ferroptosis Is Involved in Berberine-Induced Alleviation of Diabetic Kidney Disease. Phytother Res 2025. [PMID: 40425285 DOI: 10.1002/ptr.8498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 05/29/2025]
Abstract
Diabetic kidney disease (DKD) is the most common and serious complication of diabetes mellitus. Currently, there is a lack of safe and effective preventive strategies for DKD. The study aimed to explore the preventive effects and potential mechanisms of berberine (BBR) against DKD. In the in vivo experiments, we established a DKD rat model induced by the combination of high-fat diet and streptozotocin to investigate the preventive effect of BBR on DKD. Subsequently, in vitro experiments using human renal tubular epithelial cells (HK-2 cells) were performed to further validate the effect of BBR on renal tubular epithelial cell ferroptosis induced by advanced glycation end products (AGEs). In vivo, we found that BBR improved renal function and attenuated inflammatory cell infiltration, podocyte injury, and iron deposition in renal tissue in DKD rats. In addition, in vitro experiments showed that BBR attenuated HK-2 cell ferroptosis induced by AGEs. We further identified Nrf2 as a direct binding target of BBR by molecular docking and Surface Plasmon Resonance (SPR). Then, immunohistochemistry and Western Blot results demonstrated that BBR could activate the Nrf2 pathway, initiate the endogenous antioxidant system, and inhibit the occurrence of AGEs-induced ferroptosis. Moreover, silencing of Nrf2 by siRNA technology eliminated the protective effect of BBR on AGEs-induced ferroptosis. Collectively, our results supported that BBR could inhibit oxidative stress and ferroptosis by targeting activation of the Nrf2 pathway, thereby delaying the disease progression of DKD, providing a new scientific basis and perspective for the prevention and treatment of DKD.
Collapse
Affiliation(s)
- Kun Gao
- Affiliated Chinese Medical Hospital of Shandong Second Medical University, Weifang, Shandong, China
| | - Yunhua Liu
- International Acupuncture and Moxibustion Innovation Institute, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Kun Li
- Pingdu People's Hospital, Pingdu, Shandong, China
| | - Lin Liu
- Affiliated Chinese Medical Hospital of Shandong Second Medical University, Weifang, Shandong, China
| | - Yanmo Cai
- Beijing University of Chinese Medicine, Beijing, China
| | - Xinxue Zhang
- Beijing University of Chinese Medicine, Beijing, China
| | | |
Collapse
|
7
|
Chen Y, Tian Y, Guan B, Chang Y, Yan X, Song Q, Chen W, Chen L, Li W, Mao W, Zhang Y, Chen C, Li S. Morinda officinalis oligosaccharides attenuate mitochondria-associated ferroptosis via the NOX4/mitoGPX4 pathway in myocardial ischemia‒reperfusion injury. Front Cell Dev Biol 2025; 13:1605513. [PMID: 40491951 PMCID: PMC12146387 DOI: 10.3389/fcell.2025.1605513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Accepted: 05/06/2025] [Indexed: 06/11/2025] Open
Abstract
Aim To explore the benefits of Morinda officinalis oligosaccharides (MOO) on ischemia-reperfusion (I/R) injury and the possible mechanisms involved. Methods Myocardial I/R injury were induced by left anterior descending branch ligation. MOO pretreatment was given orally 2 weeks prior to ischemic treatment. Echocardiograms, biochemical parameters, and histological and immunohistochemical analyses were used to determine the benefits of MOO on myocardial I/R injury. Oxidative stress and ferroptosis were examined by biochemical parameters, Western blot, immunohistochemistry, and Tunel staining. Results MOO improved cardiac function and reduced myocardial oxidative stress and ferroptosis, which was associated with the inhibition of NADPH Oxidase 4 (NOX4) expression. Whereas, the upregulation of NOX4 abolished the benefits of MOO. Furthermore, MOO enhanced mitochondrial superoxide dismutase 2 (SOD2) activity and stimulated the mitochondrial translocation of glutathione peroxidase 4 (mitoGPX4) by inhibiting NOX4. Mitochondria-specific GPX4 overexpression attenuated mitochondrial oxidative stress and suppressed mitochondria-associated ferroptosis in cardiomyocytes that suffered from hypoxia-reoxygenation (H/R) injury, even after NOX4 overexpression. Conclusion These results indicate the beneficial effects of MOO on myocardial I/R injury by suppressing oxidative stress and mitochondria-associated ferroptosis through NOX4/mitoGPX4 pathway.
Collapse
Affiliation(s)
- Yuqiong Chen
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Yuan Tian
- Department of Cardiology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Bo Guan
- Department of Geriatrics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Yiling Chang
- The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Xiaopei Yan
- Department of Respiratory Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Qi Song
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Wenting Chen
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Lin Chen
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Wei Li
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Wenjun Mao
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Yan Zhang
- Department of Anesthesiology, Xuzhou Central Hospital, The Affiliated XuZhou Hospital of Nanjing Medical University, Xuzhou, China
| | - Chao Chen
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Su Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| |
Collapse
|
8
|
Zhong YL, Xu CQ, Li J, Liang ZQ, Wang MM, Ma C, Jia CL, Cao YB, Chen J. Mitochondrial dynamics and metabolism in macrophages for cardiovascular disease: A review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156620. [PMID: 40068296 DOI: 10.1016/j.phymed.2025.156620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/18/2025] [Accepted: 03/05/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND Mitochondria regulate macrophage function, affecting cardiovascular diseases like atherosclerosis and heart failure. Their dynamics interact with macrophage cell death mechanisms, including apoptosis and necroptosis. PURPOSE This review explores how mitochondrial dynamics and metabolism influence macrophage inflammation and cell death in CVDs, highlighting therapeutic targets for enhancing macrophage resilience and reducing CVD pathology, while examining molecular pathways and pharmacological agents involved. STUDY DESIGN This is a narrative review that integrates findings from various studies on mitochondrial dynamics and metabolism in macrophages, their interactions with the endoplasmic reticulum (ER) and Golgi apparatus, and their implications for CVDs. The review also considers the potential therapeutic effects of pharmacological agents on these pathways. METHODS The review utilizes a comprehensive literature search to identify relevant studies on mitochondrial dynamics and metabolism in macrophages, their role in CVDs, and the effects of pharmacological agents on these pathways. The selected studies are analyzed and synthesized to provide insights into the complex relationships between mitochondria, the ER, and Golgi apparatus, and their implications for macrophage function and fate. RESULTS The review reveals that mitochondrial metabolism intertwines with cellular architecture and function, particularly through its intricate interactions with the ER and Golgi apparatus. Mitochondrial-associated membranes (MAMs) facilitate Ca2+ transfer from the ER to mitochondria, maintaining mitochondrial homeostasis during ER stress. The Golgi apparatus transports proteins crucial for inflammatory signaling, contributing to immune responses. Inflammation-induced metabolic reprogramming in macrophages, characterized by a shift from oxidative phosphorylation to glycolysis, underscores the multifaceted role of mitochondrial metabolism in regulating immune cell polarization and inflammatory outcomes. Notably, mitochondrial dysfunction, marked by heightened reactive oxygen species generation, fuels inflammatory cascades and promotes cell death, exacerbating CVD pathology. However, pharmacological agents such as Metformin, Nitazoxanide, and Galanin emerge as potential therapeutic modulators of these pathways, offering avenues for mitigating CVD progression. CONCLUSION This review highlights mitochondrial dynamics and metabolism in macrophage inflammation and cell death in CVDs, suggesting therapeutic targets to improve macrophage resilience and reduce pathology, with new pharmacological agents offering treatment opportunities.
Collapse
Affiliation(s)
- Yi-Lang Zhong
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Chen-Qin Xu
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Ji Li
- Department of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Zhi-Qiang Liang
- Department of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Miao-Miao Wang
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Chao Ma
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Cheng-Lin Jia
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Yong-Bing Cao
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Jian Chen
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Anhui Province Rural Revitalization Collaborative Technical Service Center, Huangshan University, Huangshan 245041, China; Department of Public Health, International College, Krirk University, Bangkok, Thailand.
| |
Collapse
|
9
|
Yu W, Haoyu Y, Ling Z, Xing H, Pengfei X, Anzhu W, Lili Z, Linhua Z. Targeting lipid metabolic reprogramming to alleviate diabetic kidney disease: molecular insights and therapeutic strategies. Front Immunol 2025; 16:1549484. [PMID: 40352935 PMCID: PMC12061959 DOI: 10.3389/fimmu.2025.1549484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 03/14/2025] [Indexed: 05/14/2025] Open
Abstract
Diabetic kidney disease (DKD) is one of the major complications of diabetes, and its pathological progression is closely associated with lipid metabolic reprogramming. Under diabetic conditions, renal cells undergo significant lipid metabolic abnormalities, including increased lipid uptake, impaired fatty acid oxidation, disrupted cholesterol efflux, and enhanced lipid catabolism, as adaptive responses to metabolic stress. These changes result in the accumulation of lipids such as free fatty acids, diacylglycerol, and ceramides, leading to lipotoxicity that triggers inflammation and fibrosis. Hypoxia in the DKD microenvironment suppresses fatty acid oxidation and promotes lipid synthesis through the HIF-1α pathway, while chronic inflammation exacerbates lipid metabolic disturbances via inflammatory cytokines, inflammasomes, and macrophage polarization. Targeting lipid metabolism represents a promising therapeutic strategy for alleviating DKD; however, further clinical translational studies are warranted to validate the efficacy and safety of these approaches.
Collapse
Affiliation(s)
- Wei Yu
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Haoyu
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhou Ling
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Hang Xing
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Xie Pengfei
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Wang Anzhu
- Chinese-Japanese Friendship Hospital, Beijing, China
| | - Zhang Lili
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhao Linhua
- Department of Endocrinology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
10
|
Kaftan Öcal G, Armagan G. Induction of Ferroptotic Cell Death by Neuromelanin Pigments in Dopaminergic Cells. ACS Chem Neurosci 2025; 16:1500-1510. [PMID: 40145657 PMCID: PMC12006986 DOI: 10.1021/acschemneuro.5c00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/24/2025] [Accepted: 03/18/2025] [Indexed: 03/28/2025] Open
Abstract
Neuromelanin (NM) is an iron-rich, insoluble brown or black pigment that exhibits protective properties. However, its accumulation over time may render it a source of free radicals. In Parkinson's disease, dopaminergic neurons with the highest NM levels and increased iron content are preferentially vulnerable to degeneration. Considering NM's iron binding capacity and the critical role of iron in ferroptosis, we aimed to investigate the interplay between neuromelanin and ferroptosis in dopaminergic cells. We prepared two NM pigments: iron-free NM (ifNM) and iron-containing NM (Fe3+NM) and, exposed to cells. After verifying NM accumulation, cell viability was assessed in the absence or presence of antioxidants (NAC (1 mM), Trolox (100 μM)) and specific inhibitors of cell death types. Ferroptosis-related parameters, including lipid peroxidation byproducts (4-HNE), lipid ROS, glutathione, intracellular iron, GPX4, and ACSL4, and cellular iron metabolism-related proteins (TfR1, ferroportin, ferritin, IREB2) were evaluated following ifNM and Fe3+NM treatments, with or without Ferrostatin-1, Liproxstatin-1 and deferoxamine. Both NMs induced cell death via distinct mechanisms. Ferroptotic cell death by ifNM and Fe3+NM was reversed by ferrostatin-1 and NAC (p < 0.05). Significant alterations in lipid peroxidation, GPX4 levels, and iron metabolism were observed independent of NM's iron composition (p < 0.05). Ferritin levels increased following ifNM treatment, reflecting an adaptive response to iron overload, while Fe3+NM treatment led to ferritin depletion, possibly via ferritinophagy. Our findings reveal a distinct role of iron-rich and iron-free neuromelanin in modulating ferroptotic pathways, highlighting the potential of targeting neuromelanin-iron interactions as a therapeutic strategy to mitigate neuronal ferroptosis in Parkinson's disease.
Collapse
Affiliation(s)
- Gizem Kaftan Öcal
- Biochemistry
PhD Programme, Graduate School of Health Sciences, Ege University, Izmir 35100, Türkiye
- Department
of Biochemistry, Faculty of Pharmacy, Ayfonkarahisar
Health Sciences University, Afyonkarahisar 03218, Türkiye
| | - Güliz Armagan
- Department
of Biochemistry, Faculty of Pharmacy, Ege
University, Izmir 35100, Türkiye
| |
Collapse
|
11
|
Shan XM, Lu C, Chen CW, Wang CT, Liu TT, An T, Zhu ZY, Zou DW, Gao YB. Tangshenning formula alleviates tubular injury in diabetic kidney disease via the Sestrin2/AMPK/PGC-1α axis: Restoration of mitochondrial function and inhibition of ferroptosis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 345:119579. [PMID: 40043828 DOI: 10.1016/j.jep.2025.119579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/20/2025] [Accepted: 03/02/2025] [Indexed: 03/29/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tangshenning (TSN) is a traditional Chinese medicinal formula developed on principles of kidney tonification and collateral unblocking. TSN, formulated from Astragalus mongholicus Bunge, Rheum palmatum L., Ligusticum chuanxiong Hort., and Rosa laevigata Michx., has demonstrated significant clinical efficacy in the treatment of diabetic kidney disease (DKD). Our previous studies have suggested that TSN mitigates tubular injury in DKD by inhibiting ferroptosis, however, the precise molecular targets and mechanistic pathways underlying these effects remain to be fully elucidated. AIM OF THE STUDY We investigated whether the Sestrin2/AMPK/PGC-1α axis serves as a key pathway mediating TSN's protective effects against tubular injury in DKD. METHODS In vivo, a spontaneous DKD mouse model was developed using KK-Ay mice. In vitro, human tubular epithelial cells (TECs) were used to establish high glucose and ferroptosis models, as well as a Sestrin2 knockdown model for further analysis. Molecular docking was utilized to examine the binding interactions between TSN's key active components and Sestrin2. Colocalization of Sestrin2 and GPX4 was assessed using dual fluorescence staining. Protein expression levels related to the Sestrin2/AMPK/PGC-1α pathway, ferroptosis markers (SLC7A11 and GPX4), and the tubular injury marker KIM-1 were quantified via Western blot analysis. In vivo, DHE staining, TUNEL staining, and ferrous ion content measurement were performed to evaluate ferroptosis levels in renal tissue. In vitro, the BODIPY 581/591 C11 probe and ferrous ion assay were used to assess ferroptosis levels in TECs. MitoSOX staining, JC-1 assay, and ATP level measurements were conducted to evaluate mitochondrial function in TECs. RESULTS In vivo, our results demonstrated that TSN improved renal function, alleviated tubular injury, and reduced pathological damage in DKD mice. Furthermore, TSN upregulated the protein expression of the Sestrin2/AMPK/PGC-1α axis and decreased ferroptosis-related markers in the DKD mouse model. Similarly, in vitro, TSN enhanced the expression of the Sestrin2/AMPK/PGC-1α pathway, restored mitochondrial function, and inhibited ferroptosis in TECs under high glucose and ferroptosis-inducing conditions. Additionally, downregulation of Sestrin2 impaired the therapeutic effects of TSN. CONCLUSION TSN alleviates tubular injury in DKD by activating the Sestrin2/AMPK/PGC-1α pathway, restoring mitochondrial function, and inhibiting ferroptosis in TECs.
Collapse
Affiliation(s)
- Xiao-Meng Shan
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, People's Republic of China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, People's Republic of China
| | - Cong Lu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, People's Republic of China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, People's Republic of China
| | - Chun-Wei Chen
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, People's Republic of China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, People's Republic of China
| | - Cui-Ting Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, People's Republic of China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, People's Republic of China
| | - Tian-Tian Liu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, People's Republic of China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, People's Republic of China
| | - Tian An
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, People's Republic of China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, People's Republic of China
| | - Zhi-Yao Zhu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, People's Republic of China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, People's Republic of China
| | - Da-Wei Zou
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, People's Republic of China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, People's Republic of China.
| | - Yan-Bin Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, People's Republic of China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, People's Republic of China.
| |
Collapse
|
12
|
Mu F, Luo P, Zhu Y, Nie P, Li B, Bai X. Iron Metabolism and Ferroptosis in Diabetic Kidney Disease. Cell Biochem Funct 2025; 43:e70067. [PMID: 40166850 DOI: 10.1002/cbf.70067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 02/20/2025] [Accepted: 03/04/2025] [Indexed: 04/02/2025]
Abstract
Diabetic kidney disease (DKD) is a major diabetic microvascular complication that still lacks effective therapeutic drugs. Ferroptosis is a recently identified form of programmed cell death that is triggered by iron overload. It is characterized by unrestricted lipid peroxidation and subsequent membrane damage and is found in various diseases. Accumulating evidence has highlighted the crucial roles of iron overload and ferroptosis in DKD. Here, we review iron metabolism and the biology of ferroptosis. The role of aberrant ferroptosis in inducing diverse renal intrinsic cell death, oxidative stress, and renal fibrosis in DKD is summarized, and we elaborate on critical regulatory factors related to ferroptosis in DKD. Finally, we focused on the significance of ferroptosis in the treatment of DKD and highlight recent data regarding the novel activities of some drugs as ferroptosis inhibitors in DKD, aiming to provide new research targets and treatment strategies on DKD.
Collapse
Affiliation(s)
- Fangxin Mu
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Ping Luo
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Yuexin Zhu
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Ping Nie
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Bing Li
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Xue Bai
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
13
|
Song D, Chen B, Cheng T, Jin L, He J, Li Y, Liao C. Attenuated NIX in impaired mitophagy contributes to exacerbating cellular senescence in experimental periodontitis under hyperglycemic conditions. FEBS J 2025; 292:1726-1742. [PMID: 39718194 DOI: 10.1111/febs.17352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/08/2024] [Accepted: 09/23/2024] [Indexed: 12/25/2024]
Abstract
Premature accumulation of senescent cells results in tissue destruction, and it is one of the potential primary mechanisms underlying the accelerated progression of diabetes and periodontitis. However, whether this characterized phenomenon could account for periodontal pathogenesis under hyperglycemic conditions remains unclear. In this study, we assessed the senescent phenotypic changes in experimental periodontitis under hyperglycemic conditions. Next, we investigated the mitochondrial function and the potential mitophagy pathways in cellular senescence in vitro and in vivo. Our findings showed that significant senescence occurred in the gingival tissues of diabetic periodontitis mice with increased expression of senescence-related protein p21Cip1 and the senescence-associated secretory phenotype response as well as the decreased expression of NIP3-like protein X (NIX), a mitochondrial receptor. Likewise, we showed that mitochondrial dysfunction (e.g., reduction of mitochondrial membrane potential and accumulation of reactive oxygen species) was attributed to cellular senescence in: human periodontal ligament cells (hPDLCs) through hyperglycemia-induced and Porphyromonas gingivalis lipopolysaccharide (P.g-LPS)-induced oxidative stresses. Notably, the resulting reduced NIX expression was reversed by the use of the mitochondrial reactive oxygen species (ROS) scavenger N-acetyl-l-cysteine (NAC), thus correcting the mitochondrial dysfunction. We further verified the expression of inflammatory mediators and senescence-related factors in mice gingival tissues and identified the possible regulatory pathways. Taken together, our work demonstrates the critical role of cellular senescence and mitochondrial dysfunction in periodontal pathogenesis under hyperglycemic conditions. Hence, restoration of mitochondrial function may be a potential novel therapeutic approach to tackling periodontitis in diabetic patients.
Collapse
Affiliation(s)
- Danni Song
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Orthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai, China
- Jiangxi Provincial Key Laboratory of Oral Diseases & Jiangxi Provincial Clinical Research Center for Oral Diseases & The Affiliated Stomatological Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, China
| | - Beibei Chen
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Orthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| | - Tianfan Cheng
- Division of Periodontology & Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Lijian Jin
- Division of Periodontology & Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Jiangfeng He
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Orthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| | - Yongming Li
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Orthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| | - Chongshan Liao
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Orthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| |
Collapse
|
14
|
Yan X, Xu L, Qi C, Chang Y, Zhang J, Li N, Shi B, Guan B, Hu S, Huang C, Wang H, Chen Y, Xu X, Lu J, Xu G, Chen C, Li S, Chen Y. Brazilin alleviates acute lung injury via inhibition of ferroptosis through the SIRT3/GPX4 pathway. Apoptosis 2025; 30:768-783. [PMID: 39720978 DOI: 10.1007/s10495-024-02058-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2024] [Indexed: 12/26/2024]
Abstract
Ferroptosis is a novel type of programmed cell death dependent on iron and is characterized by the accumulation of lipid peroxides, which is involved in acute lung injury (ALI). Brazilin, an organic compound known for its potent antioxidant and anti-inflammatory properties, has not been thoroughly studied for its potential impact on lipopolysaccharide (LPS)-induced ALI. Here, we found that pretreatment of brazilin mitigated LPS-induced lung injury and inflammation by inhibiting mitochondrial oxidative stress and ferroptosis, both in vivo and in vitro. Sirtuin 3 (SIRT3) was identified as a downstream target of brazilin, and overexpression of SIRT3 mirrored the protective effects of brazilin against LPS-induced ALI. Additionally, SIRT3 contributed to the upregulation, mitochondrial translocation and deacetylation of glutathione peroxidase 4 (GPX4). Through screening potential acetylation sites on GPX4, we identified lysine 148 (K148) as the residue deacetylated by SIRT3. Mutating the acetylation site of GPX4 within mitochondria (mitoGPX4-K148R) reduced LPS or SIRT3 knockdown-induced GPX4 acetylation, oxidative stress, and ferroptosis, ultimately ameliorating ALI. In conclusion, our study demonstrates the beneficial effects of brazilin in treating LPS-induced ALI. Brazilin enhances SIRT3 expression, which in turn deacetylates and facilitates the mitochondrial translocation of GPX4, thereby reducing mitochondrial oxidative stress and ferroptosis. These findings suggest that the SIRT3/GPX4 pathway may represent a critical mechanism, and brazilin emerges as a promising therapeutic candidate for ALI.
Collapse
Affiliation(s)
- Xiaopei Yan
- Department of Respiratory Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Li Xu
- Department of Respiratory Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Chang Qi
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yiling Chang
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Jiangsu, China
| | - Juanjuan Zhang
- Department of Respiratory Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Ning Li
- Department of Respiratory Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Baoyu Shi
- Department of Respiratory Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Bo Guan
- Department of Geriatrics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Siming Hu
- Department of Respiratory Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Chao Huang
- Ministry of Science and Technology, Public Experimental Department, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Hui Wang
- Department of Respiratory Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Ying Chen
- Department of Respiratory Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Xiao Xu
- Department of Respiratory Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Jian Lu
- Department of Emergency, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Guopeng Xu
- Department of Respiratory Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Chao Chen
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215000, Jiangsu, China.
| | - Su Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| | - Yuqiong Chen
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215000, Jiangsu, China.
| |
Collapse
|
15
|
Amador-Martínez I, Aparicio-Trejo OE, Aranda-Rivera AK, Bernabe-Yepes B, Medina-Campos ON, Tapia E, Cortés-González CC, Silva-Palacios A, Roldán FJ, León-Contreras JC, Hernández-Pando R, Saavedra E, Gonzaga-Sánchez JG, Ceja-Galicia ZA, Sánchez-Lozada LG, Pedraza-Chaverri J. Effect of N-Acetylcysteine in Mitochondrial Function, Redox Signaling, and Sirtuin 3 Levels in the Heart During Cardiorenal Syndrome Type 4 Development. Antioxidants (Basel) 2025; 14:367. [PMID: 40227392 PMCID: PMC11939543 DOI: 10.3390/antiox14030367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/11/2025] [Accepted: 03/18/2025] [Indexed: 04/15/2025] Open
Abstract
Type 4 cardiorenal syndrome (CRS-4) is a pathology in which chronic kidney disease (CKD) triggers the development of cardiovascular disease. CKD pathophysiology produces alterations that can affect the bioenergetics of heart mitochondria, causing oxidative stress and reducing antioxidant glutathione (GSH) levels. GSH depletion alters protein function by affecting post-translational modifications such as S-glutathionylation (RS-SG), exacerbating oxidative stress, and mitochondrial dysfunction. On the other hand, N-acetylcysteine (NAC) is an antioxidant GSH precursor that modulates oxidative stress and RS-SG. Moreover, recent studies have found that NAC can activate the Sirtuin 3 (SIRT3) deacetylase in diseases. However, the role of NAC and its effects on mitochondrial function, redox signaling, and SIRT3 modifications in the heart during CRS-4 have not been studied. This study aimed to investigate the role of NAC in mitochondrial function, redox signaling, and SIRT3 in the hearts of animals with CRS-4 at two months of follow-up. Our results showed that the oral administration of NAC (600 mg/kg/day) improved blood pressure and reduced cardiac fibrosis. NACs' protective effect was associated with preserving cardiac mitochondrial bioenergetics and decreasing these organelles' hydrogen peroxide (H2O2) production. Additionally, NAC increased GSH levels in heart mitochondria and regulated the redox state, which coincided with an increase in nicotinamide adenine dinucleotide oxidized (NAD+) levels and a decrease in mitochondrial acetylated lysines. Finally, NAC increased SIRT3 levels and the activity of superoxide dismutase 2 (SOD-2) in the heart. Thus, treatment with NAC decreases mitochondrial alterations, restores redox signaling, and decreases SIRT3 disturbances during CRS-4 through an antioxidant defense mechanism.
Collapse
Affiliation(s)
- Isabel Amador-Martínez
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio D, 1º Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán 04510, Mexico
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Omar Emiliano Aparicio-Trejo
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| | - Ana Karina Aranda-Rivera
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Bismarck Bernabe-Yepes
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| | - Omar Noel Medina-Campos
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Edilia Tapia
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| | | | - Alejandro Silva-Palacios
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| | - Francisco Javier Roldán
- Departamento de Consulta Externa, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| | - Juan Carlos León-Contreras
- Experimental Pathology Section, National Institute of Medical Sciences and Nutrition ‘‘Salvador Zubirán’’, Mexico City 14000, Mexico
| | - Rogelio Hernández-Pando
- Experimental Pathology Section, National Institute of Medical Sciences and Nutrition ‘‘Salvador Zubirán’’, Mexico City 14000, Mexico
| | - Emma Saavedra
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| | - José Guillermo Gonzaga-Sánchez
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| | | | - Laura Gabriela Sánchez-Lozada
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| | - José Pedraza-Chaverri
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
16
|
Sun D, Wang L, Wu Y, Yu Y, Yao Y, Yang H, Hao C. Lipid metabolism in ferroptosis: mechanistic insights and therapeutic potential. Front Immunol 2025; 16:1545339. [PMID: 40134420 PMCID: PMC11932849 DOI: 10.3389/fimmu.2025.1545339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 02/12/2025] [Indexed: 03/27/2025] Open
Abstract
Ferroptosis, an iron-dependent form of regulated cell death driven by lipid peroxidation, plays a pivotal role in various physiological and pathological processes. In this review, we summarize the core mechanisms of ferroptosis, emphasizing its intricate connections to lipid metabolism, including fatty acid synthesis, phospholipid remodeling, and oxidation dynamics. We further highlight advancements in detection technologies, such as fluorescence imaging, lipidomics, and in vivo PET imaging, which have deepened our understanding of ferroptotic regulation. Additionally, we discuss the role of ferroptosis in human diseases, where it acts as a double-edged sword, contributing to cancer cell death while also driving ischemia-reperfusion injury and neurodegeneration. Finally, we explore therapeutic strategies aimed at either inducing or inhibiting ferroptosis, including iron chelation, antioxidant modulation, and lipid-targeted interventions. By integrating mechanistic insights, disease relevance, and therapeutic potential, this review provides a comprehensive perspective on ferroptosis as a crucial interface between lipid metabolism and oxidative stress.
Collapse
Affiliation(s)
- Daoyun Sun
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital Zhengzhou Children’s Hospital, Henan Province Engineering Research Center of Diagnosis and Treatment of Pediatric Infection and Critical Care, Zhengzhou, Henan, China
| | - Longfei Wang
- Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital Zhengzhou Children’s Hospital, Henan Province Engineering Research Center of Diagnosis and Treatment of Pediatric Infection and Critical Care, Zhengzhou, Henan, China
| | - Yufan Wu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Yu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Yufeng Yao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Hongju Yang
- Division of Geriatric Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Chunlin Hao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
17
|
Ding Y, Zhang X, Li J, Li Y, Zhang L, Yuan E. SIRT3 impairment and MnSOD hyperacetylation in trophoblast dysfunction and preeclampsia. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119915. [PMID: 39938691 DOI: 10.1016/j.bbamcr.2025.119915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/25/2025] [Accepted: 01/30/2025] [Indexed: 02/14/2025]
Abstract
Preeclampsia (PE) is a prevalent obstetric disorder that affects 2-8 % of pregnancies worldwide. Trophoblasts, which are crucial functional cells in the placenta, play a significant role in the development of PE due to inadequate invasion. Sirtuin 3 (SIRT3) is an NAD+ - dependent mitochondrial deacetylase, that positively modulates energy metabolism, mitochondrial biogenesis, and protection against oxidative stress. However, the role of SIRT3 in trophoblast dysfunction and the pathogenesis of PE remains unclear. In this study, we aim to investigate the functional role of SIRT3 in PE and explore the underlying mechanism. Our results demonstrated that human PE placentas exhibited reduced expression of SIRT3. In vitro experiments showed that hypoxia promoted SIRT3 expression, while oxidative stress inhibited SIRT3 expression in HTR-8/SVneo cells. The reduced SIRT3 expression inhibited the proliferation and migration of trophoblast cells while also increasing levels of reactive oxygen species and inflammatory factors. As a deacetylase, SIRT3 deficiency increased the acetylation level of manganese superoxide dismutase (MnSOD), a key mitochondrial antioxidant enzyme, subsequently reducing its activity. These effects associated with reduced SIRT3 expression could be reversed by treatment with MnSOD mimetics TEMPO and overexpression of MnSOD. All these results suggested that diminished SIRT3 expression leaded to MnSOD hyperacetylation and inactivation, contributing to trophoblast dysfunction and the pathogenesis of PE.
Collapse
Affiliation(s)
- Yangnan Ding
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, 7 Kangfu Qian Street, Zhengzhou 450052, China.
| | - Xuewei Zhang
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, 7 Kangfu Qian Street, Zhengzhou 450052, China
| | - Jin Li
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, 7 Kangfu Qian Street, Zhengzhou 450052, China
| | - Yina Li
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, 7 Kangfu Qian Street, Zhengzhou 450052, China
| | - Linlin Zhang
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, 7 Kangfu Qian Street, Zhengzhou 450052, China
| | - Enwu Yuan
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, 7 Kangfu Qian Street, Zhengzhou 450052, China.
| |
Collapse
|
18
|
Chatterjee T, Zarjou A. Navigating the Complex Pathogenesis of Acute Kidney Injury: Exploring Macrophage Dynamics, Mitochondrial Dysfunction, and Ferroptosis Pathways. ADVANCES IN KIDNEY DISEASE AND HEALTH 2025; 32:122-132. [PMID: 40222799 PMCID: PMC11999248 DOI: 10.1053/j.akdh.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 12/02/2024] [Accepted: 12/13/2024] [Indexed: 04/15/2025]
Abstract
Acute kidney injury, a rapid decline in kidney function coupled with physiological and homeostatic perturbations, is an independent risk factor for both short-term and long-term health outcomes. As incidence of acute kidney injury continues to rise globally, the significant clinical and economic challenge of acute kidney injury underscores the need for its prompt recognition and application of novel and germane strategies to reduce its severity and facilitate recovery. Understanding the multifaceted cascade of events engaged in pathogenesis of acute kidney injury is pivotal for the development of effective preventive and therapeutic strategies. To facilitate an in-depth discussion on emerging therapeutic targets, this review will examine the role of macrophages in kidney injury and repair, explore the alterations in mitochondrial biogenesis dynamics induced by acute kidney injury, and provide insights into the molecular mechanisms underlying the contribution of ferroptosis to kidney injury.
Collapse
Affiliation(s)
- Tanima Chatterjee
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Abolfazl Zarjou
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL.
| |
Collapse
|
19
|
Fu H, Zhang Y, Duan Y, Zhang X, Yao J, Yang D, Wei Z, Zhu Z, Xu J, Hu Z, You Q, Yan R, Wang W. Superoxide dismutase promotes gastric tumorigenesis mediated by Helicobacter pylori and enhances resistance to 5-fluorouracil in gastric cancer. iScience 2025; 28:111553. [PMID: 39898027 PMCID: PMC11787496 DOI: 10.1016/j.isci.2024.111553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 09/03/2024] [Accepted: 12/04/2024] [Indexed: 02/04/2025] Open
Abstract
Helicobacter pylori (H. pylori) infection is the most common risk factor for gastric cancer (GC). The effect of the antioxidase manganese superoxide dismutase (SOD2) in gastric tumorigenesis remains unclear. We explored the molecular mechanisms of links between H. pylori, inflammation, and SOD2 in GC. We found that SOD2 was upregulated in GC. GC patients with high SOD2 expression showed worse overall survival. H. pylori infection promoted SOD2 expression by transcriptionally activating the NF-κB signaling pathway. Knockdown of SOD2 led to increased levels of reactive oxygen species and oxidative stress in response to H. pylori infection. Our research demonstrates that SOD2 can serve as an inhibitor of ferroptosis by activating AKT, and stabilizing GPX4 protein, which subsequently induces 5-fluorouracil resistance. These findings reveal a mechanism whereby H. pylori can promote gastric carcinogenesis by activating the NF-κB/SOD2/AKT/GPX4 pathway, leading to the inhibition of ferroptosis. This may provide a promising therapeutic target for GC.
Collapse
Affiliation(s)
- Hongbing Fu
- Department of Gastrointestinal Surgery, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yu Zhang
- Department of Gastrointestinal Surgery, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yantao Duan
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xin Zhang
- Department of Gastrointestinal Surgery, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Jun Yao
- Department of Gastrointestinal Surgery, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Dejun Yang
- Department of Gastrointestinal Surgery, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Ziran Wei
- Department of Gastrointestinal Surgery, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Zhenxin Zhu
- Department of Gastrointestinal Surgery, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Jiapeng Xu
- Department of Gastrointestinal Surgery, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Zunqi Hu
- Department of Gastrointestinal Surgery, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Qing You
- Department of Gastrointestinal Surgery, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Ronglin Yan
- Department of Gastrointestinal Surgery, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Weijun Wang
- Department of Gastrointestinal Surgery, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| |
Collapse
|
20
|
Gao C, Wang L, Fu K, Cheng S, Wang S, Feng Z, Yu S, Yang Z. N-Acetylcysteine Alleviates Necrotizing Enterocolitis by Depressing SESN2 Expression to Inhibit Ferroptosis in Intestinal Epithelial Cells. Inflammation 2025; 48:464-482. [PMID: 39037665 PMCID: PMC11807027 DOI: 10.1007/s10753-024-02068-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 07/23/2024]
Abstract
Abstract-Necrotizing enterocolitis (NEC) is a severe gastrointestinal disease in neonates, and effective strategies to prevent and treat NEC are still lacking. Studies have shown that N-acetylcysteine (NAC) has protective effects against NEC, however, the specific mechanism underlying its effects on intestinal functions remains unclear. Recently, NAC has been shown to suppress ferroptosis in many diseases, while it is unclear whether the beneficial effects of NAC on NEC are related to ferroptosis. In this study, we revealed that ferroptosis was significantly induced in intestinal samples from infants with NEC. NAC alleviated intestinal inflammation, barrier damage and ferroptosis in multifactorial NEC models in vivo and in vitro. Sestrin2 (SESN2) was identified as an important mediator of NAC-induced ferroptosis resistance in intestinal epithelial cells. Furthermore, SESN2 knockdown inhibited the inflammatory response, alleviated barrier damage and ferroptosis in intestinal epithelial cells and enhanced the protective effects of NAC to a certain extent. Conversely, cells overexpressing SESN2 showed the opposite changes. In summary, our study demonstrated that NAC attenuates NEC progression by decreasing SESN2 expression to inhibit ferroptosis in intestinal epithelial cells, suggesting that NAC might be an effective clinical treatment for NEC.
Collapse
Affiliation(s)
- Chuchu Gao
- Department of Neonatology, The Affiliated Suzhou Hospital of Nanjing Medical University (Suzhou Municipal Hospital), Suzhou, 215002, China
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Lixia Wang
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Kai Fu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Shan Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Sannan Wang
- Department of Neonatology, The Affiliated Suzhou Hospital of Nanjing Medical University (Suzhou Municipal Hospital), Suzhou, 215002, China
| | - Zongtai Feng
- Department of Neonatology, The Affiliated Suzhou Hospital of Nanjing Medical University (Suzhou Municipal Hospital), Suzhou, 215002, China.
| | - Shenglin Yu
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Zuming Yang
- Department of Neonatology, The Affiliated Suzhou Hospital of Nanjing Medical University (Suzhou Municipal Hospital), Suzhou, 215002, China.
| |
Collapse
|
21
|
Wu G, Ye Y, Xu M, Zhang Y, Lu Z, Huang L. Influencing factors of acute kidney injury in elderly patients with diabetic nephropathy and establishment of nomogram model. Front Endocrinol (Lausanne) 2025; 15:1431873. [PMID: 39950166 PMCID: PMC11821420 DOI: 10.3389/fendo.2024.1431873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/19/2024] [Indexed: 02/16/2025] Open
Abstract
Purpose To explore the influencing factors of acute kidney injury in elderly patients with diabetic nephropathy and to construct a nomogram model. Methods The research subjects were 680 patients with type 2 diabetic nephropathy admitted to our hospital. The patients were included from May 2018 to August 2023. Patients with acute kidney injury were used as the merge group (n=50), and patients without unmerge group (n=630) was included. The prevalence and predisposing factors of acute kidney injury in diabetic nephropathy were analyzed, multivariate logistic regression were used to analyze the influencing factors of acute kidney injury in patients, and a nomogram risk prediction model was established based on risk factors for verification. Results Analysis of the factors of acute kidney injury in diabetic nephropathy found that severe infection was the main trigger, accounting for 40.00%, followed by nephrotoxic antibiotics and severe heart failure. The age, urine microalbumin-to-creatinine ratio (ACR), blood urea nitrogen (BUN), uric acid(UA), and cystatin C (CysC) levels of patients in the combined acute kidney injury group were significantly higher than those in the unmerge group (P<0.05), and the left ventricular ejection fraction (LVEF) and epidermal growth factor receptor (eGFR) levels were significantly lower than those in the unmerge group (P<0.05). Age, ACR, and CysC levels are independent risk factors for acute kidney injury in diabetic nephropathy, and LVEF and eGFR are independent protective factors (P<0.05). The C-index of the nomogram risk prediction model in predicting acute kidney injury in diabetic nephropathy is 0.768 (95% CI: 0.663-0.806), and the calibration curve tends to the ideal curve; the prediction threshold is >0.18, and the nomogram risk prediction model provides a clinical net benefits, and clinical net benefits were higher than independent predictors. Conclusion The establishment of a nomogram model for acute kidney injury in elderly patients with diabetic nephropathy based on age, ACR, CysC, LVEF, and eGFR has a good predictive effect, which can help doctors more accurately assess the patient's condition and provide a basis for formulating personalized treatment plans.
Collapse
Affiliation(s)
- Ganlin Wu
- School of Clinical Medicine, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- National Demonstration Center for Experimental (General Practice) Education, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yanli Ye
- Department of Internal Medicine, The Second Affiliated Hospital of Hubei University of Science and Technology, Xianning, China
| | - Meirong Xu
- Department of Geriatrics, The Second Affiliated Hospital of Hubei University of Science and Technology, Xianning, China
| | - Yanxia Zhang
- Department of Nephrology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan University, Wuhan, Hubei, China
| | - Zuopeng Lu
- Department of Surgery, People’s Hospital of Tongcheng County, Xianning, China
| | - Lv Huang
- College of Pharmacy, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
22
|
Zhao M, Han M, Guo S, Tang Z. CXCL12 as a Potential Hub Gene for N-Acetylcysteine Treatment of T1DM Liver Disease. Biomolecules 2025; 15:176. [PMID: 40001479 PMCID: PMC11853168 DOI: 10.3390/biom15020176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/11/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
The etiology of type 1 diabetes mellitus (T1DM) is intricate, leading to its classification as an autoimmune metabolic disorder. T1DM often coexists with various visceral diseases. N-acetylcysteine (NAC) is widely acknowledged for its potent antioxidant properties. Studies have demonstrated that the combination of NAC and insulin can effectively alleviate iron-induced nephropathy in T1DM and mitigate oxidative stress injury in skeletal muscle associated with the condition. However, the potential impact of NAC alone on liver disease in individuals with T1DM remains uncertain. In this study, a beagle model was established to simulate T1DM, enabling investigation into the role of NAC in liver disease using RNA-seq biogenic analysis and subsequent validation through molecular biological methods. The findings revealed suppressed expression of CXCL12 chemokine in the livers of individuals with T1DM, while treatment with NAC induced specific activation of CXCL12 within the liver affected by T1DM. These results suggest that CXCL12 may serve as a regulatory factor involved in the therapeutic effects of NAC on liver disease associated with TIDM. This discovery holds significant implications for utilizing NAC as an adjunctive therapy for managing complicated liver diseases accompanying type 1 diabetes mellitus.
Collapse
Affiliation(s)
| | | | | | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (M.Z.); (M.H.); (S.G.)
| |
Collapse
|
23
|
Wu H, Feng L, Wu H, Wang L, Xu H, Fu F. Synergistic effects of PS-NPs and Cd on ovarian toxicity in adolescent rats: Ferroptosis by induction of mitochondrial redox imbalance via the SIRT3-SOD2/Gpx4 pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117622. [PMID: 39732061 DOI: 10.1016/j.ecoenv.2024.117622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/24/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
Nanoplastics (NPs) are an emerging class of pollutants. They can act as a"Trojan horse" to change the bioavailability and toxicity of heavy metals in the environment. However, research on the combined toxicity of heavy metals and NPs is scarce, especially during the critical developmental period of adolescence. In this study, polystyrene nanoplastics (PS-NPs) and/or cadmium (Cd) were exposed to 4-week-old female rats for 28 days, with the aim of exploring the potential effects of combined exposure to PS-NPs and Cd on the ovaries of adolescence rats. Results showed that co-exposure to PS-NPs and Cd exacerbated ovarian toxicity in rats, primarily through increased atretic follicle numbers and endocrine disruption. Further studies revealed that PS-NPs and Cd synergistically repressed the SIRT3-SOD2/Gpx4 pathway, inducing mitochondrial oxidative stress and ferroptosis, resulting in damage to ovarian structure and function. However, the addition of the mitochondrion-targeted antioxidant SS-31 and the ferroptosis inhibitor Fer-1 reversed the harm to the ovaries from co-exposure to PS-NPs and Cd, the aberrant expression of genes related to the SIRT3-SOD2/Gpx4 pathway was also improved. Our results suggested that co-exposure to PS-NPs and Cd may trigger ferroptosis by inhibiting the SIRT3-SOD2/Gpx4 pathway, leading to mitochondrial redox imbalance, which provided novel insights into reproductive toxicity due to the interaction of PS-NPs and Cd during adolescence.
Collapse
Affiliation(s)
- Hua Wu
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Lihua Feng
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Huang Wu
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China
| | - Lihong Wang
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| | - Fen Fu
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China.
| |
Collapse
|
24
|
Lin ZM, Gao HY, Shi SH, Li YT. Mizagliflozin ameliorates diabetes induced kidney injury by inhibitor inhibit inflammation and oxidative stress. World J Diabetes 2025; 16:92711. [PMID: 39817219 PMCID: PMC11718448 DOI: 10.4239/wjd.v16.i1.92711] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/26/2024] [Accepted: 10/08/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Mizagliflozin (MIZ) is a specific inhibitor of sodium-glucose cotransport protein 1 (SGLT1) originally developed as a medication for diabetes. AIM To explore the impact of MIZ on diabetic nephropathy (DN). METHODS Diabetic mice were created using db/db mice. They were administered either a low dose (0.5 mg/kg) or a high dose (1.0 mg/kg) of the SGLT1 inhibitor MIZ via stomach gavage for 8 weeks. Subsequently, mesangial cells (MCs) were isolated and subjected to high glucose conditions in culture to assess the effects of MIZ on DN. RESULTS The results showed that low doses of MIZ significantly reduced albuminuria to a level comparable to that achieved with high doses in db/db mice. High doses of MIZ led to a substantial increase in body weight in mice, along with decreased blood glucose levels and food intake. Moreover, the intervention with high-dose MIZ notably decreased the expression of extracellular matrix genes, such as collagen type 1 alpha 1 mRNA levels. While the expression of SGLT1 increased after exposure to high glucose, it decreased following treatment with MIZ. Furthermore, MIZ intervention was more effective in improving lactate dehydrogenase levels in MCs induced by high glucose compared to canagliflozin. MIZ also significantly elevated levels of antioxidant enzymes superoxide dismutase, catalase, and glutathione, while reducing malondialdehyde levels. CONCLUSION These findings indicate that MIZ can ameliorate DN by inhibiting SGLT1, inflammation, and oxidative stress.
Collapse
Affiliation(s)
- Zhi-Min Lin
- Department of Nephrology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Han-Yuan Gao
- Department of Nephrology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Shu-Han Shi
- Department of Nephrology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Yue-Ting Li
- Department of Nephrology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian Province, China
| |
Collapse
|
25
|
Hu Y, Tang J, Hong H, Chen Y, Ye B, Gao Z, Zhu G, Wang L, Liu W, Wang Y. Ferroptosis in kidney disease: a bibliometric analysis from 2012 to 2024. Front Pharmacol 2025; 15:1507574. [PMID: 39872050 PMCID: PMC11769937 DOI: 10.3389/fphar.2024.1507574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/27/2024] [Indexed: 01/29/2025] Open
Abstract
Background and aims Ferroptosis, a novel concept of programmed cell death proposed in 2012, in kidney disease, has garnered significant attention based on evidence of abnormal iron deposition and lipid peroxidation damage in the kidney. Our study aim to examine the trends and future research directions in the field of ferroptosis in kidney disease, so as to further explore the target or treatment strategy for clinical treatment of kidney disease. Material and Methods A thorough survey using the Web of Science Core Collection, focusing on literature published between 2012 and 2024 examining the interaction between kidney disease and ferroptosis was conducted. VOSviewer, CiteSpace, and Biblioshiny were used for in-depth scientometric and visualized analyses. Results From 2012 to 2024, a total of 2,244 articles met the inclusion criteria for final analysis. The number of annual publications in this area of study showed a steady pattern at the beginning of the decade. The top 3 journals with the highest publication output were Renal Failure, Oxidative Medicine And Cellular Longevity, and Biomedicine & Pharmacotherapy. China and the United States had the highest number of publications. Central South University and Guangzhou Medical University as the most active and influential institutions. Documents and citation analysis suggested that Andreas Linkermann, Jolanta Malyszko, and Alberto Ortiz are active researchers, and the research by Scott J. Dixon and Jose Pedro Friedmann Angeli, as the most cited article, are more important drivers in the development of the field. Keywords associated with glutathione, lipid peroxidation, and nitric oxide had high frequency in the early studies. In recent years, however, there has been a shift towards biomarkers, inflammation and necrosis, which indicate current and future research directions in this area. Conclusion The global landscape of the ferroptosis research in kidney disease from 2012 to 2024 was presented. Basic research and mechanism exploration for renal fibrosis and chronic kidney disease may be a hot spot in the future.
Collapse
Affiliation(s)
- Yuxin Hu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Jingyi Tang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Hanzhang Hong
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Yexin Chen
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Beibei Ye
- Beijing University of Chinese Medicine, Beijing, China
| | - Ziheng Gao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | | | - Lin Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Weijing Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yaoxian Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
- Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
26
|
Mu Z, Sun Z, Wu S, Yang J, Wang P, Zhao X. Trehalose Inhibits ferroptosis Through Activating SIRT3/SOD2 Signaling Axis and Alleviates Brain Injury After Traumatic Brain Injury. Neurochem Res 2025; 50:78. [PMID: 39798057 DOI: 10.1007/s11064-024-04330-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/06/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025]
Abstract
Trehalose has neuroprotective effects in neurodegenerative diseases. This study aimed to explore the impact of trehalose on traumatic brain injury (TBI) by investigating its role in neuroprotection. The TBI mice model was established utilizing the cortical impact technique followed by trehalose treatment. Traumatic neuronal injury induced by scratch followed by trehalose treatment was performed to mimic TBI in vitro. Memory function was assessed using the Water maze test. Brain damage was evaluated through various methods including brain water content analysis, Nissl staining, Evans blue exudation, and TUNEL staining. Biochemical and morphological changes related to ferroptosis post-TBI were also examined. The results showed that trehalose was found to enhance spatial memory, reduce brain injury, and inhibit ferroptosis in TBI mice, similar to ferroptosis inhibitors. The influence of trehalose on TBI was reversed by the SIRT3 inhibitor. Trehalose upregulated SIRT3 to increase SOD activity in TBI, which could also be counteracted by the SIRT3 inhibitor. Combining trehalose with a ferroptosis inhibitor had a more significant effect on reducing brain injury and inhibiting ferroptosis. Furthermore, in TBI mice treated with trehalose and SIRT3 inhibitors, the effect of trehalose was reversed by SIRT3 inhibitors, but the addition of ferroptosis inhibitors reversed the effect of SIRT3 inhibitors, as shown by decreased ferroptosis and neuronal apoptosis in damaged brain tissue. In summary, this study provides initial evidence that trehalose plays a crucial role in neuroprotection post-TBI through the SIRT3/SOD2 pathway-mediated ferroptosis.
Collapse
Affiliation(s)
- Zhenqian Mu
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, 214002, China
| | - Zhenlie Sun
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, 214002, China
| | - Shuai Wu
- Department of Neurosurgery, Medical School of Nantong University, Nantong University, Nantong, 226019, China
- Department of Neurosurgery, Wuxi No. 2 People's Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, 214002, China
| | - Jieqiong Yang
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, 214002, China
| | - Peng Wang
- Department of Neurosurgery, Medical School of Nantong University, Nantong University, Nantong, 226019, China
- Department of Neurosurgery, Wuxi No. 2 People's Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, 214002, China
| | - Xudong Zhao
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China.
- Department of Neurosurgery, Medical School of Nantong University, Nantong University, Nantong, 226019, China.
- Department of Neurosurgery, Wuxi No. 2 People's Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, 214002, China.
- Wuxi Neurosurgical Institute, Wuxi, 214002, China.
- , 68 Zhongshan Road, Wuxi, 214000, China.
| |
Collapse
|
27
|
Xue M, Tian Y, Zhang H, Dai S, Wu Y, Jin J, Chen J. Curcumin nanocrystals ameliorate ferroptosis of diabetic nephropathy through glutathione peroxidase 4. Front Pharmacol 2025; 15:1508312. [PMID: 39834811 PMCID: PMC11743454 DOI: 10.3389/fphar.2024.1508312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/05/2024] [Indexed: 01/22/2025] Open
Abstract
Objective The aim of this study was to investigate the effect of curcumin nanocrystals (Cur-NCs) on ferroptosis in high-glucose (HG)-induced HK-2 cells and streptozotocin (STZ)-induced diabetic nephropathy model (DN) rats. The purpose is to determine whether Cur NCs can become a promising treatment option for diabetes nephropathy by reducing ferroptosis. Methods Cur-NCs were prepared using microfluidic technology and studied using dynamic light scattering and transmission electron microscopy. HK-2 cells were treated with 30 mM HG to create a renal tubule damage cell model. Then, cell viability was evaluated in HK-2 cells treated with varying concentrations of Cur-NCs (0.23, 0.47, 0.94, 1.87, 3.75, 7.5, 15, and 30 μg/mL) using Cell Counting Kit-8 (CCK-8). Furthermore, in vivo experiments were carried out to investigate the roles of Cur-NCs in STZ-induced DN rats. Results The results showed that HG treatment greatly enhanced the levels of LDH, MDA, Iron, lipid ROS, apoptosis, NCOA4, TFR-1, while decreasing the expression of GSH, GPX4, SLC7A11, and FTH-1. These effects induced by HG could be attenuated by Cur-NCs. Cur-NCs also reduced the HG-induced decrease in cell viability, as well as the increase in lipid ROS and cell apoptosis, however erastin could inhibit their effects. Furthermore, the in vivo results showed that Cur-NCs reduced ferroptosis and inhibited renal damage in DN rats. Conclusion This study demonstrates that Cur-NCs can significantly attenuate ferroptosis in a STZ-induced renal damage model by recovering GPX4, implying that Cur-NCs may be a promising therapy option for DN.
Collapse
Affiliation(s)
- Mengjiao Xue
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, China
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Yiwei Tian
- School of Pharmacy, Shanghai Jiaotong University, Shanghai, China
| | - Hua Zhang
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, China
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Shijie Dai
- College of Life Science, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yangsheng Wu
- College of Life Science, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Juan Jin
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, China
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Jian Chen
- School of Pharmacy, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
28
|
Alves F, Lane D, Nguyen TPM, Bush AI, Ayton S. In defence of ferroptosis. Signal Transduct Target Ther 2025; 10:2. [PMID: 39746918 PMCID: PMC11696223 DOI: 10.1038/s41392-024-02088-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/10/2024] [Accepted: 11/29/2024] [Indexed: 01/04/2025] Open
Abstract
Rampant phospholipid peroxidation initiated by iron causes ferroptosis unless this is restrained by cellular defences. Ferroptosis is increasingly implicated in a host of diseases, and unlike other cell death programs the physiological initiation of ferroptosis is conceived to occur not by an endogenous executioner, but by the withdrawal of cellular guardians that otherwise constantly oppose ferroptosis induction. Here, we profile key ferroptotic defence strategies including iron regulation, phospholipid modulation and enzymes and metabolite systems: glutathione reductase (GR), Ferroptosis suppressor protein 1 (FSP1), NAD(P)H Quinone Dehydrogenase 1 (NQO1), Dihydrofolate reductase (DHFR), retinal reductases and retinal dehydrogenases (RDH) and thioredoxin reductases (TR). A common thread uniting all key enzymes and metabolites that combat lipid peroxidation during ferroptosis is a dependence on a key cellular reductant, nicotinamide adenine dinucleotide phosphate (NADPH). We will outline how cells control central carbon metabolism to produce NADPH and necessary precursors to defend against ferroptosis. Subsequently we will discuss evidence for ferroptosis and NADPH dysregulation in different disease contexts including glucose-6-phosphate dehydrogenase deficiency, cancer and neurodegeneration. Finally, we discuss several anti-ferroptosis therapeutic strategies spanning the use of radical trapping agents, iron modulation and glutathione dependent redox support and highlight the current landscape of clinical trials focusing on ferroptosis.
Collapse
Affiliation(s)
- Francesca Alves
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Darius Lane
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
| | | | - Ashley I Bush
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia.
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia.
| | - Scott Ayton
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia.
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
29
|
Sun A, Pollock CA, Huang C. Mitochondria-targeting therapeutic strategies for chronic kidney disease. Biochem Pharmacol 2025; 231:116669. [PMID: 39608501 DOI: 10.1016/j.bcp.2024.116669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/06/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Chronic kidney disease (CKD) is a multifactorial health issue characterised by kidney impairment that has significant morbidity and mortality in the global population. Current treatments for CKD fail to prevent progression to end-stage kidney disease, where management is limited to renal replacement therapy or kidney transplantation. Mitochondrial dysfunction has been implicated in the pathogenesis of CKD and can be broadly categorised into abnormalities related to excessive oxidative stress, reduced mitochondrial biogenesis, excess mitochondrial fission and dysregulated mitophagy. Mitochondria-targeting therapeutic strategies target many of the outlined mechanisms of mitochondrial dysfunction, and an overview of recent evidence for mitochondria-targeting therapeutic strategies is explored in this review, including naturally derived compounds and novel approaches such as fusion proteins. Mitochondria-targeting therapeutic strategies using these approaches show the potential to stabilise or improve renal function, and clinical studies are needed to further confirm their safety and efficacy in human contexts.
Collapse
Affiliation(s)
- Annie Sun
- Kolling Institute, Sydney Medical School Northern, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Carol A Pollock
- Kolling Institute, Sydney Medical School Northern, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Chunling Huang
- Kolling Institute, Sydney Medical School Northern, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St Leonards, New South Wales, Australia.
| |
Collapse
|
30
|
Wang LF, Li Q, Le Zhao J, Wen K, Zhang YT, Zhao QH, Ding Q, Li JH, Guan XH, Xiao YF, Deng KY, Xin HB. CD38 deficiency prevents diabetic nephropathy by inhibiting lipid accumulation and oxidative stress through activation of the SIRT3 pathway. Biochem Cell Biol 2025; 103:1-12. [PMID: 39116458 DOI: 10.1139/bcb-2024-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
Diabetic nephropathy (DN) is one of the most common complications of diabetes. Our previous study showed that CD38 knockout (CD38KO) mice had protective effects on many diseases. However, the roles and mechanisms of CD38 in DN remain unknown. Here, DN mice were generated by high-fat diet (HFD) feeding plus streptozotocin (STZ) injection in male CD38KO and CD38flox mice. Mesangial cells (SV40 MES 13 cells) were used to mimic the injury of DN with palPagination Donemitic acid (PA) treatment in vitro. Our results showed that CD38 expression was significantly increased in kidney of diabetic CD38flox mice and SV40 MES 13 cells treated with PA. CD38KO mice were significantly resistant to diabetes-induced renal injury. Moreover, CD38 deficiency markedly decreased HFD/STZ-induced lipid accumulation, fibrosis, and oxidative stress in kidney tissue. In contrast, overexpression of CD38 aggravated PA-induced lipid accumulation and oxidative stress. CD38 deficiency increased expression of SIRT3, while overexpression of CD38 decreased its expression. More importantly, 3-TYP, an inhibitor of SIRT3, significantly enhanced PA-induced lipid accumulation and oxidative stress in CD38 overexpressing cell lines. In conclusion, our results demonstrated that CD38 deficiency prevented DN by inhibiting lipid accumulation and oxidative stress through activation of the SIRT3 pathway.
Collapse
Affiliation(s)
- Ling-Fang Wang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Qian Li
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Jia Le Zhao
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Ke Wen
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Ya-Ting Zhang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Qi-Hang Zhao
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Qi Ding
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Jia-Hui Li
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Xiao-Hui Guan
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Yun-Fei Xiao
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Ke-Yu Deng
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Hong-Bo Xin
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| |
Collapse
|
31
|
Zhang P, Wu H, Lou H, Zhou J, Hao J, Lin H, Hu S, Zhong Z, Yang J, Guo H, Chi J. Baicalin Attenuates Diabetic Cardiomyopathy In Vivo and In Vitro by Inhibiting Autophagy and Cell Death Through SENP1/SIRT3 Signaling Pathway Activation. Antioxid Redox Signal 2025; 42:53-76. [PMID: 38687336 DOI: 10.1089/ars.2023.0457] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Aims: Diabetic heart damage can lead to cardiomyocyte death, which endangers human health. Baicalin (BAI) is a bioactive compound that plays an important role in cardiovascular diseases. Sentrin/SUMO-specific protease 1 (SENP1) regulates the de-small ubiquitin-like modifier (deSUMOylation) process of Sirtuin 3 (SIRT3) and plays a crucial role in regulating mitochondrial mass and preventing cell injury. Our hypothesis is that BAI regulates the deSUMOylation level of SIRT3 through SENP1 to enhance mitochondrial quality control and prevent cell death, ultimately improving diabetic cardiomyopathy (DCM). Results: The protein expression of SENP1 decreased in cardiomyocytes induced by high glucose and in db/db mice. The cardioprotective effects of BAI were eliminated by silencing endogenous SENP1, whereas overexpression of SENP1 showed similar cardioprotective effects to those of BAI. Furthermore, co-immunoprecipitation experiments showed that BAI's cardioprotective effect was due to the inhibition of the SUMOylation modification level of SIRT3 by SENP1. Inhibition of SENP1 expression resulted in an increase in SUMOylation of SIRT3. This led to increased acetylation of mitochondrial protein, accumulation of reactive oxygen species, impaired autophagy, impaired mitochondrial oxidative phosphorylation, and increased cell death. None of these changes could be reversed by BAI. Conclusion: BAI improves DCM by promoting SIRT3 deSUMOylation through SENP1, restoring mitochondrial stability, and preventing the cell death of cardiomyocytes. Innovation: This study proposes for the first time that SIRT3 SUMOylation modification is involved in the development of DCM and provides in vivo and in vitro data support that BAI inhibits cardiomyocyte ferroptosis and apoptosis in DCM through SENP1. Antioxid. Redox Signal. 42, 53-76.
Collapse
Affiliation(s)
- Peipei Zhang
- School of Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haowei Wu
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Haifei Lou
- School of Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiedong Zhou
- School of Medicine, Shaoxing University, Shaoxing, China
| | - Jinjin Hao
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Hui Lin
- Department of Cardiovascular, Lihuili Hospital Affiliated to Ningbo University, Ningbo, China
| | - Songqing Hu
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Zuoquan Zhong
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing, China
| | - Juntao Yang
- School of Medicine, Shaoxing University, Shaoxing, China
| | - Hangyuan Guo
- School of Medicine, Shaoxing University, Shaoxing, China
| | - Jufang Chi
- School of Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
32
|
Lu S, Liu Z, Qi M, Wang Y, Chang L, Bai X, Jiao Y, Chen X, Zhen J. Ferroptosis and its role in osteoarthritis: mechanisms, biomarkers, and therapeutic perspectives. Front Cell Dev Biol 2024; 12:1510390. [PMID: 39744014 PMCID: PMC11688369 DOI: 10.3389/fcell.2024.1510390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/04/2024] [Indexed: 01/04/2025] Open
Abstract
Osteoarthritis (OA) is one of the leading causes of disability worldwide, characterized by a complex pathological process involving cartilage degradation, synovial inflammation, and subchondral bone remodeling. In recent years, ferroptosis, a form of programmed cell death driven by iron-dependent lipid peroxidation, has been recognized as playing a critical role in the onset and progression of OA. Investigating the molecular mechanisms of ferroptosis and its involvement in OA may offer novel strategies for diagnosing and treating this disease. This review first outlines the core mechanisms of ferroptosis, with a particular focus on the roles of critical molecules such as Glutathione Peroxidase 4 (GPX4), Transferrin Receptor 1 (TfR1), and Nuclear Receptor Coactivator 4 (NCOA4). Subsequently, this study examines the specific impacts of ferroptosis on the pathophysiology of OA. Building on this, the potential of ferroptosis-related biomarkers for OA diagnosis and treatment is highlighted, along with proposed therapeutic strategies targeting ferroptosis regulation. This review aims to deepen the understanding of ferroptosis mechanisms and advance the clinical application of regulatory therapies for OA.
Collapse
Affiliation(s)
- Shanyu Lu
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Imaging, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, Shanxi, China
| | - Zhenyu Liu
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Imaging, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, Shanxi, China
| | - Meiling Qi
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Imaging, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, Shanxi, China
| | - Yingchao Wang
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Imaging, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Le Chang
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Imaging, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaolong Bai
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Imaging, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yingguang Jiao
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Imaging, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xinyao Chen
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Imaging, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Junping Zhen
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Imaging, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Molecular Imaging Laboratory, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
33
|
Zhu Y, Wu Q, Guo J, Xu B, Zhao H, Liu C. Ferroptosis-associated alterations in diabetes following ischemic stroke: Insights from RNA sequencing. Brain Res 2024; 1845:149274. [PMID: 39395647 DOI: 10.1016/j.brainres.2024.149274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
OBJECTIVE Ferroptosis is an iron-dependent form of programmed cell death associated with lipid peroxidation. Though diabetes worsens cerebral injury and clinical outcomes in stroke, it is poorly understood whether ferroptosis contributes to diabetes-exacerbated stroke. This study aimed to identify ferroptosis-associated differentially expressed genes in ischemic stroke under diabetic condition and then explore their roles using comprehensive bioinformatics analyses. METHODS Type 1 diabetes (T1D) model was established in male mice at 8-10 weeks of age by one intraperitoneal injection of streptozotocin (110 mg/kg). Ischemic stroke was induced by a transient 45-minute middle cerebral artery occlusion and evaluated three days thereafter. Ischemic brain cortex was dissected 24 h after the reperfusion and subjected to bulk tissue RNA sequencing followed by bioinformatics analysis and verification of key findings via quantitative real-time PCR. RESULTS Enlarged infarct size was seen in diabetic, as compared with non-diabetic mice, in conjunction with worsened neurological behaviors. Both body and spleen weights were reduced in diabetic as compared with non-diabetic mice. There was a trend for reduced survival rate in diabetic mice following the stroke. In RNA sequencing analysis, we identified 1299 differentially expressed genes in ischemic brain between diabetic and non-diabetic mice, with upregulation and downregulation for 732 and 567 genes, respectively. Among these genes, 27 genes were associated with ferroptosis. Further analysis reveals that solute carrier family 25 member 28(SLC25A28) and sterol carrier protein 2(SCP2) were the top genes associated with ferroptosis in diabetic mice following ischemic stroke. In several bioinformatics analyses, we found SLC25A28, one of the top ferroptosis-related genes, is involved in several metabolic and regulatory pathways as well as the regulatory complexity of microRNAs and circular RNAs, which demonstrates the potential role of SLC25A28 in diabetes-exacerbated stroke. Drug network analysis suggests SLC25A28 as a potential therapeutic target for ameliorating ischemic injury in diabetes. CONCLUSIONS Our bulk RNA sequencing and bioinformatics analyses show that altered ferroptosis signaling pathway was associated with the exacerbation of experimental stroke injury under diabetic condition. Especially, additional investigation into the mechanisms of SLC25A28 and SCP2 in diabetes-exacerbated stroke will be explored in the future study.
Collapse
MESH Headings
- Animals
- Ferroptosis/physiology
- Ferroptosis/genetics
- Male
- Mice
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/genetics
- Ischemic Stroke/metabolism
- Ischemic Stroke/genetics
- Sequence Analysis, RNA/methods
- Mice, Inbred C57BL
- Infarction, Middle Cerebral Artery/metabolism
- Infarction, Middle Cerebral Artery/genetics
- Infarction, Middle Cerebral Artery/complications
- Brain Ischemia/metabolism
- Brain Ischemia/genetics
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/genetics
- Stroke/genetics
- Stroke/metabolism
- Disease Models, Animal
Collapse
Affiliation(s)
- Ying Zhu
- School of Nursing, Capital Medical University, Beijing, China
| | - Qike Wu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Jiayi Guo
- Department of Neurobiology, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Baohui Xu
- Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Heng Zhao
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Cuiying Liu
- School of Nursing, Capital Medical University, Beijing, China.
| |
Collapse
|
34
|
Zhang H, Tang M, Liu Q, Wu D, Sun B, Dong J, Guan L, Luo J, Zeng M. PAT exposure caused human hepatocytes apoptosis and induced mice subacute liver injury by activating oxidative stress and the ERS-associated PERK pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177003. [PMID: 39433224 DOI: 10.1016/j.scitotenv.2024.177003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/06/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024]
Abstract
With the widespread use of antimony compounds in synthetic materials and processing, the occupational exposure and environmental pollution caused by antimony have attracted the attention of researchers. Studies have shown that antimony compounds can cause liver damage, but the mechanism has not yet been elucidated. In this study, we used the trivalent potassium antimony tartrate (PAT) to infect L02 hepatocytes and Kunming (KM) mice to establish an antimony-induced apoptosis model of L02 cells and a subacute liver injury model of KM mice. We found that PAT exposure caused hepatocyte apoptosis and was accompanied by oxidative stress and endoplasmic reticulum stress (ERS), and the ERS-associated PERK pathway was activated. Further experimental results showed that N-acetyl-l-cysteine (NAC) pretreatment or silencing of the PERK gene in L02 cells reduced PAT-induced apoptosis. The activity of SOD and CAT in treated L02 cells was increased, the malondialdehyde content in L02 cells and liver tissues was decreased, and the content of ERS-related proteins GRP78 and CHOP, as well as the content of PERK-pathway-related proteins p-PERK/PERK, p-eif2α/eif2α and ATF4 protein were significantly reduced. Overall, PAT exposure triggered hepatocyte apoptosis and liver injury by inducing oxidative stress and activating the ERS-associated PERK pathway; however, this effect could be alleviated by NAC intervention or silencing of PERK in hepatocytes.
Collapse
Affiliation(s)
- Hualing Zhang
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Meng Tang
- Center for Disease Control and Prevention, Jiulongpo District, Chongqing 400050, PR China
| | - Qin Liu
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Die Wu
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Bing Sun
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Jingbang Dong
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Lan Guan
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Jianlan Luo
- Institute of Geophysical & Geochemical Exploration of Hunan, Changsha 411100, PR China
| | - Ming Zeng
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha 410078, PR China.
| |
Collapse
|
35
|
Zhou Q, Meng Y, Le J, Sun Y, Dian Y, Yao L, Xiong Y, Zeng F, Chen X, Deng G. Ferroptosis: mechanisms and therapeutic targets. MedComm (Beijing) 2024; 5:e70010. [PMID: 39568772 PMCID: PMC11577302 DOI: 10.1002/mco2.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 11/22/2024] Open
Abstract
Ferroptosis is a nonapoptotic form of cell death characterized by iron-dependent lipid peroxidation in membrane phospholipids. Since its identification in 2012, extensive research has unveiled its involvement in the pathophysiology of numerous diseases, including cancers, neurodegenerative disorders, organ injuries, infectious diseases, autoimmune conditions, metabolic disorders, and skin diseases. Oxidizable lipids, overload iron, and compromised antioxidant systems are known as critical prerequisites for driving overwhelming lipid peroxidation, ultimately leading to plasma membrane rupture and ferroptotic cell death. However, the precise regulatory networks governing ferroptosis and ferroptosis-targeted therapy in these diseases remain largely undefined, hindering the development of pharmacological agonists and antagonists. In this review, we first elucidate core mechanisms of ferroptosis and summarize its epigenetic modifications (e.g., histone modifications, DNA methylation, noncoding RNAs, and N6-methyladenosine modification) and nonepigenetic modifications (e.g., genetic mutations, transcriptional regulation, and posttranslational modifications). We then discuss the association between ferroptosis and disease pathogenesis and explore therapeutic approaches for targeting ferroptosis. We also introduce potential clinical monitoring strategies for ferroptosis. Finally, we put forward several unresolved issues in which progress is needed to better understand ferroptosis. We hope this review will offer promise for the clinical application of ferroptosis-targeted therapies in the context of human health and disease.
Collapse
Affiliation(s)
- Qian Zhou
- Department of Dermatology Xiangya Hospital Central South University Changsha Hunan Province China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology Changsha Hunan Province China
- Furong Laboratory Changsha Hunan Province China
- Hunan Key Laboratory of Skin Cancer and Psoriasis Hunan Engineering Research Center of Skin Health and Disease Xiangya Hospital Central South University Changsha Hunan Province China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Changsha Hunan Province China
| | - Yu Meng
- Department of Dermatology Xiangya Hospital Central South University Changsha Hunan Province China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology Changsha Hunan Province China
- Furong Laboratory Changsha Hunan Province China
- Hunan Key Laboratory of Skin Cancer and Psoriasis Hunan Engineering Research Center of Skin Health and Disease Xiangya Hospital Central South University Changsha Hunan Province China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Changsha Hunan Province China
| | - Jiayuan Le
- Department of Dermatology Xiangya Hospital Central South University Changsha Hunan Province China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology Changsha Hunan Province China
- Furong Laboratory Changsha Hunan Province China
- Hunan Key Laboratory of Skin Cancer and Psoriasis Hunan Engineering Research Center of Skin Health and Disease Xiangya Hospital Central South University Changsha Hunan Province China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Changsha Hunan Province China
| | - Yuming Sun
- Department of Plastic and Cosmetic Surgery Xiangya Hospital Central South University Changsha Hunan Province China
| | - Yating Dian
- Department of Dermatology Xiangya Hospital Central South University Changsha Hunan Province China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology Changsha Hunan Province China
- Furong Laboratory Changsha Hunan Province China
- Hunan Key Laboratory of Skin Cancer and Psoriasis Hunan Engineering Research Center of Skin Health and Disease Xiangya Hospital Central South University Changsha Hunan Province China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Changsha Hunan Province China
| | - Lei Yao
- Department of General Surgery Xiangya Hospital Central South University Changsha Hunan Province China
| | - Yixiao Xiong
- Department of Dermatology Tongji Hospital Huazhong University of Science and Technology Wuhan Hubei China
| | - Furong Zeng
- Department of Oncology Xiangya Hospital Central South University Changsha Hunan Province China
| | - Xiang Chen
- Department of Dermatology Xiangya Hospital Central South University Changsha Hunan Province China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology Changsha Hunan Province China
- Furong Laboratory Changsha Hunan Province China
- Hunan Key Laboratory of Skin Cancer and Psoriasis Hunan Engineering Research Center of Skin Health and Disease Xiangya Hospital Central South University Changsha Hunan Province China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Changsha Hunan Province China
| | - Guangtong Deng
- Department of Dermatology Xiangya Hospital Central South University Changsha Hunan Province China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology Changsha Hunan Province China
- Furong Laboratory Changsha Hunan Province China
- Hunan Key Laboratory of Skin Cancer and Psoriasis Hunan Engineering Research Center of Skin Health and Disease Xiangya Hospital Central South University Changsha Hunan Province China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Changsha Hunan Province China
| |
Collapse
|
36
|
Wu Q, Huang F. Targeting ferroptosis as a prospective therapeutic approach for diabetic nephropathy. Ann Med 2024; 56:2346543. [PMID: 38657163 PMCID: PMC11044758 DOI: 10.1080/07853890.2024.2346543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/09/2024] [Indexed: 04/26/2024] Open
Abstract
Diabetic nephropathy (DN) is a severe complication of diabetes mellitus, causing a substantive threat to the public, which receives global concern. However, there are limited drugs targeting the treatment of DN. Owing to this, it is highly crucial to investigate the pathogenesis and potential therapeutic targets of DN. The process of ferroptosis is a type of regulated cell death (RCD) involving the presence of iron, distinct from autophagy, apoptosis, and pyroptosis. A primary mechanism of ferroptosis is associated with iron metabolism, lipid metabolism, and the accumulation of ROS. Recently, many studies testified to the significance of ferroptosis in kidney tissue under diabetic conditions and explored the drugs targeting ferroptosis in DN therapy. Our review summarized the most current studies between ferroptosis and DN, along with investigating the significant processes of ferroptosis in different kidney cells, providing a novel target treatment option for DN.
Collapse
Affiliation(s)
- Qinrui Wu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fengjuan Huang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
37
|
Feng Y, Zhang Y, Gao F, Liu M, Luo Y. HOXD9/APOC1 axis promotes macrophage M1 polarization to exacerbate diabetic kidney disease progression through activating NF-κB signaling pathway. Hereditas 2024; 161:40. [PMID: 39511608 PMCID: PMC11542400 DOI: 10.1186/s41065-024-00345-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Diabetic kidney disease (DKD) is a complication caused by end-stage diabetes mellitus and usually results in glomerular podocyte injury. Exosomes are important for intercellular information exchange. However, the effect of podocyte exosomes on DKD has not been elucidated. METHODS GEO, PROMO, and GSE1009 databases were used to identify the gene APOC1 and transcription factor HOXD9. qRT-PCR, western blot, and transmission electron microscopy (TEM) were investigated to confirm APOC1 change in high glucose-treated podocytes and exosomes. Flow cytometry, immunofluorescence, qPCR, immunoblotting, wound healing, Transwell invasion assays, dual luciferase assay, and ChIP-PCR assay were performed to detect the effect of APOC1 and HOXD9 on macrophage polarization in high glucose-treated podocytes and exosomes. qRT-PCR and immunoblotting assays were employed to assess the impact of APOC1 knockdown on the M1 polarization of macrophages in response to liraglutide treatment. RESULTS The results suggested that the expression of APOC1 in human podocytes (HPC) and exosomes was elevated. High glucose-treated HPC exosomes promoted macrophage M1-type polarization, which was reversed by adding sh-APOC1. Afterward, HOXD9 was identified as a potential transcription factor for APOC1. Knockdown of HOXD9 led to macrophage M2 polarization, and overexpression of APOC1 polarized macrophage M1. In addition, enhanced p65 phosphorylation verified that HOXD9/APOC1 induced macrophage M1-type polarization by activating the NF-κB signaling pathway. Knocking down APOC1 enhanced the inhibitory effect of liraglutide on macrophage M1 polarization. CONCLUSION Our findings highlighted that HOXD9/APOC1 was a key player in causing podocyte injury in diabetic kidney disease and led to macrophage M1 polarization through the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Ya Feng
- Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, No. 278, Baoguang Avenue, Xindu District, Chengdu, 610500, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, China
| | - Yalan Zhang
- Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, No. 278, Baoguang Avenue, Xindu District, Chengdu, 610500, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, China
| | - Fang Gao
- Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, No. 278, Baoguang Avenue, Xindu District, Chengdu, 610500, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, China
| | - Miaomiao Liu
- Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, No. 278, Baoguang Avenue, Xindu District, Chengdu, 610500, China
| | - Yangyan Luo
- Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, No. 278, Baoguang Avenue, Xindu District, Chengdu, 610500, China.
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, China.
| |
Collapse
|
38
|
Chen W, Wang B, Liang S, Zheng L, Fang H, Xu S, Zhang T, Wang M, He X, Feng W. Fullerenols as efficient ferroptosis inhibitor by targeting lipid peroxidation for preventing drug-induced acute kidney injury. J Colloid Interface Sci 2024; 680:261-273. [PMID: 39509775 DOI: 10.1016/j.jcis.2024.10.198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024]
Abstract
Acute kidney injury (AKI) is characterized by rapid and significant deterioration of renal function over a short duration with high mortality. However, the intricate pathophysiological mechanisms underlying AKI have hindered the development of effective therapeutic strategies. Recent research has highlighted the crucial role of ferroptosis in the pathogenesis of AKI and has identified it as a promising therapeutic target. Herein, we investigated the prophylactic efficacy of fullerenol nanoparticles, renowned for their broad-spectrum free radical scavenging capabilities and favorable biocompatibility, in preventing and mitigating ferroptosis-mediated cisplatin-induced AKI. Our findings demonstrate the remarkable potential of fullerenols in mitigating AKI. Specifically, fullerenols exert their protective effects primarily by suppressing renal lipid peroxidation and ferrous iron accumulation, which are two defining hallmarks of ferroptosis. Notably, fullerenols significantly inhibited the upregulation of key enzymes involved in the intracellular lipid peroxidation induced by cisplatin, including acyl-coA synthetase long chain family member 4 (ACSL4), arachidonate lipoxygenase 3 (ALOXE3), and cytochrome P450 oxidoreductase (POR), and enhanced antioxidant systems xc-/Glutathione (GSH)/Glutathione Peroxidase 4 (GPX4). Fullerenols also significantly suppressed the increase in mRNA expression of iron regulation-related genes and prevented the elevation of low-valent iron levels in the kidney tissue of AKI mice. Collectively, our study presents fullerenol as a promising drug candidate for the prevention of AKI in clinical settings, and provides valuable insights into the management of various ferroptosis-associated diseases.
Collapse
Affiliation(s)
- Wei Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Shanshan Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingna Zheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Fang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Si Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Tingfeng Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao He
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Weiyue Feng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
39
|
Yoo SY, Kim HY, Kim DH, Shim WS, Lee SM, Lee DH, Koo JM, Yoo JH, Koh S, Park JC, Yu J, Jeon JS, Baek MJ, Kim DD, Lee JY, Oh SJ, Kim SK, Lee JY, Kang KW. Laser-responsive erastin-loaded chondroitin sulfate nanomedicine targeting CD44 and system x c- in liver cancer: A non-ferroptotic approach. J Control Release 2024; 375:574-588. [PMID: 39293529 DOI: 10.1016/j.jconrel.2024.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/23/2024] [Accepted: 09/14/2024] [Indexed: 09/20/2024]
Abstract
Erastin, a ferroptosis-inducing system xc- inhibitor, faces clinical challenges due to suboptimal physicochemical and pharmacokinetic properties, as well as relatively low potency and off-target toxicity. Addressing these, we developed ECINs, a novel laser-responsive erastin-loaded nanomedicine utilizing indocyanine green (ICG)-grafted chondroitin sulfate A (CSA) derivatives. Our aim was to improve erastin's tumor targeting via CSA-CD44 interactions and enhance its antitumor efficacy through ICG's photothermal and photodynamic effects in the laser-on state while minimizing off-target effects in the laser-off state. ECINs, with their nanoscale size of 186.7 ± 1.1 nm and high erastin encapsulation efficiency of 93.0 ± 0.8%, showed excellent colloidal stability and sustained drug release up to 120 h. In vitro, ECINs demonstrated a mechanism of cancer cell inhibition via G1-phase cell cycle arrest, indicating a non-ferroptotic action. In vivo biodistribution studies in SK-HEP-1 xenograft mice revealed that ECINs significantly enhanced tumor distribution of erastin (1.9-fold greater than free erastin) while substantially reducing off-target accumulation in the lungs and spleen by 203-fold and 19.1-fold, respectively. Combined with laser irradiation, ECINs significantly decreased tumor size (2.6-fold, compared to free erastin; 2.4-fold, compared to ECINs without laser irradiation) with minimal systemic toxicity. This study highlights ECINs as a dual-modality approach for liver cancer treatment, demonstrating significant efficacy against tumors overexpressing CD44 and system xc-.
Collapse
Affiliation(s)
- So-Yeol Yoo
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea; College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun Young Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong Hyun Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Wan Seob Shim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Min Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong Hwan Lee
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jang Mo Koo
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ji Hoon Yoo
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seokjin Koh
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jong Chan Park
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jieun Yu
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jang Su Jeon
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Min-Jun Baek
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Dae-Duk Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea; Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji-Yoon Lee
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Soo Jin Oh
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea; Department of Pharmacology, College of Medicine, University of Ulsan, Seoul, 05505, Republic of Korea
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Jae-Young Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea; Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea.
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
40
|
Shi J, Liu M, Zhao J, Tan Y, Jiang C. Honokiol protects against diabetic retinal microvascular injury via sirtuin 3-mediated mitochondrial fusion. Front Pharmacol 2024; 15:1485831. [PMID: 39564112 PMCID: PMC11574205 DOI: 10.3389/fphar.2024.1485831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/11/2024] [Indexed: 11/21/2024] Open
Abstract
Introduction Mitochondrial dysfunction and oxidative stress play important roles in diabetic retinal vascular injuries. Honokiol (HKL) is a small-molecule polyphenol that exhibits antioxidant effects and has a beneficial effect in diabetes. This study aimed to explore the potential ability of HKL to ameliorate vascular injury in diabetic retinopathy (DR) and its possible mechanisms of action. Methods The effect of HKL was evaluated in vascular injury in an in vivo type 2 diabetic (db/db) mouse model. In vitro, retinal microvascular endothelial cells were treated with high glucose (HG) to simulate the pathological diabetic environment. Cell viability, expression of apoptosis-related proteins, cellular reactive oxygen species, mitochondrial membrane potential, and morphological changes in the mitochondria were examined. Results The diabetic mice exhibited severe retinal vascular damage, including vascular leakage in vivo and capillary endothelial cell apoptosis in vitro. HKL reversed the retinal vascular leakage in the diabetic mice. In vitro, HKL improved retinal capillary endothelial cell viability, decreased apoptosis, and reversed the HG-induced increased cellular oxidative stress and mitochondrial fragmentation. The sirtuin 3 (SIRT3) inhibitor 3-TYP blocked all the in vivo and in vitro protective effects of HKL against diabetic retinal vascular leakage and capillary endothelium and eliminated the decrease in oxidative stress levels and reduction of mitochondrial fragmentation. Discussion In conclusion, these findings suggest that HKL inhibits vascular injury in DR, which was likely achieved through SIRT3-mediated mitochondrial fusion. This study provides a potential new strategy for the treatment of DR.
Collapse
Affiliation(s)
- Jiemei Shi
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia and Related Eye Diseases, NHC, Shanghai, China
| | - Min Liu
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia and Related Eye Diseases, NHC, Shanghai, China
| | - Jiajie Zhao
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia and Related Eye Diseases, NHC, Shanghai, China
| | - Ye Tan
- Department of Ophthalmology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Chunhui Jiang
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai, China
- Key Laboratory of Myopia and Related Eye Diseases, NHC, Shanghai, China
| |
Collapse
|
41
|
Li S, Chen J, Zhou W, Liu Y, Zhang D, Yang Q, Feng Y, Cha C, Li L, He G, Li J. To Develop Biomarkers for Diabetic Nephropathy Based on Genes Related to Fibrosis and Propionate Metabolism and Their Functional Validation. J Diabetes Res 2024; 2024:9066326. [PMID: 39444490 PMCID: PMC11498995 DOI: 10.1155/2024/9066326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 06/18/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
Propionate metabolism is important in the development of diabetes, and fibrosis plays an important role in diabetic nephropathy (DN). However, there are no studies on biomarkers related to fibrosis and propionate metabolism in DN. Hence, the current research is aimed at evaluating biomarkers associated with fibrosis and propionate metabolism and to explore their effect on DN progression. The GSE96804 (DN : control = 41 : 20) and GSE104948 (DN : control = 7 : 18) DN-related datasets and 924 propionate metabolism-related genes (PMRGs) and 656 fibrosis-related genes (FRGs) were acquired from the public database. First, DN differentially expressed genes (DN-DEGs) between the DN and control samples were sifted out via differential expression analysis. The PMRG scores of the DN samples were calculated based on PMRGs. The samples were divided into the high and low PMRG score groups according to the median scores. The PM-DEGs between the two groups were screened out. Second, the intersection of DN-DEGs, PM-DEGs, and FRGs was taken to yield intersected genes. Random forest (RF) and recursive feature elimination (RFE) analyses of the intersected genes were performed to sift out biomarkers. Then, single gene set enrichment analysis was conducted. Finally, immunoinfiltrative analysis was performed, and the transcription factor (TF)-microRNA (miRNA)-mRNA regulatory network and the drug-gene interaction network were constructed. There were 2633 DN-DEGs between the DN and control samples and 515 PM-DEGs between the high and low PMRG score groups. In total, 10 intersected genes were gained after taking the intersection of DN-DEGs, PM-DEGs, and FRGs. Seven biomarkers, namely, SLC37A4, ACOX2, GPD1, angiotensin-converting enzyme 2 (ACE2), SLC9A3, AGT, and PLG, were acquired via RF and RFE analyses, and they were found to be involved in various mechanisms such as glomerulus development, fatty acid metabolism, and peroxisome. The seven biomarkers were positively correlated with neutrophils. Moreover, 8 TFs, 60 miRNAs, and 7 mRNAs formed the TF-miRNA-mRNA regulatory network, including USF1-hsa-mir-1296-5p-AGT and HIF1A-hsa-mir-449a-5p-ACE2. The drug-gene network contained UROKINASE-PLG, ATENOLOL-AGT, and other interaction relationship pairs. Via bioinformatic analyses, the risk of fibrosis and propionate metabolism-related biomarkers in DN were explored, thereby providing novel ideas for research related to DN diagnosis and treatment.
Collapse
Affiliation(s)
- Sha Li
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University 650032, Kunming, China
| | - Jingshan Chen
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University 650032, Kunming, China
| | - Wenjing Zhou
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University 650032, Kunming, China
| | - Yonglan Liu
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University 650032, Kunming, China
| | - Di Zhang
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University 650032, Kunming, China
| | - Qian Yang
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University 650032, Kunming, China
| | - Yuerong Feng
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University 650032, Kunming, China
| | - Chunli Cha
- Department of Nephrology, The Second People's Hospital of Yunnan Province 650021, Kunming, China
| | - Li Li
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University 650032, Kunming, China
| | - Guoyong He
- Department of Nephrology, Kunming First People's Hospital 650034, Kunming, China
| | - Jun Li
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University 650032, Kunming, China
| |
Collapse
|
42
|
E J, Liu SY, Ma DN, Zhang GQ, Cao SL, Li B, Lu XH, Luo HY, Bao L, Lan XM, Fu RG, Zheng YL. Nanopore-based full-length transcriptome sequencing for understanding the underlying molecular mechanisms of rapid and slow progression of diabetes nephropathy. BMC Med Genomics 2024; 17:246. [PMID: 39379958 PMCID: PMC11463056 DOI: 10.1186/s12920-024-02006-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 09/05/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) has been a major factor in the outbreak of end-stage renal disease for decades. As the underlying mechanisms of DN development remains unclear, there is no ideal methods for the diagnosis and therapy. OBJECTIVE We aimed to explore the key genes and pathways that affect the rate progression of DN. METHODS Nanopore-based full-length transcriptome sequencing was performed with serum samples from DN patients with slow progression (DNSP, n = 5) and rapid progression (DNRP, n = 6). RESULTS Here, transcriptome proclaimed 22,682 novel transcripts and obtained 45,808 simple sequence repeats, 1,815 transcription factors, 5,993 complete open reading frames, and 1,050 novel lncRNA from the novel transcripts. Moreover, a total of 341 differentially expressed transcripts (DETs) and 456 differentially expressed genes (DEGs) between the DNSP and DNRP groups were identified. Functional analyses showed that DETs mainly involved in ferroptosis-related pathways such as oxidative phosphorylation, iron ion binding, and mitophagy. Moreover, Functional analyses revealed that DEGs mainly involved in oxidative phosphorylation, lipid metabolism, ferroptosis, autophagy/mitophagy, apoptosis/necroptosis pathway. CONCLUSION Collectively, our study provided a full-length transcriptome data source for the future DN research, and facilitate a deeper understanding of the molecular mechanisms underlying the differences in fast and slow progression of DN.
Collapse
Affiliation(s)
- Jing E
- Department of Nephrology, People's Hospital of Ningxia Hui Autonomous Region, People's Hospital of Ningxia Hui Autonomous Region, No.157, West 5th Road, Yinchuan, 750002, China
- Department of clinical medicine, Xi'an Jiaotong University, Xi'an, China
| | - Shun-Yao Liu
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Nephrology, Jinan, China
| | - Dan-Na Ma
- Department of Nephrology, People's Hospital of Ningxia Hui Autonomous Region, People's Hospital of Ningxia Hui Autonomous Region, No.157, West 5th Road, Yinchuan, 750002, China
- Department of clinical medicine, Xi'an Jiaotong University, Xi'an, China
| | - Guo-Qing Zhang
- Department of Nephrology, People's Hospital of Ningxia Hui Autonomous Region, People's Hospital of Ningxia Hui Autonomous Region, No.157, West 5th Road, Yinchuan, 750002, China
- The Third Clinical Medical College of Ningxia Medical University, Yinchuan, China
| | - Shi-Lu Cao
- Department of Nephrology, Chengdu first people's hospital, Chengdu, Sichuan, 610000, China
| | - Bo Li
- Department of Nephrology, People's Hospital of Ningxia Hui Autonomous Region, People's Hospital of Ningxia Hui Autonomous Region, No.157, West 5th Road, Yinchuan, 750002, China
- Department of clinical medicine, Xi'an Jiaotong University, Xi'an, China
| | - Xiao-Hua Lu
- Department of Nephrology, People's Hospital of Ningxia Hui Autonomous Region, People's Hospital of Ningxia Hui Autonomous Region, No.157, West 5th Road, Yinchuan, 750002, China
| | - Hong-Yan Luo
- Department of Nephrology, People's Hospital of Ningxia Hui Autonomous Region, People's Hospital of Ningxia Hui Autonomous Region, No.157, West 5th Road, Yinchuan, 750002, China
| | - Li Bao
- Department of Nephrology, People's Hospital of Ningxia Hui Autonomous Region, People's Hospital of Ningxia Hui Autonomous Region, No.157, West 5th Road, Yinchuan, 750002, China
| | - Xiao-Mei Lan
- Department of clinical medicine, Xi'an Jiaotong University, Xi'an, China
- Department of Geriatrics, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Rong-Guo Fu
- Department of Nephrology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Ya-Li Zheng
- Department of Nephrology, People's Hospital of Ningxia Hui Autonomous Region, People's Hospital of Ningxia Hui Autonomous Region, No.157, West 5th Road, Yinchuan, 750002, China.
| |
Collapse
|
43
|
Lumpuy-Castillo J, Amador-Martínez I, Díaz-Rojas M, Lorenzo O, Pedraza-Chaverri J, Sánchez-Lozada LG, Aparicio-Trejo OE. Role of mitochondria in reno-cardiac diseases: A study of bioenergetics, biogenesis, and GSH signaling in disease transition. Redox Biol 2024; 76:103340. [PMID: 39250857 PMCID: PMC11407069 DOI: 10.1016/j.redox.2024.103340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024] Open
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are global health burdens with rising prevalence. Their bidirectional relationship with cardiovascular dysfunction, manifesting as cardio-renal syndromes (CRS) types 3 and 4, underscores the interconnectedness and interdependence of these vital organ systems. Both the kidney and the heart are critically reliant on mitochondrial function. This organelle is currently recognized as a hub in signaling pathways, with emphasis on the redox regulation mediated by glutathione (GSH). Mitochondrial dysfunction, including impaired bioenergetics, redox, and biogenesis pathways, are central to the progression of AKI to CKD and the development of CRS type 3 and 4. This review delves into the metabolic reprogramming and mitochondrial redox signaling and biogenesis alterations in AKI, CKD, and CRS. We examine the pathophysiological mechanisms involving GSH redox signaling and the AMP-activated protein kinase (AMPK)-sirtuin (SIRT)1/3-peroxisome proliferator-activated receptor-gamma coactivator (PGC-1α) axis in these conditions. Additionally, we explore the therapeutic potential of GSH synthesis inducers in mitigating these mitochondrial dysfunctions, as well as their effects on inflammation and the progression of CKD and CRS types 3 and 4.
Collapse
Affiliation(s)
- Jairo Lumpuy-Castillo
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz-Ciberdem, Medicine Department, Autonomous University, 28040, Madrid, Spain.
| | - Isabel Amador-Martínez
- Department of Cardio-Renal Physiopathology, National Institute of Cardiology Ignacio Chávez, 14080, Mexico City, Mexico; Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, 04510, Mexico City, Mexico.
| | - Miriam Díaz-Rojas
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 43210, Columbus, Ohio, USA.
| | - Oscar Lorenzo
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz-Ciberdem, Medicine Department, Autonomous University, 28040, Madrid, Spain.
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, 04510, Mexico City, Mexico.
| | - Laura Gabriela Sánchez-Lozada
- Department of Cardio-Renal Physiopathology, National Institute of Cardiology Ignacio Chávez, 14080, Mexico City, Mexico.
| | - Omar Emiliano Aparicio-Trejo
- Department of Cardio-Renal Physiopathology, National Institute of Cardiology Ignacio Chávez, 14080, Mexico City, Mexico.
| |
Collapse
|
44
|
Lv ZM, Liu C, Wang P, Chen YH. Dysregulation of mitochondrial dynamics and mitophagy are involved in high-fat diet-induced steroidogenesis inhibition. J Lipid Res 2024; 65:100639. [PMID: 39236859 PMCID: PMC11467671 DOI: 10.1016/j.jlr.2024.100639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/06/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024] Open
Abstract
Male obesity is a pandemic health issue and can disrupt testicular steroidogenesis. Here, we explored the mechanism by which a high-fat diet (HFD) induced steroidogenic inhibition. As expected, HFD induced lipid droplet accumulation and reduced the expression of StAR, P450scc, and 3β-HSD, three steroidogenic enzymes, in mouse testes. Palmitic acid (PA), a saturated fatty acid usually used to trigger lipotoxicity in vitro, induced greater accumulation of lipid droplets and the downregulation of steroidogenic enzymes in TM3 cells. Mechanistically, both HFD and PA disturbed mitochondrial fusion/fission dynamics and then induced mitochondrial dysfunction and mitophagy inhibition in mouse Leydig cells. Additionally, mitochondrial fusion promoter M1 attenuated PA-induced imbalance of mitochondrial dynamics, mitophagy inhibition, mitochondrial reactive oxygen species (ROS) production, and mitochondrial dysfunction in TM3 cells. Mitofusin 2 (Mfn2) knock-down further aggravated the PA-induced imbalance of mitochondrial dynamics, mitochondrial ROS production, and mitochondrial dysfunction in TM3 cells. Importantly, M1 rescued PA-induced downregulation of steroidogenic enzymes, whereas Mfn2 knock-down further aggravated PA-induced downregulation of steroidogenic enzymes in TM3 cells. Overall, our results provide laboratory evidence that mitochondrial dysfunction and mitophagy inhibition caused by dysregulation of mitochondrial fusion may be involved in HFD-induced steroidogenesis inhibition in mouse Leydig cells.
Collapse
Affiliation(s)
- Zheng-Mei Lv
- Department of Histology and Embryology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| | - Chao Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Ping Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Clinical Laboratory, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Yuan-Hua Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
45
|
Wang Y, Luan T, Wang L, Feng D, Dong Y, Li S, Yang H, Chen Y, Fei Y, Lin L, Pan J, Zhong Z, Zhao W. N-Acetylcysteine Inhibits Coxsackievirus B3 Replication by Downregulating Eukaryotic Translation Elongation Factor 1 Alpha 1. Viruses 2024; 16:1503. [PMID: 39339978 PMCID: PMC11437456 DOI: 10.3390/v16091503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/17/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024] Open
Abstract
Group B Coxsackieviruses (CVB) are one of the causative pathogens of myocarditis, which may progress to cardiomyopathy. The pathogenesis of CVB is not fully understood, and effective antiviral therapy is not available. N-acetylcysteine (NAC), the classic antioxidant, has been used in clinical practice for several decades to treat various medical conditions. In this study, the anti-CVB effect of NAC was investigated. We show that NAC dramatically suppressed viral replication and alleviated cardiac injury induced by CVB3. To further study the antiviral mechanism of NAC, RNA-sequencing was performed for CVB3-infected cells with NAC treatment. We found that eukaryotic elongation factor 1 alpha 1 (EEF1A1) is one of the most upregulated genes in CVB3-infected cells. However, EEF1A2, the highly homologous isoform of EEF1A1, remains unchanged. EEF1A1 expression was significantly suppressed by NAC treatment in CVB3-infected cells, while EEF1A2 was not affected. eEF1A1 knockdown significantly inhibited CVB3 replication, implicating that eEF1A1 facilitates viral replication. Importantly, we show that eEF1A1, which was not expressed in the myocardia of newborn mice, was significantly upregulated by CVB3 infection. NAC markedly downregulated the expression of eEF1A1 but not eEF1A2 in the myocardia of CVB3-infected mice. Furthermore, NAC accelerated eEF1A1 degradation by promoting autophagy in CVB3-infected cells. We show that p62, one of the critical adaptors of autophagic targets, interacts with eEF1A1 and was downregulated in CVB3-infected cells upon NAC treatment. Taken together, this study demonstrated that NAC shows a potent anti-CVB effect through the downregulation of eEF1A1.
Collapse
Affiliation(s)
- Yao Wang
- Department of Cell Biology, Harbin Medical University, 157 Baojian Road, Harbin 150081, China
| | - Tian Luan
- Department of Cell Biology, Harbin Medical University, 157 Baojian Road, Harbin 150081, China
| | - Lixin Wang
- Department of Cell Biology, Harbin Medical University, 157 Baojian Road, Harbin 150081, China
| | - Danxiang Feng
- Department of Cell Biology, Harbin Medical University, 157 Baojian Road, Harbin 150081, China
| | - Yanyan Dong
- Department of Cell Biology, Harbin Medical University, 157 Baojian Road, Harbin 150081, China
| | - Siwei Li
- Department of Cell Biology, Harbin Medical University, 157 Baojian Road, Harbin 150081, China
| | - Hong Yang
- Department of Cell Biology, Harbin Medical University, 157 Baojian Road, Harbin 150081, China
| | - Yang Chen
- Department of Microbiology, Harbin Medical University, 157 Baojian Road, Harbin 150081, China
| | - Yanru Fei
- Department of Microbiology, Harbin Medical University, 157 Baojian Road, Harbin 150081, China
| | - Lexun Lin
- Department of Microbiology, Harbin Medical University, 157 Baojian Road, Harbin 150081, China
| | - Jiahui Pan
- Department of Cell Biology, Harbin Medical University, 157 Baojian Road, Harbin 150081, China
| | - Zhaohua Zhong
- Department of Microbiology, Harbin Medical University, 157 Baojian Road, Harbin 150081, China
| | - Wenran Zhao
- Department of Cell Biology, Harbin Medical University, 157 Baojian Road, Harbin 150081, China
| |
Collapse
|
46
|
Lin J, Ou H, Luo B, Ling M, Lin F, Cen L, Hu Z, Ye L, Pan L. Capsaicin mitigates ventilator-induced lung injury by suppressing ferroptosis and maintaining mitochondrial redox homeostasis through SIRT3-dependent mechanisms. Mol Med 2024; 30:148. [PMID: 39266965 PMCID: PMC11391744 DOI: 10.1186/s10020-024-00910-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/24/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Ventilator-induced lung injury (VILI) is one of the severe complications in the clinic concerning mechanical ventilation (MV). Capsaicin (CAP) has anti-inflammatory and inhibitory effects on oxidative stress, which is a significant element causing cellular ferroptosis. Nevertheless, the specific role and potential mechanistic pathways through which CAP modulates ferroptosis in VILI remain elusive. METHODS VILI was established in vivo, and the pulmonary epithelial cell injury model induced by circulation stretching (CS) was established in vitro. Both mice and cells were pretreated with CAP. Transmission electron microscopy, ELISA, Western blot, immunofluorescence, RT-PCR, fluorescent probes, and other experimental methods were used to clarify the relationship between iron death and VILI in alveolar epithelial cells, and whether capsaicin alleviates VILI by inhibiting iron death and its specific mechanism. RESULTS Ferroptosis was involved in VILI by utilizing in vivo models. CAP inhibited ferroptosis and alleviated VILI's lung damage and inflammation, and this protective effect of CAP was dependent on maintaining mitochondrial redox system through SITR3 signaling. In the CS-caused lung epithelial cell injury models, CAP reduced pathological CS-caused ferroptosis and cell injury. Knockdown SIRT3 reversed the role of CAP on the maintaining mitochondria dysfunction under pathological CS and eliminated its subsequent advantageous impacts for ferroptosis against overstretching cells. CONCLUSION The outcomes showed that CAP alleviated ferroptosis in VILI via improving the activity of SITR3 to suppressing mitochondrial oxidative damage and maintaining mitochondrial redox homeostasis, illustrating its possibility as a novel therapeutic goal for VILI.
Collapse
Affiliation(s)
- Jinyuan Lin
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, He Di Rd No.71, Nanning, 530021, People's Republic of China
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, China
- Guangxi Health Commission Key Laboratory of Basic Science and Prevention of Perioperative Organ Disfunction, Nanning, China
- Guangxi Clinical Research Center for Anesthesiology, Nanning, China
| | - Huajin Ou
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, He Di Rd No.71, Nanning, 530021, People's Republic of China
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, China
- Guangxi Health Commission Key Laboratory of Basic Science and Prevention of Perioperative Organ Disfunction, Nanning, China
- Guangxi Clinical Research Center for Anesthesiology, Nanning, China
| | - Bijun Luo
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, He Di Rd No.71, Nanning, 530021, People's Republic of China
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, China
- Guangxi Health Commission Key Laboratory of Basic Science and Prevention of Perioperative Organ Disfunction, Nanning, China
| | - Maoyao Ling
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, He Di Rd No.71, Nanning, 530021, People's Republic of China
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, China
- Guangxi Health Commission Key Laboratory of Basic Science and Prevention of Perioperative Organ Disfunction, Nanning, China
- Guangxi Clinical Research Center for Anesthesiology, Nanning, China
| | - Fei Lin
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, He Di Rd No.71, Nanning, 530021, People's Republic of China
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, China
- Guangxi Health Commission Key Laboratory of Basic Science and Prevention of Perioperative Organ Disfunction, Nanning, China
- Guangxi Clinical Research Center for Anesthesiology, Nanning, China
| | - Liming Cen
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, He Di Rd No.71, Nanning, 530021, People's Republic of China
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, China
- Guangxi Health Commission Key Laboratory of Basic Science and Prevention of Perioperative Organ Disfunction, Nanning, China
- Guangxi Clinical Research Center for Anesthesiology, Nanning, China
| | - Zhaokun Hu
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, He Di Rd No.71, Nanning, 530021, People's Republic of China
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, China
- Guangxi Health Commission Key Laboratory of Basic Science and Prevention of Perioperative Organ Disfunction, Nanning, China
- Guangxi Clinical Research Center for Anesthesiology, Nanning, China
| | - Liu Ye
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, He Di Rd No.71, Nanning, 530021, People's Republic of China
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, China
- Guangxi Health Commission Key Laboratory of Basic Science and Prevention of Perioperative Organ Disfunction, Nanning, China
- Guangxi Clinical Research Center for Anesthesiology, Nanning, China
| | - Linghui Pan
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, He Di Rd No.71, Nanning, 530021, People's Republic of China.
- Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, China.
- Guangxi Health Commission Key Laboratory of Basic Science and Prevention of Perioperative Organ Disfunction, Nanning, China.
- Guangxi Clinical Research Center for Anesthesiology, Nanning, China.
| |
Collapse
|
47
|
Gao X, Su Q, Pan H, You Y, Ruan Z, Wu Y, Tang Z, Hu L. Arsenic-Induced Ferroptosis in Chicken Hepatocytes via the Mitochondrial ROS Pathway. Biol Trace Elem Res 2024; 202:4180-4190. [PMID: 38102534 DOI: 10.1007/s12011-023-03968-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023]
Abstract
Arsenic has been shown to be highly toxic and can cause liver damage. Previous studies have shown that arsenic causes severe liver damage and induces accumulation of reactive oxygen species (ROS). This study aimed to investigate the effects of ferroptosis on the liver in arsenic trioxide (ATO) and to explore the underlying mechanisms. We confirmed the hepatotoxic effects of arsenic by in vivo and in vitro experiments. After 28 days of administration of arsenic trioxide (4-mg/kg, 8-mg/kg) by gavage, chickens exhibited body weight loss and liver damage in a dose-dependent manner. In addition, in vivo and in vitro western blot and real-time fluorescence quantitative PCR analyses simultaneously indicated that ferroptosis might be the main pathway of arsenic-induced liver injury. Finally, Mito-TEMPO effectively eliminated the ROS accumulation in mitochondria, significantly attenuating the process of cellular ferroptosis. In summary, the hepatotoxic effects of arsenic are related to ferroptosis, and the hepatic ferroptosis process of arsenic is regulated by mitochondrial ROS (MtROS). Our study reveals new mechanisms of arsenic toxicity to the liver, which may deepen our understanding of arsenic toxicology.
Collapse
Affiliation(s)
- Xinglin Gao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Qian Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Hang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yanli You
- College of Life Science, Yantai University, Yantai City, 264005, Shandong Province, China
| | - Zhiyan Ruan
- School of Pharmacy, Guangdong Food & Drug Vocational College, No. 321, Longdong North Road, Tianhe District, Guangzhou, 510520, Guangdong Province, People's Republic of China
| | - Yuhan Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
48
|
Lazzara V, Pinto P, Di Vincenzo S, Ferraro M, Catalano F, Provinzano P, Pace E, Bonsignore MR. In vitro evidence of antioxidant and anti-inflammatory effects of a new nutraceutical formulation explains benefits in a clinical setting of COPD patients. Front Pharmacol 2024; 15:1439835. [PMID: 39228520 PMCID: PMC11368797 DOI: 10.3389/fphar.2024.1439835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/09/2024] [Indexed: 09/05/2024] Open
Abstract
Background and Aim: Increased oxidative stress within the airways is associated to epithelial damage and amplification of inflammatory responses that in turn contribute to Chronic Obstructive Pulmonary Disease (COPD) progression. This study was aimed to identify whether a new formulation of N-acetylcisteine (NAC), carnitine, curcumin and B2 vitamin could counteract oxidative stress and downstream pro-inflammatory events promoted by cigarette smoke extract (CSE) exposure in primary bronchial epithelial cells (PBEC), both submerged/undifferentiated (S-PBEC) and cultured at the air-liquid interface (ALI-PBEC). Methods: PBEC were exposed to CSE with/without the new formulation or NAC alone and ROS production, IL-8 and IL-6 gene expression and protein release were evaluated. Results: CSE increased ROS, IL-8 and IL-6 gene expression and protein release and the new formulation counteracted these effects. NAC alone was not effective on IL-8 and IL-6 release. The effects of a similar nutraceutical formulation were evaluated in COPD patients treated for six months. The results showed that the treatment reduced the concentration of IL-8 in nasal wash and improved quality of life. Conclusion: The tested formulation, exerting antioxidant and anti-inflammatory effects, can preserve airway epithelial homeostasis and improve clinical symptoms in COPD.
Collapse
Affiliation(s)
- Valentina Lazzara
- Dipartimento Promozione della Salute Materno-Infantile di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro” (PROMISE), Università degli Studi di Palermo, Palermo, Italy
- Institute of Translational Pharmacology (IFT), National Research Council of Italy (CNR), Palermo, Italy
| | - Paola Pinto
- Dipartimento Promozione della Salute Materno-Infantile di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro” (PROMISE), Università degli Studi di Palermo, Palermo, Italy
- Institute of Translational Pharmacology (IFT), National Research Council of Italy (CNR), Palermo, Italy
- PhD National Program in One Health Approaches to Infectious Diseases and Life Science Research, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Serena Di Vincenzo
- Institute of Translational Pharmacology (IFT), National Research Council of Italy (CNR), Palermo, Italy
| | - Maria Ferraro
- Institute of Translational Pharmacology (IFT), National Research Council of Italy (CNR), Palermo, Italy
| | - Filippo Catalano
- Azienda Ospedaliera Ospedali Riuniti Villa Sofia Cervello, Palermo, Italy
| | - Pietro Provinzano
- Dipartimento Promozione della Salute Materno-Infantile di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro” (PROMISE), Università degli Studi di Palermo, Palermo, Italy
| | - Elisabetta Pace
- Institute of Translational Pharmacology (IFT), National Research Council of Italy (CNR), Palermo, Italy
| | - Maria Rosaria Bonsignore
- Dipartimento Promozione della Salute Materno-Infantile di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro” (PROMISE), Università degli Studi di Palermo, Palermo, Italy
- Institute of Translational Pharmacology (IFT), National Research Council of Italy (CNR), Palermo, Italy
- Azienda Ospedaliera Ospedali Riuniti Villa Sofia Cervello, Palermo, Italy
| |
Collapse
|
49
|
Peng X, Ni H, Kuang B, Wang Z, Hou S, Gu S, Gong N. Sirtuin 3 in renal diseases and aging: From mechanisms to potential therapies. Pharmacol Res 2024; 206:107261. [PMID: 38917912 DOI: 10.1016/j.phrs.2024.107261] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/02/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
The longevity protein sirtuins (SIRTs) belong to a family of nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases. In mammals, SIRTs comprise seven members (SIRT1-7) which are localized to different subcellular compartments. As the most prominent mitochondrial deacetylases, SIRT3 is known to be regulated by various mechanisms and participate in virtually all aspects of mitochondrial homeostasis and metabolism, exerting significant impact on multiple organs. Notably, the kidneys possess an abundance of mitochondria that provide substantial energy for filtration and reabsorption. A growing body of evidence now supports the involvement of SIRT3 in several renal diseases, including acute kidney injury, chronic kidney disease, and diabetic nephropathy; notably, these diseases are all associated with aging. In this review, we summarize the emerging role of SIRT3 in renal diseases and aging, and highlights the intricate mechanisms by which SIRT3 exerts its effects. In addition, we highlight the potential therapeutic significance of modulating SIRT3 and provide valuable insights into the therapeutic role of SIRT3 in renal diseases to facilitate clinical application.
Collapse
Affiliation(s)
- Xuan Peng
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Haiqiang Ni
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Baicheng Kuang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Zhiheng Wang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Shuaiheng Hou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Shiqi Gu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Nianqiao Gong
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
50
|
Li Q, Guo P, Wang S, Su L, Yu W, Guo J, Hu L, Zhang H, Pan J, Tang Z, Liao J. Drp1 Aggravates Copper Nanoparticle-Induced ER-Phagy by Disturbing Mitochondria-Associated Membranes in Chicken Hepatocytes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16506-16518. [PMID: 38986054 DOI: 10.1021/acs.jafc.4c03978] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
As an efficient alternative copper (Cu) source, copper nanoparticles (nano-Cu) have been widely supplemented into animal-producing food. Therefore, it is necessary to assess the effect of nano-Cu exposure on the biological health risk. Recently, the toxic effects of nano-Cu have been confirmed but the underlying mechanism remains unclear. This study reveals the impact of nano-Cu on endoplasmic reticulum autophagy (ER-phagy) in chicken hepatocytes and further identifies Drp1 and its downstream gene FAM134B as crucial regulators of nano-Cu-induced hepatotoxicity. Nano-Cu exposure can induce Cu ion overaccumulation and pathological injury in the liver, trigger excessive mitochondrial fission and mitochondria-associated membrane (MAM) integrity damage, and activate ER-phagy in vivo and in vitro. Interestingly, the knockdown of Drp1 markedly decreases the expression of FAM134B induced by nano-Cu. Furthermore, the expression levels of ATL3, CCPG1, SEC62, TEX264, and LC3II/LC3I induced by nano-Cu exposure are decreased by inhibiting the expression of Drp1. Simultaneously, the inhibition of FAM134B effectively alleviates nano-Cu-induced ER-phagy by downregulating the expression of ATL3, CCPG1, SEC62, TEX264, and LC3II/LC3I. Overall, these results suggest that Drp1-mediated impairment of MAM integrity leads to ER-phagy as a novel molecular mechanism involved in the regulation of nano-Cu-induced hepatotoxicity. These findings provide new ideas for future research on the mechanism of nano-Cu-induced hepatotoxicity.
Collapse
Affiliation(s)
- Quanwei Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Pan Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Shaofeng Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Luna Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Wenlan Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Jianying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Liammei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, P. R. China
| |
Collapse
|