1
|
Relationship of the main indicators of systemic COVID-associated endotheliopathy with the morphofunctional state and hemodynamics of the retina and chorioid in the acute period of the disease. OPHTHALMOLOGY JOURNAL 2022. [DOI: 10.17816/ov110727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND: Nonspecific angio- and retinopathy is one of the clinical manifestations of a new coronavirus infection. The frequency of occurrence of these changes in people with severe COVID-19 does not exceed 55%. The causes, course and consequences of these microcirculatory disorders of the retina are currently not well understood.
AIM: To study and compare of retinal morphometric parameters and systemic endothelial dysfunction markers, as well as the main clinical and laboratory parameters in patients with moderate and severe coronavirus infection during convalescence.
MATERIALS AND METHODS: The study involved 44 patients (86 eyes) who had COVID-19 during the previous 3 months, who were divided into 2 groups: with moderate and severe disease. The control group consisted of 18 healthy volunteers (36 eyes). All patients underwent a standard ophthalmological examination and optical coherence tomography, which included an assessment of the choroidal thickness (CT) and measurement of the mean diameter of the peripapillary arteries (MAD) and veins (MVD). During hospitalization, all patients underwent a laboratory study of venous blood parameters, as well as an assessment of the microcirculation of the sublingual plexus by examining the density of the endothelial glycocalyx (PBR) using the GlycoCheck.
RESULTS: In patients who underwent COVID-19, there was a significant increase in CT relative to the control group, amounting to 308, 344 and 392 m, respectively. The most pronounced difference was observed between MVD in patients with severe infection and the control group (119.1 m vs. 99.2 m). In patients with moderate and severe COVID-19, MAD and MVD were positively correlated with TC, with r = 0.389 and r = 0.584, respectively. MVD also correlated with the level of leukocytes (r = 0.504), the ESR value (r = 0.656). Correlations between MVD and data characterizing the state of the glycocalyx in the sublingual vascular plexus were revealed: the filling of small capillaries with erythrocytes (r = 0.587), as well as the marginal perfusion value in large capillaries 2025 m (r = 0.479) and PBR (r = 0.479). Only significant differences and correlations are shown (p 0.005).
CONCLUSIONS: In patients who underwent moderate and severe COVID-19 during the convalescence period (up to 30 days), an increase in the diameter of peripapillary vessels and TC is observed, proportional to the severity of COVID-19, laboratory markers of systemic inflammation and hypercoagulation (the number of leukocytes, the ESR value, D-dimer and prothrombin), which indicates the inflammatory nature of the changes. The severity of postcovid retinal microangiopathy correlates with indicators detecting a decreasing of the endothelial glycocalyx thickness in the sublingual capillary plexus, which indirectly indicates a connection with systemic endotheliopathy.
Collapse
|
2
|
Wang D, Maharjan S, Kuang X, Wang Z, Mille LS, Tao M, Yu P, Cao X, Lian L, Lv L, He JJ, Tang G, Yuk H, Ozaki CK, Zhao X, Zhang YS. Microfluidic bioprinting of tough hydrogel-based vascular conduits for functional blood vessels. SCIENCE ADVANCES 2022; 8:eabq6900. [PMID: 36288300 PMCID: PMC9604524 DOI: 10.1126/sciadv.abq6900] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/17/2022] [Indexed: 05/03/2023]
Abstract
Three-dimensional (3D) bioprinting of vascular tissues that are mechanically and functionally comparable to their native counterparts is an unmet challenge. Here, we developed a tough double-network hydrogel (bio)ink for microfluidic (bio)printing of mono- and dual-layered hollow conduits to recreate vein- and artery-like tissues, respectively. The tough hydrogel consisted of energy-dissipative ionically cross-linked alginate and elastic enzyme-cross-linked gelatin. The 3D bioprinted venous and arterial conduits exhibited key functionalities of respective vessels including relevant mechanical properties, perfusability, barrier performance, expressions of specific markers, and susceptibility to severe acute respiratory syndrome coronavirus 2 pseudo-viral infection. Notably, the arterial conduits revealed physiological vasoconstriction and vasodilatation responses. We further explored the feasibility of these conduits for vascular anastomosis. Together, our study presents biofabrication of mechanically and functionally relevant vascular conduits, showcasing their potentials as vascular models for disease studies in vitro and as grafts for vascular surgeries in vivo, possibly serving broad biomedical applications in the future.
Collapse
Affiliation(s)
- Di Wang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, P. R. China
| | - Sushila Maharjan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Xiao Kuang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Zixuan Wang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Luis S. Mille
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Ming Tao
- Department of Surgery and the Heart and Vascular Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Peng Yu
- Department of Surgery and the Heart and Vascular Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xia Cao
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Liming Lian
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Li Lv
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Jacqueline Jialu He
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Guosheng Tang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Hyunwoo Yuk
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - C. Keith Ozaki
- Department of Surgery and the Heart and Vascular Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| |
Collapse
|
3
|
Scheim DE. A Deadly Embrace: Hemagglutination Mediated by SARS-CoV-2 Spike Protein at Its 22 N-Glycosylation Sites, Red Blood Cell Surface Sialoglycoproteins, and Antibody. Int J Mol Sci 2022; 23:2558. [PMID: 35269703 PMCID: PMC8910562 DOI: 10.3390/ijms23052558] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/11/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Rouleaux (stacked clumps) of red blood cells (RBCs) observed in the blood of COVID-19 patients in three studies call attention to the properties of several enveloped virus strains dating back to seminal findings of the 1940s. For COVID-19, key such properties are: (1) SARS-CoV-2 binds to RBCs in vitro and also in the blood of COVID-19 patients; (2) although ACE2 is its target for viral fusion and replication, SARS-CoV-2 initially attaches to sialic acid (SA) terminal moieties on host cell membranes via glycans on its spike protein; (3) certain enveloped viruses express hemagglutinin esterase (HE), an enzyme that releases these glycan-mediated bindings to host cells, which is expressed among betacoronaviruses in the common cold strains but not the virulent strains, SARS-CoV, SARS-CoV-2 and MERS. The arrangement and chemical composition of the glycans at the 22 N-glycosylation sites of SARS-CoV-2 spike protein and those at the sialoglycoprotein coating of RBCs allow exploration of specifics as to how virally induced RBC clumping may form. The in vitro and clinical testing of these possibilities can be sharpened by the incorporation of an existing anti-COVID-19 therapeutic that has been found in silico to competitively bind to multiple glycans on SARS-CoV-2 spike protein.
Collapse
Affiliation(s)
- David E Scheim
- US Public Health Service, Commissioned Officer, Inactive Reserve, Blacksburg, VA 24060, USA
| |
Collapse
|
4
|
Valsamatzi-Panagiotou A, Penchovsky R. Environmental factors influencing the transmission of the coronavirus 2019: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2022; 20:1603-1610. [PMID: 35221835 PMCID: PMC8859930 DOI: 10.1007/s10311-022-01418-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 02/15/2022] [Indexed: 05/22/2023]
Abstract
The coronavirus 2019 pandemic, induced by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has strongly altered healthcare systems and the economy worldwide. The lack of knowledge on this virus has led to the implementation of uncertain strategies and measures to fight the pandemic. Here, we review environmental factors that control viral transmission, such as air, temperature, humidity, food, water and sewage, insects, inanimate surfaces, hand hygiene, and social distancing. The main route of viral transmission is the respiratory tract through aerosols. Masks and social distancing are effective in ceasing air transmission. Proper cleaning of surfaces and hand disinfection are required, especially in healthcare units. Food should be handled properly, and food handlers should work based on hygienic protocols. Water and sewage transmission, and transmission through insects appear less important than other environmental factors.
Collapse
Affiliation(s)
- Aikaterini Valsamatzi-Panagiotou
- Department of Genetics, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Blvd, 1164 Sofia, Bulgaria
| | - Robert Penchovsky
- Department of Genetics, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Blvd, 1164 Sofia, Bulgaria
| |
Collapse
|
5
|
Rauti R, Shahoha M, Leichtmann-Bardoogo Y, Nasser R, Paz E, Tamir R, Miller V, Babich T, Shaked K, Ehrlich A, Ioannidis K, Nahmias Y, Sharan R, Ashery U, Maoz BM. Effect of SARS-CoV-2 proteins on vascular permeability. eLife 2021; 10:69314. [PMID: 34694226 PMCID: PMC8545399 DOI: 10.7554/elife.69314] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 10/09/2021] [Indexed: 12/13/2022] Open
Abstract
Severe acute respiratory syndrome (SARS)-CoV-2 infection leads to severe disease associated with cytokine storm, vascular dysfunction, coagulation, and progressive lung damage. It affects several vital organs, seemingly through a pathological effect on endothelial cells. The SARS-CoV-2 genome encodes 29 proteins, whose contribution to the disease manifestations, and especially endothelial complications, is unknown. We cloned and expressed 26 of these proteins in human cells and characterized the endothelial response to overexpression of each, individually. Whereas most proteins induced significant changes in endothelial permeability, nsp2, nsp5_c145a (catalytic dead mutant of nsp5), and nsp7 also reduced CD31, and increased von Willebrand factor expression and IL-6, suggesting endothelial dysfunction. Using propagation-based analysis of a protein–protein interaction (PPI) network, we predicted the endothelial proteins affected by the viral proteins that potentially mediate these effects. We further applied our PPI model to identify the role of each SARS-CoV-2 protein in other tissues affected by coronavirus disease (COVID-19). While validating the PPI network model, we found that the tight junction (TJ) proteins cadherin-5, ZO-1, and β-catenin are affected by nsp2, nsp5_c145a, and nsp7 consistent with the model prediction. Overall, this work identifies the SARS-CoV-2 proteins that might be most detrimental in terms of endothelial dysfunction, thereby shedding light on vascular aspects of COVID-19.
Collapse
Affiliation(s)
- Rossana Rauti
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Meishar Shahoha
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | | | - Rami Nasser
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Eyal Paz
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Rina Tamir
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Victoria Miller
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Tal Babich
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel.,School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Kfir Shaked
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel.,School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Avner Ehrlich
- Grass Center for Bioengineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Yaakov Nahmias
- Grass Center for Bioengineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Roded Sharan
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Uri Ashery
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Ben Meir Maoz
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
6
|
COVID-19 as a new risk factor for the development of acute vascular diseases of the optic nerve and retina. OPHTHALMOLOGY JOURNAL 2021. [DOI: 10.17816/ov64115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The new coronavirus disease (COVID-19) is a viral respiratory infection accompanied by systemic endotheliitis. COVID-19 patients usually encounter changes related to hypercoagulability, hypofibrinolysis, and increased intravascular platelet aggregation. There is also a vascular wall thromboresistance decrease and impaired vasomotor function, which significantly increase the risk of thromboembolic complications. Currently, pathogenic aspects of the relationship between COVID-19 and vascular and inflammatory conditions of the optic nerve and retina are actively investigated. One of the triggers of impaired blood flow in ocular vessels may be a perfusion pressure decrease, observed in the acute period of the infectious process. This is related to both COVID-19 clinical course features and to resuscitation specificity as well. Secondary autoimmune inflammation is being considered as a mechanism of damage to the vascular wall in the post-infectious period. In this publication, possible pathogenic links of these diseases are considered for the first time in a specific context of the example of ischemic optic neuropathy associated with coronavirus infection.
Collapse
|
7
|
Viurcos-Sanabria R, Escobedo G. Immunometabolic bases of type 2 diabetes in the severity of COVID-19. World J Diabetes 2021; 12:1026-1041. [PMID: 34326952 PMCID: PMC8311488 DOI: 10.4239/wjd.v12.i7.1026] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/16/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) is caused by the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). COVID-19 and type 2 diabetes (T2D) have now merged into an ongoing global syndemic that is threatening the lives of millions of people around the globe. For this reason, there is a deep need to understand the immunometabolic bases of the main etiological factors of T2D that affect the severity of COVID-19. Here, we discuss how hyperglycemia contributes to the cytokine storm commonly associated with COVID-19 by stimulating monocytes and macrophages to produce interleukin IL-1β, IL-6, and TNF-α in the airway epithelium. The main mechanisms through which hyperglycemia promotes reactive oxygen species release, inhibition of T cell activation, and neutrophil extracellular traps in the lungs of patients with severe SARS-CoV-2 infection are also studied. We further examine the molecular mechanisms by which proinflammatory cytokines induce insulin resistance, and their deleterious effects on pancreatic β-cell exhaustion in T2D patients critically ill with COVID-19. We address the effect of excess glucose on advanced glycation end product (AGE) formation and the role of AGEs in perpetuating pneumonia and acute respiratory distress syndrome. Finally, we discuss the contribution of preexisting endothelial dysfunction secondary to diabetes in the development of neutrophil trafficking, vascular leaking, and thrombotic events in patients with severe SARS-CoV-2 infection. As we outline here, T2D acts in synergy with SARS-CoV-2 infection to increase the progression, severity, and mortality of COVID-19. We think a better understanding of the T2D-related immunometabolic factors that contribute to exacerbate the severity of COVID-19 will improve our ability to identify patients with high mortality risk and prevent adverse outcomes.
Collapse
Affiliation(s)
| | - Galileo Escobedo
- Laboratorio de Proteómica, Dirección de Investigación, Hospital General de Mexico “Dr. Eduardo Liceaga”, Mexico City 06720, Mexico
| |
Collapse
|
8
|
Lee AC, Castaneda G, Li WT, Chen C, Shende N, Chakladar J, Taub PR, Chang EY, Ongkeko WM. COVID-19 Severity Potentially Modulated by Cardiovascular-Disease-Associated Immune Dysregulation. Viruses 2021; 13:1018. [PMID: 34071557 PMCID: PMC8228164 DOI: 10.3390/v13061018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/15/2022] Open
Abstract
Patients with underlying cardiovascular conditions are particularly vulnerable to severe COVID-19. In this project, we aimed to characterize similarities in dysregulated immune pathways between COVID-19 patients and patients with cardiomyopathy, venous thromboembolism (VTE), or coronary artery disease (CAD). We hypothesized that these similarly dysregulated pathways may be critical to how cardiovascular diseases (CVDs) exacerbate COVID-19. To evaluate immune dysregulation in different diseases, we used four separate datasets, including RNA-sequencing data from human left ventricular cardiac muscle samples of patients with dilated or ischemic cardiomyopathy and healthy controls; RNA-sequencing data of whole blood samples from patients with single or recurrent event VTE and healthy controls; RNA-sequencing data of human peripheral blood mononuclear cells (PBMCs) from patients with and without obstructive CAD; and RNA-sequencing data of platelets from COVID-19 subjects and healthy controls. We found similar immune dysregulation profiles between patients with CVDs and COVID-19 patients. Interestingly, cardiomyopathy patients display the most similar immune landscape to COVID-19 patients. Additionally, COVID-19 patients experience greater upregulation of cytokine- and inflammasome-related genes than patients with CVDs. In all, patients with CVDs have a significant overlap of cytokine- and inflammasome-related gene expression profiles with that of COVID-19 patients, possibly explaining their greater vulnerability to severe COVID-19.
Collapse
Affiliation(s)
- Abby C. Lee
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, UC San Diego School of Medicine, San Diego, CA 92093, USA; (A.C.L.); (G.C.); (W.T.L.); (C.C.); (N.S.); (J.C.)
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA;
| | - Grant Castaneda
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, UC San Diego School of Medicine, San Diego, CA 92093, USA; (A.C.L.); (G.C.); (W.T.L.); (C.C.); (N.S.); (J.C.)
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA;
| | - Wei Tse Li
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, UC San Diego School of Medicine, San Diego, CA 92093, USA; (A.C.L.); (G.C.); (W.T.L.); (C.C.); (N.S.); (J.C.)
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA;
| | - Chengyu Chen
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, UC San Diego School of Medicine, San Diego, CA 92093, USA; (A.C.L.); (G.C.); (W.T.L.); (C.C.); (N.S.); (J.C.)
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA;
| | - Neil Shende
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, UC San Diego School of Medicine, San Diego, CA 92093, USA; (A.C.L.); (G.C.); (W.T.L.); (C.C.); (N.S.); (J.C.)
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA;
| | - Jaideep Chakladar
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, UC San Diego School of Medicine, San Diego, CA 92093, USA; (A.C.L.); (G.C.); (W.T.L.); (C.C.); (N.S.); (J.C.)
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA;
| | - Pam R. Taub
- Department of Medicine, Division of Cardiovascular Medicine, University of California, San Diego, CA 92093, USA;
| | - Eric Y. Chang
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA;
- Department of Radiology, University of California, San Diego, CA 92093, USA
| | - Weg M. Ongkeko
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, UC San Diego School of Medicine, San Diego, CA 92093, USA; (A.C.L.); (G.C.); (W.T.L.); (C.C.); (N.S.); (J.C.)
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA;
| |
Collapse
|
9
|
Anđelić N, Šegota SB, Lorencin I, Jurilj Z, Šušteršič T, Blagojević A, Protić A, Ćabov T, Filipović N, Car Z. Estimation of COVID-19 Epidemiology Curve of the United States Using Genetic Programming Algorithm. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:959. [PMID: 33499219 PMCID: PMC7908446 DOI: 10.3390/ijerph18030959] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 01/28/2023]
Abstract
Estimation of the epidemiology curve for the COVID-19 pandemic can be a very computationally challenging task. Thus far, there have been some implementations of artificial intelligence (AI) methods applied to develop epidemiology curve for a specific country. However, most applied AI methods generated models that are almost impossible to translate into a mathematical equation. In this paper, the AI method called genetic programming (GP) algorithm is utilized to develop a symbolic expression (mathematical equation) which can be used for the estimation of the epidemiology curve for the entire U.S. with high accuracy. The GP algorithm is utilized on the publicly available dataset that contains the number of confirmed, deceased and recovered patients for each U.S. state to obtain the symbolic expression for the estimation of the number of the aforementioned patient groups. The dataset consists of the latitude and longitude of the central location for each state and the number of patients in each of the goal groups for each day in the period of 22nd January 2020-3rd December 2020. The obtained symbolic expressions for each state are summed up to obtain symbolic expressions for estimation of each of the patient groups (confirmed, deceased and recovered). These symbolic expressions are combined to obtain the symbolic expression for the estimation of the epidemiology curve for the entire U.S. The obtained symbolic expressions for the estimation of the number of confirmed, deceased and recovered patients for each state achieved R2 score in the ranges 0.9406-0.9992, 0.9404-0.9998 and 0.9797-0.99955, respectively. These equations are summed up to formulate symbolic expressions for the estimation of the number of confirmed, deceased and recovered patients for the entire U.S. with achieved R2 score of 0.9992, 0.9997 and 0.9996, respectively. Using these symbolic expressions, the equation for the estimation of the epidemiology curve for the entire U.S. is formulated which achieved R2 score of 0.9933. Investigation showed that GP algorithm can produce symbolic expressions for the estimation of the number of confirmed, recovered and deceased patients as well as the epidemiology curve not only for the states but for the entire U.S. with very high accuracy.
Collapse
Affiliation(s)
- Nikola Anđelić
- Faculty of Engineering, University of Rijeka, Vukovarska 58, 51000 Rijeka, Croatia; (N.A.); (I.L.); (Z.C.)
| | - Sandi Baressi Šegota
- Faculty of Engineering, University of Rijeka, Vukovarska 58, 51000 Rijeka, Croatia; (N.A.); (I.L.); (Z.C.)
| | - Ivan Lorencin
- Faculty of Engineering, University of Rijeka, Vukovarska 58, 51000 Rijeka, Croatia; (N.A.); (I.L.); (Z.C.)
| | - Zdravko Jurilj
- Clinical Hospital Centre, Rijeka, Krešimirova ul. 42, 51000 Rijeka, Croatia; (Z.J.); (A.P.)
| | - Tijana Šušteršič
- Faculty of Engineering, University of Kragujevac, Sestre Janjić, 34000 Kragujevac, Serbia; (T.Š.); (A.B.); (N.F.)
- Bioengineering Research and Development Centre (BioIRC), Prvoslava Stojanovića 6, 34000 Kragujevac, Serbia
| | - Anđela Blagojević
- Faculty of Engineering, University of Kragujevac, Sestre Janjić, 34000 Kragujevac, Serbia; (T.Š.); (A.B.); (N.F.)
- Bioengineering Research and Development Centre (BioIRC), Prvoslava Stojanovića 6, 34000 Kragujevac, Serbia
| | - Alen Protić
- Clinical Hospital Centre, Rijeka, Krešimirova ul. 42, 51000 Rijeka, Croatia; (Z.J.); (A.P.)
- Faculty of Medicine, University of Rijeka, Ul. Braće Branchetta 20/1, 51000, Rijeka, Croatia
| | - Tomislav Ćabov
- Faculty of Dental Medicine, University of Rijeka, Kresimirova 40/42, 51000 Rijeka, Croatia;
| | - Nenad Filipović
- Faculty of Engineering, University of Kragujevac, Sestre Janjić, 34000 Kragujevac, Serbia; (T.Š.); (A.B.); (N.F.)
- Bioengineering Research and Development Centre (BioIRC), Prvoslava Stojanovića 6, 34000 Kragujevac, Serbia
| | - Zlatan Car
- Faculty of Engineering, University of Rijeka, Vukovarska 58, 51000 Rijeka, Croatia; (N.A.); (I.L.); (Z.C.)
| |
Collapse
|
10
|
Kwee RM, Adams HJA, Kwee TC. Pulmonary embolism in patients with COVID-19 and value of D-dimer assessment: a meta-analysis. Eur Radiol 2021; 31:8168-8186. [PMID: 33966132 PMCID: PMC8106765 DOI: 10.1007/s00330-021-08003-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/24/2021] [Accepted: 04/19/2021] [Indexed: 02/03/2023]
Abstract
PURPOSE To investigate, in a meta-analysis, the frequency of pulmonary embolism (PE) in patients with COVID-19 and whether D-dimer assessment may be useful to select patients for computed tomography pulmonary angiography (CTPA). METHODS A systematic literature search was performed for original studies which reported the frequency of PE on CTPA in patients with COVID-19. The frequency of PE, the location of PE, and the standardized mean difference (SMD) of D-dimer levels between patients with and without PE were pooled by random effects models. RESULTS Seventy-one studies were included. Pooled frequencies of PE in patients with COVID-19 at the emergency department (ED), general wards, and intensive care unit (ICU) were 17.9% (95% CI: 12.0-23.8%), 23.9% (95% CI: 15.2-32.7%), and 48.6% (95% CI: 41.0-56.1%), respectively. PE was more commonly located in peripheral than in main pulmonary arteries (pooled frequency of 65.3% [95% CI: 60.0-70.1%] vs. 32.9% [95% CI: 26.7-39.0%]; OR = 3.540 [95% CI: 2.308-5.431%]). Patients with PE had significantly higher D-dimer levels (pooled SMD of 1.096 [95% CI, 0.844-1.349]). D-dimer cutoff levels which have been used to identify patients with PE varied between 1000 and 4800 μg/L. CONCLUSION The frequency of PE in patients with COVID-19 is highest in the ICU, followed by general wards and the ED. PE in COVID-19 is more commonly located in peripheral than in central pulmonary arteries, which suggests local thrombosis to play a major role. D-dimer assessment may help to select patients with COVID-19 for CTPA, using D-dimer cutoff levels of at least 1000 μg/L. KEY POINTS • The frequency of PE in patients with COVID-19 is highest in the ICU, followed by general wards and the ED. • PE in COVID-19 is more commonly located in peripheral than in central pulmonary arteries. • D-dimer levels are significantly higher in patients with COVID-19 who have PE.
Collapse
Affiliation(s)
- Robert M Kwee
- Department of Radiology, Zuyderland Medical Center, Heerlen/Sittard/Geleen, The Netherlands.
| | | | - Thomas C Kwee
- Department of Radiology, Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|