1
|
Hornero-Ramirez H, Morisette A, Marcotte B, Penhoat A, Lecomte B, Panthu B, Lessard Lord J, Thirion F, Van-Den-Berghe L, Blond E, Simon C, Caussy C, Feugier N, Doré J, Sanoner P, Meynier A, Desjardins Y, Pilon G, Marette A, Cani PD, Laville M, Vinoy S, Michalski MC, Nazare JA. Multifunctional dietary approach reduces intestinal inflammation in relation with changes in gut microbiota composition in subjects at cardiometabolic risk: the SINFONI project. Gut Microbes 2025; 17:2438823. [PMID: 39710576 DOI: 10.1080/19490976.2024.2438823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/24/2024] Open
Abstract
The development of cardiometabolic (CM) diseases is associated with chronic low-grade inflammation, partly linked to alterations of the gut microbiota (GM) and reduced intestinal integrity. The SINFONI project investigates a multifunctional (MF) nutritional strategy's impact combining different bioactive compounds on inflammation, GM modulation and CM profile. In this randomized crossover-controlled study, 30 subjects at CM-risk consumed MF cereal-products, enriched with polyphenols, fibers, slowly-digestible starch, omega-3 fatty acids or Control cereal-products (without bioactive compounds) for 2 months. Metabolic endotoxemia (lipopolysaccharide (LPS), lipopolysaccharide-binding protein over soluble cluster of differentiation-14 (LBP/sCD14), systemic inflammation and cardiovascular risk markers, intestinal inflammation, CM profile and response to a one-week fructose supplementation, were assessed at fasting and post mixed-meal. GM composition and metabolomic analysis were conducted. Mixed linear models were employed, integrating time (pre/post), treatment (MF/control), and sequence/period. Compared to control, MF intervention reduced intestinal inflammation (fecal calprotectin, p = 0.007) and endotoxemia (fasting LPS, p < 0.05), without alteration of systemic inflammation. MF decreased serum branched-chain amino acids compared to control (p < 0.05) and increased B.ovatus, B.uniformis, A.butyriciproducens and unclassified Christensenellaceae.CAG-74 (p < 0.05). CM markers were unchanged. A 2-month dietary intervention combining multiple bioactive compounds improved intestinal inflammation and induced GM modulation. Such strategy appears as an effective strategy to target low-grade inflammation through multi-target approach.
Collapse
Affiliation(s)
- Hugo Hornero-Ramirez
- Centre de Recherche en Nutrition Humaine - Rhône-Alpes, INSERM, INRAe, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Pierre Bénite, France
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Arianne Morisette
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, Canada
- Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Bruno Marcotte
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, Canada
- Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Armelle Penhoat
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Béryle Lecomte
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Baptiste Panthu
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | | | | | - Laurie Van-Den-Berghe
- Centre de Recherche en Nutrition Humaine - Rhône-Alpes, INSERM, INRAe, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Pierre Bénite, France
| | - Emilie Blond
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
- Biochemistry Department, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Chantal Simon
- Centre de Recherche en Nutrition Humaine - Rhône-Alpes, INSERM, INRAe, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Pierre Bénite, France
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Cyrielle Caussy
- Centre de Recherche en Nutrition Humaine - Rhône-Alpes, INSERM, INRAe, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Pierre Bénite, France
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
- Endocrinology, Diabetes and Nutrition Department, Lyon South Hospital, Civil Hospices of Lyon, Pierre-Bénite, France
| | - Nathalie Feugier
- Centre de Recherche en Nutrition Humaine - Rhône-Alpes, INSERM, INRAe, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Pierre Bénite, France
| | - Joël Doré
- INRAE, MGP, Université Paris-Saclay, Jouy-en-Josas, France
| | - Philippe Sanoner
- iSymrise-Diana Food SAS, R&D, Naturals Food & Beverage, Rennes, France
| | - Alexandra Meynier
- Nutrition Research, Paris-Saclay Tech Center, Mondelez International R&D, Saclay, France
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, Canada
- Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Geneviève Pilon
- Department of Medicine, Faculty of Medicine, Québec Heart and Lung Institute, Université Laval, Québec, Canada
- Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, Canada
| | - André Marette
- Department of Medicine, Faculty of Medicine, Québec Heart and Lung Institute, Université Laval, Québec, Canada
- Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, Canada
| | - Patrice D Cani
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, (LDRI) Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium
- Louvain Drug Research Institute; Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium
- UCLouvain, Université catholique de Louvain, Institute of Experimental and Clinical Research (IREC), Brussels, Belgium
| | - Martine Laville
- Centre de Recherche en Nutrition Humaine - Rhône-Alpes, INSERM, INRAe, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Pierre Bénite, France
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Sophie Vinoy
- Nutrition Research, Paris-Saclay Tech Center, Mondelez International R&D, Saclay, France
| | - Marie-Caroline Michalski
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Julie-Anne Nazare
- Centre de Recherche en Nutrition Humaine - Rhône-Alpes, INSERM, INRAe, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Pierre Bénite, France
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| |
Collapse
|
2
|
White PJ, Wewer Albrechtsen NJ, Campbell JE. Islet hormones at the intersection of glucose and amino acid metabolism. Nat Rev Endocrinol 2025; 21:397-412. [PMID: 40055529 DOI: 10.1038/s41574-025-01100-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/20/2025] [Indexed: 06/18/2025]
Abstract
The pancreatic islets of Langerhans are central to fine-tuning metabolism to ensure metabolic homeostasis during the transition between fasting and feeding. Insulin and glucagon, the principal hormones generated and secreted by islets, exert powerful control in various metabolic tissues to drive nutrient uptake, storage and metabolism. Their canonical actions on glycaemia have positioned these hormones in opposition, however, their metabolic actions extend beyond controlling blood levels of glucose. Indeed, these islet hormones are just as influential in regulating lipid and amino acid metabolism and it is becoming clear that many of these actions involve an interplay between insulin and glucagon, which is contrary to the dogmatic view that these hormones are antagonistic in nature. Finally, we postulate that examining the effects of islet hormones on the metabolism of individual metabolites is overly simplistic. Here, we discuss the actions of each islet hormone alone and in combination with the others in regulating glucose and amino acid metabolism and explore how these signalling networks are closely linked and strongly influence one another.
Collapse
Affiliation(s)
- Phillip J White
- Division of Endocrinology, Department of Medicine, Duke University, Durham, NC, USA
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Nicolai J Wewer Albrechtsen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Copenhagen Center for Translational Research, Copenhagen University Hospital - Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Jonathan E Campbell
- Division of Endocrinology, Department of Medicine, Duke University, Durham, NC, USA.
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA.
| |
Collapse
|
3
|
Murthy VL, Piaggi P, Lin P, Zhao S, Stolze LK, Perry AS, Hanson RL, Carr JJ, Terry JG, Baier LJ, Bogardus C, Clish C, Gamazon ER, Krakoff J, Shah RV. Human Physiologic Responses to Insulin in Indigenous Americans Identify a Metabolic Susceptibility Profile Linked to Diabetes. Diabetes Care 2025; 48:1260-1272. [PMID: 40392570 PMCID: PMC12178625 DOI: 10.2337/dc25-0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 04/17/2025] [Indexed: 05/22/2025]
Abstract
OBJECTIVE To identify metabolic signatures of insulin action/secretion in Indigenous Americans (IAs) and their association with diabetes. RESEARCH DESIGN AND METHODS We defined circulating metabolomic signatures of insulin action/secretion in 446 IAs, including glucose disposal rate during low-dose insulin clamp (Mlow) and endogenous glucose production (EGP) during insulin infusion (suppression of hepatic glucose production). We then determined associations of these metabolic scores with glucose tolerance (in a separate set of ∼700 IAs) and diabetes/metabolic risk in ∼2,000 individuals (from Coronary Artery Risk Development in Young Adults [CARDIA] study). We used tissue-specific gene-metabolite mapping to pinpoint genetic pathways of type 2 diabetes (T2D) implicated by metabolomic signatures. RESULTS In young IAs (mean age 29 years; mean BMI 34.9 kg/m2) without diabetes, phenotype-metabolome associations across multiple insulin action phenotypes were linked to mechanisms of fatty acid and amino acid metabolism and inflammation (among others). Metabolite-based scores of insulin action were strongly related to incident diabetes in our discovery IA population (Mlow; 49 metabolites; standardized hazard ratio [HR] 0.49; 95% CI 0.35-0.69; P < 0.0001) and also associated with measures of insulin resistance in a distinct IA population (|ρ| ∼0.3-0.5 correlation) and in the CARDIA group (median age 33 years). At ∼20 years of follow-up in CARDIA, we observed a strong BMI- and glucose-independent association of the metabolite profile of Mlow (HR 0.65; 95% CI 0.56-0.74; P < 0.0001) and EGP suppression (HR 0.66; 95% CI 0.57-0.76; P < 0.0001) with incident diabetes, directionally opposed to BMI and glucose. Genes implicated by the metabolomic signatures were strongly linked to T2D. CONCLUSIONS Metabolic signatures of clamp-determined insulin action are strongly associated with incident diabetes, suggesting causal-functional pathways of T2D.
Collapse
Affiliation(s)
| | - Paolo Piaggi
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes, Digestive, and Kidney Disorders, Phoenix, AZ
| | - Phillip Lin
- Division of Human Genetics, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Shilin Zhao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN
| | - Lindsey K. Stolze
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN
| | - Andrew S. Perry
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University Medical Center, Nashville, TN
| | - Robert L. Hanson
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes, Digestive, and Kidney Disorders, Phoenix, AZ
| | - John Jeffrey Carr
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University Medical Center, Nashville, TN
| | - James G. Terry
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University Medical Center, Nashville, TN
| | - Leslie J. Baier
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes, Digestive, and Kidney Disorders, Phoenix, AZ
| | - Clifton Bogardus
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes, Digestive, and Kidney Disorders, Phoenix, AZ
| | - Clary Clish
- Broad Institute of Harvard and MIT, Cambridge, MA
| | - Eric R. Gamazon
- Division of Human Genetics, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Jonathan Krakoff
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes, Digestive, and Kidney Disorders, Phoenix, AZ
| | - Ravi V. Shah
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
4
|
Liang T, Jiang T, Liang Z, Li L, Chen Y, Chen T, Yang L, Zhang N, Dong B, Xie X, Gu B, Wu Q. Gut microbiota-driven BCAA biosynthesis via Staphylococcus aureus -expressed acetolactate synthase impairs glycemic control in type 2 diabetes in South China. Microbiol Res 2025; 296:128145. [PMID: 40138872 DOI: 10.1016/j.micres.2025.128145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025]
Abstract
An increase in branched-chain amino acid (BCAA) levels can result in insulin resistance at different stages of type 2 diabetes (T2D), however, the causes of this increase are unclear. We performed metagenomics and metabolomics profiling in patients with prediabetes (PDM), newly diagnosed diabetes (NDDM), and post-medication type 2 diabetes (P2DM) to investigate whether altered gut microbes and metabolites could explain the specific clinical characteristics of different disease stages of T2D. Here we identify acetolactate synthase (ALS) a BCAA biosynthesis enzyme in Staphylococcus aureus as a cause of T2D insulin resistance. Compared with healthy peoples, patients with PDM, NDDM, and P2DM groups, especially in P2DM group, have increased faecal numbers of S. aureus. We also demonstrated that insulin administration may be a risk factor for S. aureus infection in T2D. The presence of ALS-positive S. aureus correlated with the levels of BCAAs and was associated with an increased fasting blood glucose (FBG) and insulin resistance. Humanized microbiota transplantation experiment indicated that ALS contributes to disordered insulin resistance mediated by S. aureus. We also found that S. aureus phage can reduced the FBG levels and insulin resistance in db/db mice. The ALS-positive S. aureus are associated with insulin resistance in T2D, opening a new therapeutic avenue for the prevention or treatment of diabetes.
Collapse
Affiliation(s)
- Tingting Liang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China; Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| | - Tong Jiang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Zhuang Liang
- Department of Rehabilitation Hospital Pain Ward, Xi'an Jiaotong University Affiliated Honghui Hospital, Xi'an, Shaanxi 710054, China
| | - Longyan Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Ya Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Tong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Lingshuang Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Ni Zhang
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Bo Dong
- Department of Rehabilitation Hospital Pain Ward, Xi'an Jiaotong University Affiliated Honghui Hospital, Xi'an, Shaanxi 710054, China.
| | - Xinqiang Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.
| | - Bing Gu
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.
| |
Collapse
|
5
|
Loos CMM, Urschel KL. Current understanding of insulin dysregulation and its relationship with carbohydrate and protein metabolism in horses. Domest Anim Endocrinol 2025; 92:106940. [PMID: 40073599 DOI: 10.1016/j.domaniend.2025.106940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/28/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
Insulin dysregulation (ID) is a common metabolic disorder in horses, characterized by hyperinsulinemia and/or peripheral insulin resistance. The critical role of hyperinsulinemia in endocrinopathic laminitis has driven research into the insulinotropic effects of dietary nutrients and the reciprocal impact of ID on nutrient metabolism. The relationship between ID and carbohydrate metabolism has been extensively studied; however, the effects of ID on protein metabolism in horses remain largely unexplored. This review begins with an overview of the importance of insulin in the regulation of muscle protein synthesis and degradation and then examines the current understanding of the interplay between ID and protein and carbohydrate metabolism in horses. Horses with ID exhibit altered resting plasma amino acid concentrations and shifts in postprandial amino acid dynamics. Recent work illustrated that ID horses had higher levels of plasma amino acids following a protein meal and delayed postprandial clearance from the blood compared to non-ID horses. The postprandial muscle synthetic response does not seem to be diminished in ID horses, but alterations in key cellular signaling molecules have been reported. ID horses display a pronounced hyperinsulinemic response following the consumption of feeds providing a range of protein, non-structural carbohydrate, starch and water-soluble carbohydrate intakes. Recent studies have shown that ID horses have an increased postprandial incretin response, contributing to the observed hyperinsulinemia. To minimize the postprandial insulin response, thresholds for carbohydrate consumption have recently been proposed. Similar thresholds should be established for protein to aid in the refinement of nutritional strategies to manage ID horses.
Collapse
Affiliation(s)
- C M M Loos
- Versele-Laga, Cavalor Equine Nutrition, Belgium.
| | - K L Urschel
- University of Kentucky, Department of Animal and Food Sciences, Lexington, KY, USA
| |
Collapse
|
6
|
Bowman CE, Neinast MD, Kawakami R, Forelli N, Jang C, Patel J, Blair MC, Noji MC, Mirek ET, Jonsson WO, Chu Q, Merlo L, Mandik-Nayak L, Anthony TG, Rabinowitz JD, Arany Z. Off-target depletion of plasma tryptophan by allosteric inhibitors of BCKDK. Mol Metab 2025; 97:102165. [PMID: 40348014 PMCID: PMC12149413 DOI: 10.1016/j.molmet.2025.102165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025] Open
Abstract
The activation of branched chain amino acid (BCAA) catabolism has garnered interest as a potential therapeutic approach to improve insulin sensitivity, enhance recovery from heart failure, and blunt tumor growth. Evidence for this interest relies in part on BT2, a small molecule that promotes BCAA oxidation and is protective in mouse models of these pathologies. BT2 and other analogs allosterically inhibit branched chain ketoacid dehydrogenase kinase (BCKDK) to promote BCAA oxidation, which is presumed to underlie the salutary effects of BT2. Potential "off-target" effects of BT2 have not been considered, however. We therefore tested for metabolic off-target effects of BT2 in Bckdk-/- animals. As expected, BT2 failed to activate BCAA oxidation in these animals. Surprisingly, however, BT2 strongly reduced plasma tryptophan levels and promoted catabolism of tryptophan to kynurenine in both control and Bckdk-/- mice. Mechanistic studies revealed that none of the principal tryptophan catabolic or kynurenine-producing/consuming enzymes (TDO, IDO1, IDO2, or KATs) were required for BT2-mediated lowering of plasma tryptophan. Instead, using equilibrium dialysis assays and mice lacking albumin, we show that BT2 avidly binds plasma albumin and displaces tryptophan, releasing it for catabolism. These data confirm that BT2 activates BCAA oxidation via inhibition of BCKDK but also reveal a robust off-target effect on tryptophan metabolism via displacement from serum albumin. The data highlight a potential confounding effect for pharmaceutical compounds that compete for binding with albumin-bound tryptophan.
Collapse
Affiliation(s)
| | - Michael D Neinast
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | | | | | - Cholsoon Jang
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - Jiten Patel
- Cardiovascular Institute, Philadelphia, PA, USA
| | - Megan C Blair
- Cardiovascular Institute, Philadelphia, PA, USA; Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Emily T Mirek
- Department of Nutritional Sciences, Rutgers School of Environmental and Biological Sciences, New Brunswick, NJ, USA
| | - William O Jonsson
- Department of Nutritional Sciences, Rutgers School of Environmental and Biological Sciences, New Brunswick, NJ, USA
| | - Qingwei Chu
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lauren Merlo
- Lankenau Institute for Medical Research, Wynnewood, PA, USA
| | | | - Tracy G Anthony
- Department of Nutritional Sciences, Rutgers School of Environmental and Biological Sciences, New Brunswick, NJ, USA
| | - Joshua D Rabinowitz
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Zolt Arany
- Cardiovascular Institute, Philadelphia, PA, USA; Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Su Q, Wang K, Luo Y, Tang Q. Altered gut microbiota in erectile dysfunction patients: a pilot study. Front Microbiol 2025; 16:1530014. [PMID: 40539109 PMCID: PMC12177716 DOI: 10.3389/fmicb.2025.1530014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 05/15/2025] [Indexed: 06/22/2025] Open
Abstract
Purpose With the growing body of research on gut microbiota in recent years, various potential associations between gut microbiota and health or disease have been identified. However, the role of gut microbiota in Erectile dysfunction (ED) remains poorly understood. This study aimed to compare the changes in gut microbiota and metabolic pathways between ED males and healthy control group, contributing to the exploration of ED pathogenesis. Methods Fecal samples were collected from 19 ED patients and 15 healthy controls (aged from 18 to 60 years), with erectile function assessed using the 5-item version of the International Index of Erectile Function (IIEF-5). Macro-genomic sequencing was performed on the NovaSeq PE 150 platform to characterize the gut microbiota distribution among the groups. Results No significant differences in alpha diversity of the gut microbiota were observed between the ED and control groups. Additionally, Principal component analysis (PCA) analysis revealed no notable changes in microbiota composition between the two groups. A comparison of the abundance of key species showed that, in the ED group, species such as Ruminococcus gnavus, Thomasclavelia ramosa, Clostridium sp. AF32-12BH, Clostridium nexile, and Eubacterium siraeum were more abundant, while the abundance of Bacteroides intestinalis was decreased compared to the control group. Furthermore, pathways related to nucleotide and lipid metabolism were found to be highly expressed in the ED group. Conclusion This pilot study found a decrease in the abundance of Bacteroides intestinalis and an increase in the abundance of Ruminococcus gnavus in the ED sample. These microbiota changes may contribute to ED by promoting atherosclerosis and inhibiting the degradation of branched-chain amino acids. In the future, it may be possible to achieve better outcomes for ED patients by precisely regulating the gut microbiota.
Collapse
Affiliation(s)
- Quanxin Su
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Kenan Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yayin Luo
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Qizhen Tang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
8
|
Taiwo A, Merrill RA, Wendt L, Pape D, Thakkar H, Maschek JA, Cox J, Summers SA, Chaurasia B, Pothireddy N, Carlson BB, Sanchez A, Ten Eyck P, Jalal D, Dokun A, Taylor EB, Sivitz WI. Metabolite perturbations in type 1 diabetes associated with metabolic dysfunction-associated steatotic liver disease. Front Endocrinol (Lausanne) 2025; 16:1500242. [PMID: 40568565 PMCID: PMC12188458 DOI: 10.3389/fendo.2025.1500242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 05/06/2025] [Indexed: 06/28/2025] Open
Abstract
Background Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly called non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the metabolic syndrome. Although MASLD has been widely studied in persons with Type 2 diabetes (T2D), far less in known about the pathogenesis and severity of MASLD in Type 1 diabetes (T1D). Objectives Determine metabolic perturbations associated with MASLD in persons with T1D. Study Design We conducted a cross-sectional study of 30 participants with T1D. Based on the results of a FibroScan, participants were stratified as cases (MASLD) or controls. Metabolomic analyses were performed on plasma obtained from all participants after an overnight (after midnight) fast. Results 17 of 30 participants were classified as cases (MASLD) and 13 as controls. Cases had higher BMI (p=<0.001) and were taking higher daily insulin doses than controls (p=0.003). Metabolomic analyses revealed that those with MASLD had elevated levels of gluconeogenic substrates pyruvate (p=0.001) and lactate (p=0.043), gluconeogenic amino acids alanine (p<0.001) and glutamate (p=0.004), phenylalanine (p=0.003), and anthranilic acid (p=0.015). Lipidomics revealed, elevated ceramides (P=0.02), diacylglycerols (p=0.0009) and triacylglycerols (P=0.0004) in MASLD group. In those with MASLD, the acylcarnitines, isovalerylcarnitine (CAR.5.0) (P=0.002) and L-Palmitoylcarnitine (CAR.16.0) (P=0.048), were elevated. Pathway analyses using MetaboAnalyst 5.0 Software revealed that, pathways including phenylalanine and tyrosine metabolism, tryptophan metabolism, glucose-alanine cycle, glutamate metabolism, and glutathione metabolism were significantly enriched in those with MASLD. Conclusion Participants with T1D and MASLD manifest features of insulin resistance and metabolite perturbations suggesting enhanced gluconeogenesis, dysfunctional fat synthesis, and perturbed TCA cycle activity.
Collapse
Affiliation(s)
- Adeyinka Taiwo
- Division of Endocrinology, Department of Internal Medicine, University of Iowa Health Care, Iowa City, IA, United States
- Fraternal Order of Eagles Diabetes Center, University of Iowa, Iowa City, IA, United States
| | - Ronald A. Merrill
- Fraternal Order of Eagles Diabetes Center, University of Iowa, Iowa City, IA, United States
- Department of Molecular Physiology and Biophysics, University of Iowa Health Care, Iowa City, IA, United States
| | - Linder Wendt
- Institute for Clinical and Translational Science, University of Iowa, Iowa City, IA, United States
| | - Daniel Pape
- Department of Molecular Physiology and Biophysics, University of Iowa Health Care, Iowa City, IA, United States
- Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Himani Thakkar
- Division of Endocrinology, Department of Internal Medicine, University of Iowa Health Care, Iowa City, IA, United States
| | - J. Alan Maschek
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, United States
| | - James Cox
- Department of Biochemistry, University of Utah, Salt Lake City, UT, United States
| | - Scott A. Summers
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, United States
- Department of Biochemistry, University of Utah, Salt Lake City, UT, United States
| | - Bhagirath Chaurasia
- Division of Endocrinology, Department of Internal Medicine, University of Iowa Health Care, Iowa City, IA, United States
- Fraternal Order of Eagles Diabetes Center, University of Iowa, Iowa City, IA, United States
| | - Nikitha Pothireddy
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States
| | - Bianca B. Carlson
- Division of Endocrinology, Department of Internal Medicine, University of Iowa Health Care, Iowa City, IA, United States
| | - Antonio Sanchez
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Iowa Health Care, Iowa City, IA, United States
| | - Patrick Ten Eyck
- Institute for Clinical and Translational Science, University of Iowa, Iowa City, IA, United States
| | - Diana Jalal
- Institute for Clinical and Translational Science, University of Iowa, Iowa City, IA, United States
- Center for Access and Delivery Research and Evaluation, Iowa City Veterans Affairs Health Care, Iowa City, IA, United States
- Renal Division, Department of Medicine, University of Iowa, Iowa City, IA, United States
| | - Ayotunde Dokun
- Division of Endocrinology, Department of Internal Medicine, University of Iowa Health Care, Iowa City, IA, United States
- Fraternal Order of Eagles Diabetes Center, University of Iowa, Iowa City, IA, United States
| | - Eric B. Taylor
- Fraternal Order of Eagles Diabetes Center, University of Iowa, Iowa City, IA, United States
- Department of Molecular Physiology and Biophysics, University of Iowa Health Care, Iowa City, IA, United States
| | - William I. Sivitz
- Division of Endocrinology, Department of Internal Medicine, University of Iowa Health Care, Iowa City, IA, United States
- Fraternal Order of Eagles Diabetes Center, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
9
|
Razzaq R, Nguyen M, Connelly MA, Baral A, Khan H, Garg S, Ang A, Kim A, Roache G, Patidar KR, Yakubu I, Shalaurova I, Bakker SJL, Dullaart RPF, Kumaran V, Bui AT, Patel V, Siddiqui MS. Liver Transplantation and Metabolic Dysfunction Associated Steatotic Liver Disease Is Associated with Markers of Metabolic Risk and Inflammation. Dig Dis Sci 2025; 70:2147-2155. [PMID: 40274677 PMCID: PMC12185572 DOI: 10.1007/s10620-025-09072-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 04/16/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND Liver transplant (LT) recipients are at high risk of cardiometabolic disease and mortality. However, routinely employed clinical risk tools have sub-optimal diagnostic performance due to transplant related biological changes. Metabolic vulnerability index (MVX) is a serum-based composite biomarker comprised of nutritional risk [metabolic malnutrition index or MMX] and chronic inflammation [inflammatory vulnerability index or IVX]. MVX is a predictor of cardiovascular risk and all-cause mortality in the general population, however, the effect of LT on MVX is unknown. METHODS To better quantify MVX after transplantation, LT recipients (n = 181) prospectively enrolled in a natural history study were matched with non transplant controls from the MESA study of healthy individuals. All controls were matched 1:1 regarding age and gender. Additionally, lean controls were identified as those with BMI < 25 kg/m2 and BMI-matched controls who were propensity matched for BMI. RESULTS Compared to matched controls, LT recipients had significantly higher MVX (56.9 ± 10.1 vs. 45.8 ± 9.4 vs. 44.8 ± 9.3, p < 0.001), IVX [53.1 ± 12 vs. 39.3 ± 11.2 vs. 40.2 ± 10.9, p < 0.001), and MMX (58.7 ± 8.2 vs. 55.4 ± 6.5 vs. 53.1 ± 6.0, p < 0.001). No significant differences were noted in MVX in LT recipients who developed metabolic dysfunction associated steatotic liver disease (MASLD) after LT. In a multivariate analysis, MVX scores were positively associated with female gender, diabetes, serum AST and BMI, and negatively with dyslipidemia. CONCLUSION LT is associated with a significant increase in MVX and its components, suggesting a heightened risk in LT recipients that is above that of the non-LT population. Future well designed prospective studies are required to calibrate MVX to clinical outcomes in LT patients.
Collapse
Affiliation(s)
- Rehan Razzaq
- Department of Internal Medicine, Virginia Commonwealth University (VCU), Richmond, VA, USA
| | - Madison Nguyen
- Department of Internal Medicine, Virginia Commonwealth University (VCU), Richmond, VA, USA
| | | | - Alok Baral
- Department of Internal Medicine, Virginia Commonwealth University (VCU), Richmond, VA, USA
| | - Hiba Khan
- Department of Internal Medicine, Virginia Commonwealth University (VCU), Richmond, VA, USA
| | - Shreya Garg
- Department of Internal Medicine, Virginia Commonwealth University (VCU), Richmond, VA, USA
| | - Audrey Ang
- Department of Internal Medicine, Virginia Commonwealth University (VCU), Richmond, VA, USA
| | - Alexis Kim
- Department of Internal Medicine, Virginia Commonwealth University (VCU), Richmond, VA, USA
| | - Geneva Roache
- Division of Gastroenterology and Hepatology, VCU, MCV Campus, West Hospital, 1200 E. Broad St, PO Box 980341, Richmond, VA, 23298-0341, USA
| | | | - Idris Yakubu
- Division of Transplant Surgery, VCU, Richmond, VA, USA
| | | | - Stephan J L Bakker
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen (UMCG), Groningen, Netherlands
| | - Robin P F Dullaart
- Division of Endocrinology, Department of Internal Medicine, University of Groningen, UMCG, Groningen, Netherlands
| | - Vinay Kumaran
- Division of Transplant Surgery, VCU, Richmond, VA, USA
| | - Anh T Bui
- Department of Statistical Science and Operations Research, VCU, Richmond, USA
| | - Vaishali Patel
- Division of Gastroenterology and Hepatology, VCU, MCV Campus, West Hospital, 1200 E. Broad St, PO Box 980341, Richmond, VA, 23298-0341, USA
| | - Mohammad Shadab Siddiqui
- Division of Gastroenterology and Hepatology, VCU, MCV Campus, West Hospital, 1200 E. Broad St, PO Box 980341, Richmond, VA, 23298-0341, USA.
| |
Collapse
|
10
|
Schukarucha Gomes A, Ellis CE, Spigelman AF, Dos Santos T, Maghera J, Suzuki K, MacDonald PE. Molecular correlates of glycine receptor activity in human β cells. Mol Metab 2025; 96:102156. [PMID: 40258441 PMCID: PMC12059332 DOI: 10.1016/j.molmet.2025.102156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 04/07/2025] [Accepted: 04/16/2025] [Indexed: 04/23/2025] Open
Abstract
OBJECTIVES Glycine acts in an autocrine positive feedback loop in human β cells through its ionotropic receptors (GlyRs). In type 2 diabetes (T2D), islet GlyR activity is impaired by unknown mechanisms. We sought to investigate if the GlyR dysfunction in T2D is replicated by hyperglycemia per se, and to further characterize its action in β cells and islets. METHODS GlyR-mediated currents were measured using whole-cell patch-clamp in human β cells from donors with or without T2D, or after high glucose (15 mM) culture. We also correlated glycine-induced current amplitude with transcript expression levels through patch-seq. The expression of the GlyR α1, α3, and β subunit mRNA splice variants was compared between islets from donors with and without T2D, and after high glucose culture. Insulin secretion from human islets was measured in the presence or absence of the GlyR antagonist strychnine. RESULTS Although gene expression of GlyRs was decreased in T2D islets, and β cell GlyR-mediated currents were smaller, we found no evidence for a shift in GlyR subunit splicing. Glycine-induced currents are also reduced after 48 h culture of islets from donors without diabetes in high glucose, where we also find the reduction of the α1 subunit expression, but an increase in the α3 subunit. We discovered that glycine-evoked currents are highly heterogeneous amongst β cells, inversely correlate with donor HbA1c, and are significantly correlated to the expression of 92 different transcripts and gene regulatory networks (GRNs) that include CREB3(+), RREB1(+) and ZNF697(+). Finally, glucose-stimulated insulin secretion is decreased in the presence of the GlyR antagonist strychnine. CONCLUSIONS We demonstrate that glucose can modulate GlyR expression, and that the current decrease in T2D is likely due to the receptor gene expression downregulation, and not a change in transcript splicing. Moreover, we define a previously unknown set of genes and regulons that are correlated to GlyR-mediated currents and could be involved in GlyR downregulation in T2D. Among those we validate the negative impact of EIF4EBP1 expression on GlyR activity.
Collapse
Affiliation(s)
- Amanda Schukarucha Gomes
- Alberta Diabetes Institute, Department of Pharmacology, University of Alberta, Edmonton, Alberta, T6G 2R3, Canada
| | - Cara E Ellis
- Alberta Diabetes Institute, Department of Pharmacology, University of Alberta, Edmonton, Alberta, T6G 2R3, Canada
| | - Aliya F Spigelman
- Alberta Diabetes Institute, Department of Pharmacology, University of Alberta, Edmonton, Alberta, T6G 2R3, Canada
| | - Theodore Dos Santos
- Alberta Diabetes Institute, Department of Pharmacology, University of Alberta, Edmonton, Alberta, T6G 2R3, Canada
| | - Jasmine Maghera
- Alberta Diabetes Institute, Department of Pharmacology, University of Alberta, Edmonton, Alberta, T6G 2R3, Canada
| | - Kunimasa Suzuki
- Alberta Diabetes Institute, Department of Pharmacology, University of Alberta, Edmonton, Alberta, T6G 2R3, Canada
| | - Patrick E MacDonald
- Alberta Diabetes Institute, Department of Pharmacology, University of Alberta, Edmonton, Alberta, T6G 2R3, Canada.
| |
Collapse
|
11
|
Majid H, Kohli S, Islam SU, Nidhi. The role of branched chain aminotransferase in the interrelated pathways of type 2 diabetes mellitus and Alzheimer's disease. J Diabetes Metab Disord 2025; 24:90. [PMID: 40151764 PMCID: PMC11936868 DOI: 10.1007/s40200-025-01597-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/23/2025] [Indexed: 03/29/2025]
Abstract
Objectives This review assessed the role of Branched-Chain Amino Acid Transaminase (BCAT) enzymes in human metabolism, and their involvement in the catabolism of branched-chain amino acids (BCAAs) and exploring the association between Type 2 Diabetes Mellitus (T2DM) and Alzheimer's disease (AD) through insulin resistance. Methods The analysis involves a comprehensive literature review of recent research findings related to BCAT enzymes, BCAA metabolism, T2DM, and AD. Relevant studies and articles were identified through systematic searches in databases such as PubMed, ScienceDirect, and other scholarly resources. Inclusion criteria encompassed research articles, reviews, and studies published in peer-reviewed journals, with a focus on human metabolism, BCAT enzymes, and the interplay between BCAA metabolism, T2DM, and AD. Results The association between T2DM and AD suggests a potential metabolic link, particularly through dysregulated BCAA metabolism leading to insulin resistance. The impact of impaired insulin signaling is implicated in brain function and the accumulation of amyloid plaques facilitated by BCAT. Conclusion The identified link between BCAT, BCAA metabolism, T2DM, and AD suggests that disruptions in BCAT levels could serve as valuable indicators for early detection of insulin resistance and cognitive impairment as observed in Type 3 Diabetes which may present a promising therapeutic target.
Collapse
Affiliation(s)
- Haya Majid
- Department of Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062 India
| | - Sunil Kohli
- Department of Medicine and Diabetes Unit, Hamdard Institute of Medical Sciences and Research, Jamia Hamdard, New Delhi, 110062 India
| | - Sajad Ul Islam
- Department of Medicine and Diabetes Unit, Hamdard Institute of Medical Sciences and Research, Jamia Hamdard, New Delhi, 110062 India
| | - Nidhi
- Department of Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062 India
| |
Collapse
|
12
|
Rizo‐Roca D, Henderson JD, Zierath JR. Metabolomics in cardiometabolic diseases: Key biomarkers and therapeutic implications for insulin resistance and diabetes. J Intern Med 2025; 297:584-607. [PMID: 40289598 PMCID: PMC12087830 DOI: 10.1111/joim.20090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Cardiometabolic diseases-including Type 2 diabetes and obesity-remain leading causes of global mortality. Recent advancements in metabolomics have facilitated the identification of metabolites that are integral to the development of insulin resistance, a characteristic feature of cardiometabolic disease. Key metabolites, such as branched-chain amino acids (BCAAs), ceramides, glycine, and glutamine, have emerged as valuable biomarkers for early diagnosis, risk stratification, and potential therapeutic targets. Elevated BCAAs and ceramides are strongly associated with insulin resistance and Type 2 diabetes, whereas glycine exhibits an inverse relationship with insulin resistance, making it a promising therapeutic target. Metabolites involved in energy stress, including ketone bodies, lactate, and nicotinamide adenine dinucleotide (NAD⁺), regulate insulin sensitivity and metabolic health, with ketogenic diets and NAD⁺ precursor supplementation showing potential benefits. Additionally, the novel biomarker N-lactoyl-phenylalanine further underscores the complexity of metabolic regulation and its therapeutic potential. This review underscores the potential of metabolite-based diagnostics and precision medicine, which could enhance efforts in the prevention, diagnosis, and treatment of cardiometabolic diseases, ultimately improving patient outcomes and quality of life.
Collapse
Affiliation(s)
- David Rizo‐Roca
- Department of Physiology and Pharmacology, Integrative PhysiologyKarolinska InstitutetStockholmSweden
| | - John D. Henderson
- Novo Nordisk Foundation Center for Basic Metabolic ResearchFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Juleen R. Zierath
- Department of Physiology and Pharmacology, Integrative PhysiologyKarolinska InstitutetStockholmSweden
- Novo Nordisk Foundation Center for Basic Metabolic ResearchFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Molecular Medicine and Surgery, Integrative PhysiologyKarolinska InstitutetStockholmSweden
| |
Collapse
|
13
|
Kasprzyk N, Nandy S, Grygiel-Górniak B. Diet in Knee Osteoarthritis-Myths and Facts. Nutrients 2025; 17:1872. [PMID: 40507141 PMCID: PMC12157890 DOI: 10.3390/nu17111872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2025] [Revised: 05/27/2025] [Accepted: 05/28/2025] [Indexed: 06/16/2025] Open
Abstract
Knee osteoarthritis (OA) is a common degenerative joint disease affecting global health. Its increasing prevalence, particularly among aging populations, remains a leading cause of disability. Besides conventional pharmacological and surgical treatments, dietary interventions are promising strategies to alleviate OA symptoms and progression. Unfortunately, scientific evidence does not support many commonly used, misleading ideas about nutrition in knee OA. Recent data highlight the detrimental effects of high-carbohydrate and high-fat diets, particularly those rich in refined sugars and saturated fats, which exacerbate systemic inflammation and contribute to cartilage degradation. Conversely, diets rich in omega-3 fatty acids, polyphenols, and dietary fiber have shown anti-inflammatory and chondroprotective properties. A Mediterranean diet rich in these nutrients effectively prevents the development of OA and its comorbidities, including obesity and cardiovascular disease. The role of supplements, such as glucosamine, chondroitin, and vitamin D, is questioned due to the lack of evidence supporting their efficacy in treating knee OA. Despite dietary recommendations published annually, there is still a need to debunk many myths that are not confirmed by current evidence. The significant research gaps require more extensive, controlled studies to establish evidence-based dietary recommendations (particularly carbohydrates, dietary fiber, and antioxidant intake). This comprehensive review provides insight into the various indications for the impact of nutrition on knee OA, focusing on key nutrients such as carbohydrates, fats, proteins, antioxidants, and selected micronutrients, providing the clinician with ready-to-implement nutritional modifications. Such an analysis may help clinicians and patients incorporate dietary strategies into treating knee OA, emphasizing the need for personalized, sustainable approaches.
Collapse
Affiliation(s)
- Natalia Kasprzyk
- Department of Rheumatology, Rehabilitation and Internal Diseases, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Shreya Nandy
- Rheumatology Research Group, Department of Rheumatology, Rehabilitation and Internal Diseases, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Bogna Grygiel-Górniak
- Department of Rheumatology, Rehabilitation and Internal Diseases, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| |
Collapse
|
14
|
Wu ST, Lu XL. Gut microbiota-mediated disruption of intestinal mucosal barrier: Implications in inflammation, immunity, and metabolism in metabolic dysfunction-associated fatty liver disease. Shijie Huaren Xiaohua Zazhi 2025; 33:337-343. [DOI: 10.11569/wcjd.v33.i5.337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/21/2025] [Accepted: 05/08/2025] [Indexed: 05/28/2025] Open
Affiliation(s)
- Song-Ting Wu
- Department of Gastroenterology, Shanghai Pudong Hospital-Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Xiao-Lan Lu
- Department of Gastroenterology, Shanghai Pudong Hospital-Fudan University Pudong Medical Center, Shanghai 201399, China
| |
Collapse
|
15
|
Mekadim C, Mrazek J, Fliegerová KO, Sechovcová H, Mahayri TM, Jarošíková R, Husáková J, Wosková V, Tůma P, Polák J, Sojáková D, Němcová A, Dubský M, Fejfarová V. The effect of the administration form of antibiotic therapy on the gut microbiome in patients with infected diabetic foot ulcers - DFIATIM trial. BMC Microbiol 2025; 25:339. [PMID: 40437354 PMCID: PMC12117690 DOI: 10.1186/s12866-025-04041-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 05/12/2025] [Indexed: 06/01/2025] Open
Abstract
BACKGROUND Diabetic foot infections (DFIs) contribute to the global disability burden. Beta-lactams are the most commonly used antibiotics for treating DFIs. However, the use of antibiotics may lead to disruption of the healthy balance of the gut microbiota, causing dysbiosis. METHODS Patients with infected diabetic foot ulcers (iDFUs) were treated with two kinds of beta-lactams (amoxicillin/clavulanic acid or ceftazidime) according to microbial sensitivity of causative agents via bolus or continuous administration modes. Changes in the gut microbiome of patients were analyzed. Diabetic patients without iDFUs were used as a control group. 16 S ribosomal RNA gene amplicon sequencing was performed on stool samples collected from participants. RESULTS Alpha diversity and beta diversity of gut microbiota of treated patients did not show significant differences between bolus and continuous modes. However, significant differences were observed between gut microbiota diversity of treated patients and control group. PCoA plots showed individualized responses of the patient's gut microbiota to antibiotics at different times using both administration forms associated with the pre-treatment state of microbiota composition. Enterococcus, Sellimonas, and Lachnoclostridium were the common bacterial markers differentially abundant in the gut microbiota of antibiotic-treated patients with iDFUs while Roseburia, Dorea, and Monoglobus were mainly abundant in the gut microbiota of patients without iDFUs. Predicted pathways like "Transporters", "ABC transporters" and "Phosphotranspherase system (PTS)" were upregulated in the gut microbiome of patients treated with bolus regime which may lead to increased intestinal barrier permeability. CONCLUSION The present study reported alterations in gut microbiota composition and functionality and provided the bacterial markers as well as potential metabolic signatures associated with each administration mode in patients with iDFUs, which may be used as a reference set for future studies of the effect of antibiotics administration on the gut microbiome of patients with iDFUs. This study shed light on the importance of understanding the effect of antibiotic administration form on gut microbiome in patients with iDFUs. TRIAL REGISTRATION The DFIATIM Clinical Trial (Full title: "Rationalisation of ATB therapy in diabetic foot infection and its impact on the intestinal microbiota") is submitted to the European Union Clinical Trials Database under the EudraCT Number: 2019-001997-27. The date of registration is July 17th, 2020.
Collapse
Affiliation(s)
- Chahrazed Mekadim
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, v.v.i, Videnska 1083, Prague, 142 00, Czech Republic.
| | - Jakub Mrazek
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, v.v.i, Videnska 1083, Prague, 142 00, Czech Republic
| | - Kateřina Olša Fliegerová
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, v.v.i, Videnska 1083, Prague, 142 00, Czech Republic
| | - Hana Sechovcová
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, v.v.i, Videnska 1083, Prague, 142 00, Czech Republic
| | - Tiziana Maria Mahayri
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, v.v.i, Videnska 1083, Prague, 142 00, Czech Republic
| | - Radka Jarošíková
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Department of Internal Medicine, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jitka Husáková
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Veronika Wosková
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Petr Tůma
- Department of Hygiene, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Polák
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Dominika Sojáková
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Andrea Němcová
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Michal Dubský
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Vladimíra Fejfarová
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Department of Internal Medicine, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
16
|
Møller PM, Kjøbsted R, Petersen MH, de Almeida ME, Pedersen AJT, Wojtaszewski JFP, Højlund K. Effect of acute exercise and exercise training on the ability of insulin to clear branched-chain amino acids from plasma in obesity and type 2 diabetes. Diabetologia 2025:10.1007/s00125-025-06454-y. [PMID: 40404819 DOI: 10.1007/s00125-025-06454-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/20/2025] [Indexed: 05/24/2025]
Abstract
AIMS/HYPOTHESIS Insulin resistance in obesity and type 2 diabetes is associated with elevated plasma branched-chain amino acid (BCAA) levels. Here, we examined whether the ability of insulin to clear plasma BCAAs and any influence of acute exercise or exercise training on this response are intact in obesity and type 2 diabetes. METHODS In four case-control studies of participants with type 2 diabetes matched to glucose-tolerant individuals with obesity and lean individuals, who underwent hyperinsulinaemic-euglycaemic clamps, we examined the effect of insulin on plasma BCAAs (studies I-IV), with or without prior acute exercise (60 min, 70%V ˙ O 2max ) (study II), and before and after 10 weeks of endurance exercise training (study III) or 8 weeks of high-intensity interval training (study IV). RESULTS Insulin sensitivity was reduced in individuals with type 2 diabetes compared with individuals with obesity (study I-IV) and lean individuals (studies I and IV), and in individuals with obesity vs lean individuals (study I) (all p<0.05). Exercise training (studies III and IV) increased insulin sensitivity in all groups (all p<0.01). Plasma BCAAs were elevated in individuals with type 2 diabetes compared with individuals with obesity (studies I, III and IV) and lean individuals (studies I and IV) (all p<0.05). The ability of insulin to reduce plasma BCAAs was significantly attenuated in participants with type 2 diabetes compared with both lean individuals (studies I and IV) and individuals with obesity (studies I, II and IV) (all p<0.05). Acute exercise slightly reduced plasma BCAAs in both individuals with type 2 diabetes and individuals with obesity but did not potentiate insulin's ability to reduce plasma BCAAs (study II). Exercise training had no impact on fasting BCAAs and did not affect insulin's ability to reduce plasma BCAAs in any group (studies III and IV) or rescue the attenuated insulin suppression of plasma BCAAs in participants with type 2 diabetes. CONCLUSIONS/INTERPRETATION Our results demonstrate that insulin's ability to suppress plasma BCAAs is impaired in type 2 diabetes but is intact in individuals with obesity. Although acute exercise reduces fasting BCAA levels, neither acute exercise nor exercise training affects insulin's ability to suppress plasma BCAAs in glucose-tolerant individuals with or without obesity or in individuals with type 2 diabetes.
Collapse
Affiliation(s)
- Pauline M Møller
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Rasmus Kjøbsted
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Maria H Petersen
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
| | - Martin E de Almeida
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | | | - Jørgen F P Wojtaszewski
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Kurt Højlund
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark.
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
17
|
Newton-Tanzer E, Can SN, Demmelmair H, Horak J, Holdt L, Koletzko B, Grote V. Apparent Saturation of Branched-Chain Amino Acid Catabolism After High Dietary Milk Protein Intake in Healthy Adults. J Clin Endocrinol Metab 2025; 110:e1793-e1801. [PMID: 39302872 DOI: 10.1210/clinem/dgae599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Indexed: 09/22/2024]
Abstract
CONTEXT Milk protein contains high concentrations of branched-chain amino acids (BCAA) that play a critical role in anabolism and are implicated in the onset of obesity and chronic disease. Characterizing BCAA catabolism in the postprandial phase could elucidate the impact of protein intake on obesity risk established in the "early protein hypothesis." OBJECTIVE To examine the acute effects of protein content of young child formulas as test meals on BCAA catabolism, observing postprandial plasma concentrations of BCAA in relation to their degradation products. METHODS The TOMI Add-On Study is a randomized, double-blind crossover study in which 27 healthy adults consumed 2 isocaloric young child formulas with alternating higher (HP) and lower (LP) protein and fat content as test meals during separate interventions, while 9 blood samples were obtained over 5 hours. BCAA, branched-chain α-keto acids (BCKA), and acylcarnitines were analyzed using a fully targeted HPLC-ESI-MS/MS approach. RESULTS Mean concentrations of BCAA, BCKA, and acylcarnitines were significantly higher after HP than LP over the 5 postprandial hours, except for the BCKA α-ketoisovalerate (KIVA). The latter metabolite showed higher postprandial concentrations after LP. With increasing mean concentrations of BCAA, concentrations of corresponding BCKA, acylcarnitines, and urea increased until a breakpoint was reached, after which concentrations of degradation products decreased (for all metabolites except valine and KIVA and Carn C4:0-iso). CONCLUSION BCAA catabolism is markedly influenced by protein content of the test meal. We present novel evidence for the apparent saturation of the BCAA degradation pathway in the acute postprandial phase up to 5 hours after consumption.
Collapse
Affiliation(s)
- Emily Newton-Tanzer
- Division of Metabolic and Nutritional Medicine, Department Paediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, and the German Center for Child and Adolescent Health, site Munich, 80337 Munich, Germany
| | - Sultan Nilay Can
- Division of Metabolic and Nutritional Medicine, Department Paediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, and the German Center for Child and Adolescent Health, site Munich, 80337 Munich, Germany
| | - Hans Demmelmair
- Division of Metabolic and Nutritional Medicine, Department Paediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, and the German Center for Child and Adolescent Health, site Munich, 80337 Munich, Germany
| | - Jeannie Horak
- Division of Metabolic and Nutritional Medicine, Department Paediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, and the German Center for Child and Adolescent Health, site Munich, 80337 Munich, Germany
| | - Lesca Holdt
- Institute of Laboratory Medicine, LMU University Hospital, LMU Munich, 80337 Munich, Germany
| | - Berthold Koletzko
- Division of Metabolic and Nutritional Medicine, Department Paediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, and the German Center for Child and Adolescent Health, site Munich, 80337 Munich, Germany
| | - Veit Grote
- Division of Metabolic and Nutritional Medicine, Department Paediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, and the German Center for Child and Adolescent Health, site Munich, 80337 Munich, Germany
| |
Collapse
|
18
|
Füreder J, Schernhammer ES, Eliassen AH, Sieri S, Warth B. Metabolomics-enabled biomarker discovery in breast cancer research. Trends Endocrinol Metab 2025:S1043-2760(25)00083-9. [PMID: 40368707 DOI: 10.1016/j.tem.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/21/2025] [Accepted: 04/10/2025] [Indexed: 05/16/2025]
Abstract
Breast cancer (BC) remains the most prevalent malignancy among women worldwide. While genetic predisposition and reproductive history are key contributors to its development, modifiable risk factors are also important, particularly those linked to lifestyle behaviors, often influencing the endogenous metabolome. Over the past decade, mass spectrometry-based metabolomics has enabled agnostic investigations into correlations between the metabolome and BC risk. Here we review recent results from prospective nested case-control studies, which have led to the identification of significantly different metabolites between women who subsequently developed BC and those who did not. As replication of these findings remains limited, we emphasize the need for robust quantitative validation studies, cancer subtype-specific analyses in diverse populations, and expanded chemical space coverage of analytical assays.
Collapse
Affiliation(s)
- Julia Füreder
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, 1090 Vienna, Austria
| | - Eva S Schernhammer
- Department of Epidemiology, Center for Public Health, Medical University of Vienna, 1090 Vienna, Austria; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Exposome Austria, Research Infrastructure and National EIRENE Node, University of Vienna, 1090 Vienna, Austria
| | - A Heather Eliassen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Sabina Sieri
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Benedikt Warth
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, 1090 Vienna, Austria; Exposome Austria, Research Infrastructure and National EIRENE Node, University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
19
|
Gkantzos A, Kalogiannis S, Deda O. The Role of Aromatic Amino Acids in Polycystic Ovary Syndrome through Patients' Blood Metabolic Profiling: A Systematic Review of the Past Five Years. J Proteome Res 2025; 24:2208-2221. [PMID: 40244806 PMCID: PMC12053951 DOI: 10.1021/acs.jproteome.4c00937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 03/03/2025] [Accepted: 04/07/2025] [Indexed: 04/19/2025]
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disorder in women of reproductive age that encompasses a multitude of signs and symptoms, including hyperandrogenism, polycystic ovarian morphology, ovulatory dysfunction, and insulin resistance. The study aims to explore the role of aromatic amino acid (AAA) disorders in the syndrome. A systematic search on the databases Scopus, PubMed, and Google Scholar until 20 July 2024 over the past 5 years regarding metabolomic studies on PCOS patients' blood and the status of AAAs resulted in 12 related papers. Our review showed that AAA metabolic pathways are dysregulated, and their levels in the blood serum and plasma of PCOS patients in most studies are elevated due to inflammation and oxidative stress which, assisted by gut dysbiosis, give rise to insulin resistance that develops into PCOS. AAA abnormalities can also directly induce the defining symptoms of the syndrome through diminished neurotransmitter availability and impaired signaling. According to our review, AAA perturbations are detected in every stage of PCOS pathophysiology, making them valuable biomarkers for early diagnosis and management of the syndrome. Further investigation of the biological function, role, and impact of AAAs, probably alongside other metabolites, including BCAAs, could lead to the discovery of new tools for preventing and managing PCOS symptoms.
Collapse
Affiliation(s)
- Apostolos Gkantzos
- Department
of Nutritional Sciences and Dietetics, International
Hellenic University, 57400 Thessaloniki, Greece
| | - Stavros Kalogiannis
- Department
of Nutritional Sciences and Dietetics, International
Hellenic University, 57400 Thessaloniki, Greece
| | - Olga Deda
- Laboratory
of Forensic Medicine & Toxicology, Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
20
|
Hong Z, Huang L, Zhou Q, Wu Y, Lin X, Wei Y, Wei Q, Deng G, Zhang Z. Plasma amino acid profiles and gestational diabetes mellitus risk: A case-control study. Clin Nutr 2025; 48:90-100. [PMID: 40174443 DOI: 10.1016/j.clnu.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 03/07/2025] [Accepted: 03/08/2025] [Indexed: 04/04/2025]
Abstract
BACKGROUND & AIMS Gestational diabetes mellitus (GDM) is a prevalent pregnancy complication associated with adverse short-term and long-term health outcomes for both mother and child. This study aimed to investigate the association between plasma amino acid concentrations and the incidence of GDM from 2019 to 2021. METHODS Plasma levels of 37 amino acids were precisely measured using triple quadrupole mass spectrometry. The principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) models identified metabolic differences between GDM and non-GDM groups. Conditional logistic regression, generalized linear model, and quantile g-computation were employed to assess the associations between individual or combined amino acids and GDM risk/blood glucose levels. The discriminatory power of various factors associated with the risk of GDM was evaluated using the area under the receiver operating characteristic curve (AUC-ROC). RESULTS A total of 969 pregnant women were included in this case-control study. OPLS-DA model identified 16 biomarkers that differentiated the GDM and non-GDM groups. After adjusting for potential covariates and correcting for multiple testing, conditional logistic regression analysis revealed that certain key amino acids, such as valine and isoleucine, were positively associated with the incidence of GDM, while glycine and serine were negatively associated with GDM risk (OR = 0.753-1.671, Pfdr = <0.001-0.001). Generalized linear model analysis showed that specific amino acids, including alpha-aminoadipic acid and arginine, were positively associated with blood glucose levels, while glycine and serine were negatively associated (β = -0.211-0.365, Pfdr = <0.001-0.045). Additionally, mixtures of the identified amino acids were significantly associated with an increased risk of GDM (P < 0.001). The combination of selected amino acids showed the highest ability to identify GDM in comparison with traditional risk factors and specific amino acids (AUC-ROC = 0.761, 95 % CI: 0.729-0.792). The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified two metabolic pathways related to GDM risk: "Glycine, Serine, and Threonine Metabolism" and "Arginine biosynthesis". CONCLUSIONS The overall amino acid profile, rather than disturbances in specific amino acids, may serve as a more important prevention or therapeutic target for GDM.
Collapse
Affiliation(s)
- Zhen Hong
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Lan Huang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Qinwen Zhou
- Department of Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yulin Wu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xiaoping Lin
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yuanhuan Wei
- Department of Clinical Nutrition, Union Shenzhen Hospital of Huazhong University of Science and Technology, Shenzhen 518000, China
| | - Qinzhi Wei
- Department of Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Guifang Deng
- Department of Clinical Nutrition, Union Shenzhen Hospital of Huazhong University of Science and Technology, Shenzhen 518000, China.
| | - Zheqing Zhang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
21
|
Li H, Seugnet L. Decoding the nexus: branched-chain amino acids and their connection with sleep, circadian rhythms, and cardiometabolic health. Neural Regen Res 2025; 20:1350-1363. [PMID: 39075896 PMCID: PMC11624887 DOI: 10.4103/nrr.nrr-d-23-02020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/18/2024] [Accepted: 05/12/2024] [Indexed: 07/31/2024] Open
Abstract
The sleep-wake cycle stands as an integrative process essential for sustaining optimal brain function and, either directly or indirectly, overall body health, encompassing metabolic and cardiovascular well-being. Given the heightened metabolic activity of the brain, there exists a considerable demand for nutrients in comparison to other organs. Among these, the branched-chain amino acids, comprising leucine, isoleucine, and valine, display distinctive significance, from their contribution to protein structure to their involvement in overall metabolism, especially in cerebral processes. Among the first amino acids that are released into circulation post-food intake, branched-chain amino acids assume a pivotal role in the regulation of protein synthesis, modulating insulin secretion and the amino acid sensing pathway of target of rapamycin. Branched-chain amino acids are key players in influencing the brain's uptake of monoamine precursors, competing for a shared transporter. Beyond their involvement in protein synthesis, these amino acids contribute to the metabolic cycles of γ-aminobutyric acid and glutamate, as well as energy metabolism. Notably, they impact GABAergic neurons and the excitation/inhibition balance. The rhythmicity of branched-chain amino acids in plasma concentrations, observed over a 24-hour cycle and conserved in rodent models, is under circadian clock control. The mechanisms underlying those rhythms and the physiological consequences of their disruption are not fully understood. Disturbed sleep, obesity, diabetes, and cardiovascular diseases can elevate branched-chain amino acid concentrations or modify their oscillatory dynamics. The mechanisms driving these effects are currently the focal point of ongoing research efforts, since normalizing branched-chain amino acid levels has the ability to alleviate the severity of these pathologies. In this context, the Drosophila model, though underutilized, holds promise in shedding new light on these mechanisms. Initial findings indicate its potential to introduce novel concepts, particularly in elucidating the intricate connections between the circadian clock, sleep/wake, and metabolism. Consequently, the use and transport of branched-chain amino acids emerge as critical components and orchestrators in the web of interactions across multiple organs throughout the sleep/wake cycle. They could represent one of the so far elusive mechanisms connecting sleep patterns to metabolic and cardiovascular health, paving the way for potential therapeutic interventions.
Collapse
Affiliation(s)
- Hui Li
- Department of Neurology, Xijing Hospital, Xi’an, Shaanxi Province, China
| | - Laurent Seugnet
- Centre de Recherche en Neurosciences de Lyon, Integrated Physiology of the Brain Arousal Systems (WAKING), Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR 5292, Bron, France
| |
Collapse
|
22
|
Panwar A, Malik SO, Adib M, Lopaschuk GD. Cardiac energy metabolism in diabetes: emerging therapeutic targets and clinical implications. Am J Physiol Heart Circ Physiol 2025; 328:H1089-H1112. [PMID: 40192025 DOI: 10.1152/ajpheart.00615.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/15/2024] [Accepted: 04/01/2025] [Indexed: 04/25/2025]
Abstract
Patients with diabetes are at an increased risk for developing diabetic cardiomyopathy and other cardiovascular complications. Alterations in cardiac energy metabolism in patients with diabetes, including an increase in mitochondrial fatty acid oxidation and a decrease in glucose oxidation, are important contributing factors to this increase in cardiovascular disease. A switch from glucose oxidation to fatty acid oxidation not only decreases cardiac efficiency due to increased oxygen consumption but it can also increase reactive oxygen species production, increase lipotoxicity, and redirect glucose into other metabolic pathways that, combined, can lead to heart dysfunction. Currently, there is a lack of therapeutics available to treat diabetes-induced heart failure that specifically target cardiac energy metabolism. However, it is becoming apparent that part of the benefit of existing agents such as GLP-1 receptor agonists and sodium-glucose cotransporter 2 inhibitors may be related to their effects on cardiac energy metabolism. In addition, direct approaches aimed at inhibiting cardiac fatty acid oxidation or increasing glucose oxidation hold future promise as potential therapeutic approaches to treat diabetes-induced cardiovascular disease.
Collapse
Affiliation(s)
- Archee Panwar
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Sufyan O Malik
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Muhtasim Adib
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Gary D Lopaschuk
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
23
|
Nazir A, Nazir A, Afzaal U, Aman S, Sadiq SUR, Akah OZ, Jamal MSW, Hassan SZ. Advancements in Biomarkers for Early Detection and Risk Stratification of Cardiovascular Diseases-A Literature Review. Health Sci Rep 2025; 8:e70878. [PMID: 40432692 PMCID: PMC12106349 DOI: 10.1002/hsr2.70878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 03/16/2025] [Accepted: 05/02/2025] [Indexed: 05/29/2025] Open
Abstract
Introduction CVDs is a leading cause of morbidity, mortality, and healthcare expenditure worldwide. Identifying individuals at risk or in the incipient stages of disease is instrumental in enabling timely interventions, preventive measures, and tailored treatment regimens. The landscape of CVDs is complicated by their heterogeneity, encompassing a spectrum of conditions such as coronary artery disease, heart failure, arrhythmias, and valvular disorders. In recent years, the integration of biomarkers into cardiovascular medicine has emerged as a paradigm-shifting approach with the potential to revolutionize early detection and risk stratification. By synthesizing a multitude of studies, we aim to provide a comprehensive resource that illuminates the transformative potential of biomarkers in ushering in a new era of precision cardiovascular medicine. Aim To identify the biomarkers for the detection and diagnosis of CVDs. Materials and Methods This review examines key studies from 2015 to the present that investigate the impact of cardiac biomarkers on cardiovascular outcomes. Data were gathered from PubMed, Cochrane Library, and Embase to ensure a comprehensive analysis. The review focuses on various cardiac biomarkers, assessing their levels and changes in relation to cardiovascular health, with special emphasis on advanced biomarkers such as proteomic and metabolomic markers in cardiovascular disease (CVD) diagnosis. Peer-reviewed studies published in English that evaluated the diagnostic, prognostic, or therapeutic role of cardiac biomarkers were included, with priority given to clinical trials, cohort studies, systematic reviews, and meta-analyses providing quantitative biomarker data. Studies unrelated to cardiac biomarkers, case reports, editorials, conference abstracts, and those with small sample sizes or insufficient methodological rigor were excluded. The review also accounts for potential confounding factors and research limitations, ensuring a balanced assessment of the literature. By synthesizing data from academic papers, clinical reports, and research articles, this study provides a comprehensive evaluation of the evolving role of cardiac biomarkers in CVD diagnosis and risk stratification. Results Biomarkers play a pivotal role in cardiovascular disease risk prediction, diagnosis, and treatment by providing dynamic biological insights. High-sensitivity cardiac troponins (hs-cTn) enhance myocardial injury detection, while circulating microRNAs (miR-208, miR-499) serve as early indicators of myocardial infarction and heart failure. Lipoprotein(a) [Lp(a)] predicts long-term cardiovascular risk, and inflammatory biomarkers such as C-reactive protein (CRP) and interleukin-6 (IL-6) are linked to adverse outcomes. Multi-biomarker panels, such as hs-cTn with B-type natriuretic peptide (BNP), improve heart failure prognosis, while metabolomic profiling enables precision medicine. Additionally, biomarkers like BNP and NT-proBNP facilitate real-time therapeutic monitoring. These findings underscore the critical role of biomarkers in refining risk stratification, improving diagnostic accuracy, and enabling personalized treatment strategies in cardiovascular medicine. Conclusion The advancement of cardiovascular biomarkers has significantly enhanced early detection, risk stratification, and personalized treatment. Emerging biomarkers, including genetic variants, metabolomics, microRNAs, and imaging-based markers, provide deeper insights into disease mechanisms. Integrating multi-omic approaches with artificial intelligence may further refine predictive accuracy and therapeutic decision-making. However, clinical translation requires rigorous validation through large-scale, multicenter studies to ensure reliability and applicability across diverse populations. Standardization, cost-effectiveness assessments, and the development of biomarker panels are essential for clinical adoption. Future research should focus on bridging discovery and implementation, advancing precision medicine to improve cardiovascular outcomes.
Collapse
Affiliation(s)
- Abubakar Nazir
- Oli Health Magazine Organization, Research and EducationKigaliRwanda
- Department of MedicineKing Edward Medical UniversityLahorePakistan
| | - Awais Nazir
- Oli Health Magazine Organization, Research and EducationKigaliRwanda
- Department of MedicineKing Edward Medical UniversityLahorePakistan
| | - Usama Afzaal
- Oli Health Magazine Organization, Research and EducationKigaliRwanda
- Department of MedicineKing Edward Medical UniversityLahorePakistan
| | - Shafaq Aman
- Department of MedicineKing Edward Medical UniversityLahorePakistan
- St John of God Midland HospitalsAustralia
| | | | | | | | - Syed Zawahir Hassan
- Division of Cardiovascular PreventionHouston Methodist DeBakey Heart & Vascular CenterHoustonUSA
| |
Collapse
|
24
|
Duerre DJ, Hansen JK, John SV, Jen A, Carrillo ND, Bui H, Bao Y, Fabregat M, Catrow JL, Chen LY, Overmyer KA, Shishkova E, Pearce Q, Keller MP, Anderson RA, Cryns VL, Attie AD, Cox JE, Coon JJ, Fan J, Galmozzi A. Haem biosynthesis regulates BCAA catabolism and thermogenesis in brown adipose tissue. Nat Metab 2025; 7:1018-1033. [PMID: 40133548 PMCID: PMC12116240 DOI: 10.1038/s42255-025-01253-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/19/2025] [Indexed: 03/27/2025]
Abstract
The distinctive colour of brown adipose tissue (BAT) is attributed to its high content of haem-rich mitochondria. However, the mechanisms by which BAT regulates intracellular haem levels remain largely unexplored. Here we demonstrate that haem biosynthesis is the primary source of haem in brown adipocytes. Inhibiting haem biosynthesis results in an accumulation of the branched-chain amino acids (BCAAs) valine and isoleucine, owing to a haem-associated metabolon that channels BCAA-derived carbons into haem biosynthesis. Haem synthesis-deficient brown adipocytes display reduced mitochondrial respiration and lower UCP1 levels than wild-type cells. Although exogenous haem supplementation can restore intracellular haem levels and mitochondrial function, UCP1 downregulation persists. This sustained UCP1 suppression is linked to epigenetic regulation induced by the accumulation of propionyl-CoA, a byproduct of disrupted haem synthesis. Finally, disruption of haem biosynthesis in BAT impairs thermogenic response and, in female but not male mice, hinders the cold-induced clearance of circulating BCAAs in a sex-hormone-dependent manner. These findings establish adipose haem biosynthesis as a key regulator of thermogenesis and sex-dependent BCAA homeostasis.
Collapse
Affiliation(s)
- Dylan J Duerre
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Julia K Hansen
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Steven V John
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
- Morgridge Institute for Research, Madison, WI, USA
| | - Annie Jen
- Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Noah D Carrillo
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Molecular and Environmental Toxicology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Hoang Bui
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Yutong Bao
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Matias Fabregat
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - J Leon Catrow
- Metabolomics Core Research Facility, University of Utah, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Li-Yu Chen
- Graduate Program in Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Katherine A Overmyer
- Morgridge Institute for Research, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- National Center for Quantitative Biology of Complex Systems, Madison, WI, USA
| | - Evgenia Shishkova
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- National Center for Quantitative Biology of Complex Systems, Madison, WI, USA
| | - Quentinn Pearce
- Metabolomics Core Research Facility, University of Utah, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Mark P Keller
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Richard A Anderson
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Vincent L Cryns
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Alan D Attie
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - James E Cox
- Metabolomics Core Research Facility, University of Utah, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Joshua J Coon
- Morgridge Institute for Research, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- National Center for Quantitative Biology of Complex Systems, Madison, WI, USA
| | - Jing Fan
- Morgridge Institute for Research, Madison, WI, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Andrea Galmozzi
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
25
|
Maltais-Payette I, Lajeunesse-Trempe F, Nadeau M, Bouvet-Bouchard L, Hould FS, Biertho L, Tchernof A. Circulating Amino Acid Changes Three Years After Bariatric Surgery. Metabolites 2025; 15:297. [PMID: 40422874 DOI: 10.3390/metabo15050297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 03/19/2025] [Accepted: 03/25/2025] [Indexed: 05/28/2025] Open
Abstract
BACKGROUND AND OBJECTIVE Studies using metabolomics to study bariatric surgery have shown that amino acids are one of the most changed groups of metabolites after the intervention. However, the surgery-related variation in individual amino acids, as well as the long-term impact and the differences between the types of surgeries, have been poorly studied. The aim of this study was to investigate the changes in circulating amino acids after three types of bariatric surgery up to 36 months after the intervention. METHODS We studied 63 participants diagnosed with T2D at baseline, who received either a sleeve gastrectomy, a Roux-en-Y gastric bypass or a biliopancreatic diversion with duodenal switch. We measured the concentrations of 16 circulating amino acids in fasting plasma before the surgery as well as after 4, 12, 24 and 36 months via liquid chromatography coupled with mass spectrometry (LC-MS/MS). RESULTS Eleven circulating amino acids were significantly modified by bariatric surgery. Glutamate, leucine and isoleucine showed the greatest decrease. Most of the changes in circulating amino acids occurred within 1 year of the operations. Only one measured plasmatic amino acid (threonine) had a significantly different change pattern according to surgery types. In repeated-measure correlations, changes in circulating amino acids were significantly associated with changes in adiposity and metabolic markers. CONCLUSIONS Bariatric surgery changes the levels of most circulating amino acids, and the effect occurs in the short term without major differences between surgery types. The mechanisms explaining these changes are not elucidated but likely include modifications in amino acid metabolism.
Collapse
Affiliation(s)
- Ina Maltais-Payette
- Heart and Lung Institute, Laval University, Quebec, QC G1V 4G5, Canada
- School of Nutrition, Faculty of Agricultural and Food Sciences, Laval University, Quebec, QC G1V 0A6, Canada
| | - Fannie Lajeunesse-Trempe
- Heart and Lung Institute, Laval University, Quebec, QC G1V 4G5, Canada
- Faculty of Pharmacy, Laval University, Quebec, QC G1V 0A6, Canada
| | - Mélanie Nadeau
- Heart and Lung Institute, Laval University, Quebec, QC G1V 4G5, Canada
| | - Léonie Bouvet-Bouchard
- Heart and Lung Institute, Laval University, Quebec, QC G1V 4G5, Canada
- Department of Surgery, Faculty of Medicine, Laval University, Quebec G1V 0A6, QC, Canada
| | - Frédéric Simon Hould
- Heart and Lung Institute, Laval University, Quebec, QC G1V 4G5, Canada
- Department of Surgery, Faculty of Medicine, Laval University, Quebec G1V 0A6, QC, Canada
| | - Laurent Biertho
- Heart and Lung Institute, Laval University, Quebec, QC G1V 4G5, Canada
- Department of Surgery, Faculty of Medicine, Laval University, Quebec G1V 0A6, QC, Canada
| | - André Tchernof
- Heart and Lung Institute, Laval University, Quebec, QC G1V 4G5, Canada
- School of Nutrition, Faculty of Agricultural and Food Sciences, Laval University, Quebec, QC G1V 0A6, Canada
| |
Collapse
|
26
|
Passadore MD, Azinheira Nobrega Cruz N, Bocato MZ, Ferreira LDA, Icimoto MY, Molina MDCB, Mill JG, Barbosa Junior F, Casarini DE, de Oliveira LCG. Urinary amino acid metabolomic profiling and its association with childhood obesity in prepubescent individuals. Front Physiol 2025; 16:1524939. [PMID: 40365082 PMCID: PMC12069889 DOI: 10.3389/fphys.2025.1524939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 04/07/2025] [Indexed: 05/15/2025] Open
Abstract
Introduction Amino acids are fundamental in several metabolic processes, and their levels can reflect metabolism impairments that contribute to obesity and related diseases. Our objective was to identify a urinary amino acid fingerprint in obese and overweight children in prepuberty and to correlate this profile with cardiometabolic alterations. Methods The study included 110 children, boys and girls aged 9-10 years, they were classified according to their BMI-for-age (Body Mass Index for age) into three groups: normal weight (NW) (n = 45), overweight (OW) (n = 21), and obese (OB) (n = 44). The 12-h urine samples were analyzed by LC-MS/MS to quantify 47 amino acids using the Amino Acids Analysis Kit (Zivak®, Turkey), values were corrected by creatinine concentration. Anthropometric measurements, cardiovascular parameters, and biochemical profiles were assessed following standard protocols. Results When compared to NW, anthropometric measures, systolic and diastolic blood pressure, and serum uric acid levels were progressively elevated in the OW and OB groups. The OB group was characterized by elevated alpha-aminoadipic acid, asparagine, cystathionine, 1-methyl-histidine, serine, tryptophan, phenylalanine, and tyrosine. In contrast, the OW group presented the most expressive levels of glutamine, alpha-diaminopimelic, and sarcosine. Discussion Our findings indicate that obese and overweight children exhibit a particular urinary amino acid fingerprint which is similar to that reported in studies with plasma. The altered amino acids, particularly tyrosine, are frequently associated with impairments in glucose homeostasis, insulin resistance, and diabetes mellitus type 2. Potential mechanisms for increasing the levels of these amino acids in excess of weight may include enhanced protein degradation and impaired oxidative metabolism.
Collapse
Affiliation(s)
- Mariana Doce Passadore
- Postgraduation Program of Nephrology, Nephrology Division, Department of Medicine, Universidade Federal de São Paulo (UNIFESP/EPM), Sao Paulo, Brazil
| | - Nayara Azinheira Nobrega Cruz
- Postgraduation Program of Translational Medicine, Nephrology Division, Department of Medicine, Universidade Federal de São Paulo (UNIFESP/EPM), Sao Paulo, Brazil
| | - Mariana Zuccherato Bocato
- Analytical and System Toxicology Laboratory, Department of Clinical, Toxicological and Bromatological Analysis, Faculty of Pharmaceutical Sciences of Ribeirao Preto, Universidade de São Paulo, Sao Paulo, Brazil
| | | | - Marcelo Yudi Icimoto
- Department of Biophysics, Universidade Federal de São Paulo (UNIFESP/EPM), Sao Paulo, Brazil
| | - Maria del Carmen Bisi Molina
- Department of Integrated Health Education, Center for Health Sciences, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - José Geraldo Mill
- Department of Physiological Sciences, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Fernando Barbosa Junior
- Analytical and System Toxicology Laboratory, Department of Clinical, Toxicological and Bromatological Analysis, Faculty of Pharmaceutical Sciences of Ribeirao Preto, Universidade de São Paulo, Sao Paulo, Brazil
| | - Dulce Elena Casarini
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo (UNIFESP/EPM), Sao Paulo, Brazil
| | | |
Collapse
|
27
|
Dinari Z, Najafi A, Sharifi SD, Ghaleno LR, Alizadeh A, Pashaei M, Rashidi A. Dietary valine affects Japanese quails' sperm parameters and testis histology. Poult Sci 2025; 104:105181. [PMID: 40334388 DOI: 10.1016/j.psj.2025.105181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/11/2025] [Accepted: 04/17/2025] [Indexed: 05/09/2025] Open
Abstract
Valine is an essential amino acid that participates in various physiological and metabolic activities. The objective of the present study was to investigate the influence of different valine levels in the diet on the reproductive performance of adult male Japanese quails. Forty male quail chicks (14-24 week old) were employed in a completely randomized design with 5 treatments (0.65, 0.75, 0.85, 0.95, and 1.05 % valine in the diet), 4 replicates and 2 birds in each replicate over a period of 35 days following a 14-day adaptation period. Semen was collected weekly, and its characteristics were analyzed. The birds were then ethically slaughtered, and histological analyses were performed on testicular samples. Results showed that the different valine levels had no significant effect on testicle volume, length and relative weight, although testicle diameter tended to decrease with increasing valine level in the diet in a linear and quadratic manner (p < 0.05). The total motility and progressive motility of sperm decreased with an increase in dietary valine (p < 0.05). Abnormal sperm morphology increased with increasing valine level in the diet and the difference between treatments was significant. Different valine levels in the diet significantly affected the height of seminiferous tubule epithelia, diameter and number of tubules as well as the tubular differentiation index of the testis; but the spermatogenic index was not affected by the treatments. The findings of the study indicate that when valine levels in the diet exceed 0.75 %, there is an adverse impact on testicular volume and diameter, as well as the qualitative properties of sperm in adult quails. It is advisable to pursue additional research in this area.
Collapse
Affiliation(s)
- Zahra Dinari
- Department of Animal and Poultry Science, Faculty of Agricultural Technology, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran
| | - Abouzar Najafi
- Department of Animal and Poultry Science, Faculty of Agricultural Technology, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran
| | - Seyed Davood Sharifi
- Department of Animal and Poultry Science, Faculty of Agricultural Technology, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran.
| | - Leila Rashki Ghaleno
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - AliReza Alizadeh
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran; Department of Basic and Population Based Studies in NCD, Reproductive Epidemiology Research Center, Royan Institute, ACECR, Tehran, Iran
| | - Morteza Pashaei
- Department of Animal and Poultry Science, Faculty of Agricultural Technology, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran
| | - Ali Rashidi
- Department of Animal and Poultry Science, Faculty of Agricultural Technology, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran
| |
Collapse
|
28
|
Xiao M, Zhou N, Tian Z, Sun C. Endogenous Metabolites in Metabolic Diseases: Pathophysiologic Roles and Therapeutic Implications. J Nutr 2025:S0022-3166(25)00227-5. [PMID: 40250565 DOI: 10.1016/j.tjnut.2025.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025] Open
Abstract
Breakthroughs in metabolomics technology have revealed the direct regulatory role of metabolites in physiology and disease. Recent data have highlighted the bioactive metabolites involved in the etiology and prevention and treatment of metabolic diseases such as obesity, nonalcoholic fatty liver disease, type 2 diabetes mellitus, and atherosclerosis. Numerous studies reveal that endogenous metabolites biosynthesized by host organisms or gut microflora regulate metabolic responses and disorders. Lipids, amino acids, and bile acids, as endogenous metabolic modulators, regulate energy metabolism, insulin sensitivity, and immune response through multiple pathways, such as insulin signaling cascade, chemical modifications, and metabolite-macromolecule interactions. Furthermore, the gut microbial metabolites short-chain fatty acids, as signaling regulators have a variety of beneficial impacts in regulating energy metabolic homeostasis. In this review, we will summarize information about the roles of bioactive metabolites in the pathogenesis of many metabolic diseases. Furthermore, we discuss the potential value of metabolites in the promising preventive and therapeutic perspectives of human metabolic diseases.
Collapse
Affiliation(s)
- Mengjie Xiao
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, P. R. China; Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, Harbin, P. R. China
| | - Ning Zhou
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, P. R. China; Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, Harbin, P. R. China
| | - Zhen Tian
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, P. R. China; Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, Harbin, P. R. China.
| | - Changhao Sun
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, P. R. China; Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, Harbin, P. R. China.
| |
Collapse
|
29
|
Asakura J, Nagao M, Shinohara M, Hosooka T, Kuwahara N, Nishimori M, Tanaka H, Satomi-Kobayashi S, Matsui S, Sasaki T, Kitamura T, Otake H, Ishida T, Ogawa W, Hirata KI, Toh R. Impaired cardiac branched-chain amino acid metabolism in a novel model of diabetic cardiomyopathy. Cardiovasc Diabetol 2025; 24:167. [PMID: 40240904 PMCID: PMC12004671 DOI: 10.1186/s12933-025-02725-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 04/05/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Systemic insulin resistance plays an important role in the pathogenesis of type 2 diabetes and its complications. Although impaired branched-chain amino acid (BCAA) metabolism has been reported to be involved in the development of diabetes, the relationship between cardiac BCAA metabolism and the pathogenesis of diabetic cardiomyopathy (DbCM) remains unclear. OBJECTIVES The aim of this study was to investigate BCAA metabolism in insulin-resistant hearts by using a novel mouse model of DbCM. METHODS The cardiac phenotypes of adipocyte-specific 3'-phosphoinositide-dependent kinase 1 (PDK1)-deficient (A-PDK1KO) mice were assessed by histological analysis and echocardiography. The metabolic characteristics and cardiac gene expression were determined by mass spectrometry or RNA sequencing, respectively. Cardiac protein expression was evaluated by Western blot analysis. RESULTS A-PDK1KO mouse hearts exhibited hypertrophy with prominent insulin resistance, consistent with cardiac phenotypes and metabolic disturbances previously reported as DbCM characteristics. RNA sequencing revealed the activation of BCAA uptake in diabetic hearts. In addition, the key enzymes involved in cardiac BCAA catabolism were downregulated at the protein level in A-PDK1KO mice, leading to the accumulation of BCAAs in the heart. Mechanistically, the accumulation of the BCAA leucine caused cardiac hypertrophy via the activation of mammalian target of rapamycin complex 1 (mTORC1). CONCLUSIONS A-PDK1KO mice closely mimic the cardiac phenotypes and metabolic alterations observed in human DbCM and exhibit impaired BCAA metabolism in the heart. This model may contribute to a better understanding of DbCM pathophysiology and to the development of novel therapies for this disease.
Collapse
Affiliation(s)
- Junko Asakura
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Manabu Nagao
- Division of Evidence-Based Laboratory Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Masakazu Shinohara
- Division of Molecular Epidemiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Japan
- The Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Japan
| | - Tetsuya Hosooka
- Laboratory of Nutritional Physiology, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Japan
| | - Naoya Kuwahara
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Makoto Nishimori
- Division of Molecular Epidemiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Japan
| | - Hidekazu Tanaka
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Seimi Satomi-Kobayashi
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Sho Matsui
- Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology Graduate School of Agriculture, Kyoto University, 7-10-2 Tomogaoka, Suma-ku, Kyoto, 654-0142, Japan
| | - Tsutomu Sasaki
- Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology Graduate School of Agriculture, Kyoto University, 7-10-2 Tomogaoka, Suma-ku, Kyoto, 654-0142, Japan
| | - Tadahiro Kitamura
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Hiromasa Otake
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Tatsuro Ishida
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
- Division of Nursing Practice, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Wataru Ogawa
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Japan
| | - Ken-Ichi Hirata
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
- Division of Evidence-Based Laboratory Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Ryuji Toh
- Division of Evidence-Based Laboratory Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| |
Collapse
|
30
|
Gonciarz W, Kozlowska L, Róg J, Chmiela M. Untargeted metabolomic profiling for identifying systemic signatures of helicobacter pylori infection in a guinea pig model. Sci Rep 2025; 15:12889. [PMID: 40234702 PMCID: PMC12000522 DOI: 10.1038/s41598-025-98016-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 04/08/2025] [Indexed: 04/17/2025] Open
Abstract
Infections caused by the Gram-negative bacterium Helicobacter pylori (H. pylori) can lead to gastritis, gastric or duodenal ulcers, and even gastric cancer in humans. Investigating quantitative changes in soluble biomarkers associated with H. pylori infection offers a promising method for monitoring the progression of the infection, inflammatory response and potentially systemic consequences. This study aimed to identify, using an experimental model of H. pylori infection in guinea pigs, the specific metabolomic biomarkers in the serum of H. pylori-infected (32) versus uninfected (32) animals. The H. pylori status was confirmed through histological, molecular, and serological examinations. Metabolomic profiling was conducted using UPLC-QTOF/MS methods. The metabolomic biomarkers significantly associated with H. pylori infection were selected based on volcano plots and traditional univariate receiver operating characteristics (ROC). This study identified 12 unique metabolites significantly differentiating H. pylori-infected guinea pigs from uninfected ones. In summary, the metabolomic profiling of serum samples, in combination with ROC characteristics of the data, enhances the monitoring of H. pylori infection and related inflammatory responses in guinea pigs experimentally infected with these bacteria, with potential applications in humans for prediction the infection course and its systemic effects.
Collapse
Affiliation(s)
- Weronika Gonciarz
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90‑237, Lodz, Poland.
| | - Lucyna Kozlowska
- Laboratory of Human Metabolism Research, Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776, Warsaw, Poland
| | - Joanna Róg
- Laboratory of Human Metabolism Research, Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776, Warsaw, Poland
| | - Magdalena Chmiela
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90‑237, Lodz, Poland
| |
Collapse
|
31
|
Wang J, Cui C, Hou F, Wu Z, Peng Y, Jin H. Metabolic profiling and early prediction models for gestational diabetes mellitus in PCOS and non-PCOS pregnant women. Eur J Med Res 2025; 30:245. [PMID: 40186293 PMCID: PMC11971856 DOI: 10.1186/s40001-025-02526-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) is the most common pregnancy complication, significantly affecting maternal and neonatal health. Polycystic ovary syndrome (PCOS) is a common endocrine disorder characterized by metabolic abnormalities, which notably elevates the risk of developing GDM during pregnancy. METHODS In this study, we utilized ultra-high-performance liquid chromatography for untargeted metabolomics analysis of serum samples from 137 pregnant women in the early-to-mid-pregnancy. The cohort consisted of 137 participants, including 70 in the PCOS group (36 who developed GDM in mid-to-late pregnancy and 34 who did not) and 67 in the non-PCOS group (37 who developed GDM and 30 who remained GDM-free). The aim was to investigate metabolic profile differences between PCOS and non-PCOS patients and to construct early GDM prediction models separately for the PCOS and non-PCOS groups. RESULTS Our findings revealed significant differences in the metabolic profiles of PCOS patients, which may help elucidate the higher risk of GDM in the PCOS population. Moreover, tailored early GDM prediction models for the PCOS group demonstrated high predictive performance, providing strong support for early diagnosis and intervention in clinical practice. CONCLUSIONS Untargeted metabolomics analysis revealed distinct metabolic patterns between PCOS patients and non-PCOS patients, particularly in pathways related to GDM. Based on these findings, we successfully constructed GDM prediction models for both PCOS and non-PCOS groups, offering a promising tool for clinical management and early intervention in high-risk populations.
Collapse
Affiliation(s)
- Jin Wang
- Prenatal Diagnosis Center, Jinan Maternal and Child Health Care Hospital, No. 2, Rd. Jianguo Xiaojing, Jinan, 250002, Shandong Province, People's Republic of China
- Shandong First Medical University, Jinan, Shandong Province, People's Republic of China
| | - Can Cui
- Prenatal Diagnosis Center, Jinan Maternal and Child Health Care Hospital, No. 2, Rd. Jianguo Xiaojing, Jinan, 250002, Shandong Province, People's Republic of China
- Shandong First Medical University, Jinan, Shandong Province, People's Republic of China
| | - Fei Hou
- Prenatal Diagnosis Center, Jinan Maternal and Child Health Care Hospital, No. 2, Rd. Jianguo Xiaojing, Jinan, 250002, Shandong Province, People's Republic of China
- Shandong First Medical University, Jinan, Shandong Province, People's Republic of China
| | - Zhiyan Wu
- Department of Gynecology, Qingzhou People's Hospital, Weifang, Shandong Province, People's Republic of China
| | - Yingying Peng
- Prenatal Diagnosis Center, Jinan Maternal and Child Health Care Hospital, No. 2, Rd. Jianguo Xiaojing, Jinan, 250002, Shandong Province, People's Republic of China
- Shandong First Medical University, Jinan, Shandong Province, People's Republic of China
| | - Hua Jin
- Prenatal Diagnosis Center, Jinan Maternal and Child Health Care Hospital, No. 2, Rd. Jianguo Xiaojing, Jinan, 250002, Shandong Province, People's Republic of China.
- Shandong First Medical University, Jinan, Shandong Province, People's Republic of China.
| |
Collapse
|
32
|
Bobin P, Mitanchez D, Castellano B, Grit I, Moyon T, Raux A, Vambergue A, Winer N, Darmaun D, Michel C, Le Drean G, Alexandre-Gouabau MC. A specific metabolomic and lipidomic signature reveals the postpartum resolution of gestational diabetes mellitus or its evolution to type 2 diabetes in rat. Am J Physiol Endocrinol Metab 2025; 328:E493-E512. [PMID: 39947887 DOI: 10.1152/ajpendo.00396.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/11/2024] [Accepted: 02/01/2025] [Indexed: 04/01/2025]
Abstract
Gestational diabetes mellitus (GDM) represents a major public health concern due to adverse maternal postpartum and long-term outcomes. Current strategies to manage GDM fail to reduce the maternal risk to develop later impaired glucose tolerance (IGT) and type 2 diabetes (T2D). In a rodent model of diet-induced GDM without obesity, we explored the perinatal metabolic adaptations in dams with gestational IGT followed by either persistent or resolved postpartum IGT. Female Sprague-Dawley rats were fed a high-fat high-sucrose (HFHS) or a chow [control group (CTL)] diet, 1 wk before mating and throughout gestation (G). Following parturition, HFHS dams were randomized to two subgroups: one switched to a chow diet and the other one maintained on an HFHS diet throughout lactation (L). Oral glucose tolerance tests (OGTTs) were performed, and plasma metabolome-lipidome were characterized at G12 and L12. We found that 1) in GDM-pregnant dams, IGT was associated with incomplete fatty acid oxidation (FAO), enhanced gluconeogenesis, altered insulin signaling, and oxidative stress; 2) improved glucose tolerance postpartum seemed to restore complete FAO along with elevation of nervonic acid-containing sphingomyelins, assumed to impart β-cell protection; and 3) persistence of IGT after delivery was associated with metabolites known to predict the early onset of insulin and leptin resistance, with maintained liver dysfunction. Our findings shed light on the impact of postpartum IGT evolution on maternal metabolic outcome after an episode of GDM. They suggest innovative strategies, implemented shortly after delivery and targeted on these biomarkers, should be explored to curb or delay the transition from GDM to T2D in these mothers.NEW & NOTEWORTHY Specific metabolomic/lipidomic features are associated with GDM postpartum outcomes. GDM-pregnant dams exhibit partial fatty acid oxidation and boosted gluconeogenesis. Resolution of postpartum IGT relies on nervonic acid-sphingomyelin, a β-cell protector. Postpartum IGT persistence suggests muscle insulin resistance and liver dysfunction.
Collapse
Affiliation(s)
- Paul Bobin
- Nantes Université, INRAE, UMR1280 PhAN, Nantes, France
| | - Delphine Mitanchez
- Department of Neonatology, Bretonneau Hospital, François Rabelais University, Tours, France
- INSERM UMRS_938, Centre de Recherche Saint Antoine, Paris, France
| | | | - Isabelle Grit
- Nantes Université, INRAE, UMR1280 PhAN, Nantes, France
| | - Thomas Moyon
- Nantes Université, INRAE, UMR1280 PhAN, Nantes, France
| | - Axel Raux
- Oniris, INRAE, LABERCA, Nantes, France
| | - Anne Vambergue
- Department of Diabetology, Hospital Huriez, CHRU de Lille, University of Lille, EGID-UMR 8199, Lille, France
| | - Norbert Winer
- Nantes Université, INRAE, UMR1280 PhAN, Nantes, France
- Department of Obstetrics and Gynecology, CHU, Nantes University Hospital, Nantes, France
| | | | | | | | | |
Collapse
|
33
|
Ao L, van Heemst D, Jukema JW, Rensen PCN, Willems van Dijk K, Noordam R. Potential causal evidence for an ApoB-independent and HDL-related risk profile associated with coronary artery disease. J Lipid Res 2025; 66:100778. [PMID: 40089107 PMCID: PMC12000745 DOI: 10.1016/j.jlr.2025.100778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 02/09/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025] Open
Abstract
Plasma 1H-NMR metabolomic measures have yielded significant insight into the pathophysiology of cardiometabolic disease, but their inter-related nature complicates causal inference and clinical interpretation. This study aimed to investigate the associations of unrelated 1H-NMR metabolomic profiles with coronary artery disease (CAD) and ischemic stroke (IS). Principal component (PC) analysis was performed on 168 1H-NMR metabolomic measures in 56,712 unrelated European participants from UK Biobank to retrieve uncorrelated PCs, which were used in Cox-proportional hazard models. For each outcome, two-sample Mendelian randomization analyses were then conducted based on three nonoverlapping databases, followed by a meta-analysis. The first six PCs collectively explaining 88% of the total variance were identified. For CAD, results from Cox and Mendelian randomization analyses were generally directionally consistent. The pooled odds ratios (95% CI) for CAD per one-SD increase in genetically influenced PC1 and PC3 (both characterized by distinct apolipoprotein B [ApoB]-associated lipoprotein profiles) were 1.04 (1.03, 1.05) and 0.94 (0.93, 0.96), respectively. Besides, the pooled odds ratio (95% CI) for CAD per one-SD increase in genetically influenced PC4, characterized by simultaneously decreased small HDL and increased large HDL, and independent of ApoB, was 1.05 (1.03, 1.07). For IS, increases of PC3 and PC5 (characterized by increased amino acids) were associated with a lower risk and a higher risk, respectively. This study confirms associations of ApoB-associated lipoprotein profiles with CAD and IS, and highlights the possible existence of an ApoB-independent lipoprotein profile, characterized by a distinctive HDL subparticle distribution, driving CAD.
Collapse
Affiliation(s)
- Linjun Ao
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands.
| | - Diana van Heemst
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands; Netherlands Heart Institute, Utrecht, the Netherlands
| | - Patrick C N Rensen
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Ko Willems van Dijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands; Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Raymond Noordam
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
34
|
Haws SA, Liu Y, Green CL, Chaiyakul K, Mishra P, Babygirija R, Armstrong EA, Mehendale AT, Ong IM, Lamming DW, Denu JM. Individual dietary amino acid restrictions induce distinct metabolic and chromatin states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.12.06.570456. [PMID: 38106163 PMCID: PMC10723491 DOI: 10.1101/2023.12.06.570456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Dietary protein and essential amino acid (EAA) restriction promote favorable metabolic reprogramming, although the extent to which shared or EAA-specific mechanisms facilitate diet-associated phenotypes remains unclear. Here, we compared the physiological and molecular effects of dietary methionine, leucine, or isoleucine depletion (Met-D, Leu-D, and Ile-D) in C57BL/6J mice. Each diet elicited responses not phenocopied by mTORC1 inhibition, including reduced fat mass and hepatic amino acid catabolism. Ile-D yielded additional distinct responses, highlighted by histone H2A/H4 hypoacetylation and maintained hepatic acetyl-CoA levels despite downregulated FA β-oxidation. Multi-Omics Factor Analysis of 14,139 data points objectively affirmed Ile-D phenotypes are distinct from Met-D or Leu-D and identified several metabolic and chromatin features as primary discriminators. Metabolic and epigenetic responses to Ile-D were recapitulated in vitro , suggesting underlying mechanisms represent fundamental cellular properties. Together, these results demonstrate EAAs can stimulate unique phenotypes and highlight distinct molecular mechanisms by which EAAs may inform metabolic health.
Collapse
|
35
|
Hong Z, Zhou K, Wei Y, Ma B, Xie G, Zhang Z, Liang J. Associations of Plasma and Fecal Metabolites with Body Mass Index and Body Fat Distribution in Children. J Clin Endocrinol Metab 2025; 110:e1173-e1184. [PMID: 38703096 DOI: 10.1210/clinem/dgae296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/03/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
CONTEXT Childhood obesity continues to be a critical public health concern with far-reaching implications for well-being. OBJECTIVE This study aimed to investigate the association between metabolites in plasma and feces and indicators including body mass index (BMI), BMI for age Z score (BMIZ), and body fat distribution among children aged 6 to 9 years in China. METHODS This cross-sectional study enrolled 424 healthy children, including 186 girls and 238 boys. Dual-energy X-ray absorptiometry was used to determine the body fat content and regional fat distribution. Plasma and fecal metabolites were analyzed using targeted metabolomic technologies. RESULTS A total of 200 plasma metabolites and 212 fecal metabolites were accurately quantified via ultra-performance liquid chromatography coupled with tandem mass spectrometry. By using orthogonal projections to latent structures discriminant analysis and random forest model, we discovered that 9 plasma metabolites and 11 fecal metabolites were associated with different weight statuses. After adjusting for potential covariates and false discovery rate correction, multiple linear regression analyses revealed that plasma metabolites (fumaric acid, glycine, l-glutamine, methylmalonic acid, and succinic acid) and fecal metabolites (protocatechuic acid) were negatively associated (β -1.373 to -.016, pFDR < 0.001-0.031; β -1.008 to -.071, pFDR 0.005-0.033), while plasma metabolites (isovaleric acid, isovalerylcarnitine, l-glutamic acid, and pyroglutamic acid) and fecal metabolites (3-aminoisobutanoic acid, butyric acid, N-acetylneuraminic acid, octanoylcarnitine, oleoylcarnitine, palmitoylcarnitine, stearoylcarnitine, taurochenodesoxycholic acid, and taurodeoxycholic acid) exhibited positive associations with BMI, BMIZ, and body fat distribution (β .023-2.396, pFDR < 0.001; β .014-1.736, pFDR < 0.001-0.049). CONCLUSION Plasma and fecal metabolites such as glutamine may serve as potential therapeutic targets for the development of obesity.
Collapse
Affiliation(s)
- Zhen Hong
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510145, China
| | - Kejun Zhou
- Department of Medical Laboratory, Human Metabolomics Institute, Inc., Shenzhen 518109, China
| | - Yuanhuan Wei
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510145, China
| | - Bingjie Ma
- Department of Child Health Care, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, China
| | - Guoxiang Xie
- Department of Medical Laboratory, Human Metabolomics Institute, Inc., Shenzhen 518109, China
| | - Zheqing Zhang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510145, China
| | - Jingjing Liang
- Department of Child Health Care, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, China
| |
Collapse
|
36
|
Dadson P, Honka MJ, Suomi T, Haridas PAN, Rokka A, Palani S, Goltseva E, Wang N, Roivainen A, Salminen P, James P, Olkkonen VM, Elo LL, Nuutila P. Proteomic profiling reveals alterations in metabolic and cellular pathways in severe obesity and following metabolic bariatric surgery. Am J Physiol Endocrinol Metab 2025; 328:E311-E324. [PMID: 39819027 DOI: 10.1152/ajpendo.00220.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/12/2024] [Accepted: 12/17/2024] [Indexed: 01/19/2025]
Abstract
In this study, we investigated the impact of bariatric surgery on the adipose proteome to better understand the metabolic and cellular mechanisms underlying weight loss following the procedure. A total of 46 patients with severe obesity were included, with samples collected both before and after bariatric surgery. In addition, 15 healthy individuals without obesity who did not undergo surgery served as controls and were studied once. We utilized quantitative liquid chromatography-tandem mass spectrometry analysis to conduct a large-scale proteomic study on abdominal subcutaneous biopsies obtained from the study participants. Our proteomic profiling revealed that among the 2,254 compared proteins, 46 were upregulated and 34 were downregulated 6 months post surgery compared with baseline [false discovery rate (FDR) < 0.01]. We observed a downregulation of proteins associated with mitochondrial integrity, amino acid catabolism, and lipid metabolism in the patients with severe obesity compared with the controls. Bariatric surgery was associated with an upregulation in pathways related to mitochondrial function, protein synthesis, folding and trafficking, actin cytoskeleton regulation, and DNA binding and repair. These findings emphasize the significant changes in metabolic and cellular pathways following bariatric surgery, highlighting the potential mechanisms underlying the observed health improvements postbariatric surgery. The data provided alongside this paper will serve as a valuable resource for the development of targeted therapeutic strategies for obesity and related metabolic complications. ClinicalTrials.gov registration numbers: NCT00793143 (registered on 19 November 2008) (https://clinicaltrials.gov/ct2/show/NCT00793143) and NCT01373892 (registered on 15 June 2011) (https://clinicaltrials.gov/ct2/show/NCT01373892).NEW & NOTEWORTHY Our study investigates the effects of metabolic bariatric surgery on adipose tissue proteins, highlighting the mechanisms driving weight loss postsurgery. Through extensive proteomic analysis of adipose biopsies from patients with severe obesity pre- and postsurgery, alongside healthy subjects without obesity, we identified significant alterations in metabolic pathways. These findings provide insights into potential therapeutic targets for obesity-related complications.
Collapse
Affiliation(s)
- Prince Dadson
- Turku PET Centre, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Miikka-Juhani Honka
- Turku PET Centre, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
- Division of Information Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Tomi Suomi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | | | - Anne Rokka
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | | | - Elena Goltseva
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Ning Wang
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Anne Roivainen
- Turku PET Centre, University of Turku, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Paulina Salminen
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Department of Surgery, University of Turku, Turku, Finland
- Division of Digestive Surgery and Urology, Turku University Hospital, Turku, Finland
| | - Peter James
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Laura L Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Endocrinology, Turku University Hospital, Turku, Finland
| |
Collapse
|
37
|
Naigaonkar A, Dadachanji R, Kumari M, Mukherjee S. Insight into metabolic dysregulation of polycystic ovary syndrome utilizing metabolomic signatures: a narrative review. Crit Rev Clin Lab Sci 2025; 62:85-112. [PMID: 39697160 DOI: 10.1080/10408363.2024.2430775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/15/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a complex multifactorial endocrinopathy affecting reproductive aged women globally, whose presentation is strongly influenced by genetic makeup, ethnic, and geographic diversity leaving these affected women substantially predisposed to reproductive and metabolic perturbations. Sophisticated techniques spanning genomics, proteomics, epigenomics, and transcriptomics have been harnessed to comprehensively understand the enigmatic pathophysiology of PCOS, however, conclusive markers for PCOS are still lacking today. Metabolomics represents a paradigm shift in biotechnological advances enabling the simultaneous identification and quantification of metabolites and the use of this approach has added yet another dimension to help unravel the strong metabolic component of PCOS. Reports dissecting the metabolic signature of PCOS have revealed disparate levels of metabolites such as pyruvate, lactate, triglycerides, free fatty acids, carnitines, branched chain and essential amino acids, and steroid intermediates in major biological compartments. These metabolites have been shown to be altered in women with PCOS overall, after phenotypic subgrouping, in animal models of PCOS, and also following therapeutic intervention. This review seeks to supplement previous reviews by highlighting the aforementioned aspects and to provide easy, coherent and elementary access to significant findings and emerging trends. This will in turn help to delineate the metabolic plot in women with PCOS in various biological compartments including plasma, urine, follicular microenvironment, and gut. This may pave the way to design additional studies on the quest of unraveling the etiology of PCOS and delving into novel biomarkers for its diagnosis, prognosis and management.
Collapse
Affiliation(s)
- Aalaap Naigaonkar
- Department of Molecular Endocrinology, National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research, Mumbai, India
| | - Roshan Dadachanji
- Department of Molecular Endocrinology, National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research, Mumbai, India
| | - Manisha Kumari
- Department of Molecular Endocrinology, National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research, Mumbai, India
| | - Srabani Mukherjee
- Department of Molecular Endocrinology, National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research, Mumbai, India
| |
Collapse
|
38
|
Feige JN. An mTOR paradox in sarcopenia via BCAA catabolism. NATURE AGING 2025; 5:341-343. [PMID: 39948274 DOI: 10.1038/s43587-025-00815-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Affiliation(s)
- Jerome N Feige
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland.
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
39
|
Martin SS, Aday AW, Allen NB, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, Baker-Smith CM, Bansal N, Beaton AZ, Commodore-Mensah Y, Currie ME, Elkind MSV, Fan W, Generoso G, Gibbs BB, Heard DG, Hiremath S, Johansen MC, Kazi DS, Ko D, Leppert MH, Magnani JW, Michos ED, Mussolino ME, Parikh NI, Perman SM, Rezk-Hanna M, Roth GA, Shah NS, Springer MV, St-Onge MP, Thacker EL, Urbut SM, Van Spall HGC, Voeks JH, Whelton SP, Wong ND, Wong SS, Yaffe K, Palaniappan LP. 2025 Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association. Circulation 2025; 151:e41-e660. [PMID: 39866113 DOI: 10.1161/cir.0000000000001303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
BACKGROUND The American Heart Association (AHA), in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, nutrition, sleep, and obesity) and health factors (cholesterol, blood pressure, glucose control, and metabolic syndrome) that contribute to cardiovascular health. The AHA Heart Disease and Stroke Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, brain health, complications of pregnancy, kidney disease, congenital heart disease, rhythm disorders, sudden cardiac arrest, subclinical atherosclerosis, coronary heart disease, cardiomyopathy, heart failure, valvular disease, venous thromboembolism, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The AHA, through its Epidemiology and Prevention Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States and globally to provide the most current information available in the annual Statistical Update with review of published literature through the year before writing. The 2025 AHA Statistical Update is the product of a full year's worth of effort in 2024 by dedicated volunteer clinicians and scientists, committed government professionals, and AHA staff members. This year's edition includes a continued focus on health equity across several key domains and enhanced global data that reflect improved methods and incorporation of ≈3000 new data sources since last year's Statistical Update. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
40
|
Arnold M, Buyukozkan M, Doraiswamy PM, Nho K, Wu T, Gudnason V, Launer LJ, Wang-Sattler R, Adamski J, De Jager PL, Ertekin-Taner N, Bennett DA, Saykin AJ, Peters A, Suhre K, Kaddurah-Daouk R, Kastenmüller G, Krumsiek J. Individual bioenergetic capacity as a potential source of resilience to Alzheimer's disease. Nat Commun 2025; 16:1910. [PMID: 39994231 PMCID: PMC11850607 DOI: 10.1038/s41467-025-57032-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
Impaired glucose uptake in the brain is an early presymptomatic manifestation of Alzheimer's disease (AD), with symptom-free periods of varying duration that likely reflect individual differences in metabolic resilience. We propose a systemic "bioenergetic capacity", the individual ability to maintain energy homeostasis under pathological conditions. Using fasting serum acylcarnitine profiles from the AD Neuroimaging Initiative as a blood-based readout for this capacity, we identified subgroups with distinct clinical and biomarker presentations of AD. Our data suggests that improving beta-oxidation efficiency can decelerate bioenergetic aging and disease progression. The estimated treatment effects of targeting the bioenergetic capacity were comparable to those of recently approved anti-amyloid therapies, particularly in individuals with specific mitochondrial genotypes linked to succinylcarnitine metabolism. Taken together, our findings provide evidence that therapeutically enhancing bioenergetic health may reduce the risk of symptomatic AD. Furthermore, monitoring the bioenergetic capacity via blood acylcarnitine measurements can be achieved using existing clinical assays.
Collapse
Affiliation(s)
- Matthias Arnold
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA.
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.
| | - Mustafa Buyukozkan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - P Murali Doraiswamy
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Duke Institute of Brain Sciences, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences and Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tong Wu
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Vilmundur Gudnason
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Icelandic Heart Association, Kopavogur, Iceland
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Science, National Institute on Aging, Bethesda, MD, USA
| | - Rui Wang-Sattler
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jerzy Adamski
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Philip L De Jager
- Department of Neurology, Center for Translational & Computational Neuroimmunology, Taub Institute, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, NY, USA
| | | | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences and Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- IBE, Medical Faculty, Ludwig-Maximilians-Universität, Munich, Germany
- German Center for Diabetes Research (DZD e.V.), Munich, Germany
- German Center for Cardiovascular Disease (DZHK e.V.), Munich Heart Alliance, Munich, Germany
| | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Doha, Qatar
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Duke Institute of Brain Sciences, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Gabi Kastenmüller
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jan Krumsiek
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
41
|
Filipski KJ, Martinez-Alsina LA, Reese MR, Evrard E, Buzon LM, Cameron KO, Zhang Y, Coffman KJ, Bradow J, Kormos BL, Liu S, Knafels JD, Sahasrabudhe PV, Chen J, Kalgutkar AS, Bessire AJ, Orozco CC, Balesano A, Cerny MA, Bollinger E, Reyes AR, Laforest B, Rosado A, Williams G, Marshall M, Tam Neale K, Chen X, Hirenallur-Shanthappa D, Stansfield JC, Groarke J, Qiu R, Karas S, Roth Flach RJ, Esler WP. Discovery of First Branched-Chain Ketoacid Dehydrogenase Kinase (BDK) Inhibitor Clinical Candidate PF-07328948. J Med Chem 2025; 68:2466-2482. [PMID: 39560668 DOI: 10.1021/acs.jmedchem.4c02230] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Inhibition of branched-chain ketoacid dehydrogenase kinase (BDK or BCKDK), a negative regulator of branched-chain amino acid (BCAA) metabolism, is hypothesized to treat cardio-metabolic diseases. From a starting point with potential idiosyncratic toxicity risk, modification to a benzothiophene core and discovery of a cryptic pocket allowed for improved potency with 3-aryl substitution to arrive at PF-07328948, which was largely devoid of protein covalent binding liability. This BDK inhibitor was shown also to be a BDK degrader in cells and in vivo rodent studies. Plasma biomarkers, including BCAAs and branched-chain ketoacids (BCKAs), were lowered in vivo with enhanced pharmacodynamic effect upon chronic dosing due to BDK degradation. This molecule improves metabolic and heart failure end points in rodent models. PF-07328948 is the first known selective BDK inhibitor candidate to be examined in clinical studies, with Phase 1 single ascending dose data showing good tolerability and a pharmacokinetic profile commensurate with once-daily dosing.
Collapse
Affiliation(s)
- Kevin J Filipski
- Pfizer Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Luis A Martinez-Alsina
- Pfizer Research & Development, 558 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Matthew R Reese
- Pfizer Research & Development, 558 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Edelweiss Evrard
- Pfizer Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Leanne M Buzon
- Pfizer Research & Development, 558 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Kimberly O Cameron
- Pfizer Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Yuan Zhang
- Pfizer Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Karen J Coffman
- Pfizer Research & Development, 558 Eastern Point Road, Groton, Connecticut 06340, United States
| | - James Bradow
- Pfizer Research & Development, 558 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Bethany L Kormos
- Pfizer Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Shenping Liu
- Pfizer Research & Development, 558 Eastern Point Road, Groton, Connecticut 06340, United States
| | - John D Knafels
- Pfizer Research & Development, 558 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Parag V Sahasrabudhe
- Pfizer Research & Development, 558 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Jie Chen
- Pfizer Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Amit S Kalgutkar
- Pfizer Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Andrew J Bessire
- Pfizer Research & Development, 558 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Christine C Orozco
- Pfizer Research & Development, 558 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Amanda Balesano
- Pfizer Research & Development, 558 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Matthew A Cerny
- Pfizer Research & Development, 558 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Eliza Bollinger
- Pfizer Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Allan R Reyes
- Pfizer Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Brigitte Laforest
- Pfizer Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Amy Rosado
- Pfizer Research & Development, 558 Eastern Point Road, Groton, Connecticut 06340, United States
| | - George Williams
- Pfizer Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Mackenzie Marshall
- Pfizer Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Kelly Tam Neale
- Pfizer Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Xian Chen
- Pfizer Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | | | - John C Stansfield
- Pfizer Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - John Groarke
- Pfizer Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Ruolun Qiu
- Pfizer Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Spinel Karas
- Pfizer Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Rachel J Roth Flach
- Pfizer Research & Development, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - William P Esler
- Pfizer Research & Development, 558 Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
42
|
Jackson VE, Wu Y, Bonelli R, Owen JP, Scott LW, Farashi S, Kihara Y, Gantner ML, Egan C, Williams KM, Ansell BRE, Tufail A, Lee AY, Bahlo M. Multi-omic spatial effects on high-resolution AI-derived retinal thickness. Nat Commun 2025; 16:1317. [PMID: 39904976 PMCID: PMC11794613 DOI: 10.1038/s41467-024-55635-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 12/18/2024] [Indexed: 02/06/2025] Open
Abstract
Retinal thickness is a marker of retinal health and more broadly, is seen as a promising biomarker for many systemic diseases. Retinal thickness measurements are procured from optical coherence tomography (OCT) as part of routine clinical eyecare. We processed the UK Biobank OCT images using a convolutional neural network to produce fine-scale retinal thickness measurements across > 29,000 points in the macula, the part of the retina responsible for human central vision. The macula is disproportionately affected by high disease burden retinal disorders such as age-related macular degeneration and diabetic retinopathy, which both involve metabolic dysregulation. Analysis of common genomic variants, metabolomic, blood and immune biomarkers, disease PheCodes and genetic scores across a fine-scale macular thickness grid, reveals multiple novel genetic loci including four on the X chromosome; retinal thinning associated with many systemic disorders including multiple sclerosis; and multiple associations to correlated metabolites that cluster spatially in the retina. We highlight parafoveal thickness to be particularly susceptible to systemic insults. These results demonstrate the gains in discovery power and resolution achievable with AI-leveraged analysis. Results are accessible using a bespoke web interface that gives full control to pursue findings.
Collapse
Affiliation(s)
- V E Jackson
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Y Wu
- Department of Ophthalmology, Roger and Angie Karalis Johnson Retina Center, University of Washington, Seattle, WA, USA
| | - R Bonelli
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
- Lowy Medical Research Institute, La Jolla, CA, USA
| | - J P Owen
- Department of Ophthalmology, Roger and Angie Karalis Johnson Retina Center, University of Washington, Seattle, WA, USA
| | - L W Scott
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - S Farashi
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Y Kihara
- Department of Ophthalmology, Roger and Angie Karalis Johnson Retina Center, University of Washington, Seattle, WA, USA
| | - M L Gantner
- Lowy Medical Research Institute, La Jolla, CA, USA
| | - C Egan
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Institute of Ophthalmology, University College London, London, UK
| | - K M Williams
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Institute of Ophthalmology, University College London, London, UK
- Section of Ophthalmology, King's College London, London, UK
| | - B R E Ansell
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - A Tufail
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Institute of Ophthalmology, University College London, London, UK
| | - A Y Lee
- Department of Ophthalmology, Roger and Angie Karalis Johnson Retina Center, University of Washington, Seattle, WA, USA
| | - M Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
43
|
McCann JR, Yang C, Bihlmeyer N, Tang R, Truong T, An J, Jawahar J, Ilkayeva O, Muehlbauer M, Hu ZZ, Dressman H, Poppe L, Granek J, David LA, Shi P, Balikcioglu PG, Shah S, Armstrong SC, Newgard CB, Seed PC, Rawls JF. Branched chain amino acid metabolism and microbiome in adolescents with obesity during weight loss therapy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.03.25321363. [PMID: 39974080 PMCID: PMC11838640 DOI: 10.1101/2025.02.03.25321363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
BACKGROUND Towards improving outcomes for adolescents with obesity, we aimed to define metabolic and microbiome phenotypes at baseline and post-weight loss intervention. METHODS The Pediatric Obesity Microbiome and Metabolism Study enrolled 220 adolescents aged 10-18 with severe obesity (OB) and 67 healthy weight controls (HWC). Blood, stool, and clinical measures were collected at baseline and after a 6-month intervention for the OB group. Serum metabolomic and fecal microbiome data were analyzed for associations with BMI, insulin resistance, and inflammation. Fecal microbiome transplants were performed on germ-free mice using samples from both groups to assess weight gain and metabolomic changes. RESULTS Adolescents with OB exhibited elevated serum branched-chain amino acids (BCAA) but reduced ketoacid metabolites (BCKA) compared to HWC. This pattern was sex- and age-dependent, unlike adults with OB, who showed elevated levels of both. The fecal microbiomes of adolescents with OB and HWC had similar diversity but differed in membership and functional potential. FMT from OB and HWC donors had similar effects on mouse body weight, with specific taxa linked to weight gain in FMT recipients. Longitudinal analysis identified metabolic and microbial features correlated with changes in health measures during the intervention. CONCLUSION Adolescents with OB have unique metabolomic adaptations and microbiome signatures compared to their HWC counterparts and adults with OB. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT03139877 (Observational Study) and NCT02959034 (Repository). FUNDING SOURCES American Heart Association Grants: 17SFRN33670990, 20PRE35180195National Institute of Diabetes and Digestive and Kidney Diseases Grant: R24-DK110492.
Collapse
|
44
|
Zhou J, Gao X, Zhang D, Jiang C, Yu W. Effects of breaking up prolonged sitting via exercise snacks intervention on the body composition and plasma metabolomics of sedentary obese adults: a randomized controlled trial. Endocr J 2025; 72:183-192. [PMID: 39537176 PMCID: PMC11850105 DOI: 10.1507/endocrj.ej24-0377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
Obesity resulting from long-term sedentary a significant threat to human health. This study explores the effects of exercise snack intervention on body composition and plasma metabolomics in sedentary obese adults. Participants in the snack group were subjected to 4 days of sprint exercises by stair-climbing per week for 12 weeks. Systemic and regional fat mass, epicardial adipose tissue (EAT), abdominal visceral (AVFA) and subcutaneous (ASFA) fat area and plasma metabolomics data were measured before and after intervention. A higher improvement of EAT, AVFA and ASFA in the snack group compared to that in the control group, with a significant interaction effect (p < 0.05). The key differential metabolites between the two groups include isoleucine, glycine and serine. The proposed exercise snack effectively reduced the amount of AVFA and EAT. The change in body composition may be associated with the altered pathways of isoleucine, glycine, and serine metabolism.
Collapse
Affiliation(s)
- Jianming Zhou
- Institute of Physical Education, Nanjing Xiaozhuang University, Nanjing 211171, Jiangsu, China
| | - Xiaoning Gao
- Ophthalmology Department, Qingdao Hiser Hospital Affiliated of Qingdao University, Qingdao 266071, Shandong, China
| | - Dandan Zhang
- Institute of Finance and Economics, Shanghai Lida University, Shanghai 201608, China
| | - Chuanwu Jiang
- Medical Imaging Department, Qingdao Hiser Hospital Affiliated of Qingdao University, Qingdao 266071, Shandong, China
| | - Wenbing Yu
- Institute of Sports Human Science, Ocean University of China, Qingdao 266100, Shandong, China
| |
Collapse
|
45
|
Reiss JD, Mataraso SJ, Holzapfel LF, Marić I, Kasowski MM, Martin CR, Long JZ, Stevenson DK, Shaw GM. Applications of Metabolomics and Lipidomics in the Neonatal Intensive Care Unit. Neoreviews 2025; 26:e100-e114. [PMID: 39889768 PMCID: PMC12079657 DOI: 10.1542/neo.26-2-011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/30/2024] [Indexed: 02/03/2025]
Abstract
The metabolome and lipidome comprise the thousands of molecular compounds in an organism. Molecular compounds consist of the upstream metabolic components of intracellular reactions or the byproducts of cellular pathways. Molecular and biochemical perturbations are associated with disorders in newborns and infants. The diagnosis of inborn errors of metabolism has relied on targeted metabolomics for several decades. Newer approaches offer the potential to identify novel biomarkers for common diseases of the newborn and infant. They may also elucidate novel predictive or diagnostic measures for a variety of health trajectories. Here, we review the relevance of the metabolome and lipidome for common disorders and highlight challenges and opportunities for future investigations.
Collapse
Affiliation(s)
- Jonathan D Reiss
- Department of Pediatrics, Division of Neonatology, Stanford University School of Medicine, Palo Alto, California
| | - Samson J Mataraso
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, California
- Metabolic Health Center, Stanford University, Palo Alto, California
| | - Lindsay F Holzapfel
- Department of Pediatrics, Division of Neonatology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Ivana Marić
- Department of Pediatrics, Division of Neonatology, Stanford University School of Medicine, Palo Alto, California
| | - Maya M Kasowski
- Metabolic Health Center, Stanford University, Palo Alto, California
- Department of Pathology, Stanford University School of Medicine, Palo Alto, California
| | - Camilia R Martin
- Division of Neonatology, Department of Pediatrics, Weill Cornell Medicine, New York, New York
| | - Jonathan Z Long
- Department of Pathology, Chemistry, Engineering and Medicine for Human Health, Stanford University School of Medicine, Stanford, California
| | - David K Stevenson
- Department of Pediatrics, Division of Neonatology, Stanford University School of Medicine, Palo Alto, California
- Metabolic Health Center, Stanford University, Palo Alto, California
| | - Gary M Shaw
- Department of Pediatrics, Division of Neonatology, Stanford University School of Medicine, Palo Alto, California
| |
Collapse
|
46
|
Seibel AJ, Frosti CL, Tlemçani AR, Lahiri N, Brammer-DePuy JA, Layne MD, Tien J. Obesity-Associated Conditions Hinder Solute Drainage Function of Engineered Human Lymphatic Vessels. Cell Mol Bioeng 2025; 18:53-69. [PMID: 39949491 PMCID: PMC11813835 DOI: 10.1007/s12195-024-00840-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/13/2024] [Indexed: 02/16/2025] Open
Abstract
Purpose Obesity is associated with poor lymphatic solute drainage. It is unclear whether the chronic inflammation, hypoxia, and hyperlipidemia that are together associated with obesity cause impaired drainage function, and if so, whether these conditions act directly on lymphatic endothelial cells (LECs) or are indirectly mediated by the mechanical properties or cellular composition of the surrounding tissue. Methods We engineered blind-ended lymphatic vessels in type I collagen gels and simulated the obese microenvironment with a cocktail of tumor necrosis factor (TNF)-α, cobalt chloride (CoCl2), and oleate, which model inflammation, hypoxia, and hyperlipidemia, respectively. We compared the solute drainage rate and leakage of lymphatics that were exposed to simulated obesity or not. We performed similar assays with lymphatics in stiffened gels, in adipocyte-laden gels, or in the presence of conditioned medium (CM) from adipose cells treated with the same cocktail. Results Lymphatics that were exposed to simulated obesity exhibited more gaps in endothelial junctions, leaked more solute, and drained solute less quickly than control lymphatics did, regardless of matrix stiffness. CM from adipose cells that were exposed to simulated obesity did not affect lymphatics. Lymphatics in adipocyte-laden gels did not exhibit worse drainage function when exposed to simulated obesity. Conclusions The combination of obesity-associated inflammation, hypoxia, and hyperlipidemia impairs lymphatic solute drainage and does so by acting directly on LECs. Surprisingly, adipocytes may play a protective role in preventing obesity-associated conditions from impairing lymphatic solute drainage. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-024-00840-z.
Collapse
Affiliation(s)
- Alex J. Seibel
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215 USA
| | - Cheyanne L. Frosti
- Department of Biochemistry & Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
| | - Abderrahman R. Tlemçani
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215 USA
| | - Nikhil Lahiri
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215 USA
| | - Joely A. Brammer-DePuy
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215 USA
| | - Matthew D. Layne
- Department of Biochemistry & Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
| | - Joe Tien
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215 USA
- Division of Materials Science and Engineering, Boston University, Boston, MA USA
| |
Collapse
|
47
|
Mansoori S, Ho MY, Ng KK, Cheng KK. Branched-chain amino acid metabolism: Pathophysiological mechanism and therapeutic intervention in metabolic diseases. Obes Rev 2025; 26:e13856. [PMID: 39455059 PMCID: PMC11711082 DOI: 10.1111/obr.13856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 09/02/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024]
Abstract
Branched-chain amino acids (BCAAs), including leucine, isoleucine, and valine, are essential for maintaining physiological functions and metabolic homeostasis. However, chronic elevation of BCAAs causes metabolic diseases such as obesity, type 2 diabetes (T2D), and metabolic-associated fatty liver disease (MAFLD). Adipose tissue, skeletal muscle, and the liver are the three major metabolic tissues not only responsible for controlling glucose, lipid, and energy balance but also for maintaining BCAA homeostasis. Under obese and diabetic conditions, different pathogenic factors like pro-inflammatory cytokines, lipotoxicity, and reduction of adiponectin and peroxisome proliferator-activated receptors γ (PPARγ) disrupt BCAA metabolism, leading to excessive accumulation of BCAAs and their downstream metabolites in metabolic tissues and circulation. Mechanistically, BCAAs and/or their downstream metabolites, such as branched-chain ketoacids (BCKAs) and 3-hydroxyisobutyrate (3-HIB), impair insulin signaling, inhibit adipogenesis, induce inflammatory responses, and cause lipotoxicity in the metabolic tissues, resulting in multiple metabolic disorders. In this review, we summarize the latest studies on the metabolic regulation of BCAA homeostasis by the three major metabolic tissues-adipose tissue, skeletal muscle, and liver-and how dysregulated BCAA metabolism affects glucose, lipid, and energy balance in these active metabolic tissues. We also summarize therapeutic approaches to restore normal BCAA metabolism as a treatment for metabolic diseases.
Collapse
Affiliation(s)
- Shama Mansoori
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHong Kong, China
| | - Melody Yuen‐man Ho
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHong Kong, China
| | - Kelvin Kwun‐wang Ng
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHong Kong, China
| | - Kenneth King‐yip Cheng
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHong Kong, China
- Hong Kong Polytechnic University Shenzhen Research InstituteShenzhenChina
| |
Collapse
|
48
|
Aarika K, Rajyalakshmi R, Nalla LV, Gajula SNR. From Complexity to Clarity: Expanding Metabolome Coverage With Innovative Analytical Strategies. J Sep Sci 2025; 48:e70099. [PMID: 39968702 PMCID: PMC11836935 DOI: 10.1002/jssc.70099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/27/2025] [Accepted: 02/04/2025] [Indexed: 02/20/2025]
Abstract
Metabolomics, a powerful discipline within systems biology, aims at comprehensive profiling of small molecules in biological samples. The challenges of biological sample complexity are addressed through innovative sample preparation methods, including solid-phase extraction and microextraction techniques, enhancing the detection and quantification of low-abundance metabolites. Advances in chromatographic separation, particularly liquid chromatography (LC) and gas chromatography (GC), coupled with high-resolution (HR) mass spectrometry (MS), have significantly improved the sensitivity, selectivity, and throughput of metabolomic studies. Cutting-edge techniques, such as ion-mobility mass spectrometry (IM-MS) and tandem MS (MS/MS), further expand the capacity for comprehensive metabolite profiling. These advanced analytical platforms each offer unique advantages for metabolomics, with continued technological improvements driving deeper insights into metabolic pathways and biomarker discovery. By providing a detailed overview of current trends and techniques, this review aims to offer valuable insights into the future of metabolomics in human health research and its translational potential in clinical settings. Toward the end, this review also highlights the biomedical applications of metabolomics, emphasizing its role in biomarker discovery, disease diagnostics, personalized medicine, and drug development.
Collapse
Affiliation(s)
- Kanukolanu Aarika
- GITAM School of PharmacyGITAM (Deemed to be University), RushikondaVisakhapatnamAndhra PradeshIndia
| | - Ramijinni Rajyalakshmi
- GITAM School of PharmacyGITAM (Deemed to be University), RushikondaVisakhapatnamAndhra PradeshIndia
| | - Lakshmi Vineela Nalla
- Department of PharmacologyGITAM School of PharmacyGITAM (Deemed to be University), RushikondaVisakhapatnamAndhra PradeshIndia
| | - Siva Nageswara Rao Gajula
- Department of Pharmaceutical AnalysisGITAM School of PharmacyGITAM (Deemed to be University), RushikondaVisakhapatnamAndhra PradeshIndia
| |
Collapse
|
49
|
Zhao Y, Chai X, Peng J, Zhu Y, Dong R, He J, Xia L, Liu S, Chen J, Xu Z, Luo C, Sheng J. Proline exacerbates hepatic gluconeogenesis via paraspeckle-dependent mRNA retention. Nat Metab 2025; 7:367-382. [PMID: 39820557 DOI: 10.1038/s42255-024-01206-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 12/10/2024] [Indexed: 01/19/2025]
Abstract
Type 2 diabetes (T2D) is a global health issue characterized by abnormal blood glucose levels and is often associated with excessive hepatic gluconeogenesis. Increased circulating non-essential amino acids (NEAAs) are consistently observed in individuals with T2D; however, the specific contribution of each amino acid to T2D pathogenesis remains less understood. Here, we report an unexpected role of the NEAA proline in coordinating hepatic glucose metabolism by modulating paraspeckle, a nuclear structure scaffolded by the long non-coding RNA Neat1. Mechanistically, proline diminished paraspeckles in hepatocytes, liberating the retained mRNA species into cytoplasm for translation, including the mRNAs of Ppargc1a and Foxo1, contributing to enhanced gluconeogenesis and hyperglycaemia. We further demonstrated that the proline-paraspeckle-mRNA retention axis existed in diabetic liver samples, and intervening in this axis via paraspeckle restoration substantially alleviated hyperglycaemia in both female and male diabetic mouse models. Collectively, our results not only delineated a previously unappreciated proline-instigated, paraspeckle-dependent mRNA-retention mechanism regulating gluconeogenesis, but also spotlighted proline and paraspeckle as potential targets for managing hyperglycaemia.
Collapse
Affiliation(s)
- Yurong Zhao
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Xinxin Chai
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Junxuan Peng
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Yi Zhu
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Rong Dong
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang, China
| | - Junwei He
- College of Life Science, Zhejiang University, Hangzhou, China
| | - Linghao Xia
- College of Life Science, Zhejiang University, Hangzhou, China
| | - Sishuo Liu
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Jingzhou Chen
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Zhengping Xu
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Chi Luo
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China.
| | - Jinghao Sheng
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
50
|
Yang M, Xie Q, Wang J, Zha A, Chen J, Jiang Q, Kang M, Deng Q, Yin Y, Tan B. Ningxiang pig-derived lactobacillus reuteri modulates host intramuscular fat deposition via branched-chain amino acid metabolism. MICROBIOME 2025; 13:32. [PMID: 39891238 PMCID: PMC11786426 DOI: 10.1186/s40168-024-02013-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 12/17/2024] [Indexed: 02/03/2025]
Abstract
BACKGROUND Gut microbiota has been extensively demonstrated to modulate host lipid metabolism. Higher intramuscular fat (IMF) accumulation in Chinese indigenous breed pigs is associated with their special gut microbiota structure. However, the specific microbes and metabolic pathways responsible for lipid deposition are still poorly understood. RESULTS In the present study, a comparative analysis of the gut microbiota and metabolome in obese Ningxiang (NX) pigs and lean Duroc × Landrace × Yorkshire (DLY) pigs was conducted. The results revealed a higher abundance of gut lactobacilli and a correlation of branched-chain amino acid (BCAA) metabolism pathway in NX pigs. We proceeded to verify the roles of various lactobacilli strains originating from NX pigs in BCAA metabolism and lipids deposition in SD rats. We demonstrated that L. reuteri is a fundamental species responsible for modulating lipid deposition in NX pigs and that increased circulating levels of BCAA are positively linked to greater lipid deposition. Additionally, it has been verified that L. reuteri originating from NX pigs has the ability to improve BCAA synthesis in the gut and enhance IMF content in lean DLY pigs. The expression of genes related to lipid synthesis was also significantly upregulated. CONCLUSIONS Taken together, our results imply that NX pig-derived L. reuteri regulates BCAA metabolism and plays a potential role in improving the meat quality of lean pig breeds through modulation of host intramuscular lipid deposition. The results provide a new strategy for improving the meat quality of commercial pigs by influencing host metabolism through supplementing dietary additives. Video Abstract.
Collapse
Affiliation(s)
- Mei Yang
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, P. R. China
- Yuelushan Laboratory, Changsha, Hunan, 410128, P. R. China
| | - Qian Xie
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, P. R. China
- Yuelushan Laboratory, Changsha, Hunan, 410128, P. R. China
| | - Jing Wang
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, P. R. China
- Yuelushan Laboratory, Changsha, Hunan, 410128, P. R. China
| | - Andong Zha
- Yuelushan Laboratory, Changsha, Hunan, 410128, P. R. China
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, P. R. China
| | - Jiashun Chen
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, P. R. China
- Yuelushan Laboratory, Changsha, Hunan, 410128, P. R. China
| | - Qian Jiang
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, P. R. China
- Yuelushan Laboratory, Changsha, Hunan, 410128, P. R. China
| | - Meng Kang
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, P. R. China
- Yuelushan Laboratory, Changsha, Hunan, 410128, P. R. China
| | - Qiuchun Deng
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, P. R. China
- Yuelushan Laboratory, Changsha, Hunan, 410128, P. R. China
| | - Yulong Yin
- Yuelushan Laboratory, Changsha, Hunan, 410128, P. R. China.
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, P. R. China.
| | - Bie Tan
- Hunan Provincial Key Laboratory for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, P. R. China.
- Yuelushan Laboratory, Changsha, Hunan, 410128, P. R. China.
| |
Collapse
|