1
|
Song C, Dong Q, Yao Y, Cui Y, Zhang C, Lin L, Zhu L, Hu Y, Liu H, Jin Y, Li P, Liu X, Cao C. Nonreceptor tyrosine kinase ABL1 regulates lysosomal acidification by phosphorylating the ATP6V1B2 subunit of the vacuolar-type H +-ATPase. Autophagy 2025; 21:1192-1211. [PMID: 39757940 PMCID: PMC12087662 DOI: 10.1080/15548627.2024.2448913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/07/2025] Open
Abstract
The vacuolar-type H+-ATPase (V-ATPase) is a proton pump responsible for controlling the intracellular and extracellular pH of cells. Its activity and assembly are tightly controlled by multiple pathways, of which phosphorylation-mediated regulation is poorly understood. In this report, we show that in response to starvation stimuli, the nonreceptor tyrosine kinase ABL1 directly interacts with ATP6V1B2, a subunit of the V1 domain of the V-ATPase, and phosphorylates ATP6V1B2 at Y68. Y68 phosphorylation in ATP6V1B2 facilitates the recruitment of the ATP6V1D subunit into the V1 subcomplex of V-ATPase, therefore potentiating the assembly of the V1 subcomplex with the membrane-embedded V0 subcomplex to form the integrated functional V-ATPase. ABL1 inhibition or depletion impairs V-ATPase assembly and lysosomal acidification, resulting in an increased lysosomal pH, a decreased lysosomal hydrolase activity, and consequently, the suppressed degradation of lumenal cargo during macroautophagy/autophagy. Consistently, the efficient removal of damaged mitochondrial residues during mitophagy is also impeded by ABL1 deficiency. Our findings suggest that ABL1 is a crucial autophagy regulator that maintains the adequate lysosomal acidification required for both physiological conditions and stress responses.Abbreviation: ANOVA: analysis of variance; Baf A1: bafilomycin A1; CCCP: carbonyl cyanide 3-chlorophenylhydrazone; CRK: CRK proto-oncogene, adaptor protein; CTSD: cathepsin D; DMSO: dimethylsulfoxide; EBSS: Earle's balanced salt solution; FITC: fluorescein isothiocyanate; GFP: green fluorescent protein; GST: glutathione S-transferase; LAMP2: lysosomal associated membrane protein 2; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTORC1: mechanistic target of rapamycin kinase complex 1; PD: Parkinson disease; PLA: proximity ligation assay; RFP: red fluorescent protein; WT: wild-type.
Collapse
Affiliation(s)
- Caiwei Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Qincai Dong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Yi Yao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Yan Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Chunmei Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Lijun Lin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Lin Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Yong Hu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Hainan Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Yanwen Jin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Ping Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Xuan Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Cheng Cao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
2
|
Limone A, Di Napoli C, Napolitano F, Imbò B, Minopoli G, Bagnoli S, Izzo A, Paladino S, Nacmias B, De Matteis MA, Montuori N, Lavecchia A, Sarnataro D. Targeting RPSA to modulate endosomal trafficking and amyloidogenesis in genetic Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167753. [PMID: 40037473 DOI: 10.1016/j.bbadis.2025.167753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/18/2025] [Accepted: 02/26/2025] [Indexed: 03/06/2025]
Abstract
The "amyloid cascade hypothesis" for Alzheimer's disease (AD) pathogenesis, highlights the accumulation of amyloid-β (Aβ) as a crucial trigger for the pathology. However, AD is an extremely complex disease influenced by multiple pathophysiological processes, making it impossible to attribute its onset to a single hypothesis. The endocytic pathway, where the amyloidogenic processing of APP occurs, has emerged as a pathogenic "hub" for AD. In this study, we found altered homeostasis and dynamics of endolysosomal compartments in fibroblasts from patients affected by a genetic form of AD (APP V717I mutation). These alterations corresponded to an abnormal trafficking of APP along the endolysosomal pathway, favouring its amyloidogenic processing. The identification of APP interactors involved in its trafficking and processing, and finding molecules able to interfere with these interactions, represents a promising therapeutic approach. However, the role of endosomal pathway and the possibility of modulating APP processing through it remains elusive. Among the proteins participating to APP metabolism, the RPSA receptor and its inhibitor molecule NSC47924 have been identified. In this study, we found that the inhibitor, likely by displacing APP from interaction with its receptor, reduced APP accumulation in EEs in AD cells, finally restoring both endosomal dynamics and APP distribution to those of unaffected cells. We also demonstrated that RPSA inhibition affected the aberrant APP cleavage, as it reduced the production of both APP-βCTF (C-Terminal Fragment) and Aβ in AD fibroblasts. These results highlight significant differences in endolysosomal compartments and APP processing in AD-affected cells, refining our understanding of APP/RPSA intersection.
Collapse
Affiliation(s)
- Adriana Limone
- University of Naples "Federico II", Dept. of Molecular Medicine and Medical Biotechnology, Via S. Pansini 5, 80131 Naples, Italy
| | - Clelia Di Napoli
- University of Naples "Federico II", Dept. of Molecular Medicine and Medical Biotechnology, Via S. Pansini 5, 80131 Naples, Italy
| | - Filomena Napolitano
- University of Naples "Federico II"- Dept. of Translational Medical Sciences, Via S. Pansini 5, 80131 Naples, Italy
| | - Barbara Imbò
- University of Naples "Federico II", Dept. of Molecular Medicine and Medical Biotechnology, Via S. Pansini 5, 80131 Naples, Italy
| | - Giuseppina Minopoli
- University of Naples "Federico II", Dept. of Molecular Medicine and Medical Biotechnology, Via S. Pansini 5, 80131 Naples, Italy
| | - Silvia Bagnoli
- University of Florence, Dept. of Neuroscience, Psychology, Drug Research and Child Health, Viale Pieraccini 6, 50139 Florence, Italy
| | - Antonella Izzo
- University of Naples "Federico II", Dept. of Molecular Medicine and Medical Biotechnology, Via S. Pansini 5, 80131 Naples, Italy
| | - Simona Paladino
- University of Naples "Federico II", Dept. of Molecular Medicine and Medical Biotechnology, Via S. Pansini 5, 80131 Naples, Italy
| | - Benedetta Nacmias
- University of Florence, Dept. of Neuroscience, Psychology, Drug Research and Child Health, Viale Pieraccini 6, 50139 Florence, Italy; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Maria Antonietta De Matteis
- University of Naples "Federico II", Dept. of Molecular Medicine and Medical Biotechnology, Via S. Pansini 5, 80131 Naples, Italy; Telethon Institute of Genetics and Medicine (TIGEM), Via Campi Flegrei 34, 80078 Pozzuoli, NA, Italy
| | - Nunzia Montuori
- University of Naples "Federico II"- Dept. of Translational Medical Sciences, Via S. Pansini 5, 80131 Naples, Italy
| | - Antonio Lavecchia
- University of Naples "Federico II"- Dept. of Pharmacy, "Drug Discovery Lab", Via D. Montesano 49, 80131, Naples, Italy
| | - Daniela Sarnataro
- University of Naples "Federico II", Dept. of Molecular Medicine and Medical Biotechnology, Via S. Pansini 5, 80131 Naples, Italy.
| |
Collapse
|
3
|
Ashkavand Z, Ryan KC, Laboy JT, Patel R, Geller B, Norman KR. Identification of presenilin mutations that have sufficient gamma-secretase proteolytic activity to mediate Notch signaling but disrupt organelle and neuronal health. Neurobiol Dis 2025; 212:106961. [PMID: 40404063 DOI: 10.1016/j.nbd.2025.106961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 05/09/2025] [Accepted: 05/15/2025] [Indexed: 05/24/2025] Open
Abstract
Mutations that cause familial Alzheimer's disease (AD) are predominantly found in the presenilin (PSEN) encoding genes PSEN1 and PSEN2. While the association of PSEN mutations with familial AD have been known for over 20 years, the mechanism underlying the impact these mutations have on disease is not fully understood. PSENs are phylogenetically conserved proteins that are found in diverse multicellular organisms ranging from plants to humans. PSENs form the proteolytic core of gamma-secretase that is required for cleaving type I transmembrane proteins, such as Notch receptors and the amyloid precursor protein. Importantly, familial AD-associated PSEN mutations are broadly distributed and do not clearly define a specific PSEN function essential for neuronal fitness. Here, using C. elegans as a model organism to study the in vivo functions of PSENs, we confirm that C. elegans PSEN plays a pivotal role in gamma-secretase proteolytic activity as well as maintaining neuronal and organelle health. Notably, we demonstrate that these two functions can be genetically uncoupled. Our research identifies several conserved familial AD-like missense mutations in the endogenous sel-12 gene, which encodes C. elegans PSEN. These mutations preserve sufficient gamma-secretase proteolytic activity to mediate Notch signaling but abolish PSEN's role in supporting neuronal and organelle health. Furthermore, we provide evidence that these familial AD-like missense mutations disrupt mitochondrial calcium regulation, ultimately leading to neuronal dysfunction. These results indicate that C. elegans PSEN plays at least two independent roles: one that mediates gamma-secretase proteolytic activity and another that mediates organelle and neuronal health.
Collapse
Affiliation(s)
- Zahra Ashkavand
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, NY 12208, USA
| | - Kerry C Ryan
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, NY 12208, USA
| | - Jocelyn T Laboy
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, NY 12208, USA
| | - Ritika Patel
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, NY 12208, USA
| | - Brian Geller
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, NY 12208, USA
| | - Kenneth R Norman
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, NY 12208, USA.
| |
Collapse
|
4
|
Oettinger D, Yamamoto A. Autophagy Dysfunction and Neurodegeneration: Where Does It Go Wrong? J Mol Biol 2025:169219. [PMID: 40383464 DOI: 10.1016/j.jmb.2025.169219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/24/2025] [Accepted: 05/13/2025] [Indexed: 05/20/2025]
Abstract
An infamous hallmark of neurodegenerative diseases is the accumulation of misfolded or unfolded proteins forming inclusions in the brain. The accumulation of these abnormal structures is a mysterious one, given that cells devote significant resources to integrate complementary pathways to ensure proteome integrity and proper protein folding. Aberrantly folded protein species are rapidly targeted for disposal by the ubiquitin-proteasome system (UPS), and even if this should fail, and the species accumulates, the cell can also rely on the lysosome-mediated degradation pathways of autophagy. Despite the many safeguards in place, failure to maintain protein homeostasis commonly occurs during, or preceding, the onset of disease. Over the last decade and a half, studies suggest that the failure of autophagy may explain the disruption in protein homeostasis observed in disease. In this review, we will examine how the highly complex cells of the brain can become vulnerable to failure of aggregate clearance at specific points during the processive pathway of autophagy, contributing to aggregate accumulation in brains with neurodegenerative disease.
Collapse
Affiliation(s)
- Daphne Oettinger
- Doctoral Program for Neurobiology and Behavior, Columbia University, New York, NY, USA
| | - Ai Yamamoto
- Departments of Neurology and Pathology and Cell Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
5
|
Wolska W, Gutowska I, Wszołek A, Żwierełło W. The Role of Intermittent Fasting in the Activation of Autophagy Processes in the Context of Cancer Diseases. Int J Mol Sci 2025; 26:4742. [PMID: 40429883 PMCID: PMC12112746 DOI: 10.3390/ijms26104742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2025] [Revised: 05/12/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
Intermittent fasting (IF) is a dietary approach that influences key metabolic pathways, including autophagy-a crucial mechanism in maintaining cellular homeostasis. Autophagy plays a dual role in oncogenesis, acting both as a tumor suppressor and a survival mechanism under metabolic stress. IF has shown potential for reducing cancer risk and enhancing therapeutic efficacy by sensitizing tumor cells to chemotherapy and radiotherapy. However, its effects depend heavily on the type and stage of cancer. Potential risks, such as excessive weight loss and malnutrition, require careful evaluation. Further clinical studies are needed to optimize IF protocols as adjuncts to cancer therapy. This review discusses autophagy mechanisms induced by IF, their therapeutic implications in oncology, and the limitations of this dietary strategy.
Collapse
Affiliation(s)
- Waleria Wolska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (W.W.); (W.Ż.)
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skjalgssons gate 1, 7030 Trondheim, Norway
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (W.W.); (W.Ż.)
| | - Agata Wszołek
- Institute of Biology, University of Szczecin, Wąska 13, 71-415 Szczecin, Poland;
| | - Wojciech Żwierełło
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (W.W.); (W.Ż.)
| |
Collapse
|
6
|
Attanasio S. Autophagy in cancer and protein conformational disorders. FEBS Lett 2025. [PMID: 40342093 DOI: 10.1002/1873-3468.70061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/09/2025] [Accepted: 04/11/2025] [Indexed: 05/11/2025]
Abstract
Autophagy is a catabolic process by which cells maintain cellular homeostasis through the degradation of dysfunctional cytoplasmic components, such as toxic misfolded proteins and damaged organelles, within the lysosome. It is a multistep process that is tightly regulated by nutrient, energy, and stress-sensing mechanisms. Autophagy plays a pivotal role in various biological processes, including protein and organelle quality control, defense against pathogen infections, cell metabolism, and immune surveillance. As a result, autophagy dysfunction is linked to a variety of pathological conditions. The role of autophagy in cancer is complex and dynamic. Depending on the context, autophagy can have both tumor-suppressive and pro-tumorigenic effects. In contrast, its role is more clearly defined in protein conformational disorders, where autophagy serves as a mechanism to reduce toxic protein aggregation, thereby improving cellular homeostasis. Because autophagy-based therapies hold promising potential for the treatment of cancer and protein conformational disorders, this review will highlight the latest findings and advancements in these areas.
Collapse
Affiliation(s)
- Sergio Attanasio
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
7
|
Gordaliza-Alaguero I, Sànchez-Fernàndez-de-Landa P, Radivojevikj D, Villarreal L, Arauz-Garofalo G, Gay M, Martinez-Vicente M, Seco J, Martín-Malpartida P, Vilaseca M, Macías MJ, Palacin M, Ivanova S, Zorzano A. Endogenous interactomes of MFN1 and MFN2 provide novel insights into interorganelle communication and autophagy. Autophagy 2025; 21:957-978. [PMID: 39675054 PMCID: PMC12013434 DOI: 10.1080/15548627.2024.2440843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024] Open
Abstract
MFN1 (mitofusin 1) and MFN2 are key players in mitochondrial fusion, endoplasmic reticulum (ER)-mitochondria juxtaposition, and macroautophagy/autophagy. However, the mechanisms by which these proteins participate in these processes are poorly understood. Here, we studied the interactomes of these two proteins by using CRISPR-Cas9 technology to insert an HA-tag at the C terminus of MFN1 and MFN2, and thus generating HeLa cell lines that endogenously expressed MFN1-HA or MFN2-HA. HA-affinity isolation followed by mass spectrometry identified potential interactors of MFN1 and MFN2. A substantial proportion of interactors were common for MFN1 and MFN2 and were regulated by nutrient deprivation. We validated novel ER and endosomal partners of MFN1 and/or MFN2 with a potential role in interorganelle communication. We characterized RAB5C (RAB5C, member RAS oncogene family) as an endosomal modulator of mitochondrial homeostasis, and SLC27A2 (solute carrier family 27 (fatty acid transporter), member 2) as a novel partner of MFN2 relevant in autophagy. We conclude that MFN proteins participate in nutrient-modulated pathways involved in organelle communication and autophagy.Abbreviations: ACTB: actin, beta; ATG2: autophagy related 2; ATG5: autophagy related 5; ATG12: autophagy related 12; ATG14: autophagy related 14; ATG16L1: autophagy related 16 like 1; Baf A1: bafilomycin A1; BECN1: beclin 1, autophagy related; BFDR: Bayesian false discovery rate; Cas9: CRISPR-associated endonuclease Cas9; CRISPR: clustered regularly interspaced short palindromic repeats; DNM1L/DRP1: dynamin 1-like; ER: endoplasmic reticulum; Faa1: fatty acid activation 1; FC: fold change; FDR: false discovery rate; FIS1: fission, mitochondrial 1; GABARAP: gamma-aminobutyric acid receptor associated protein; GABARAPL2: GABA type A receptor associated protein like 2; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; HA: hemagglutinin; KO: knockout; LIR: LC3-interacting region; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MARCHF5: membrane associated ring-CH-type finger 5; MDVs: mitochondria-derived vesicles; MFN1: mitofusin 1; MFN2: mitofusin 2; NDFIP2: Nedd4 family interacting protein 2; OMM: outer mitochondrial membrane; OPA1: OPA1, mitochondrial dynamin like GTPase; OXPHOS: oxidative phosphorylation; PE: phosphatidylethanolamine; PINK1: PTEN induced putative kinase 1; PS: phosphatidylserine; RAB5C: RAB5C, member RAS oncogene family; S100A8: S100 calcium binding protein A8 (calgranulin A); S100A9: S100 calcium binding protein A9 (calgranulin B); SLC27A2: solute carrier family 27 (fatty acid transporter), member 2; TIMM44: translocase of inner mitochondrial membrane 44; TOMM20: translocase of outer mitochondrial membrane 20; ULK1: unc-51 like kinase 1; VCL: vinculin; VDAC1: voltage-dependent anion channel 1; WT: wild type.
Collapse
Affiliation(s)
- Isabel Gordaliza-Alaguero
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Paula Sànchez-Fernàndez-de-Landa
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Dragana Radivojevikj
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Villarreal
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, Barcelona, Spain
| | - Gianluca Arauz-Garofalo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, Barcelona, Spain
| | - Marina Gay
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, Barcelona, Spain
| | - Marta Martinez-Vicente
- Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute-Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Jorge Seco
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, Barcelona, Spain
| | - Pau Martín-Malpartida
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, Barcelona, Spain
| | - Marta Vilaseca
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, Barcelona, Spain
| | - María J. Macías
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Manuel Palacin
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomedica En Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Saška Ivanova
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
8
|
Zhang S, Wang L, Yi S, Tsai YT, Cheng YH, Lin YT, Lin CC, Lee YH, Wang H, Li S, Wang R, Liu Y, Yan W, Liu C, He KW, Ho MS. Drosophila aux orchestrates the phosphorylation-dependent assembly of the lysosomal V-ATPase in glia and contributes to SNCA/α-synuclein degradation. Autophagy 2025; 21:1039-1058. [PMID: 39878136 PMCID: PMC12013444 DOI: 10.1080/15548627.2024.2442858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 12/07/2024] [Accepted: 12/11/2024] [Indexed: 01/31/2025] Open
Abstract
Glia contribute to the neuropathology of Parkinson disease (PD), but how they react opposingly to be beneficial or detrimental under pathological conditions, like promoting or eliminating SNCA/α-syn (synuclein alpha) inclusions, remains elusive. Here we present evidence that aux (auxilin), the Drosophila homolog of the PD risk factor GAK (cyclin G associated kinase), regulates the lysosomal degradation of SNCA/α-syn in glia. Lack of glial GAK/aux increases the lysosome number and size, regulates lysosomal acidification and hydrolase activity, and ultimately blocks the degradation of substrates including SNCA/α-syn. Whereas SNCA/α-syn accumulates prominently in lysosomes devoid of glial aux, levels of injected SNCA/α-syn preformed fibrils are further enhanced in the absence of microglial GAK. Mechanistically, aux mediates phosphorylation at the serine 543 of Vha44, the V1 C subunit of the vacuolar-type H+-translocating ATPase (V-ATPase), and regulates its assembly to control proper acidification of the lysosomal milieu. Expression of Vha44, but not the Vha44 variant lacking S543 phosphorylation, restores lysosome acidity, locomotor deficits, and DA neurodegeneration upon glial aux depletion, linking this pathway to PD. Our findings identify a phosphorylation-dependent switch controlling V-ATPase assembly for lysosomal SNCA/α-syn degradation in glia. Targeting the clearance of glial SNCA/α-syn inclusions via this lysosomal pathway could potentially be a therapeutic approach to ameliorate the disease progression in PD.Abbreviation: aux: auxilin; GAK: cyclin G associated kinase; LTG: LysoTracker Green; LTR: LysoTracker Red; MR: Magic Red; PD: Parkinson disease; SNCA/a-syn: synuclein alpha; V-ATPase: vacuolar-type H+-translocating ATPase.
Collapse
Affiliation(s)
- Shiping Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Linfang Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- The Institute of Seed Industry, Xianghu Laboratory, Qiantang River International Innovation Belt of the Xiaoshan Economic and Technological Development Zone, Hangzhou, China
| | - Shuanglong Yi
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Ting Tsai
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Hsuan Cheng
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Tung Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chia-Ching Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Hua Lee
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Honglei Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Shuhua Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ruiqi Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yang Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Wei Yan
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Chang Liu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Kai-Wen He
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Margaret S. Ho
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
9
|
Freisem D, Hoenigsperger H, Catanese A, Sparrer KMJ. Inborn errors of canonical autophagy in neurodegenerative diseases. Hum Mol Genet 2025:ddae179. [PMID: 40304712 DOI: 10.1093/hmg/ddae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 05/02/2025] Open
Abstract
Neurodegenerative disorders (NDDs), characterized by a progressive loss of neurons and cognitive function, are a severe burden to human health and mental fitness worldwide. A hallmark of NDDs such as Alzheimer's disease, Huntington's disease, Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS) and prion diseases is disturbed cellular proteostasis, resulting in pathogenic deposition of aggregated protein species. Autophagy is a major cellular process maintaining proteostasis and integral to innate immune defenses that mediates lysosomal protein turnover. Defects in autophagy are thus frequently associated with NDDs. In this review, we discuss the interplay between NDDs associated proteins and autophagy and provide an overview over recent discoveries in inborn errors in canonical autophagy proteins that are associated with NDDs. While mutations in autophagy receptors seems to be associated mainly with the development of ALS, errors in mitophagy are mainly found to promote PD. Finally, we argue whether autophagy may impact progress and onset of the disease, as well as the potential of targeting autophagy as a therapeutic approach. Concludingly, understanding disorders due to inborn errors in autophagy-"autophagopathies"-will help to unravel underlying NDD pathomechanisms and provide unique insights into the neuroprotective role of autophagy, thus potentially paving the way for novel therapeutic interventions.
Collapse
Affiliation(s)
- Dennis Freisem
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstr. 1, Baden-Wuerttemberg, Ulm 89081, Germany
| | - Helene Hoenigsperger
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstr. 1, Baden-Wuerttemberg, Ulm 89081, Germany
| | - Alberto Catanese
- German Center for Neurodegenerative Diseases, Albert-Einstein-Allee 11, Baden-Wuerttemberg, Ulm 89081, Germany
- Institute of Anatomy and Cell Biology, Ulm University Medical Center, Albert-Einstein-Allee 11, Baden-Wuerttemberg, Ulm 89081, Germany
| | - Konstantin M J Sparrer
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstr. 1, Baden-Wuerttemberg, Ulm 89081, Germany
| |
Collapse
|
10
|
Ma Y, Song R, Duan C. Mitochondrial quality control and transfer communication in neurological disorders and neuroinflammation. Front Immunol 2025; 16:1542369. [PMID: 40356918 PMCID: PMC12066325 DOI: 10.3389/fimmu.2025.1542369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 04/08/2025] [Indexed: 05/15/2025] Open
Abstract
Mitochondria, as the primary energy factories of cells, play a pivotal role in maintaining nervous system function and regulating inflammatory responses. The balance of mitochondrial quality control is critical for neuronal health, and disruptions in this balance are often implicated in the pathogenesis of various neurological disorders. Mitochondrial dysfunction not only exacerbates energy deficits but also triggers neuroinflammation through the release of damage-associated molecular patterns (DAMPs), such as mitochondrial DNA (mtDNA) and reactive oxygen species (ROS). This review examines the mechanisms and recent advancements in mitochondrial quality control in neurological diseases, focusing on processes such as mitochondrial fusion and fission, mitophagy, biogenesis, and protein expression regulation. It further explores the role of mitochondrial dysfunction and subsequent inflammatory cascades in conditions such as ischemic and hemorrhagic stroke, neurodegenerative diseases and brain tumors. Additionally, emerging research highlights the significance of mitochondrial transfer mechanisms, particularly intercellular transfer between neurons and glial cells, as a potential strategy for mitigating inflammation and promoting cellular repair. This review provides insights into the molecular underpinnings of neuroinflammatory pathologies while underscoring the translational potential of targeting mitochondrial quality control for therapeutic development.
Collapse
Affiliation(s)
| | | | - Chenyang Duan
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
Zhou N, Chen J, Hu M, Wen N, Cai W, Li P, Zhao L, Meng Y, Zhao D, Yang X, Liu S, Huang F, Zhao C, Feng X, Jiang Z, Xie E, Pan H, Cen Z, Chen X, Luo W, Tang B, Min J, Wang F, Yang J, Xu H. SLC7A11 is an unconventional H + transporter in lysosomes. Cell 2025:S0092-8674(25)00406-4. [PMID: 40280132 DOI: 10.1016/j.cell.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 01/22/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025]
Abstract
Lysosomes maintain an acidic pH of 4.5-5.0, optimal for macromolecular degradation. Whereas proton influx is produced by a V-type H+ ATPase, proton efflux is mediated by a fast H+ leak through TMEM175 channels, as well as an unidentified slow pathway. A candidate screen on an orphan lysosome membrane protein (OLMP) library enabled us to discover that SLC7A11, the protein target of the ferroptosis-inducing compound erastin, mediates a slow lysosomal H+ leak through downward flux of cystine and glutamate, two H+ equivalents with uniquely large but opposite concentration gradients across lysosomal membranes. SLC7A11 deficiency or inhibition caused lysosomal over-acidification, reduced degradation, accumulation of storage materials, and ferroptosis, as well as facilitated α-synuclein aggregation in neurons. Correction of abnormal lysosomal acidity restored lysosome homeostasis and prevented ferroptosis. These studies have revealed an unconventional H+ transport conduit that is integral to lysosomal flux of protonatable metabolites to regulate lysosome function, ferroptosis, and Parkinson's disease (PD) pathology.
Collapse
Affiliation(s)
- Nan Zhou
- New Cornerstone Science Laboratory and Liangzhu Laboratory, the Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China; Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Jingzhi Chen
- New Cornerstone Science Laboratory and Liangzhu Laboratory, the Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China; Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Meiqin Hu
- New Cornerstone Science Laboratory and Liangzhu Laboratory, the Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China.
| | - Na Wen
- New Cornerstone Science Laboratory and Liangzhu Laboratory, the Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China; Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Weijie Cai
- New Cornerstone Science Laboratory and Liangzhu Laboratory, the Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Ping Li
- New Cornerstone Science Laboratory and Liangzhu Laboratory, the Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Liding Zhao
- New Cornerstone Science Laboratory and Liangzhu Laboratory, the Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China; Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yaping Meng
- New Cornerstone Science Laboratory and Liangzhu Laboratory, the Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Dongdong Zhao
- New Cornerstone Science Laboratory and Liangzhu Laboratory, the Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaotong Yang
- New Cornerstone Science Laboratory and Liangzhu Laboratory, the Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Siyu Liu
- New Cornerstone Science Laboratory and Liangzhu Laboratory, the Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Fangqian Huang
- New Cornerstone Science Laboratory and Liangzhu Laboratory, the Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Cheng Zhao
- New Cornerstone Science Laboratory and Liangzhu Laboratory, the Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Xinghua Feng
- New Cornerstone Science Laboratory and Liangzhu Laboratory, the Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Zikai Jiang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Enjun Xie
- The Second Affiliated Hospital & the First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongxu Pan
- Department of Neurology & National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhidong Cen
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinhui Chen
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Luo
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Beisha Tang
- Department of Neurology & National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Junxia Min
- The Second Affiliated Hospital & the First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Fudi Wang
- The Second Affiliated Hospital & the First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Junsheng Yang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Haoxing Xu
- New Cornerstone Science Laboratory and Liangzhu Laboratory, the Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China; Institute of Fundamental and Transdisciplinary Research and The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
12
|
Soto-Mercado V, Mendivil-Perez M, Jimenez-Del-Rio M, Velez-Pardo C. Combination of Epigallocatechin-3-Gallate and Tramiprosate Prevent Accumulation of Intracellular Aβ and Dysfunctional Autophagy-Lysosomal Pathway at Earliest Stage of Transdifferentiation of Mesenchymal Stromal Cells into PSEN1 E280A Cholinergic-like Neurons. Int J Mol Sci 2025; 26:3756. [PMID: 40332390 PMCID: PMC12027828 DOI: 10.3390/ijms26083756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 05/08/2025] Open
Abstract
Familial Alzheimer's disease (FAD) caused by presenilin 1 (PSEN1) E280A induces the aberrant accumulation of intracellular Aβ (iAβ) in cholinergic-like neurons (ChLNs). How early iAβ accumulates in the development of ChLNs is still unknown. Consequently, the timing of appropriate therapeutic approaches against FAD is unclear. To determine the earliest iAβ in PSEN1 E280A ChLNs, flow cytometry and immunofluorescence microscopy were used to follow the development of menstrual mesenchymal stromal cells (MenSCs) into ChLNs (proliferation marker Ki67, cluster of differentiation 73 (CD73), neuronal nuclei (NeuN) marker, choline acetyl transferase (ChAT)), the kinetics of iAβ accumulation, and the simultaneous evaluation of other associated markers (e.g., DJ-1C106-SO3; lysosomes; phosphatidylethanolamine-conjugated microtubule-associated protein 1A/1B light chain 3, LC3-II; cleaved caspase 3 (CC3)) at 0, 1, 3, 5, and 7 days. To reverse the PSEN1 E280A phenotype, we used rapamycin (RAP), verubecestat (VER), compound E (CE), epigallocatechin-3-gallate (EGCG), and tramiprosate (TM) in WT and mutant ChLNs. We found that PSEN1 E280A did not induce significant differences in the NeuN marker and ChAT in MenSCs transitioning to ChLNs. The iAβ accumulates at the earliest cholinergic developmental stage from day 0 (18%, at MenSCs stage) to day 7 (46%, at ChLNs stage), i.e., iAβ increased +156% in mutant compared to WT cells (1-6%). A significant increase in DJ-1C106-SO3 occurs only at day 7 (+250%). While neither CC3 (0-1%) nor lysosomes were different between WT and mutant cells at any time point, a stepwise increase in autophagosome accumulation was observed from day 3 (15%) to day 7 (79%), i.e., +427%, in mutant cells. While neither RAP, VER, nor CE was able to completely reduce all PSEN1 E280A-induced markers in ChLNs, the combination of EGCG and TM was more effective in removing these markers than EGCG and TM alone in PSEN1 E280A ChLNs. Given that this investigation is based on a single menstrual blood sample from WT and PSEN1 E280A, our results should be considered exploratory. Larger sample sizes are needed.
Collapse
Affiliation(s)
- Viviana Soto-Mercado
- Neuroscience Research Group, Institute of Medical Research, Faculty of Medicine, University Research Headquarters, Calle 62#52-59, Building 1, Laboratory 411/412, Medellin 050010, Colombia; (V.S.-M.); (M.J.-D.-R.)
| | - Miguel Mendivil-Perez
- Neuroscience Research Group, Faculty of Nursing, University Research Headquarters, Calle 62#52-59, Building 1, Laboratory 411/412, Medellin 050010, Colombia;
| | - Marlene Jimenez-Del-Rio
- Neuroscience Research Group, Institute of Medical Research, Faculty of Medicine, University Research Headquarters, Calle 62#52-59, Building 1, Laboratory 411/412, Medellin 050010, Colombia; (V.S.-M.); (M.J.-D.-R.)
| | - Carlos Velez-Pardo
- Neuroscience Research Group, Institute of Medical Research, Faculty of Medicine, University Research Headquarters, Calle 62#52-59, Building 1, Laboratory 411/412, Medellin 050010, Colombia; (V.S.-M.); (M.J.-D.-R.)
| |
Collapse
|
13
|
Bi J, Sun Y, Guo M, Sun X, Sun J, Jiang R, Wang N, Huang G. Lysosomes: guardians and healers within cells- multifaceted perspective and outlook from injury repair to disease treatment. Cancer Cell Int 2025; 25:136. [PMID: 40205430 PMCID: PMC11984033 DOI: 10.1186/s12935-025-03771-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 03/28/2025] [Indexed: 04/11/2025] Open
Abstract
Lysosomes, as crucial organelles within cells, carry out diverse biological functions such as waste degradation, regulation of the cellular environment, and precise control of cell signaling. This paper reviews the core functions and structural characteristics of lysosomes, and delves into the current research status of lysosomes damage repair mechanisms. Subsequently, we explore in depth the close association between lysosomes and various diseases, including but not limited to age-related chronic diseases, neuro-degenerative diseases, tumors, inflammation, and immune imbalance. Additionally, we also provide a detailed discussion of the application of lysosome-targeted substances in the field of regenerative medicine, especially the enormous potential demonstrated in key areas such as stem cell regulation and therapy, and myocardial cell repair. Though the integration of multidisciplinary research efforts, we believe that lysosomes damage repair mechanisms will demonstrate even greater application value in disease treatment and regenerative medicine.
Collapse
Affiliation(s)
- Jianlei Bi
- Department of Medical Oncology, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, 116023, Liaoning, China
| | - Yincong Sun
- Institute for Genome Engineered Animal Models of Human Diseases, National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, Dalian, 116044, Liaoning, China
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Meihua Guo
- Institute for Genome Engineered Animal Models of Human Diseases, National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Xiaoxin Sun
- College of Integrative Medicine, Dalian Medical University, Dalian, 116044, Liaoning, P.R. China
| | - Jie Sun
- Institute for Genome Engineered Animal Models of Human Diseases, National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Rujiao Jiang
- Institute for Genome Engineered Animal Models of Human Diseases, National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Ning Wang
- Institute for Genome Engineered Animal Models of Human Diseases, National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, Dalian, 116044, Liaoning, China.
| | - Gena Huang
- Department of Medical Oncology, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, 116023, Liaoning, China.
| |
Collapse
|
14
|
Guo S, Yi L, Luo M, Dong Z, Du Y. Parishin A ameliorates cognitive decline by promoting PS1 autophagy in Alzheimer's disease. Front Aging Neurosci 2025; 17:1516190. [PMID: 40182757 PMCID: PMC11965357 DOI: 10.3389/fnagi.2025.1516190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/07/2025] [Indexed: 04/05/2025] Open
Abstract
Introduction Alzheimer's disease (AD) is a common neurodegenerative disease in the elderly. Its pathological features include: A lot of misfolding and abnormal aggregation of amyloid protein (Aβ); Autophagy disorder, oxidative stress, neuroinflammation, abnormal phosphorylated tau protein and synaptic dysfunction. Modern pharmacological studies have found that Paisinhin A (PA) has beneficial effects on the prevention and treatment of central nervous system diseases. This study aims to explore the role and mechanism of PA in AD through autophagy pathway, and lay a scientific foundation for the development of clinical prevention and treatment strategies for AD. Methods N2AAPP cells were treated with different concentrations of PA. Cell viability was detected by CCK-8 method. Western blotting detected the expression levels of proteins related to amyloid production, autophagy pathway, and phosphorylated Tau expression levels. Autophagy flow was detected by transfecting Lc3 double fluorescent plasmid. After Aβ was injected into the hippocampus of WT mice and PA was injected intraperitoneally, the learning and memory ability of WT mice were tested by new object recognition, y maze and water maze. The oxidative stress level was detected by the kit. The levels of inflammatory factors were detected by RT-qpcr. Results The viability of N2AAPP cells was not affected at different concentrations of PA, but PS1 was significantly decreased at 40μM. PA can obviously improve the accumulation of autophagy in AD, and to some extent save the autophagy inhibition of CQ. Behavioral studies have shown that PA can also improve learning and memory impairments caused by Aβ injections. In addition, in vivo experiments, PA can also improve oxidative stress levels, inflammation levels and salvage dysfunctions of synapses. PA also reduces the levels of total and phosphorylated Tau in N2ATau. Discussion Our study provides the first evidence that PA improves learning and memory in Aβ-induced AD mice. This effect appears to be mediated by PA by promoting autophagy and reducing oxidative stress. It was also found that PA may have a role in regulating inflammation, improving abnormally phosphorylated tau, and salvaging damaged synaptic function, providing valuable insights into potential applications in the treatment and prevention of AD.
Collapse
Affiliation(s)
| | | | | | | | - Yehong Du
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
15
|
Cocchiararo I, Castets P. Recent advances in the clinical spectrum and pathomechanisms associated with X-linked myopathy with excessive autophagy and other VMA21-related disorders. J Neuromuscul Dis 2025:22143602251314767. [PMID: 40033998 DOI: 10.1177/22143602251314767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
X-linked myopathy with excessive autophagy (XMEA) is a rare neuromuscular disorder caused by mutations in the VMA21 gene, encoding a chaperone protein present in the endoplasmic reticulum (ER). In yeast and human, VMA21 has been shown to chaperone the assembly of the vacuolar (v)-ATPase proton pump required for the acidification of lysosomes and other organelles. In line with this, VMA21 deficiency in XMEA impairs autophagic degradation steps, which would be key in XMEA pathogenesis. Recent years have witnessed a surge of interest in VMA21, with the identification of novel mutations causing a congenital disorder of glycosylation (CDG) with liver affection, and its potent implication in cancer predisposition. With this, VMA21 deficiency has been further linked to defective glycosylation, lipid metabolism dysregulation and ER stress. Moreover, the identification of two VMA21 isoforms, namely VMA21-101 and VMA21-120, has opened novel avenues regarding the pathomechanisms leading to XMEA and VMA21-CDG. In this review, we discuss recent advances on the clinical spectrum associated with VMA21 deficiency and on the pathophysiological roles of VMA21.
Collapse
Affiliation(s)
- Ilaria Cocchiararo
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Perrine Castets
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
16
|
Solé-Domènech S, Kumar Singh P, Warren JD, Maxfield FR. Real-Time Ratiometric pH Imaging of Macrophage Lysosomes Using the Novel pH-sensitive Probe ApHID. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.01.20.576118. [PMID: 39974909 PMCID: PMC11838183 DOI: 10.1101/2024.01.20.576118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Lysosomes actively regulate their lumenal pH, which is necessary for optimal enzymatic activity. Endocytic processes are involved in many diseases, including Alzheimer's disease, in which sub-optimal lysosomal function has been reported. To measure acidification, pH-sensitive probes can be delivered to endosomes and lysosomes using labeled dextran polymers or proteins. However, many commercially available probes have limited sensitivity in the acidic range of lysosomes, and their fluorescence is subject to enzymatic degradation and photobleaching. Herein, we describe the preparation, characterization, and use of a novel pH-sensitive probe, ApHID, a green-emitting fluorescent dye with optimal dynamic range within the acidity of endosomes and lysosomes. ApHID has a pKa near 5, increasing brightness with acidity, and it is robustly resistant to oxidation and photobleaching. We used ApHID ratiometric imaging to measure lysosomal pH in macrophages, yielding virtually identical results when compared with fluorescein and Oregon Green. Overall, ApHID circumvents limitations presented by most commercially available pH-sensitive probes and can be useful in demanding imaging applications such as intravital imaging of tissues.
Collapse
|
17
|
Krogsaeter EK, McKetney J, Valiente-Banuet L, Marquez A, Willis A, Cakir Z, Stevenson E, Jang GM, Rao A, Li E, Zhou A, Attili A, Chang TS, Kampmann M, Huang Y, Krogan NJ, Swaney DL. Lysosomal proteomics reveals mechanisms of neuronal apoE4-associated lysosomal dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.10.02.560519. [PMID: 37873080 PMCID: PMC10592882 DOI: 10.1101/2023.10.02.560519] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
ApoE4 is the primary risk factor for Alzheimer Disease (AD). Early AD pathological events first affect the neuronal endolysosomal system, which in turn causes neuronal protein aggregation and cell death. Despite the crucial influence of lysosomes upon AD pathophysiology, and that apoE4 localizes to lysosomes, the influence of apoE4 on lysosomal function remains unexplored. We find that expression of apoE4 in neuronal cell lines results in lysosomal alkalinization and impaired lysosomal function. To identify driving factors for these defects, we performed quantitative lysosomal proteome profiling. This revealed that apoE4 expression results in differential regulation of numerous lysosomal proteins, correlating with apoE allele status and disease severity in AD brains. In particular, apoE4 expression results in the depletion of lysosomal Lgals3bp and the accumulation of lysosomal Tmed5. We additionally validated that these lysosomal protein changes can be targeted to modulate lysosomal function. Taken together, this work thereby reveals that apoE4 causes widespread lysosomal defects through remodeling the lysosomal proteome, with the lysosomal Tmed5 accumulation and Lgals3bp depletion manifesting as lysosomal alkalinization in apoE4 neurons.
Collapse
Affiliation(s)
- Einar K. Krogsaeter
- Gladstone Data Science and Biotechnology Institute, The J. David Gladstone Institutes, San Francisco, California, USA
- Quantitative Bioscience Institute, University of California, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
- These authors contributed equally
| | - Justin McKetney
- Gladstone Data Science and Biotechnology Institute, The J. David Gladstone Institutes, San Francisco, California, USA
- Quantitative Bioscience Institute, University of California, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
- These authors contributed equally
| | - Leopoldo Valiente-Banuet
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Angelica Marquez
- Gladstone Data Science and Biotechnology Institute, The J. David Gladstone Institutes, San Francisco, California, USA
- Quantitative Bioscience Institute, University of California, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
| | - Alexandra Willis
- Gladstone Data Science and Biotechnology Institute, The J. David Gladstone Institutes, San Francisco, California, USA
- Quantitative Bioscience Institute, University of California, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
| | - Zeynep Cakir
- Gladstone Data Science and Biotechnology Institute, The J. David Gladstone Institutes, San Francisco, California, USA
- Quantitative Bioscience Institute, University of California, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
| | - Erica Stevenson
- Gladstone Data Science and Biotechnology Institute, The J. David Gladstone Institutes, San Francisco, California, USA
- Quantitative Bioscience Institute, University of California, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
| | - Gwendolyn M. Jang
- Gladstone Data Science and Biotechnology Institute, The J. David Gladstone Institutes, San Francisco, California, USA
- Quantitative Bioscience Institute, University of California, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
| | - Antara Rao
- Gladstone Institute of Neurological Disease, The J. David Gladstone Institutes, San Francisco, USA
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, USA
| | - Emmy Li
- Institute for Neurodegenerative Diseases, University of California, San Francisco, California, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, USA
| | - Anton Zhou
- Gladstone Institute of Neurological Disease, The J. David Gladstone Institutes, San Francisco, USA
| | - Anjani Attili
- Institute for Neurodegenerative Diseases, University of California, San Francisco, California, USA
- Biosciences Internship Program, City College of San Francisco, USA
| | - Timothy S. Chang
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases, University of California, San Francisco, California, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA
| | - Yadong Huang
- Gladstone Institute of Neurological Disease, The J. David Gladstone Institutes, San Francisco, USA
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, USA
- Neuroscience Graduate Program, University of California, San Francisco, USA
- Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, USA
- Departments of Neurology and Pathology, University of California, San Francisco, USA
| | - Nevan J. Krogan
- Gladstone Data Science and Biotechnology Institute, The J. David Gladstone Institutes, San Francisco, California, USA
- Quantitative Bioscience Institute, University of California, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
| | - Danielle L. Swaney
- Gladstone Data Science and Biotechnology Institute, The J. David Gladstone Institutes, San Francisco, California, USA
- Quantitative Bioscience Institute, University of California, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
| |
Collapse
|
18
|
Wu Y, Liu X, Luo G, Li Q, Guo B, Li L, Nie J. DNLA Delayed the Appearance of Learning and Memory Impairment of APP/PS1 Mice: Involvement of mTOR/TFEB/v-ATPase Signaling Pathway. CNS Neurosci Ther 2025; 31:e70300. [PMID: 40047153 PMCID: PMC11883424 DOI: 10.1111/cns.70300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/06/2025] [Accepted: 02/13/2025] [Indexed: 03/09/2025] Open
Abstract
INTRODUCTION Alzheimer's disease (AD) is a progressive neurodegenerative disorder with cognitive impairment that currently is incurable. There is existing evidence to suggest that vacuolar adenosine triphosphatase (v-ATPase) is one of the early key driving factors in the pathological process of AD. Thus, early intervention of v-ATPase may be a viable strategy. AIMS Observing whether early intervention with DNLA can delay learning and memory impairment in mice, and further exploring the mechanism of DNLA delaying AD in vitro based on v-ATPase. METHODS Four-month-old APP/PS1 transgenic mice were treated with alkaloids from Dendrobium nobile Lindl (DNLA) 20 and 40 mg/kg/day for 5 months. The Morris water maze test and nest test showed that DNLA administration significantly delayed the appearance of cognitive deficits in APP/PS1 mice. We further investigated the mechanism of DNLA promoting lysosome acidification in vitro by using PC12 cells. RESULTS We found that DNLA increases the degradation of β-amyloid (Aβ) contained in the autophagic lysosomes and alleviates the aging of neurons by promoting lysosome acidification and improving autophagy flow. In PC12 cells, DDB could promote the separation of mTOR and lysosome, promote the nuclear translocation of transcription factor EB (TFEB), and then promote lysosome biogenesis and lysosome acidification by targeting ATP6V1A. CONCLUSION These results unraveled that preventive administration of DNLA may delay the impairment of learning and memory in APP/PS1 mice. The molecular mechanism may be related to promoting the mTOR-TFEB-v-ATPase pathway.
Collapse
Affiliation(s)
- Yajuan Wu
- Key Laboratory of Basic Pharmacology of Ministry of EducationZunyi Medical UniversityZunyiChina
| | - Xuejia Liu
- Key Laboratory of Basic Pharmacology of Ministry of EducationZunyi Medical UniversityZunyiChina
| | - Guohui Luo
- Key Laboratory of Basic Pharmacology of Ministry of EducationZunyi Medical UniversityZunyiChina
| | - Qiye Li
- Key Laboratory of Basic Pharmacology of Ministry of EducationZunyi Medical UniversityZunyiChina
| | - Bin Guo
- Key Laboratory of Basic Pharmacology of Ministry of EducationZunyi Medical UniversityZunyiChina
| | - Lisheng Li
- Key Laboratory of Basic Pharmacology of Ministry of EducationZunyi Medical UniversityZunyiChina
| | - Jing Nie
- Key Laboratory of Basic Pharmacology of Ministry of EducationZunyi Medical UniversityZunyiChina
| |
Collapse
|
19
|
Hao M, Chu J, Zhang T, Yin T, Gu Y, Liang W, Ji W, Zhuang J, Liu Y, Gao J, Yin Y. Nanomaterials-mediated lysosomal regulation: a robust protein-clearance approach for the treatment of Alzheimer's disease. Neural Regen Res 2025; 20:424-439. [PMID: 38819046 PMCID: PMC11317947 DOI: 10.4103/nrr.nrr-d-23-01736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/04/2024] [Accepted: 02/20/2024] [Indexed: 06/01/2024] Open
Abstract
Alzheimer's disease is a debilitating, progressive neurodegenerative disorder characterized by the progressive accumulation of abnormal proteins, including amyloid plaques and intracellular tau tangles, primarily within the brain. Lysosomes, crucial intracellular organelles responsible for protein degradation, play a key role in maintaining cellular homeostasis. Some studies have suggested a link between the dysregulation of the lysosomal system and pathogenesis of neurodegenerative diseases, including Alzheimer's disease. Restoring the normal physiological function of lysosomes hold the potential to reduce the pathological burden and improve the symptoms of Alzheimer's disease. Currently, the efficacy of drugs in treating Alzheimer's disease is limited, with major challenges in drug delivery efficiency and targeting. Recently, nanomaterials have gained widespread use in Alzheimer's disease drug research owing to their favorable physical and chemical properties. This review aims to provide a comprehensive overview of recent advances in using nanomaterials (polymeric nanomaterials, nanoemulsions, and carbon-based nanomaterials) to enhance lysosomal function in treating Alzheimer's disease. This review also explores new concepts and potential therapeutic strategies for Alzheimer's disease through the integration of nanomaterials and modulation of lysosomal function. In conclusion, this review emphasizes the potential of nanomaterials in modulating lysosomal function to improve the pathological features of Alzheimer's disease. The application of nanotechnology to the development of Alzheimer's disease drugs brings new ideas and approaches for future treatment of this disease.
Collapse
Affiliation(s)
- Mengqi Hao
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jianjian Chu
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China
| | - Tinglin Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Tong Yin
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China
| | - Yuankai Gu
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China
| | - Wendanqi Liang
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Wenbo Ji
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China
| | - Jianhua Zhuang
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China
| | - Yan Liu
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - You Yin
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
20
|
Liu J, Zhang Y, Zhang M, Wang Q, Pang Y, Xie J. 6‴-Feruloylspinosin alleviates Aβ-induced toxicity by modulating relevant neurotransmitter and the AMPK/mTOR signaling pathway. Free Radic Biol Med 2025; 227:434-445. [PMID: 39653128 DOI: 10.1016/j.freeradbiomed.2024.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/24/2024] [Accepted: 12/06/2024] [Indexed: 12/15/2024]
Abstract
Alzheimer's disease (AD) is a gradually progressive neurodegenerative disease with a serious impact on patients' quality of life. However, single-targeted therapies are not currently effective, and there is a need to find pluripotent drugs with multiple properties. This study aimed to characterize the metabolism of neurotransmitters using a targeted metabolomics approach and to identify the major metabolic pathways mainly affected by 6‴-feruloylspinosin (6-FS). The mechanism of action of 6-FS in the treatment of AD was elucidated based on experimental validation. The metabolomics analysis revealed changes in 13 metabolic profiles by the LC-MS/MS, with significant changes in five amino acid-related neurotransmitters identified primarily. Based on the correlations, we found an effect of mTOR inhibition on the above neurotransmitter metabolism. Furthermore, pretreatment with 6-FS activated the AMPK/mTOR signaling pathway, promoting cellular autophagy, regulating oxidative stress homeostasis and inhibiting mitochondrial dysfunction. In short, these comprehensive analysis methods help clarify the preventive mechanism of 6-FS and potential targets in AD and provide the necessary support for developing natural products to prevent AD.
Collapse
Affiliation(s)
- Jinrui Liu
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, 300134, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yanqing Zhang
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, 300134, China.
| | - Mei Zhang
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, 300134, China
| | - Qing Wang
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, 300134, China
| | - Yuxin Pang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| | - Junbo Xie
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
21
|
Kiraly S, Stanley J, Eden ER. Lysosome-Mitochondrial Crosstalk in Cellular Stress and Disease. Antioxidants (Basel) 2025; 14:125. [PMID: 40002312 PMCID: PMC11852311 DOI: 10.3390/antiox14020125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/23/2024] [Accepted: 01/11/2025] [Indexed: 02/27/2025] Open
Abstract
The perception of lysosomes and mitochondria as entirely separate and independent entities that degrade material and produce ATP, respectively, has been challenged in recent years as not only more complex roles for both organelles, but also an unanticipated level of interdependence are being uncovered. Coupled lysosome and mitochondrial function and dysfunction involve complex crosstalk between the two organelles which goes beyond mitochondrial quality control and lysosome-mediated clearance of damaged mitochondria through mitophagy. Our understanding of crosstalk between these two essential metabolic organelles has been transformed by major advances in the field of membrane contact sites biology. We now know that membrane contact sites between lysosomes and mitochondria play central roles in inter-organelle communication. This importance of mitochondria-lysosome contacts (MLCs) in cellular homeostasis, evinced by the growing number of diseases that have been associated with their dysregulation, is starting to be appreciated. How MLCs are regulated and how their coordination with other pathways of lysosome-mitochondria crosstalk is achieved are the subjects of ongoing scrutiny, but this review explores the current understanding of the complex crosstalk governing the function of the two organelles and its impact on cellular stress and disease.
Collapse
Affiliation(s)
| | | | - Emily R. Eden
- UCL Institute of Ophthalmology, London EC1V 9EL, UK; (S.K.); (J.S.)
| |
Collapse
|
22
|
Deivasigamani S, Thekkan S, Vergara HM, Conolly O, Cosden M, Phan T, Smith S, Marcus J, Uslaner J, Venkat D, Drolet RE, Krishnan Y, Modi S. Multimodal Blood-Based Biomarker Panel Reveals Altered Lysosomal Ionic Content in Alzheimer's Disease. ACS Chem Biol 2025; 20:137-152. [PMID: 39699875 DOI: 10.1021/acschembio.4c00602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Lysosomal storage disorders (LSDs) and adult neurodegenerative disorders like Alzheimer's disease (AD) share various clinical and pathophysiological features. LSDs are characterized by impaired lysosomal activity caused by mutations in key proteins and enzymes. While lysosomal dysfunction is also linked to AD pathogenesis, its precise role in disease onset or progression remains unclear. Lysosomal ionic homeostasis is recognized as a key feature of many LSDs, but it has not been clinically linked with AD pathology. Thus, investigating whether this regulation is disrupted in AD is important, as it could lead to new therapeutic targets and biomarkers for this multifactorial disease. Here, using two-ion mapping (2-IM) technology, we quantitatively profiled lysosomal pH and Ca2+ in blood-derived monocytes from AD patients and age-matched controls and correlated lysosome ionicity with age and key markers of AD pathology, namely, amyloid deposits, tauopathy, neurodegeneration, and inflammation. Together, the data show that the ionic milieu of lysosomes is dysregulated in monocytes of AD patients and correlates with key plasma biomarkers of AD. Using a machine learning model based on the above parameters, we describe a proof-of-concept combinatorial biomarker platform that accurately distinguishes between patients with AD and control participants with an area under the curve of >96%. Our study introduces a convenient, noninvasive platform with the potential to diagnose Alzheimer's disease based on fluid, cellular, and molecular biomarkers. Further, these findings highlight the potential for investigating therapeutic mechanisms capable of restoring lysosome ionic homeostasis to ameliorate AD.
Collapse
Affiliation(s)
| | | | | | | | - Mali Cosden
- Neuroscience Department, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Thienlong Phan
- Neuroscience Department, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Sean Smith
- Neuroscience Department, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Jacob Marcus
- Neuroscience Department, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Jason Uslaner
- Neuroscience Department, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | | | - Robert E Drolet
- Neuroscience Department, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Yamuna Krishnan
- Esya Ltd., 84 Wood Lane, London W12 0BZ, U.K
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Neuroscience Institute, The University of Chicago, Chicago, Illinois 60637, United States
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Souvik Modi
- Esya Ltd., 84 Wood Lane, London W12 0BZ, U.K
| |
Collapse
|
23
|
Chou CC, Vest R, Prado MA, Wilson-Grady J, Paulo JA, Shibuya Y, Moran-Losada P, Lee TT, Luo J, Gygi SP, Kelly JW, Finley D, Wernig M, Wyss-Coray T, Frydman J. Proteostasis and lysosomal repair deficits in transdifferentiated neurons of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.03.27.534444. [PMID: 37034684 PMCID: PMC10081252 DOI: 10.1101/2023.03.27.534444] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Aging is the most prominent risk factor for Alzheimer's disease (AD). However, the cellular mechanisms linking neuronal proteostasis decline to the characteristic aberrant protein deposits in AD brains remain elusive. Here, we develop transdifferentiated neurons (tNeurons) from human dermal fibroblasts as a neuronal model that retains aging hallmarks and exhibits AD-linked vulnerabilities. Remarkably, AD tNeurons accumulate proteotoxic deposits, including phospho-Tau and Aβ, resembling those in AD patient and APP mouse brains. Quantitative tNeuron proteomics identify aging and AD-linked deficits in proteostasis and organelle homeostasis, most notably in endosome-lysosomal components. Lysosomal deficits in aged tNeurons, including constitutive lysosomal damage and ESCRT-mediated lysosomal repair defects, are exacerbated in AD tNeurons and linked to inflammatory cytokine secretion and cell death. Supporting lysosomal deficits' centrality in AD, compounds ameliorating lysosomal function reduce Aβ deposits and cytokine secretion. Thus, the tNeuron model system reveals impaired lysosomal homeostasis as an early event of aging and AD.
Collapse
Affiliation(s)
- Ching-Chieh Chou
- Department of Biology, Stanford University, Stanford, California, USA
| | - Ryan Vest
- Department of Chemical Engineering, Stanford University, Stanford, California, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California, USA and The Phil and Penny Knight Initiative for Brain Resilience, Stanford University, Stanford, CA, USA
- Qinotto, Inc. San Carlos, California, USA
| | - Miguel A. Prado
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Joshua Wilson-Grady
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Yohei Shibuya
- Departments of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Patricia Moran-Losada
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, California, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California, USA and The Phil and Penny Knight Initiative for Brain Resilience, Stanford University, Stanford, CA, USA
| | - Ting-Ting Lee
- Department of Biology, Stanford University, Stanford, California, USA
| | - Jian Luo
- Palo Alto Veterans Institute for Research, Inc. (PAVIR), Palo Alto, California, USA
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeffery W. Kelly
- Department of Chemistry, The Scripps Research Institute, La Jolla, California, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Marius Wernig
- Departments of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Tony Wyss-Coray
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, California, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California, USA and The Phil and Penny Knight Initiative for Brain Resilience, Stanford University, Stanford, CA, USA
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, California, USA
- Department of Genetics, Stanford University, Stanford, California, USA
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, California, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| |
Collapse
|
24
|
Kim Y, Ha TY, Lee MS, Chang KA. Regulatory Mechanisms and Therapeutic Implications of Lysosomal Dysfunction in Alzheimer's Disease. Int J Biol Sci 2025; 21:1014-1031. [PMID: 39897039 PMCID: PMC11781173 DOI: 10.7150/ijbs.103028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/26/2024] [Indexed: 02/04/2025] Open
Abstract
Alzheimer's disease (AD) is characterized by the accumulation of amyloid-beta (Aβ) plaques, neurofibrillary tangles (NFTs) formed from hyperphosphorylated Tau, and widespread neuronal loss. The autophagy-lysosomal pathway plays a crucial role in maintaining cellular homeostasis by degrading and recycling of damaged organelles and aggregate amyloid proteins implicated in AD. Lysosomes are key effectors of autophagic process, responsible for the breakdown of a variety of damaged organelles and aggregate or dysfunctional proteins. This review examines the role of lysosomal dysfunction in AD pathophysiology, focusing on genetic factors, acidification abnormalities, and other contributing factors. We also explore the involvement of lysosomal dysfunction of microglia in AD pathology, and cover the role of lysosomal stress response (LSR) in cellular response to neuronal injury associated with AD. Furthermore, we discuss potential therapeutic strategies targeting lysosomal proteolysis pathway and addressing lysosomal dysfunction for AD treatment, including the pharmacologically activating lysosomal activity, regulating TFEB, and considering other emerging approaches.
Collapse
Affiliation(s)
- Yeji Kim
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon 21999, Korea
| | - Tae-Young Ha
- Department of Pharmacology, College of Medicine, Gachon University, Incheon 21999, Korea
- Neuroscience Research Institute, Gachon University, Incheon 21565, Korea
| | - Myung-Shik Lee
- Soonchunhyang Institute of Medi-bio Science & Division of Endocrinology, Department of Internal Medicine & Immunology, Soonchunhyang University College of Medicine, Cheonan 31151, Korea
- Chief Scientific Officer, LysoTech, Inc., Seoul 03766, Korea
| | - Keun-A Chang
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon 21999, Korea
- Department of Pharmacology, College of Medicine, Gachon University, Incheon 21999, Korea
- Neuroscience Research Institute, Gachon University, Incheon 21565, Korea
| |
Collapse
|
25
|
Wang M, Zhang H, Liang J, Huang J, Wu T, Chen N. Calcium signaling hypothesis: A non-negligible pathogenesis in Alzheimer's disease. J Adv Res 2025:S2090-1232(25)00026-8. [PMID: 39793962 DOI: 10.1016/j.jare.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/23/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD) presents a significant challenge to global healthcare systems, with an exacerbation by an aging population. Although the plethora of hypotheses are proposed to elucidate the underlying mechanisms of AD, from amyloid-beta (Aβ) accumulation and Tau protein aggregation to neuroinflammation, a comprehensive understanding of its pathogenesis remains elusive. Recent research has highlighted the critical role of calcium (Ca2+) signaling pathway in the progression of AD, indicating a complex interplay between Ca2+ dysregulation and various pathological processes. AIM OF REVIEW This review aims to consolidate the current understanding of the role of Ca2+ signaling dysregulation in AD, thus emphasizing its central role amidst various pathological hypotheses. We aim to evaluate the potential of the Ca2+ signaling hypothesis to unify existing theories of AD pathogenesis and explore its implications for developing innovative therapeutic strategies through targeting Ca2+ dysregulation. KEY SCIENTIFIC CONCEPTS OF REVIEW The review focuses on three principal concepts. First, the indispensable role of Ca2+ homeostasis in neuronal function and its disruption in AD. Second, the interaction between Ca2+ signaling dysfunction and established AD hypotheses posited that Ca2+ dysregulation is a unifying pathway. Third, the dual role of Ca2+ in neurodegeneration and neuroprotection, highlighting the nuanced effects of Ca2+ levels on AD pathology.
Collapse
Affiliation(s)
- Minghui Wang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Hu Zhang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Jiling Liang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Jielun Huang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Tong Wu
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China.
| | - Ning Chen
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China.
| |
Collapse
|
26
|
Hossain MK, Chae HJ. Calcium balance through mutual orchestrated inter-organelle communication: A pleiotropic target for combating Alzheimer's disease. Neurochem Int 2025; 182:105905. [PMID: 39566580 DOI: 10.1016/j.neuint.2024.105905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
Dysfunctional intraneuronal organelles in Alzheimer's Disease (AD) propel aberrant calcium handling, triggering molecular miscommunication within organelles such as mitochondria, endoplasmic reticulum, and lysosomes. This disruption in organelle function not only impairs cellular homeostasis but also exacerbates neurodegenerative processes involving the accumulation of amyloid-β (Aβ) and hyperphosphorylated tau, amplifying the disease's vicious cycle. In this review, the concept of Mutual Orchestrated Inter-organelle Communication (MOIC) proposes potential therapeutic avenues for restoring Ca2+ homeostasis in AD, offering a theoretical framework for developing disease-modifying treatments. The intricate nature of AD necessitates a shift towards combination therapies targeting MOIC-associated pathways, presenting a more effective approach than monotherapy.
Collapse
Affiliation(s)
| | - Han Jung Chae
- Non-Clinical Evaluation Center, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Republic of Korea.
| |
Collapse
|
27
|
Yao Z, Zhang H, Huang K, Huang G, Xi P, Jiang L, Qin D, Chen F, Li S, Wei R. Niraparib perturbs autophagosome-lysosome fusion in pancreatic ductal adenocarcinoma and exhibits anticancer potential against gemcitabine-resistant PDAC. Transl Oncol 2025; 51:102206. [PMID: 39603206 PMCID: PMC11635771 DOI: 10.1016/j.tranon.2024.102206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/30/2024] [Accepted: 11/17/2024] [Indexed: 11/29/2024] Open
Abstract
While poly (adenosine diphosphate-ribose) polymerase inhibitors (PARPi) have achieved specific clinical benefits in a subset of pancreatic ductal adenocarcinoma (PDAC) patients, the potential role of the PARPi niraparib in PDAC necessitates further exploration. In this study, we demonstrated that Niraparib exhibited a pronounced inhibitory effect on autophagy in PDAC both in vitro and in vivo. Mechanistically, this inhibition was primarily attributed to niraparib's ability to disrupt the fusion process between autophagosomes and lysosomes, while potentially exerting a relatively minor impact on the initial stage of autophagy. The blockade effect observed may be mediated via modulation of the ERK signaling pathway, and this effect can be mitigated by the application of an ERK inhibitor (FR180204). Notably, the combined treatment regimen of niraparib and gemcitabine failed to elicit the anticipated synergistic effects in wild-type PANC-1 cells, instead exhibiting pronounced antagonistic interactions. However, in gemcitabine-resistant PANC-1 cells, the combination of niraparib and gemcitabine exhibited modest additive effects. Furthermore, niraparib demonstrated a heightened cytotoxic potency against gemcitabine-resistant PANC-1 cells compared to wild-type PANC-1 cells, both in vitro and in vivo. Our research established that niraparib inhibits late-stage autophagy in PDAC, potentially representing a valuable salvage therapy for gemcitabine-resistant PDAC. Further clinical studies are justified.
Collapse
Affiliation(s)
- Zehui Yao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Huihui Zhang
- Center for Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 510060, China
| | - Kewei Huang
- Department of Clinical Laboratory, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Guizhong Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Pu Xi
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Lingmin Jiang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Dailei Qin
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Fan Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Shengping Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Ran Wei
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
28
|
Lauritzen I, Bini A, Bécot A, Gay A, Badot C, Pagnotta S, Chami M, Checler F. Presenilins as hub proteins controlling the endocytic and autophagic pathways and small extracellular vesicle secretion. J Extracell Vesicles 2025; 14:e70019. [PMID: 39815792 PMCID: PMC11735957 DOI: 10.1002/jev2.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 11/05/2024] [Accepted: 11/26/2024] [Indexed: 01/18/2025] Open
Abstract
Emerging evidence indicates that autophagy is tightly connected to the endocytic pathway. Here, we questioned the role of presenilins (PSENs 1 and 2), previously shown to be involved in autophagy regulation, in the secretion of small endocytic-originating extracellular vesicles known as exosomes. Indeed, while wild-type cells responded to stimuli promoting both multivesicular endosome (MVE) formation and secretion of small extracellular vesicles (sEVs) enriched in canonical exosomal proteins, PSEN-deficient cells were almost unaffected to these stimuli. Moreover, in PSEN-deficient cells, the re-expression of either PSEN1 or the functional active PSEN1delta9 mutant led to a rescue of most sEV secretion, while the deletion of PSEN1 alone almost fully phenocopied total PSEN invalidation. We found that the lack of sEV secretion in PSEN-deficient cells was also due to overactivated autophagy promoting MVEs to degradation rather than to plasma membrane fusion. Hence, in these cells, the autophagic blocker bafilomycin A1 (BafA1) not only increased the intracellular levels of the MVE protein CD63, but also turned on sEV secretion by stimulating autophagy-dependent unconventional secretion. In that case, sEVs arised from amphisomes and were enriched in both canonical exosomal proteins and lysosomal-autophagy-associated cargo. Altogether, we here demonstrate that PSENs, and particularly PSEN1, act as hub proteins controlling the balance between endosomal/autophagic degradation and secretion. More generally, our findings strengthen the view of a strong interconnection between the endocytic and autophagic pathways and their complementary roles in sEV secretion.
Collapse
Affiliation(s)
- Inger Lauritzen
- IPMCUMR7275 CNRS‐UniCA, INSERM U1323, team certified “Laboratory of Excellence (LABEX) Distalz”ValbonneFrance
| | - Anaïs Bini
- IPMCUMR7275 CNRS‐UniCA, INSERM U1323, team certified “Laboratory of Excellence (LABEX) Distalz”ValbonneFrance
| | - Anaïs Bécot
- IPMCUMR7275 CNRS‐UniCA, INSERM U1323, team certified “Laboratory of Excellence (LABEX) Distalz”ValbonneFrance
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266Université de ParisParisFrance
| | - Anne‐Sophie Gay
- IPMCUMR7275 CNRS‐UniCA, INSERM U1323, team certified “Laboratory of Excellence (LABEX) Distalz”ValbonneFrance
| | - Céline Badot
- IPMCUMR7275 CNRS‐UniCA, INSERM U1323, team certified “Laboratory of Excellence (LABEX) Distalz”ValbonneFrance
| | - Sophie Pagnotta
- Microscopy center (CCMA)Valrose, Université Côte d'Azur (UniCA)NiceFrance
| | - Mounia Chami
- IPMCUMR7275 CNRS‐UniCA, INSERM U1323, team certified “Laboratory of Excellence (LABEX) Distalz”ValbonneFrance
| | - Frédéric Checler
- IPMCUMR7275 CNRS‐UniCA, INSERM U1323, team certified “Laboratory of Excellence (LABEX) Distalz”ValbonneFrance
| |
Collapse
|
29
|
Chen T, Lin X, Lu S, Li B. V-ATPase in cancer: mechanistic insights and therapeutic potentials. Cell Commun Signal 2024; 22:613. [PMID: 39707503 DOI: 10.1186/s12964-024-01998-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024] Open
Abstract
Vacuolar-type H+-ATPase (V-ATPase) is a crucial proton pump that plays an essential role in maintaining intracellular pH homeostasis and a variety of physiological processes. This review provides an in-depth exploration of the structural components, functional mechanisms, and regulatory modes of V-ATPase in cancer cells. Comprising two main domains, V1 and V0, V-ATPase drives the proton pump through ATP hydrolysis, sustaining the pH balance within the cell and organelles. In cancer cells, the enhanced activity of V-ATPase is closely associated with the proliferation and metastasis of tumor cells, and it promotes the growth and invasion of tumor cells by regulating pH values in the tumor microenvironment. Moreover, the interaction between V-ATPase and key metabolic regulatory factors, the mechanistic target of rapamycin complex 1 (mTORC1) and AMP-activated protein kinase (AMPK), impacts the metabolic state of cancer cells. The role of V-ATPase in tumor drug resistance and its regulatory mechanism in non-canonical autophagy offer new perspectives and potential targets for cancer therapy. Future research directions will focus on the specific mechanisms of action of V-ATPase in the tumor microenvironment and how to translate its inhibitors into clinical applications, providing significant scientific evidence for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Tingting Chen
- School of Basic Medicine, Guangdong Medical University, DongGuan, China.
| | - Xiaotan Lin
- Department of Family Planning, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Shuo Lu
- School of Basic Medicine, Guangdong Medical University, DongGuan, China
| | - Bo Li
- College of Basic Medical Science, Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
30
|
Kanmani S, Song XM, Kanmani P, Wu XJ, Xiao-Di-Tan, Liu J, Wang JP, Minshall RD, Hu G. Enhancement of Autophagy in Macrophages via the p120-Catenin-Mediated mTOR Signaling Pathway. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1666-1675. [PMID: 39423222 PMCID: PMC11610512 DOI: 10.4049/jimmunol.2400189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/20/2024] [Indexed: 10/21/2024]
Abstract
Autophagy serves as a critical regulator of immune responses in sepsis. Macrophages are vital constituents of both innate and adaptive immunity. In this study, we delved into the intricate role of p120-catenin (p120) in orchestrating autophagy in macrophages in response to endotoxin stimulation. Depletion of p120 effectively suppressed LPS-induced autophagy in both J774A.1 macrophages and murine bone marrow-derived macrophages. LPS not only elevated the interaction between p120 and L chain 3 (LC3) I/II but also facilitated the association of p120 with mammalian target of rapamycin (mTOR). p120 depletion in macrophages by small interfering RNA reduced LPS-induced dissociation of mTOR and Unc-51-like kinase 1 (ULK1), leading to an increase in the phosphorylation of ULK1. p120 depletion also enhanced LPS-triggered macrophage apoptosis, as evidenced by increased levels of cleaved caspase 3, 7-aminoactinomycin D staining, and TUNEL assay. Notably, inhibiting autophagy reversed the decrease in apoptosis caused by LPS stimulation in macrophages overexpressing p120. Additionally, the ablation of p120 inhibited autophagy and accentuated apoptosis in alveolar macrophages in LPS-challenged mice. Collectively, our findings strongly suggest that p120 plays a pivotal role in fostering autophagy while concurrently hindering apoptosis in macrophages, achieved through modulation of the mTOR/ULK1 signaling pathway in sepsis. This underscores the potential of targeting macrophage p120 as an innovative therapeutic avenue for treating inflammatory disorders.
Collapse
Affiliation(s)
- Suganya Kanmani
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Xue-Min Song
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- The Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Wuchang, 125 Donghu Road, Hubei Province, China
| | - Paulraj Kanmani
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Xiao-Jing Wu
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Wuchang, 238 Liberation Road, Hubei Province, China
| | - Xiao-Di-Tan
- Department Pediatrics, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Jing Liu
- Department of Surgery/Cancer Center, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Ji-Ping Wang
- Departments of Statistics and Data Science, Northwestern University, Evanston, Illinois, United States of America
| | - Richard D. Minshall
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- Department of Pharmacology & Regenerative Medicine, University of Illinois College of Medicine, Chicago, Illinois, 60612, United States of America
| | - Guochang Hu
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- Department of Pharmacology & Regenerative Medicine, University of Illinois College of Medicine, Chicago, Illinois, 60612, United States of America
| |
Collapse
|
31
|
Wang M, Chen X, Li S, Wang L, Tang H, Pu Y, Zhang D, Fang B, Bai X. A crosstalk between autophagy and apoptosis in intracerebral hemorrhage. Front Cell Neurosci 2024; 18:1445919. [PMID: 39650799 PMCID: PMC11622039 DOI: 10.3389/fncel.2024.1445919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 10/31/2024] [Indexed: 12/11/2024] Open
Abstract
Intracerebral hemorrhage (ICH) is a severe condition that devastatingly harms human health and poses a financial burden on families and society. Bcl-2 Associated X-protein (Bax) and B-cell lymphoma 2 (Bcl-2) are two classic apoptotic markers post-ICH. Beclin 1 offers a competitive architecture with that of Bax, both playing a vital role in autophagy. However, the interaction between Beclin 1 and Bcl-2/Bax has not been conjunctively analyzed. This review aims to examine the crosstalk between autophagy and apoptosis in ICH by focusing on the interaction and balance of Beclin 1, Bax, and Bcl-2. We also explored the therapeutic potential of Western conventional medicine and traditional Chinese medicine (TCM) in ICH via controlling the crosstalk between autophagy and apoptosis.
Collapse
Affiliation(s)
- Moyan Wang
- Department of Neurology, National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Xin Chen
- Department of Neurology, National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Shuangyang Li
- Department of Neurology, National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Lingxue Wang
- Department of Neurology, National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Hongmei Tang
- Department of Neurology, National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Yuting Pu
- Department of Neurology, National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Dechou Zhang
- Department of Neurology, National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Bangjiang Fang
- Department of Neurology, National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
- Department of Emergency, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xue Bai
- Department of Neurology, National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| |
Collapse
|
32
|
Benitez BA, Wallace CE, Patel M, Nykanen NP, Yuede CM, Eaton SL, Pottier C, Cetin A, Johnson M, Bevan MT, Gardiner WD, Edwards HM, Doherty BM, Harrigan RT, Kurian D, Wishart TM, Smith C, Cirrito JR, Sands MS. Haploinsufficiency of lysosomal enzyme genes in Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.16.623962. [PMID: 39605615 PMCID: PMC11601326 DOI: 10.1101/2024.11.16.623962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
There is growing evidence suggesting that the lysosome or lysosome dysfunction is associated with Alzheimer's disease (AD). Pathway analysis of post mortem brain-derived proteomic data from AD patients shows that the lysosomal system is perturbed relative to similarly aged unaffected controls. However, it is unclear if these changes contributed to the pathogenesis or are a response to the disease. Consistent with the hypothesis that lysosome dysfunction contributes to AD pathogenesis, whole genome sequencing data indicate that heterozygous pathogenic mutations and predicted protein-damaging variants in multiple lysosomal enzyme genes are enriched in AD patients compared to matched controls. Heterozygous loss-of-function mutations in the palmitoyl protein thioesterase-1 (PPT1), α-L-iduronidase (IDUA), β-glucuronidase (GUSB), N-acetylglucosaminidase (NAGLU), and galactocerebrosidase (GALC) genes have a gene-dosage effect on Aβ40 levels in brain interstitial fluid in C57BL/6 mice and significantly increase Aβ plaque formation in the 5xFAD mouse model of AD, thus providing in vivo validation of the human genetic data. A more detailed analysis of PPT1 heterozygosity in 18-month-old mice revealed changes in α-, β-, and γ-secretases that favor an amyloidogenic pathway. Proteomic changes in brain tissue from aged PPT1 heterozygous sheep are consistent with both the mouse data and the potential activation of AD pathways. Finally, CNS-directed, AAV-mediated gene therapy significantly decreased Aβ plaques, increased life span, and improved behavioral performance in 5xFAD/PPT1+/- mice. Collectively, these data strongly suggest that heterozygosity of multiple lysosomal enzyme genes represent risk factors for AD and may identify precise therapeutic targets for a subset of genetically-defined AD patients.
Collapse
Affiliation(s)
- Bruno A Benitez
- Department of Medicine, Washington University, St. Louis, MO 63110
- Department of Psychiatry, Washington University, St. Louis, MO 63110
- Current address: Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215
| | - Clare E Wallace
- Department of Neurology, Washington University, St. Louis, MO 63110
| | - Maulikkumar Patel
- Department of Psychiatry, Washington University, St. Louis, MO 63110
| | | | - Carla M Yuede
- Department of Psychiatry, Washington University, St. Louis, MO 63110
| | | | - Cyril Pottier
- Department of Psychiatry, Washington University, St. Louis, MO 63110
| | - Arda Cetin
- Department of Psychiatry, Washington University, St. Louis, MO 63110
| | - Matthew Johnson
- Department of Psychiatry, Washington University, St. Louis, MO 63110
| | - Mia T Bevan
- Department of Neurology, Washington University, St. Louis, MO 63110
| | | | - Hannah M Edwards
- Department of Neurology, Washington University, St. Louis, MO 63110
| | | | - Ryan T Harrigan
- Department of Neurology, Washington University, St. Louis, MO 63110
| | - Dominic Kurian
- Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG
| | - Thomas M Wishart
- Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG
- Current primary address: Centre for Systems Health and Integrated Metabolic Research, Department of Biosciences, School of Science and Technology, Nottingham Trent University, NHB 084, Clifton Campus, NG11 8NS
| | - Colin Smith
- Center for Clinical Brain Sciences, University of Edinburgh, Edinburgh, Scotland, UK
| | - John R Cirrito
- Department of Neurology, Washington University, St. Louis, MO 63110
- Hope Center for Neurologic Disease, Washington University, St. Louis, MO 63110
| | - Mark S Sands
- Department of Medicine, Washington University, St. Louis, MO 63110
- Department of Genetics, Washington University, St. Louis, MO 63110
- Hope Center for Neurologic Disease, Washington University, St. Louis, MO 63110
| |
Collapse
|
33
|
Balak CD, Schlachetzki JCM, Lana AJ, West E, Hong C, DuGal J, Zhou Y, Li B, Saisan P, Spann NJ, Sarsani V, Pasillas MP, O'Brien S, Gordts P, Stevens B, Kamme F, Glass CK. Mechanisms driving epigenetic and transcriptional responses of microglia in a neurodegenerative lysosomal storage disorder model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.12.623296. [PMID: 39605454 PMCID: PMC11601307 DOI: 10.1101/2024.11.12.623296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Lysosomal dysfunction is causally linked to neurodegeneration in many lysosomal storage disorders (LSDs) and is associated with various age-related neurodegenerative diseases 1,2 , but there is limited understanding of the mechanisms by which altered lysosomal function leads to changes in gene expression that drive pathogenic cellular phenotypes. To investigate this question, we performed systematic imaging, transcriptomic, and epigenetic studies of major brain cell types in Sgsh null (KO) mice, a preclinical mouse model for Sanfilippo syndrome (Mucopolysaccharidosis Type IIIA, MPS-IIIA) 3,4 . MPS-IIIA is a neurodegenerative LSD caused by homozygous loss-of-function (LoF) mutations in SGSH which results in severe early-onset developmental, behavioral, and neurocognitive impairment 5-15 . Electron microscopy, immunohistochemistry, and single-nucleus RNA-sequencing analysis revealed microglia as the cell type exhibiting the most dramatic phenotypic alterations in Sgsh KO mice. Further temporal analysis of microglia gene expression showed dysregulation of genes associated with lysosomal function and immune signaling pathways beginning early in the course of the disease. Sgsh deficiency similarly resulted in increases in open chromatin and histone acetylation at thousands of putative microglia-specific enhancers associated with upregulated genes but had much less impact on the epigenetic landscapes of neurons or oligodendrocytes. We provide evidence for dominant and context-dependent roles of members of the MITF/TFE family as major drivers of microglia-specific epigenetic and transcriptional changes resulting from lysosomal stress that are dependent on collaborative interactions with PU.1/ETS and C/EBP transcription factors. Lastly, we show that features of the transcriptomic and epigenetic alterations observed in murine Sgsh deficiency are also observed in microglia derived from mouse models of age-related neurodegeneration and in human Alzheimer's disease patients, revealing common and disease-specific transcriptional mechanisms associated with disease-associated microglia phenotypes.
Collapse
|
34
|
Ganguly U, Carroll T, Nehrke K, Johnson GVW. Mitochondrial Quality Control in Alzheimer's Disease: Insights from Caenorhabditis elegans Models. Antioxidants (Basel) 2024; 13:1343. [PMID: 39594485 PMCID: PMC11590956 DOI: 10.3390/antiox13111343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder that is classically defined by the extracellular deposition of senile plaques rich in amyloid-beta (Aβ) protein and the intracellular accumulation of neurofibrillary tangles (NFTs) that are rich in aberrantly modified tau protein. In addition to aggregative and proteostatic abnormalities, neurons affected by AD also frequently possess dysfunctional mitochondria and disrupted mitochondrial maintenance, such as the inability to eliminate damaged mitochondria via mitophagy. Decades have been spent interrogating the etiopathogenesis of AD, and contributions from model organism research have aided in developing a more fundamental understanding of molecular dysfunction caused by Aβ and toxic tau aggregates. The soil nematode C. elegans is a genetic model organism that has been widely used for interrogating neurodegenerative mechanisms including AD. In this review, we discuss the advantages and limitations of the many C. elegans AD models, with a special focus and discussion on how mitochondrial quality control pathways (namely mitophagy) may contribute to AD development. We also summarize evidence on how targeting mitophagy has been therapeutically beneficial in AD. Lastly, we delineate possible mechanisms that can work alone or in concert to ultimately lead to mitophagy impairment in neurons and may contribute to AD etiopathology.
Collapse
Affiliation(s)
- Upasana Ganguly
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA;
| | - Trae Carroll
- Department of Pathology, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA;
| | - Keith Nehrke
- Department of Medicine, Nephrology Division, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA;
| | - Gail V. W. Johnson
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA;
| |
Collapse
|
35
|
Nixon RA, Rubinsztein DC. Mechanisms of autophagy-lysosome dysfunction in neurodegenerative diseases. Nat Rev Mol Cell Biol 2024; 25:926-946. [PMID: 39107446 DOI: 10.1038/s41580-024-00757-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2024] [Indexed: 08/15/2024]
Abstract
Autophagy is a lysosome-based degradative process used to recycle obsolete cellular constituents and eliminate damaged organelles and aggregate-prone proteins. Their postmitotic nature and extremely polarized morphologies make neurons particularly vulnerable to disruptions caused by autophagy-lysosomal defects, especially as the brain ages. Consequently, mutations in genes regulating autophagy and lysosomal functions cause a wide range of neurodegenerative diseases. Here, we review the role of autophagy and lysosomes in neurodegenerative diseases such as Alzheimer disease, Parkinson disease and frontotemporal dementia. We also consider the strong impact of cellular ageing on lysosomes and autophagy as a tipping point for the late-age emergence of related neurodegenerative disorders. Many of these diseases have primary defects in autophagy, for example affecting autophagosome formation, and in lysosomal functions, especially pH regulation and calcium homeostasis. We have aimed to provide an integrative framework for understanding the central importance of autophagic-lysosomal function in neuronal health and disease.
Collapse
Affiliation(s)
- Ralph A Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York, NY, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA.
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| |
Collapse
|
36
|
Grosso Jasutkar H, Wasserlein EM, Ishola A, Litt N, Staniszewski A, Arancio O, Yamamoto A. Adult-onset deactivation of autophagy leads to loss of synapse homeostasis and cognitive impairment, with implications for alzheimer disease. Autophagy 2024; 20:2540-2555. [PMID: 38949671 PMCID: PMC11572145 DOI: 10.1080/15548627.2024.2368335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 07/02/2024] Open
Abstract
A growing number of studies link dysfunction of macroautophagy/autophagy to the pathogenesis of diseases such as Alzheimer disease (AD). Given the global importance of autophagy for homeostasis, how its dysfunction can lead to specific neurological changes is puzzling. To examine this further, we compared the global deactivation of autophagy in the adult mouse using the atg7iKO with the impact of AD-associated pathogenic changes in autophagic processing of synaptic proteins. Isolated forebrain synaptosomes, rather than total homogenates, from atg7iKO mice demonstrated accumulation of synaptic proteins, suggesting that the synapse might be a vulnerable site for protein homeostasis disruption. Moreover, the deactivation of autophagy resulted in impaired cognitive performance over time, whereas gross locomotor skills remained intact. Despite deactivation of autophagy for 6.5 weeks, changes in cognition were in the absence of cell death or synapse loss. In the symptomatic APP PSEN1 double-transgenic mouse model of AD, we found that the impairment in autophagosome maturation coupled with diminished presence of discrete synaptic proteins in autophagosomes isolated from these mice, leading to the accumulation of one of these proteins in the detergent insoluble protein fraction. This protein, SLC17A7/Vglut, also accumulated in atg7iKO mouse synaptosomes. Taken together, we conclude that synaptic autophagy plays a role in maintaining protein homeostasis, and that while decreasing autophagy interrupts normal cognitive function, the preservation of locomotion suggests that not all circuits are affected similarly. Our data suggest that the disruption of autophagic activity in AD may have relevance for the cognitive impairment in this adult-onset neurodegenerative disease. Abbreviations: 2dRAWM: 2-day radial arm water maze; AD: Alzheimer disease; Aβ: amyloid-beta; AIF1/Iba1: allograft inflammatory factor 1; APP: amyloid beta precursor protein; ATG7: autophagy related 7; AV: autophagic vacuole; CCV: cargo capture value; Ctrl: control; DLG4/PSD-95: discs large MAGUK scaffold protein 4; GFAP: glial fibrillary acidic protein; GRIN2B/NMDAR2b: glutamate ionotropic receptor NMDA type subunit 2B; LTD: long-term depression; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; m/o: months-old; PNS: post-nuclear supernatant; PSEN1/PS1: presenilin 1; SHB: sucrose homogenization buffer; SLC32A1/Vgat: solute carrier family 32 member 1; SLC17A7/Vglut1: solute carrier family 17 member 7; SNAP25: synaptosome associated protein 25; SQSTM1/p62: sequestosome 1; SYN1: synapsin I; SYP: synaptophysin ; SYT1: synaptotagmin 1; Tam: tamoxifen; VAMP2: vesicle associated membrane protein 2; VCL: vinculin; wks: weeks.
Collapse
Affiliation(s)
- Hilary Grosso Jasutkar
- Department of Neurology, Columbia University, New York, NY, USA
- Department of Neurology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | | | - Azeez Ishola
- Department of Neurology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Nicole Litt
- Department of Neurology, Columbia University, New York, NY, USA
| | - Agnieszka Staniszewski
- The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Ottavio Arancio
- The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Ai Yamamoto
- Department of Neurology, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| |
Collapse
|
37
|
Deng S, Liu TA, Ilnytska O, Allada T, Fomina A, Lin N, Petukhova VZ, Pathmasiri KC, Chinthapally K, Blagg BSJ, Ashfeld BL, Cologna SM, Storch J. Molecular determinants of phospholipid treatment to reduce intracellular cholesterol accumulation in NPC1 deficiency. J Biol Chem 2024; 300:107889. [PMID: 39395801 PMCID: PMC11650715 DOI: 10.1016/j.jbc.2024.107889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/14/2024] Open
Abstract
Niemann-Pick type C (NPC) disease, caused by mutations in the NPC1 or NPC2 genes, leads to abnormal intracellular cholesterol accumulation in late endosomes/lysosomes. Exogenous enrichment with lysobisphosphatidic acid (LBPA), also known as bis-monoacylglycerol phosphate, either directly or via the LBPA precursor phosphatidylglycerol (PG), has been investigated as a therapeutic intervention to reduce cholesterol accumulation in NPC disease. Here, we report the effects of stereoisomer configuration and acyl chain composition of LBPA on cholesterol clearance in NPC1-deficient cells. We find that S,R, S,S, and S,R LBPA stereoisomers behaved similarly, with all 3 compounds leading to comparable reductions in filipin staining in two NPC1-deficient human fibroblast cell lines. Examination of several LBPA molecular species containing one or two monounsaturated or polyunsaturated acyl chains showed that all LBPA species containing one 18:1 chain significantly reduced cholesterol accumulation, whereas the shorter chain species di-14:0 LBPA had little effect on cholesterol clearance in NPC1-deficient cells. Since cholesterol accumulation in NPC1-deficient cells can also be cleared by PG incubation, we used nonhydrolyzable PG analogs to determine whether conversion to LBPA is required for sterol clearance, or whether PG itself is effective. The results showed that nonhydrolyzable PG species were not appreciably converted to LBPA and showed virtually no cholesterol clearance efficacy in NPC1-deficient cells, supporting the notion that LBPA is the active agent promoting late endosome/lysosome cholesterol clearance. Overall these studies are helping to define the molecular requirements for potential therapeutic use of LBPA as an option for addressing NPC disease.
Collapse
Affiliation(s)
- Shikun Deng
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Ting-Ann Liu
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Olga Ilnytska
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey, USA; Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA
| | - Tamara Allada
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Angelina Fomina
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Nancy Lin
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey, USA; Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA
| | | | | | - Kiran Chinthapally
- Warren Center for Drug Discovery and Development, and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Brian S J Blagg
- Warren Center for Drug Discovery and Development, and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Brandon L Ashfeld
- Warren Center for Drug Discovery and Development, and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois, USA
| | - Judith Storch
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey, USA; Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA.
| |
Collapse
|
38
|
Lei Y, Yang Y, Zhang Z, Zhang R, Song X, Malek SN, Tang D, Klionsky DJ. Big1 is a newly identified autophagy regulator that is critical for a fully functional V-ATPase. Mol Biol Cell 2024; 35:br20. [PMID: 39259764 PMCID: PMC11617096 DOI: 10.1091/mbc.e24-04-0189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024] Open
Abstract
The vacuolar-type H+-translocating ATPase (V-ATPase) is the major proton pump for intraorganellar acidification. Therefore, the integrity of the V-ATPase is closely associated with cellular homeostasis, and mutations in genes encoding V-ATPase components and assembly factors have been reported in certain types of diseases. For instance, the recurrent mutations of ATP6AP1, a gene encoding a V-ATPase accessory protein, have been associated with cancers and immunodeficiency. With the aim of studying V-ATPase-related mutations using the yeast model system, we report that Big1 is another homologue of ATP6AP1 in yeast cells, and we characterize the role of Big1 in maintaining a fully functional V-ATPase. In addition to its role in acidifying the vacuole or lysosome, our data support the concept that the V-ATPase may function as part of a signaling pathway to regulate macroautophagy/autophagy through a mechanism that is independent from Tor/MTOR.
Collapse
Affiliation(s)
- Yuchen Lei
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-2216
| | - Ying Yang
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-2216
| | - Zhihai Zhang
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-2216
| | - Ruoxi Zhang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Xinxin Song
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Sami N. Malek
- Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI 48109-0936
| | - Daolin Tang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-2216
| |
Collapse
|
39
|
Mançano ASF, Pina JG, Froes BR, Sciani JM. Autophagy-lysosomal pathway impairment and cathepsin dysregulation in Alzheimer's disease. Front Mol Biosci 2024; 11:1490275. [PMID: 39544403 PMCID: PMC11560772 DOI: 10.3389/fmolb.2024.1490275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by neuronal loss, attributed to amyloid-beta (Aβ) aggregation and accumulation. The autophagy-lysosomal pathway, including cathepsins B and D, is crucial for protein degradation and clearance, but it is impaired in some diseases. This review summarizes current knowledge on the dysregulation of this pathway in AD. Accumulating evidence suggests that Aβ overload impairs autophagy-lysosomal function and cathepsin activity, exacerbating Aβ accumulation and neurodegeneration. However, the precise mechanisms underlying these interactions remain elusive. Despite these challenges, targeting the lysosomal pathway emerges as a promising therapeutic strategy, and a comprehensive understanding of the autophagy-lysosomal system is essential to develop effective interventions for AD.
Collapse
Affiliation(s)
| | | | | | - Juliana Mozer Sciani
- Laboratório de Produtos Naturais, Universidade São Francisco, Bragança Paulista, São Paulo, Brazil
| |
Collapse
|
40
|
LeVine SM. The Azalea Hypothesis of Alzheimer Disease: A Functional Iron Deficiency Promotes Neurodegeneration. Neuroscientist 2024; 30:525-544. [PMID: 37599439 PMCID: PMC10876915 DOI: 10.1177/10738584231191743] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Chlorosis in azaleas is characterized by an interveinal yellowing of leaves that is typically caused by a deficiency of iron. This condition is usually due to the inability of cells to properly acquire iron as a consequence of unfavorable conditions, such as an elevated pH, rather than insufficient iron levels. The causes and effects of chlorosis were found to have similarities with those pertaining to a recently presented hypothesis that describes a pathogenic process in Alzheimer disease. This hypothesis states that iron becomes sequestered (e.g., by amyloid β and tau), causing a functional deficiency of iron that disrupts biochemical processes leading to neurodegeneration. Additional mechanisms that contribute to iron becoming unavailable include iron-containing structures not undergoing proper recycling (e.g., disrupted mitophagy and altered ferritinophagy) and failure to successfully translocate iron from one compartment to another (e.g., due to impaired lysosomal acidification). Other contributors to a functional deficiency of iron in patients with Alzheimer disease include altered metabolism of heme or altered production of iron-containing proteins and their partners (e.g., subunits, upstream proteins). A review of the evidence supporting this hypothesis is presented. Also, parallels between the mechanisms underlying a functional iron-deficient state in Alzheimer disease and those occurring for chlorosis in plants are discussed. Finally, a model describing the generation of a functional iron deficiency in Alzheimer disease is put forward.
Collapse
Affiliation(s)
- Steven M. LeVine
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, US
| |
Collapse
|
41
|
Tan NK, Chan H, Lu Z, Zreiqat H, Lakhwani G, Lesani P, New EJ. Ultrasensitive Dual Fluorophore-Conjugated Carbon Dots for Intracellular pH Sensing in 3D Tumor Models. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47303-47313. [PMID: 39215383 DOI: 10.1021/acsami.4c10836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The dysregulation of pH has been linked to the onset of chronic conditions, such as cancer and neurological diseases. Consequently, the development of a highly sensitive tool for intracellular pH sensing is imperative to investigate the interplay between pH and the biochemical changes accompanying disease pathogenesis. Here, we present the development of a ratiometric fluorescent nanoprobe, NpRhoDot, designed for precisely measuring pH levels. We demonstrate its efficacy in sensitively reporting intracellular pH in monolayer A549 lung cancer cells, primary fibroblast cells, and 3D tumor spheroids derived from the DLD-1 colorectal adenocarcinoma cell line. NpRhoDot leverages a novel design, where stable carbon dots are functionalized with a pH-responsive ratiometric fluorescent probe comprising a naphthalimide-rhodamine moiety, NpRho1. This design confers NpRhoDot with the high pH sensitivity characteristics of organic fluorescent probes, along with excellent photostability up to 1 h and biocompatibility of carbon dots. Through one-photon and two-photon fluorescence microscopy, we validate the reliability of NpRhoDot for biosensing intracellular pH in monolayer and three-dimensional tumor models from pH 4 to 7.
Collapse
Affiliation(s)
- Nian Kee Tan
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Hazel Chan
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Zufu Lu
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Hala Zreiqat
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006, Australia
- The University of Sydney Nano Institute, Sydney, NSW 2006, Australia
| | - Girish Lakhwani
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- The University of Sydney Nano Institute, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence in Exciton Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Pooria Lesani
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006, Australia
- The University of Sydney Nano Institute, Sydney, NSW 2006, Australia
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States of America
| | - Elizabeth J New
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- The University of Sydney Nano Institute, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
42
|
Nixon RA. Autophagy-lysosomal-associated neuronal death in neurodegenerative disease. Acta Neuropathol 2024; 148:42. [PMID: 39259382 PMCID: PMC11418399 DOI: 10.1007/s00401-024-02799-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/13/2024]
Abstract
Autophagy, the major lysosomal pathway for degrading damaged or obsolete constituents, protects neurons by eliminating toxic organelles and peptides, restoring nutrient and energy homeostasis, and inhibiting apoptosis. These functions are especially vital in neurons, which are postmitotic and must survive for many decades while confronting mounting challenges of cell aging. Autophagy failure, especially related to the declining lysosomal ("phagy") functions, heightens the neuron's vulnerability to genetic and environmental factors underlying Alzheimer's disease (AD) and other late-age onset neurodegenerative diseases. Components of the global autophagy-lysosomal pathway and the closely integrated endolysosomal system are increasingly implicated as primary targets of these disorders. In AD, an imbalance between heightened autophagy induction and diminished lysosomal function in highly vulnerable pyramidal neuron populations yields an intracellular lysosomal build-up of undegraded substrates, including APP-βCTF, an inhibitor of lysosomal acidification, and membrane-damaging Aβ peptide. In the most compromised of these neurons, β-amyloid accumulates intraneuronally in plaque-like aggregates that become extracellular senile plaques when these neurons die, reflecting an "inside-out" origin of amyloid plaques seen in human AD brain and in mouse models of AD pathology. In this review, the author describes the importance of lysosomal-dependent neuronal cell death in AD associated with uniquely extreme autophagy pathology (PANTHOS) which is described as triggered by lysosomal membrane permeability during the earliest "intraneuronal" stage of AD. Effectors of other cell death cascades, notably calcium-activated calpains and protein kinases, contribute to lysosomal injury that induces leakage of cathepsins and activation of additional death cascades. Subsequent events in AD, such as microglial invasion and neuroinflammation, induce further cytotoxicity. In major neurodegenerative disease models, neuronal death and ensuing neuropathologies are substantially remediable by reversing underlying primary lysosomal deficits, thus implicating lysosomal failure and autophagy dysfunction as primary triggers of lysosomal-dependent cell death and AD pathogenesis and as promising therapeutic targets.
Collapse
Affiliation(s)
- Ralph A Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, 10962, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Neuroscience Institute, New York University, New York, NY, 10012, USA.
| |
Collapse
|
43
|
Lin X, Chen C, Chen J, Zhu C, Zhang J, Su R, Chen S, Weng S, Chang X, Lin S, Chen Y, Li J, Lin L, Zhou J, Guo Z, Yu G, Shao W, Hu H, Wu S, Zhang Q, Li H, Zheng F. Long Noncoding RNA NR_030777 Alleviates Cobalt Nanoparticles-Induced Neurodegenerative Damage by Promoting Autophagosome-Lysosome Fusion. ACS NANO 2024; 18:24872-24897. [PMID: 39197041 PMCID: PMC11394346 DOI: 10.1021/acsnano.4c05249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 08/30/2024]
Abstract
Potential exposure to cobalt nanoparticles (CoNPs) occurs in various fields, including hard alloy industrial production, the increasing use of new energy lithium-ion batteries, and millions of patients with metal-on-metal joint prostheses. Evidence from human, animal, and in vitro experiments suggests a close relationship between CoNPs and neurotoxicity. However, a systematic assessment of central nervous system (CNS) impairment due to CoNPs exposure and the underlying molecular mechanisms is lacking. In this study, we found that CoNPs induced neurodegenerative damage both in vivo and in vitro, including cognitive impairment, β-amyloid deposition and Tau hyperphosphorylation. CoNPs promoted the formation of autophagosomes and impeding autophagosomal-lysosomal fusion in vivo and in vitro, leading to toxic protein accumulation. Moreover, CoNPs exposure reduced the level of transcription factor EB (TFEB) and the abundance of lysosome, causing a blockage in autophagosomal-lysosomal fusion. Interestingly, overexpression of long noncoding RNA NR_030777 mitigated CoNPs-induced neurodegenerative damage in both in vivo and in vitro models. Fluorescence in situ hybridization assay revealed that NR_030777 directly binds and stabilizes TFEB mRNA, alleviating the blockage of autophagosomal-lysosomal fusion and ultimately restoring neurodegeneration induced by CoNPs in vivo and in vitro. In summary, our study demonstrates that autophagic dysfunction is the main toxic mechanism of neurodegeneration upon CoNPs exposure and NR_030777 plays a crucial role in CoNPs-induced autophagic dysfunction. Additionally, the proposed adverse outcome pathway contributes to a better understanding of CNS toxicity assessment of CoNPs.
Collapse
Affiliation(s)
- Xinpei Lin
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The
Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Cheng Chen
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The
Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Jinxiang Chen
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Canlin Zhu
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Jiajun Zhang
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Ruiqi Su
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Shujia Chen
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Shucan Weng
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Xiangyu Chang
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The
Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Shengsong Lin
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The
Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Yilong Chen
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The
Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Jiamei Li
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The
Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Ling Lin
- Public
Technology Service Center, Fujian Medical
University, Fuzhou, Fujian Province 350122, China
| | - Jinfu Zhou
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- Medical
Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health
Hospital College of Clinical Medicine for Obstetrics & Gynecology
and Pediatrics, Fujian Medical University, Fuzhou, Fujian Province 350001, China
| | - Zhenkun Guo
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The
Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Guangxia Yu
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The
Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Wenya Shao
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The
Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Hong Hu
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The
Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Siying Wu
- The
Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- Department
of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Qunwei Zhang
- Department
of Epidemiology and Population Health, School of Public Health and
Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, Kentucky 40292, United States
| | - Huangyuan Li
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The
Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Fuli Zheng
- Department
of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
- The
Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| |
Collapse
|
44
|
Wu N, Zheng W, Zhou Y, Tian Y, Tang M, Feng X, Ashrafizadeh M, Wang Y, Niu X, Tambuwala M, Wang L, Tergaonkar V, Sethi G, Klionsky D, Huang L, Gu M. Autophagy in aging-related diseases and cancer: Principles, regulatory mechanisms and therapeutic potential. Ageing Res Rev 2024; 100:102428. [PMID: 39038742 DOI: 10.1016/j.arr.2024.102428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Macroautophagy/autophagy is primarily accountable for the degradation of damaged organelles and toxic macromolecules in the cells. Regarding the essential function of autophagy for preserving cellular homeostasis, changes in, or dysfunction of, autophagy flux can lead to disease development. In the current paper, the complicated function of autophagy in aging-associated pathologies and cancer is evaluated, highlighting the underlying molecular mechanisms that can affect longevity and disease pathogenesis. As a natural biological process, a reduction in autophagy is observed with aging, resulting in an accumulation of cell damage and the development of different diseases, including neurological disorders, cardiovascular diseases, and cancer. The MTOR, AMPK, and ATG proteins demonstrate changes during aging, and they are promising therapeutic targets. Insulin/IGF1, TOR, PKA, AKT/PKB, caloric restriction and mitochondrial respiration are vital for lifespan regulation and can modulate or have an interaction with autophagy. The specific types of autophagy, such as mitophagy that degrades mitochondria, can regulate aging by affecting these organelles and eliminating those mitochondria with genomic mutations. Autophagy and its specific types contribute to the regulation of carcinogenesis and they are able to dually enhance or decrease cancer progression. Cancer hallmarks, including proliferation, metastasis, therapy resistance and immune reactions, are tightly regulated by autophagy, supporting the conclusion that autophagy is a promising target in cancer therapy.
Collapse
Affiliation(s)
- Na Wu
- Department of Infectious Diseases, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Wenhui Zheng
- Department of Anesthesiology, The Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yundong Zhou
- Department of Thoracic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, China
| | - Yu Tian
- School of Public Health, Benedictine University, No.5700 College Road, Lisle, IL 60532, USA; Research Center, the Huizhou Central People's Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Min Tang
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing 401120, China
| | - Xiaoqiang Feng
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou, Guangdong 525200, China
| | - Milad Ashrafizadeh
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Xiaojia Niu
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Murtaza Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A⁎STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.
| | - Daniel Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| | - Li Huang
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou, Guangdong 525200, China.
| | - Ming Gu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
45
|
Chung S, Jeong JH, Park JC, Han JW, Lee Y, Kim JI, Mook-Jung I. Blockade of STING activation alleviates microglial dysfunction and a broad spectrum of Alzheimer's disease pathologies. Exp Mol Med 2024; 56:1936-1951. [PMID: 39218977 PMCID: PMC11447230 DOI: 10.1038/s12276-024-01295-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/29/2024] [Accepted: 05/22/2024] [Indexed: 09/04/2024] Open
Abstract
Abnormal glial activation promotes neurodegeneration in Alzheimer's disease (AD), the most common cause of dementia. Stimulation of the cGAS-STING pathway induces microglial dysfunction and sterile inflammation, which exacerbates AD. We showed that inhibiting STING activation can control microglia and ameliorate a wide spectrum of AD symptoms. The cGAS-STING pathway is required for the detection of ectopic DNA and the subsequent immune response. Amyloid-β (Aβ) and tau induce mitochondrial stress, which causes DNA to be released into the cytoplasm of microglia. cGAS and STING are highly expressed in Aβ plaque-associated microglia, and neuronal STING is upregulated in the brains of AD model animals. The presence of the APOE ε4 allele, an AD risk factor, also upregulated both proteins. STING activation was necessary for microglial NLRP3 activation, proinflammatory responses, and type-I-interferon responses. Pharmacological STING inhibition reduced a wide range of AD pathogenic features in AppNL-G-F/hTau double-knock-in mice. An unanticipated transcriptome shift in microglia reduced gliosis and cerebral inflammation. Significant reductions in the Aβ load, tau phosphorylation, and microglial synapse engulfment prevented memory loss. To summarize, our study describes the pathogenic mechanism of STING activation as well as its potential as a therapeutic target in AD.
Collapse
Affiliation(s)
- Sunwoo Chung
- Convergence Dementia Research Center, College of Medicine, Seoul National University, 03080, Seoul, Korea
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, 03080, Seoul, Korea
| | - June-Hyun Jeong
- Convergence Dementia Research Center, College of Medicine, Seoul National University, 03080, Seoul, Korea
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, 03080, Seoul, Korea
| | - Jong-Chan Park
- Department of Biophysics & Institute of Quantum Biophysics, Sungkyunkwan University, 16419, Gyeonggi-do, Korea
| | - Jong Won Han
- Convergence Dementia Research Center, College of Medicine, Seoul National University, 03080, Seoul, Korea
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, 03080, Seoul, Korea
| | - Yeajina Lee
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, 03080, Seoul, Korea
- Genomic Medicine Institute, Medical Research Center, Seoul National University, 03080, Seoul, Korea
| | - Jong-Il Kim
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, 03080, Seoul, Korea
- Genomic Medicine Institute, Medical Research Center, Seoul National University, 03080, Seoul, Korea
| | - Inhee Mook-Jung
- Convergence Dementia Research Center, College of Medicine, Seoul National University, 03080, Seoul, Korea.
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, 03080, Seoul, Korea.
| |
Collapse
|
46
|
Xu J, Gu J, Pei W, Zhang Y, Wang L, Gao J. The role of lysosomal membrane proteins in autophagy and related diseases. FEBS J 2024; 291:3762-3785. [PMID: 37221945 DOI: 10.1111/febs.16820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/12/2023] [Accepted: 05/15/2023] [Indexed: 05/25/2023]
Abstract
As a self-degrading and highly conserved survival mechanism, autophagy plays an important role in maintaining cell survival and recycling. The discovery of autophagy-related (ATG) genes has revolutionized our understanding of autophagy. Lysosomal membrane proteins (LMPs) are important executors of lysosomal function, and increasing evidence has demonstrated their role in the induction and regulation of autophagy. In addition, the functional dysregulation of the process mediated by LMPs at all stages of autophagy is closely related to neurodegenerative diseases and cancer. Here, we review the role of LMPs in autophagy, focusing on their roles in vesicle nucleation, vesicle elongation and completion, the fusion of autophagosomes and lysosomes, and degradation, as well as their broad association with related diseases.
Collapse
Affiliation(s)
- Jiahao Xu
- Department of Endocrinology and Genetic Metabolism, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Department of Endocrinology and Genetic Metabolism, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Anhui Province Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
- School of Clinical Medicine, Wannan Medical College, Wuhu, China
| | - Jing Gu
- Department of Endocrinology and Genetic Metabolism, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Department of Endocrinology and Genetic Metabolism, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Anhui Province Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
| | - Wenjun Pei
- Anhui Province Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, China
| | - Yao Zhang
- Anhui Province Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, China
| | - Lizhuo Wang
- Anhui Province Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, China
| | - Jialin Gao
- Department of Endocrinology and Genetic Metabolism, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Department of Endocrinology and Genetic Metabolism, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Anhui Province Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
- Anhui Provincial College Key Laboratory of Non-coding RNA Transformation Research on Critical Diseases, Wannan Medical College, Wuhu, China
| |
Collapse
|
47
|
Falace A, Volpedo G, Scala M, Zara F, Striano P, Fassio A. V-ATPase Dysfunction in the Brain: Genetic Insights and Therapeutic Opportunities. Cells 2024; 13:1441. [PMID: 39273013 PMCID: PMC11393946 DOI: 10.3390/cells13171441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Vacuolar-type ATPase (v-ATPase) is a multimeric protein complex that regulates H+ transport across membranes and intra-cellular organelle acidification. Catabolic processes, such as endocytic degradation and autophagy, strictly rely on v-ATPase-dependent luminal acidification in lysosomes. The v-ATPase complex is expressed at high levels in the brain and its impairment triggers neuronal dysfunction and neurodegeneration. Due to their post-mitotic nature and highly specialized function and morphology, neurons display a unique vulnerability to lysosomal dyshomeostasis. Alterations in genes encoding subunits composing v-ATPase or v-ATPase-related proteins impair brain development and synaptic function in animal models and underlie genetic diseases in humans, such as encephalopathies, epilepsy, as well as neurodevelopmental, and degenerative disorders. This review presents the genetic and functional evidence linking v-ATPase subunits and accessory proteins to various brain disorders, from early-onset developmental epileptic encephalopathy to neurodegenerative diseases. We highlight the latest emerging therapeutic strategies aimed at mitigating lysosomal defects associated with v-ATPase dysfunction.
Collapse
Affiliation(s)
- Antonio Falace
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Greta Volpedo
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy; (G.V.)
| | - Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy; (G.V.)
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy; (G.V.)
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy; (G.V.)
| | - Anna Fassio
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
48
|
Zhang J, Zhang Y, Wang J, Xia Y, Zhang J, Chen L. Recent advances in Alzheimer's disease: Mechanisms, clinical trials and new drug development strategies. Signal Transduct Target Ther 2024; 9:211. [PMID: 39174535 PMCID: PMC11344989 DOI: 10.1038/s41392-024-01911-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/18/2024] [Accepted: 07/02/2024] [Indexed: 08/24/2024] Open
Abstract
Alzheimer's disease (AD) stands as the predominant form of dementia, presenting significant and escalating global challenges. Its etiology is intricate and diverse, stemming from a combination of factors such as aging, genetics, and environment. Our current understanding of AD pathologies involves various hypotheses, such as the cholinergic, amyloid, tau protein, inflammatory, oxidative stress, metal ion, glutamate excitotoxicity, microbiota-gut-brain axis, and abnormal autophagy. Nonetheless, unraveling the interplay among these pathological aspects and pinpointing the primary initiators of AD require further elucidation and validation. In the past decades, most clinical drugs have been discontinued due to limited effectiveness or adverse effects. Presently, available drugs primarily offer symptomatic relief and often accompanied by undesirable side effects. However, recent approvals of aducanumab (1) and lecanemab (2) by the Food and Drug Administration (FDA) present the potential in disrease-modifying effects. Nevertheless, the long-term efficacy and safety of these drugs need further validation. Consequently, the quest for safer and more effective AD drugs persists as a formidable and pressing task. This review discusses the current understanding of AD pathogenesis, advances in diagnostic biomarkers, the latest updates of clinical trials, and emerging technologies for AD drug development. We highlight recent progress in the discovery of selective inhibitors, dual-target inhibitors, allosteric modulators, covalent inhibitors, proteolysis-targeting chimeras (PROTACs), and protein-protein interaction (PPI) modulators. Our goal is to provide insights into the prospective development and clinical application of novel AD drugs.
Collapse
Affiliation(s)
- Jifa Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yinglu Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, TN, USA
| | - Yilin Xia
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxian Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lei Chen
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
49
|
Rather MA, Khan A, Jahan S, Siddiqui AJ, Wang L. Influence of Tau on Neurotoxicity and Cerebral Vasculature Impairment Associated with Alzheimer's Disease. Neuroscience 2024; 552:1-13. [PMID: 38871021 DOI: 10.1016/j.neuroscience.2024.05.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024]
Abstract
Alzheimer's disease is a fatal chronic neurodegenerative condition marked by a gradual decline in cognitive abilities and impaired vascular function within the central nervous system. This affliction initiates its insidious progression with the accumulation of two aberrant protein entities including Aβ plaques and neurofibrillary tangles. These chronic elements target distinct brain regions, steadily erasing the functionality of the hippocampus and triggering the erosion of memory and neuronal integrity. Several assumptions are anticipated for AD as genetic alterations, the occurrence of Aβ plaques, altered processing of amyloid precursor protein, mitochondrial damage, and discrepancy of neurotropic factors. In addition to Aβ oligomers, the deposition of tau hyper-phosphorylates also plays an indispensable part in AD etiology. The brain comprises a complex network of capillaries that is crucial for maintaining proper function. Tau is expressed in cerebral blood vessels, where it helps to regulate blood flow and sustain the blood-brain barrier's integrity. In AD, tau pathology can disrupt cerebral blood supply and deteriorate the BBB, leading to neuronal neurodegeneration. Neuroinflammation, deficits in the microvasculature and endothelial functions, and Aβ deposition are characteristically detected in the initial phases of AD. These variations trigger neuronal malfunction and cognitive impairment. Intracellular tau accumulation in microglia and astrocytes triggers deleterious effects on the integrity of endothelium and cerebral blood supply resulting in further advancement of the ailment and cerebral instability. In this review, we will discuss the impact of tau on neurovascular impairment, mitochondrial dysfunction, oxidative stress, and the role of hyperphosphorylated tau in neuron excitotoxicity and inflammation.
Collapse
Affiliation(s)
- Mashoque Ahmad Rather
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, United States.
| | - Andleeb Khan
- Department of Biosciences, Faculty of Science, Integral University, Lucknow, 226026, India
| | - Sadaf Jahan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail City, Saudi Arabia
| | - Lianchun Wang
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, United States
| |
Collapse
|
50
|
Wirth S, Schlößer A, Beiersdorfer A, Schweizer M, Woo MS, Friese MA, Lohr C, Grochowska KM. Astrocytic uptake of posttranslationally modified amyloid-β leads to endolysosomal system disruption and induction of pro-inflammatory signaling. Glia 2024; 72:1451-1468. [PMID: 38629411 DOI: 10.1002/glia.24539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 06/29/2024]
Abstract
The disruption of astrocytic catabolic processes contributes to the impairment of amyloid-β (Aβ) clearance, neuroinflammatory signaling, and the loss of synaptic contacts in late-onset Alzheimer's disease (AD). While it is known that the posttranslational modifications of Aβ have significant implications on biophysical properties of the peptides, their consequences for clearance impairment are not well understood. It was previously shown that N-terminally pyroglutamylated Aβ3(pE)-42, a significant constituent of amyloid plaques, is efficiently taken up by astrocytes, leading to the release of pro-inflammatory cytokine tumor necrosis factor α and synapse loss. Here we report that Aβ3(pE)-42, but not Aβ1-42, gradually accumulates within the astrocytic endolysosomal system, disrupting this catabolic pathway and inducing the formation of heteromorphous vacuoles. This accumulation alters lysosomal kinetics, lysosome-dependent calcium signaling, and upregulates the lysosomal stress response. These changes correlate with the upregulation of glial fibrillary acidic protein (GFAP) and increased activity of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Treatment with a lysosomal protease inhibitor, E-64, rescues GFAP upregulation, NF-κB activation, and synapse loss, indicating that abnormal lysosomal protease activity is upstream of pro-inflammatory signaling and related synapse loss. Collectively, our data suggest that Aβ3(pE)-42-induced disruption of the astrocytic endolysosomal system leads to cytoplasmic leakage of lysosomal proteases, promoting pro-inflammatory signaling and synapse loss, hallmarks of AD-pathology.
Collapse
Affiliation(s)
- Sarah Wirth
- Leibniz Group 'Dendritic Organelles and Synaptic Function', Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annika Schlößer
- Leibniz Group 'Dendritic Organelles and Synaptic Function', Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Antonia Beiersdorfer
- Institute of Cell and Systems Biology of Animals, Department of Biology, University of Hamburg, Hamburg, Germany
| | - Michaela Schweizer
- Core Facility of Electron Microscopy, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marcel S Woo
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manuel A Friese
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Lohr
- Institute of Cell and Systems Biology of Animals, Department of Biology, University of Hamburg, Hamburg, Germany
| | - Katarzyna M Grochowska
- Leibniz Group 'Dendritic Organelles and Synaptic Function', Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| |
Collapse
|