1
|
Saxton SN. Chill factor: effect of thermoneutrality on thoracic perivascular adipose tissue and vascular reactivity. J Hypertens 2025; 43:750-751. [PMID: 40172126 DOI: 10.1097/hjh.0000000000003983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Affiliation(s)
- Sophie N Saxton
- Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
2
|
Mitani T. Functional expression mechanisms of food-derived components based on target proteins. Biosci Biotechnol Biochem 2025; 89:523-532. [PMID: 39805718 DOI: 10.1093/bbb/zbaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025]
Abstract
Food-derived polyphenols and some alkaloids have reported bioactivities related to the prevention of systemic metabolic disorders such as obesity, glucose intolerance, and dyslipidemia. For food-derived components to exert their functions in vivo, it is essential to interact with biological factors such as proteins, lipids, and nucleic acids. However, it is still unclear whether bioactive components in foods express functions related to their target factors. In this review, I introduce the target proteins in which food-derived components express functions in cells.
Collapse
Affiliation(s)
- Takakazu Mitani
- Division of Food Science and Biotechnology, Graduated School of Science and Technology, Shinshu University, Nagano, Japan
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Nagano, Japan
| |
Collapse
|
3
|
Tao T, Xu Y, Zhang CH, Zhang X, Chen J, Liu J. Single-cell transcriptomic analysis and luteolin treatment reveal three adipogenic genes, including Aspn, Htra1 and Efemp1. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159585. [PMID: 39662603 DOI: 10.1016/j.bbalip.2024.159585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 12/01/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
A comparative transcriptomic analysis in adipose stem and progenitor cells (ASPCs) between obese and lean mice might facilitate the identification of novel adipogenic genes. Here, we compare transcriptomic differences in the ASPCs of subcutaneous adipose tissue (SAT) between the mice fed on a high-fat-diet (HFD) and the chow diet (CD)-fed mice by analyzing three independent single-cell RNA sequencing datasets. Six differential genes, including three up-regulated genes Aspn, Rrbp1, Fbln2 and three down-regulated genes Htra1, Plpp3, Efemp1, are identified and confirmed in HFD-fed mice. Further, the expression of these genes is found to be significantly diminished in the differentiated 3T3-L1 cells. Treatment with luteolin, a dietary flavonoid known to inhibit 3T3-L1 adipogenesis, reverses the decreased expression of Aspn, Htra1 and Efemp1. Furthermore, knockdown of Aspn, Htra1 and Efemp1 significantly facilitates 3T3-L1 adipogenesis. Together, these genes not only are differential in ASPCs between obese and lean mice, but also are the adipogenic inhibitory genes that can be up-regulated by luteolin treatment.
Collapse
Affiliation(s)
- Tao Tao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yanting Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Cheng-Hui Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xian Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| | - Juan Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| | - Jian Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
4
|
Liang X, Wu M, Nong Q, Yang S, Kan T, Feng P. Evolution of UCP1 Gene and Its Significance to Temperature Adaptation in Rodents. Int J Mol Sci 2025; 26:2155. [PMID: 40076776 PMCID: PMC11899873 DOI: 10.3390/ijms26052155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 02/12/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Adaptive thermogenesis comprises shivering thermogenesis dependent on skeletal muscles and non-shivering thermogenesis (NST) mediated by uncoupling protein 1 (UCP1). Although the thermogenic function of UCP1 was adopted early in some placental mammals, positive selection predominantly occurred in the ancestral branches of small-bodied species. Some previous studies have revealed that rodents living in northern or high mountain regions adapt to cold environments by increasing NST, whereas those living in tropical and subtropical regions that are not exposed to cold stress express low concentrations of UCP1, indicating that UCP1 may have evolved to adapt to ambient temperatures. In this study, we explored the evolution of UCP1 and its significance to temperature adaptation by performing detailed evolutionary and statistical analyses on 64 rodents with known genomes. As a result, a total of 71 UCP1 gene sequences were obtained, including 47 intact genes, 22 partial genes, and 2 pseudogenes. Further, 47 intact genes and 3 previously published intact UCP1 genes were incorporated into evolutionary analyses, and correlation analyses between evolutionary rate and ambient temperatures (including average annual temperature, maximum temperature, and minimum temperature) of the rodent survives were conducted. The results show that UCP1 is under purifying selection (ω = 0.11), and among rodents with intact UCP1 sequences, Urocitellus parryii and Dicrostonyx groenlandicus-the two species with the lowest ambient temperatures among the rodents used here-have higher evolutionary rates than others. In the statistical analyses, in addition to ambient temperatures, body weight and weight at birth were also taken into account since weight was previously proposed to be linked to UCP1 evolution. The results showed that after controlling for the phylogenetic effect, the maximum temperature was significantly negatively correlated with the evolutionary rate of UCP1, whereas weight did not have a relationship with UCP1 evolutionary rate. Consequently, it is suggested that ambient temperature can drive the evolution of rodent UCP1, thereby enhancing NST adaptation to cold stress.
Collapse
Affiliation(s)
- Xinyue Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education of the People’s Republic of China, Guangxi Normal University, Guilin 541006, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin 541006, China
| | - Minyu Wu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education of the People’s Republic of China, Guangxi Normal University, Guilin 541006, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin 541006, China
| | - Qiuting Nong
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education of the People’s Republic of China, Guangxi Normal University, Guilin 541006, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin 541006, China
| | - Siqi Yang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education of the People’s Republic of China, Guangxi Normal University, Guilin 541006, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin 541006, China
| | - Tuo Kan
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education of the People’s Republic of China, Guangxi Normal University, Guilin 541006, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin 541006, China
| | - Ping Feng
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education of the People’s Republic of China, Guangxi Normal University, Guilin 541006, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin 541006, China
| |
Collapse
|
5
|
Li Y, Yu Y, Lv K, Ge R, Xie X. Prognostic value of body adipose tissue parameters in cancer patients treated with immune checkpoint inhibitors. Front Immunol 2025; 16:1557726. [PMID: 40013137 PMCID: PMC11861556 DOI: 10.3389/fimmu.2025.1557726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 01/24/2025] [Indexed: 02/28/2025] Open
Abstract
Objective This study aims to explore the relationship between body adipose tissue characteristics and clinical outcomes in cancer patients receiving immune checkpoint inhibitor (ICI) therapy. Methods We conducted an extensive literature search across three major online databases-Embase, PubMed, and the Cochrane Library-to identify studies examining the link between body adipose tissue and treatment outcomes in cancer patients undergoing ICI therapy, from the inception of each database until February 20, 2024. The quality of the included studies was evaluated using the Newcastle-Ottawa Scale. The primary outcomes analyzed were hazard ratios (HRs) for overall survival (OS) and progression-free survival (PFS), as well as odds ratios (ORs) for disease control rate (DCR). Pooled estimates and 95% confidence intervals (CIs) were calculated. Results A total of 23 studies were included, encompassing 2741 cancer patients. The analysis revealed that patients with higher levels of visceral adipose tissue (VAT) exhibited significantly improved OS (HR: 0.72, 95% CI: 0.59-0.89, p < 0.001) and PFS (HR: 0.80, 95% CI: 0.67-0.96, p = 0.015), along with a higher DCR (OR: 1.81, 95% CI: 1.26-2.60, p = 0.001), compared to those with lower VAT levels. Additionally, increased subcutaneous adipose tissue (SAT) levels were associated with significantly better OS (HR: 0.69, 95% CI: 0.58-0.82, p < 0.001) and PFS (HR: 0.82, 95% CI: 0.68-1.00, p = 0.049), and a higher DCR (OR: 1.99, 95% CI: 1.15-3.44, p = 0.014). Elevated total adipose tissue (TAT) levels were also linked to longer OS (HR: 0.73, 95% CI: 0.55-0.97, p = 0.028). However, a higher visceral-to-subcutaneous adipose tissue ratio (VSR) was associated with a shorter OS (HR: 1.43, 95% CI: 1.09-1.87, p = 0.010). No significant relationship was found between TAT (HR: 0.81, 95% CI: 0.54-1.23, p = 0.332) and VSR (HR: 1.20, 95% CI: 0.95-1.51, p = 0.131) with PFS in ICI-treated patients. Conclusion This study highlights the prognostic relevance of VAT and SAT in predicting treatment response and survival outcomes in cancer patients receiving ICIs. These findings suggest that assessments of VAT and SAT should be incorporated into prognostic evaluations for this patient population.
Collapse
Affiliation(s)
- Yan Li
- Department of Traditional Chinese Medicine, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Yean Yu
- Department of Nephrology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Kun Lv
- Department of Traditional Chinese Medicine, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Rongjuan Ge
- Department of Traditional Chinese Medicine, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Xie Xie
- Department of Traditional Chinese Medicine, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
6
|
De Francesco F, Sbarbati A, Sierra LAQ, Zingaretti N, Sarmadian Z, Parodi PC, Ricci G, Riccio M, Mobasheri A. Anatomy, Histology, and Embryonic Origin of Adipose Tissue: Insights to Understand Adipose Tissue Homofunctionality in Regeneration and Therapies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1474:53-78. [PMID: 39107527 DOI: 10.1007/5584_2024_801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Preadipocytes are formed during the 14th and 16th weeks of gestation. White adipose tissue, in particular, is generated in specific areas and thereby assembles after birth, rapidly increasing following the propagation of adipoblasts, which are considered the preadipocyte cell precursors. The second trimester of gestation is a fundamental phase of adipogenesis, and in the third trimester, adipocytes, albeit small may be present within the main deposition areas. In the course of late gestation, adipose tissue develops in the foetus and promotes the synthesis of large amounts of uncoupling protein 1, in similar quantities relative to differentiated brown adipose tissue. In mammals, differentiation occurs in two functionally different types of adipose cells: white adipose cells resulting from lipid storage and brown adipose cells from increased metabolic energy consumption. During skeletogenesis, synovial joints develop through the condensation of mesenchymal cells, which forms an insertional layer of flattened cells that umlaut skeletal elements, by sharing the same origin in the development of synovium. Peri-articular fat pads possess structural similarity with body subcutaneous white adipose tissue; however, they exhibit a distinct metabolic function due to the micro-environmental cues in which they are embedded. Fat pads are an important component of the synovial joint and play a key role in the maintenance of joint homeostasis. They are also implicated in pathological states such as osteoarthritis.In this paper we explore the therapeutic potential of adipocyte tissue mesenchymal precursor-based stem cell therapy linking it back to the anatomic origin of adipose tissue.
Collapse
Affiliation(s)
- Francesco De Francesco
- Department of Reconstructive Surgery and Hand Surgery, AOU Ospedali Riuniti delle Marche, Ancona, Italy
| | - Andrea Sbarbati
- Department of Neuroscience, Biomedicine and Movement, Human Anatomy and Histology Section, University of Verona, Verona, Italy
| | | | - Nicola Zingaretti
- Department of Medical Area (DAME), Clinic of Plastic and Reconstructive Surgery, Academic Hospital of Udine, University of Udine, Udine, Italy
| | - Zahra Sarmadian
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Pier Camillo Parodi
- Department of Medical Area (DAME), Clinic of Plastic and Reconstructive Surgery, Academic Hospital of Udine, University of Udine, Udine, Italy
| | - Giulia Ricci
- Department of Experimental Medicine, Università Degli Studi Della Campania "Luigi Vanvitelli", Naples, Italy
| | - Michele Riccio
- Department of Reconstructive Surgery and Hand Surgery, AOU Ospedali Riuniti delle Marche, Ancona, Italy
| | - Ali Mobasheri
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
- Department of Joint Surgery, Sun Yat-sen University, Guangzhou, People's Republic of China.
- World Health Organization Collaborating Center for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, Liège, Belgium.
| |
Collapse
|
7
|
Bessot A, Medeiros Savi F, Gunter J, Mendhi J, Amini S, Waugh D, McGovern J, Hutmacher DW, Bock N. Humanized In Vivo Bone Tissue Engineering: In Vitro Preculture Conditions Control the Structural, Cellular, and Matrix Composition of Humanized Bone Organs. Adv Healthc Mater 2025; 14:e2401939. [PMID: 39444080 PMCID: PMC11729988 DOI: 10.1002/adhm.202401939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/07/2024] [Indexed: 10/25/2024]
Abstract
Bone tissue engineering (BTE) has long sought to elucidate the key factors controlling human/humanized bone formation for regenerative medicine and disease modeling applications, yet with no definitive answers due to the high number and co-dependency of parameters. This study aims to clarify the relative impacts of in vitro biomimetic 'preculture composition' and 'preculture duration' before in vivo implantation as key criteria for the optimization of BTE design. These parameters are directly related to in vitro osteogenic differentiation (OD) and mineralization and are being investigated across different osteoprogenitor-loaded biomaterials, specifically fibrous calcium phosphate-polycaprolactone (CaP-mPCL) scaffolds and gelatin methacryloyl (GelMA) hydrogels. The results show that OD and mineralization levels prior to implantation, enhanced by a mineralization medium supplement to the osteogenic medium (OM), significantly improve ectopic BTE outcomes, regardless of the biomaterial type. Specifically, preculture conditions are pivotal in achieving more faithful mimicry of human bone structure, cellular and extracellular matrix composition and organization, and provide control over bone marrow composition. This work emphasizes the potential of using biomimetic culture compositions, specifically the addition of a mineralization medium as a cost-effective and straightforward approach to enhance BTE outcomes, facilitating rapid development of bone models with superior quality and resemblance to native bone.
Collapse
Affiliation(s)
- Agathe Bessot
- School of Biomedical SciencesFaculty of Healthand Translational Research Institute (TRI)Queensland University of Technology (QUT)BrisbaneQLD4102Australia
- Centre for Biomedical TechnologiesQUTBrisbaneQLD4000Australia
- Max Planck Queensland CentreBrisbaneQLD4000Australia
| | - Flavia Medeiros Savi
- Centre for Biomedical TechnologiesQUTBrisbaneQLD4000Australia
- Max Planck Queensland CentreBrisbaneQLD4000Australia
- Australian Research Council (ARC) Training Centre for Multiscale 3D ImagingModellingand Manufacturing (M3D Innovation)Queensland University of TechnologyBrisbaneQLD4000Australia
| | - Jennifer Gunter
- School of Biomedical SciencesFaculty of Healthand Translational Research Institute (TRI)Queensland University of Technology (QUT)BrisbaneQLD4102Australia
- Australian Prostate Cancer Research Centre (APCRC‐Q)QUTBrisbaneQLD4102Australia
| | - Jayanti Mendhi
- Central Analytical Research FacilityQUTBrisbaneQLD4102Australia
| | - Shahrouz Amini
- Max Planck Queensland CentreBrisbaneQLD4000Australia
- Department of BiomaterialsMax Planck Institute of Colloids and Interfaces14476PotsdamGermany
| | - David Waugh
- School of Biomedical SciencesFaculty of Healthand Translational Research Institute (TRI)Queensland University of Technology (QUT)BrisbaneQLD4102Australia
- Centre for Cancer BiologyUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Jacqui McGovern
- School of Biomedical SciencesFaculty of Healthand Translational Research Institute (TRI)Queensland University of Technology (QUT)BrisbaneQLD4102Australia
- Centre for Biomedical TechnologiesQUTBrisbaneQLD4000Australia
- Max Planck Queensland CentreBrisbaneQLD4000Australia
- Australian Research Council (ARC) Training Centre for Cell and Tissue Engineering Technologies (CTET)QUTBrisbaneQLD4000Australia
| | - Dietmar W. Hutmacher
- Centre for Biomedical TechnologiesQUTBrisbaneQLD4000Australia
- Max Planck Queensland CentreBrisbaneQLD4000Australia
- Australian Research Council (ARC) Training Centre for Multiscale 3D ImagingModellingand Manufacturing (M3D Innovation)Queensland University of TechnologyBrisbaneQLD4000Australia
| | - Nathalie Bock
- School of Biomedical SciencesFaculty of Healthand Translational Research Institute (TRI)Queensland University of Technology (QUT)BrisbaneQLD4102Australia
- Centre for Biomedical TechnologiesQUTBrisbaneQLD4000Australia
- Max Planck Queensland CentreBrisbaneQLD4000Australia
- Australian Research Council (ARC) Training Centre for Multiscale 3D ImagingModellingand Manufacturing (M3D Innovation)Queensland University of TechnologyBrisbaneQLD4000Australia
| |
Collapse
|
8
|
Bahadoran Z, Mirmiran P, Kashfi K, Ghasemi A. Effects of time-restricted feeding (TRF)-model of intermittent fasting on adipose organ: a narrative review. Eat Weight Disord 2024; 29:77. [PMID: 39719521 DOI: 10.1007/s40519-024-01709-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 12/11/2024] [Indexed: 12/26/2024] Open
Abstract
Time-restricted feeding (TRF), an intermittent fasting approach involving a shortened eating window within 24 h, has gained popularity as a weight management approach. This review addresses how TRF may favor fat redistribution and the function of the adipose organ. TRF trials (mainly 16:8 model, with a duration of 5-48 weeks) reported a significant weight loss (1.2-10.2%, ~ 1.4-9.4 kg), with a considerable decrease in total fat mass (1.6-21%, ~ 0.5-7 kg) and visceral adipose compartment (VAC, 11-27%) in overweight and obese subjects. Experimental TRF in normal-fed and obesogenic-diet-fed mice and rats (with a fasting duration ranging between 9 and 21 h within 1-17 weeks) reported a significant reduction in body weight (~ 7-40%), total fat mass (~ 17-71%), and intrahepatic fat (~ 25-72%). TRF also improves VAC and subcutaneous adipose compartment (SAC) function by decreasing adipocyte size, macrophage infiltration, M1-macrophage polarity, and downregulating inflammatory genes. In conclusion, beyond its effect on body weight loss, total fat mass, and intrahepatic fat accumulation, TRF favors adipose organ fat redistribution in overweight and obese subjects by decreasing VAC and improving the function of VAC and SAC.
Collapse
Affiliation(s)
- Zahra Bahadoran
- Micronutrient Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, 10031, USA
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No. 24, Sahid-Erabi St, Yemen St, Chamran Exp, Tehran, Iran.
| |
Collapse
|
9
|
Diao Z, Jia S, Itoyama E, Yoshioka H, Murakami M, Funaba M. A possibility of uncoupling protein 1 induction with the enhancement of myogenesis related to ruminal fermentation. Sci Rep 2024; 14:29857. [PMID: 39622913 PMCID: PMC11612152 DOI: 10.1038/s41598-024-81272-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/25/2024] [Indexed: 12/06/2024] Open
Abstract
The expression of uncoupling protein 1 (UCP1), which regulates energy expenditure, is limited to brown/beige adipocytes in most mammals; however, it is also detected in the skeletal muscles of cattle. We previously observed a positive relationship between Ucp1 and fast-twitch myosin heavy chain (Myh) expression in bovine skeletal muscles. In the present study, we explored the regulatory expression of Ucp1 in bovine myogenic cells using cell culture. Vitamin C and high-dose capsaicin, which induce the formation of fast-twitch myotubes in murine myogenic cells, did not stimulate myogenesis in bovine myosatellite cells. Treatment with 4-phenylbutyric acid (PBA), a histone deacetylase inhibitor that enhances histone acetylation, upregulates the expression of all myogenic regulatory factors (MRFs), except Myog, in bovine myogenic cells. Consistent with this, PBA increased the expression levels of acetylated lysine 27 of histone 3 (H3K27), the fast-twitch component MYH1/2, and Ucp1 in bovine myogenic cells. SB203580, an inhibitor of p38 MAP kinase, blocked PBA-induced myogenesis and Ucp1 upregulation. PBA is a butyric acid-related molecule, and cattle produce large amounts of volatile fatty acids (VFAs), including acetic acid, propionic acid, and butyric acid, through ruminal fermentation. Propionic acid treatment stimulated H3K27 acetylation, myogenesis, and Ucp1 induction. Thus, the upregulation of muscular Ucp1 may be related to myogenic stimulation through the modulation of histone acetylation status in cattle; we propose that the cattle-specific expression of muscular UCP1 results from VFA production through ruminal fermentation.
Collapse
Affiliation(s)
- Zhicheng Diao
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwakecho, Kyoto, 606-8502, Japan
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shunhua Jia
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwakecho, Kyoto, 606-8502, Japan
| | - Erina Itoyama
- Kyoto University Livestock Farm, Kyotanba, 622-0203, Japan
| | | | - Masaru Murakami
- Laboratory of Molecular Biology, Azabu University School of Veterinary Medicine, Sagamihara, 252-5201, Japan
| | - Masayuki Funaba
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwakecho, Kyoto, 606-8502, Japan.
- Kyoto University Livestock Farm, Kyotanba, 622-0203, Japan.
| |
Collapse
|
10
|
Lysaght J, Conroy MJ. The multifactorial effect of obesity on the effectiveness and outcomes of cancer therapies. Nat Rev Endocrinol 2024; 20:701-714. [PMID: 39313571 DOI: 10.1038/s41574-024-01032-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 09/25/2024]
Abstract
Epidemiology studies have demonstrated a clear association between obesity and the development of several distinct malignancies, with excessive visceral adiposity being an increasingly prevalent feature in patients with cancer presenting for therapeutic intervention. Clinical trials and meta-analyses have helped to inform effective and safe dosing of traditional systemically administered anticancer agents in adult patients with cancer and obesity, but there remains much debate not only regarding the effect of obesity on the more novel targeted molecular and immune-based therapies, but also about how obesity is best defined and measured clinically. Low muscle mass is associated with poor outcomes in cancer, and body composition studies using biochemical and imaging modalities are helping to fully delineate the importance of both obesity and sarcopenia in clinical outcomes; such studies might also go some way to explaining how obesity can paradoxically be associated with favourable clinical outcomes in certain cancers. As the cancer survivorship period increases and the duration of anticancer treatment lengthens, this Review highlights the challenges facing appropriate treatment selection and emphasizes how a multidisciplinary approach is warranted to manage weight and skeletal muscle loss during and after cancer treatment.
Collapse
Affiliation(s)
- Joanne Lysaght
- Cancer Immunology and Immunotherapy Group, Department of Surgery, School of Medicine, Trinity Translational Medicine Institute and Trinity St. James's Cancer Institute, Trinity College Dublin, St James's Hospital, Dublin, Ireland.
| | - Melissa J Conroy
- Cancer Immunology Research Group, Department of Anatomy, School of Medicine, Trinity Biomedical Sciences Institute and Trinity St. James's Cancer Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
11
|
Sukhatme MG, Kar A, Arasu UT, Lee SHT, Alvarez M, Garske KM, Gelev KZ, Rajkumar S, Das SS, Kaminska D, Männistö V, Peltoniemi H, Heinonen S, Säiläkivi U, Saarinen T, Juuti A, Pietiläinen KH, Pihlajamäki J, Kaikkonen MU, Pajukanta P. Integration of single cell omics with biobank data discovers trans effects of SREBF1 abdominal obesity risk variants on adipocyte expression of more than 100 genes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.22.24317804. [PMID: 39606332 PMCID: PMC11601756 DOI: 10.1101/2024.11.22.24317804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Given the fast-increasing prevalence of obesity and its comorbidities, it would be critical to improve our understanding of the cell-type level differences between the two key human adipose tissue depots, subcutaneous (SAT) and visceral adipose tissue (VAT), in their depot-specific contributions to cardiometabolic health. We integrated cell-type level RNA- and ATAC-seq data from human SAT and VAT biopsies and cell-lines to comprehensively elucidate transcriptomic, epigenetic, and genetic differences between the two fat depots. We identify cell-type marker genes for tissue specificity and functional enrichment, and show through genome-wide association study (GWAS) and partitioned polygenic risk score (PRS) enrichment analyses that the marker genes upregulated in SAT adipocytes have more prominent roles in abdominal obesity than those of VAT. We also identify SREBF1 , a master transcription factor (TF) of fatty acid synthesis and adipogenesis, as specifically upregulated in SAT adipocytes and present in numerous SAT functional pathways. By integrating multi-omics data from an independent human cohort, we further show that the risk allele carrier status of seven abdominal obesity GWAS variants in the cis region of SREBF1 affects the adipocyte expression of 146 SAT adipocyte marker genes in trans . We replicate this finding independently in the UK Biobank by showing that the partitioned abdominal obesity PRSs of the trans gene sets differ by the regional SREBF1 risk allele carrier status. In summary, we discover the master TF, SREBF1 , driving the SAT adipocyte expression profiles of more than a hundred of adipocyte marker genes in trans , a finding that indicates that human trans genes can be identified by integrating single cell omics with biobank data.
Collapse
|
12
|
Kim MY, Kim YH, Park ER, Shin Y, Kim GH, Jeong JH, Gu MB, Lee KH, Shin HJ. MLPH is a novel adipogenic factor controlling redox homeostasis to inhibit lipid peroxidation in adipocytes. Biochem Biophys Res Commun 2024; 734:150459. [PMID: 39083977 DOI: 10.1016/j.bbrc.2024.150459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
Abnormal adipose tissue formation is associated with metabolic disorders such as obesity, diabetes, and liver and cardiovascular diseases. Thus, identifying the novel factors that control adipogenesis is crucial for understanding these conditions and developing targeted treatments. In this study, we identified the melanosome-related factor MLPH as a novel adipogenic factor. MLPH was induced during the adipogenesis of 3T3-L1 cells and human mesenchymal stem cells. Although MLPH did not affect lipid metabolism, such as lipogenesis or lipolysis, adipogenesis was severely impaired by MLPH depletion. We observed that MLPH prevented excess reactive oxygen species (ROS) accumulation and lipid peroxidation during adipogenesis and in mature adipocytes. In addition, increased MLPH expression was observed under cirrhotic conditions in liver cancer cells and its overexpression also reduced ROS and lipid peroxidation. Our findings demonstrate that MLPH is a novel adipogenic factor that maintains redox homeostasis by preventing lipid peroxidation and ROS accumulation, which could lead to metabolic diseases.
Collapse
Affiliation(s)
- Mi-Yeun Kim
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea; Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Yang-Hyun Kim
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Eun-Ran Park
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Yuna Shin
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea; Radiological and Medico-Oncological Sciences, University of Science and Technology, Daejeon, 34113, South Korea
| | - Geun Hee Kim
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Jae-Hoon Jeong
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea; Radiological and Medico-Oncological Sciences, University of Science and Technology, Daejeon, 34113, South Korea
| | - Man Bock Gu
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Kee-Ho Lee
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea.
| | - Hyun-Jin Shin
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea; Radiological and Medico-Oncological Sciences, University of Science and Technology, Daejeon, 34113, South Korea.
| |
Collapse
|
13
|
Arianti R, Vinnai BÁ, Alrifai R, Karadsheh G, Al-Khafaji YQ, Póliska S, Győry F, Fésüs L, Kristóf E. Upregulation of inhibitor of DNA binding 1 and 3 is important for efficient thermogenic response in human adipocytes. Sci Rep 2024; 14:28272. [PMID: 39550428 PMCID: PMC11569133 DOI: 10.1038/s41598-024-79634-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024] Open
Abstract
Brown and beige adipocytes can be activated by β-adrenergic agonist via cAMP-dependent signaling. Performing RNA-sequencing analysis in human cervical area-derived adipocytes, we found that dibutyryl-cAMP, which can mimic in vivo stimulation of browning and thermogenesis, enhanced the expression of browning and batokine genes and upregulated several signaling pathway genes linked to thermogenesis. We observed that the expression of inhibitor of DNA binding and cell differentiation (ID) 1 and particularly ID3 was strongly induced by the adrenergic stimulation. The degradation of ID1 and ID3 elicited by the ID antagonist AGX51 during thermogenic activation prevented the induction of proton leak respiration that reflects thermogenesis and abrogated cAMP analogue-stimulated upregulation of thermogenic genes and mitochondrial complex I, II, and IV subunits, independently of the proximal cAMP-PKA signaling pathway. The presented data suggests that ID proteins contribute to efficient thermogenic response of adipocytes during adrenergic stimulation.
Collapse
Affiliation(s)
- Rini Arianti
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
- Universitas Muhammadiyah Bangka Belitung, Pangkalpinang, 33134, Indonesia
| | - Boglárka Ágnes Vinnai
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Debrecen, 4032, Hungary
| | - Rahaf Alrifai
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Debrecen, 4032, Hungary
| | - Gyath Karadsheh
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Debrecen, 4032, Hungary
| | - Yousif Qais Al-Khafaji
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Szilárd Póliska
- Genomic Medicine and Bioinformatics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Ferenc Győry
- Department of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - László Fésüs
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary.
| | - Endre Kristóf
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary.
| |
Collapse
|
14
|
Okagawa S, Sakaguchi M, Okubo Y, Takekuma Y, Igata M, Kondo T, Takeda N, Araki K, Brandao BB, Qian WJ, Tseng YH, Kulkarni RN, Kubota N, Kahn CR, Araki E. Hepatic SerpinA1 improves energy and glucose metabolism through regulation of preadipocyte proliferation and UCP1 expression. Nat Commun 2024; 15:9585. [PMID: 39532838 PMCID: PMC11557585 DOI: 10.1038/s41467-024-53835-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Lipodystrophy and obesity are associated with insulin resistance and metabolic syndrome accompanied by fat tissue dysregulation. Here, we show that serine protease inhibitor A1 (SerpinA1) expression in the liver is increased during recovery from lipodystrophy caused by the adipocyte-specific loss of insulin signaling in mice. SerpinA1 induces the proliferation of white and brown preadipocytes and increases the expression of uncoupling protein 1 (UCP1) to promote mitochondrial activation in mature white and brown adipocytes. Liver-specific SerpinA1 transgenic mice exhibit increased browning of adipose tissues, leading to increased energy expenditure, reduced adiposity and improved glucose tolerance. Conversely, SerpinA1 knockout mice exhibit decreased adipocyte mitochondrial function, impaired thermogenesis, obesity, and systemic insulin resistance. SerpinA1 forms a complex with the Eph receptor B2 and regulates its downstream signaling in adipocytes. These results demonstrate that SerpinA1 is an important hepatokine that improves obesity, energy expenditure and glucose metabolism by promoting preadipocyte proliferation and activating mitochondrial UCP1 expression in adipocytes.
Collapse
Affiliation(s)
- Shota Okagawa
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuoku, Kumamoto, Japan
| | - Masaji Sakaguchi
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuoku, Kumamoto, Japan.
| | - Yuma Okubo
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuoku, Kumamoto, Japan
| | - Yuri Takekuma
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuoku, Kumamoto, Japan
| | - Motoyuki Igata
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuoku, Kumamoto, Japan
| | - Tatsuya Kondo
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuoku, Kumamoto, Japan
| | - Naoki Takeda
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Kimi Araki
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, Japan
| | - Bruna Brasil Brandao
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Yu-Hua Tseng
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Rohit N Kulkarni
- Section of Islet Cell & Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
- Department of Medicine, BIDMC and Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Naoto Kubota
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuoku, Kumamoto, Japan
| | - C Ronald Kahn
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Eiichi Araki
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuoku, Kumamoto, Japan
| |
Collapse
|
15
|
Ajduković M, Ivanović A. Developmental histology of the liver in the Balkan crested newt Triturus ivanbureschi (Caudata: Salamandridae). ZOOLOGY 2024; 167:126220. [PMID: 39378638 DOI: 10.1016/j.zool.2024.126220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/23/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024]
Abstract
The liver, a crucial organ for metabolic processes, has a generally uniform histological structure across amphibian taxa. However, ontogenetic changes, particularly those related to biphasic life cycle and metamorphosis, are less documented. Here, we explored and described the liver histology of an emerging model organism, the Balkan crested newt (Triturus ivanbureschi) at three ontogenetic stages: larval, juvenile (just after metamorphosis) and adult. At the larval stage, the liver is characterized by hepatocytes containing large lipid droplets, poorly developed basement membranes in the blood vessels, and a lack of melanin-rich macrophage centers. Juveniles show transitional characteristics between larvae and adults. Lipid droplets in hepatocytes are abundant, but also, at the juvenile stage the well-developed basement membrane of blood vessels and melanomacrophages are present, as in adults. The presence of lipid droplets in hepatocytes during larval and juvenile stages suggests the liver's role in fat storage and energy provision during development and growth. Melanomacrophages, which synthesize melanin, perform phagocytosis, and neutralize free radicals, have been found in juveniles (after metamorphosis) and increase with age. The biphasic life cycle and liver histology transition in Triturus newts provide an insight in changes in liver histology and make them a suitable model for studying fat deposition regulation and the evolution of the immune system in terrestrial vertebrates.
Collapse
Affiliation(s)
- Maja Ajduković
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| | - Ana Ivanović
- University of Belgrade, Faculty of Biology, Institute of Zoology, Belgrade, Serbia
| |
Collapse
|
16
|
Guo G, Wang W, Tu M, Zhao B, Han J, Li J, Pan Y, Zhou J, Ma W, Liu Y, Sun T, Han X, An Y. Deciphering adipose development: Function, differentiation and regulation. Dev Dyn 2024; 253:956-997. [PMID: 38516819 DOI: 10.1002/dvdy.708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/02/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024] Open
Abstract
The overdevelopment of adipose tissues, accompanied by excess lipid accumulation and energy storage, leads to adipose deposition and obesity. With the increasing incidence of obesity in recent years, obesity is becoming a major risk factor for human health, causing various relevant diseases (including hypertension, diabetes, osteoarthritis and cancers). Therefore, it is of significance to antagonize obesity to reduce the risk of obesity-related diseases. Excess lipid accumulation in adipose tissues is mediated by adipocyte hypertrophy (expansion of pre-existing adipocytes) or hyperplasia (increase of newly-formed adipocytes). It is necessary to prevent excessive accumulation of adipose tissues by controlling adipose development. Adipogenesis is exquisitely regulated by many factors in vivo and in vitro, including hormones, cytokines, gender and dietary components. The present review has concluded a comprehensive understanding of adipose development including its origin, classification, distribution, function, differentiation and molecular mechanisms underlying adipogenesis, which may provide potential therapeutic strategies for harnessing obesity without impairing adipose tissue function.
Collapse
Affiliation(s)
- Ge Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Wanli Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Mengjie Tu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Binbin Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Jiayang Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Jiali Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Yanbing Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Jie Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Wen Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Yi Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Tiantian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Xu Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| | - Yang An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng, China
| |
Collapse
|
17
|
Kübler IC, Kretzschmar J, Arredondo-Lasso MN, Keeley SD, Rößler LC, Ganss K, Sandoval-Guzmán T, Brankatschk M. Systemic and local lipid adaptations underlie regeneration in Drosophila melanogaster and Ambystoma mexicanum. NPJ Regen Med 2024; 9:33. [PMID: 39472660 PMCID: PMC11522293 DOI: 10.1038/s41536-024-00375-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/16/2024] [Indexed: 11/02/2024] Open
Abstract
In regenerating tissues, synthesis and remodeling of membranes rely on lipid turnover and transport. Our study addresses lipid adaptations in intestinal regeneration of Drosophila melanogaster and limb regeneration of Ambystoma mexicanum. We found changes in lipid profiles at different locations: transport, storage organs and regenerating tissues. We demonstrate that attenuating insulin signaling, exclusively in fat storage, inhibits the regeneration-specific response in both the fat storage and the regenerating tissue in Drosophila. Furthermore, in uninjured axolotls we found sex-specific lipid profiles in both storage and circulation, while in regenerating animals these differences subside. The regenerating limb presents a unique sterol profile, albeit with no sex differences. We postulate that regeneration triggers a systemic response, where organs storing lipids play a significant role in the regulation of systemic lipid traffic. Second, that this response may be an active and well-regulated mechanism, as observed when homeostatic sex-differences disappear in regenerating salamanders.
Collapse
Affiliation(s)
- Ines C Kübler
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Jenny Kretzschmar
- Biotechnology Center (BIOTEC), Technische Universität Dresden, Dresden, Germany
- MRC Laboratory of Molecular Biology, Francis Crick Ave, Trumpington, Cambridge, UK
| | - Maria Nieves Arredondo-Lasso
- Biotechnology Center (BIOTEC), Technische Universität Dresden, Dresden, Germany
- Metabolic Programming, Technische Universität München, Freising-Weihenstephan, Germany
| | - Sean D Keeley
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Luca Claudia Rößler
- Biotechnology Center (BIOTEC), Technische Universität Dresden, Dresden, Germany
| | - Katharina Ganss
- Paul Langerhans Institute Dresden, Helmholtz Centre Munich, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Tatiana Sandoval-Guzmán
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
- Paul Langerhans Institute Dresden, Helmholtz Centre Munich, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
- Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, Dresden, Germany.
| | - Marko Brankatschk
- Biotechnology Center (BIOTEC), Technische Universität Dresden, Dresden, Germany.
- Faculty of Biology Technische Universität Dresden, Dresden, Germany. Zellescher Weg 23b, Dresden, Germany.
| |
Collapse
|
18
|
Jia G, Liu J, Hou X, Jiang Y, Li X. Biological function and small molecule inhibitors of histone deacetylase 11. Eur J Med Chem 2024; 276:116634. [PMID: 38972077 DOI: 10.1016/j.ejmech.2024.116634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/16/2024] [Accepted: 06/25/2024] [Indexed: 07/09/2024]
Abstract
HDAC11, as a rising star in the histone deacetylase (HDAC) family, has attracted widespread interest in the biomedical field in recent years specially owing to its high defatty-acylase activity compared its innate deacetylase activity. Numerous studies have provided evidence indicating the crucial involvement of HDAC11 in cancers, immune responses, and metabolic processes. Several potent and selective HDAC11 inhibitors have been discovered and identified, which is crucial for exploring the function of HDAC11 and its potential therapeutic applications. Herein, we present a critical overview of the current advances in the biological function of HDAC11 and its inhibitors. We initially discuss the physiological functions of HDAC11 and its pathological roles in relevant diseases. Subsequently, our main focus centers on the design strategy and development process of HDAC11 inhibitors. Additionally, we address significant challenges and outline future directions in this field. This perspective may provide guidance for the further development of HDAC11 inhibitors and their prospects in disease treatment.
Collapse
Affiliation(s)
- Geng Jia
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Jinyu Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Xinlu Hou
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Yuqi Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.
| | - Xiaoyang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
19
|
Peng Y, Cheong S, Lu F, He Y. Dermal white adipose tissue: Development and impact on hair follicles, skin defense, and fibrosis. FASEB J 2024; 38:e70047. [PMID: 39292527 DOI: 10.1096/fj.202400653r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/07/2024] [Accepted: 08/29/2024] [Indexed: 09/20/2024]
Abstract
Dermal white adipose tissue (DWAT) is a distinctive adipose depot located within the lower dermis of the skin. Its significance as an ancillary fat in skin homoeostasis has recently received increased attention. New research has revealed that DWAT responses to skin pathology and physiology changes, impacting skin development, hair cycling, defense mechanisms, and fibrotic conditions. In this review, we explore the developmental process of DWAT and the adipose commitment timing of hypodermal. We explore the development process of DWAT and its pivotal role in regulating the hair cycle. We conclude the antibacterial activity and reversible dedifferentiation of dermal adipocytes in response to skin defense. Furthermore, we underscore the potentially crucial yet underestimated anti-fibrotic functions of DWAT-derived adipokines and adipocyte-myofibroblast transition.
Collapse
Affiliation(s)
- Yujie Peng
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Sousan Cheong
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Yunfan He
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
20
|
Mo YY, Han YX, Xu SN, Jiang HL, Wu HX, Cai JM, Li L, Bu YH, Xiao F, Liang HD, Wen Y, Liu YZ, Yin YL, Zhou HD. Adipose Tissue Plasticity: A Comprehensive Definition and Multidimensional Insight. Biomolecules 2024; 14:1223. [PMID: 39456156 PMCID: PMC11505740 DOI: 10.3390/biom14101223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Adipose tissue is composed of adipocytes, stromal vascular fraction, nerves, surrounding immune cells, and the extracellular matrix. Under various physiological or pathological conditions, adipose tissue shifts cellular composition, lipid storage, and organelle dynamics to respond to the stress; this remodeling is called "adipose tissue plasticity". Adipose tissue plasticity includes changes in the size, species, number, lipid storage capacity, and differentiation function of adipocytes, as well as alterations in the distribution and cellular composition of adipose tissue. This plasticity has a major role in growth, obesity, organismal protection, and internal environmental homeostasis. Moreover, certain thresholds exist for this plasticity with significant individualized differences. Here, we comprehensively elaborate on the specific connotation of adipose tissue plasticity and the relationship between this plasticity and the development of many diseases. Meanwhile, we summarize possible strategies for treating obesity in response to adipose tissue plasticity, intending to provide new insights into the dynamic changes in adipose tissue and contribute new ideas to relevant clinical problems.
Collapse
Affiliation(s)
- Yu-Yao Mo
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Yu-Xin Han
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Shi-Na Xu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Hong-Li Jiang
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Hui-Xuan Wu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Jun-Min Cai
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Long Li
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Yan-Hong Bu
- Department of Blood Transfusion, The Second Xiangya Hospital, Central South University, Changsha 410012, China;
| | - Fen Xiao
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Han-Dan Liang
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Ying Wen
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Yu-Ze Liu
- Pediatric Cardiac Surgery Centre, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China;
| | - Yu-Long Yin
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Hou-De Zhou
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| |
Collapse
|
21
|
Mao L, Lu J, Hou Y, Nie T. Directly targeting PRDM16 in thermogenic adipose tissue to treat obesity and its related metabolic diseases. Front Endocrinol (Lausanne) 2024; 15:1458848. [PMID: 39351529 PMCID: PMC11439700 DOI: 10.3389/fendo.2024.1458848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024] Open
Abstract
Obesity is increasing globally and is closely associated with a range of metabolic disorders, including metabolic associated fatty liver disease, diabetes, and cardiovascular diseases. An effective strategy to combat obesity involves stimulating brown and beige adipocyte thermogenesis, which significantly enhances energy expenditure. Recent research has underscored the vital role of PRDM16 in the development and functionality of thermogenic adipocytes. Consequently, PRDM16 has been identified as a potential therapeutic target for obesity and its related metabolic disorders. This review comprehensively examines various studies that focus on combating obesity by directly targeting PRDM16 in adipose tissue.
Collapse
Affiliation(s)
- Liufeng Mao
- The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jinli Lu
- The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yunliang Hou
- The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
| | - Tao Nie
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang, China
| |
Collapse
|
22
|
Sun C, Su J, Wang J, Ding K, Chen C. Lycium barbarum polysaccharide increases thermogenesis and energy metabolism through modulation of the gut microbiota to confer resistance to cold temperatures. FASEB J 2024; 38:e70010. [PMID: 39230621 DOI: 10.1096/fj.202400870r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/18/2024] [Accepted: 08/09/2024] [Indexed: 09/05/2024]
Abstract
Traditional Chinese medical literature contains numerous records of many traditional Chinese herbal medicines that exhibit efficacy in enhancing resistance to cold, yet there is a lack of scientific explanation. Lycium barbarum is among the herbal medicines that are explicitly documented to enhance resistance to cold in the "Ben Cao Gang Mu (Compendium of Materia Medica)". Herein, we investigated L. barbarum polysaccharide (LBP)-induced browning of inguinal white adipose tissue (iWAT), energy expenditure and thermogenic function in a long-term (4 months) treatment mouse model. LBP supplementation resulted in a significant reduction in weight and adipocyte size in iWAT, along with increased gut microbiota diversity. Specifically, the levels of Lachnospiraceae, Ruminococcaceae and Bacteroidaceae (short-chain fatty acid-producing bacteria) were elevated, leading to a higher level of short-chain fatty acids (SCFAs) in the caecal content. These effects subsequently triggered the release of glucagon-like peptide-1 (GLP-1) and activated the CREB/PGC1α signaling pathway in iWAT, thereby increasing energy expenditure and enhancing thermogenic function. The antibiotic treatment experiments confirmed that the LBP-mediated gut microbiota participated in the process of iWAT browning. In summary, our findings provide the first scientific explanation and mechanistic insights into the cold resistance of L. barbarum and identify potentially safe natural product supplements for individuals in alpine areas.
Collapse
Affiliation(s)
- Chuanxin Sun
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
| | - Juan Su
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Jiarui Wang
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Kan Ding
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, P.R. China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan, Guangdong, P.R. China
| | - Chang Chen
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, P.R. China
- Beijing Institute for Brain Disorders Capital Medical University, Beijing, P.R. China
| |
Collapse
|
23
|
Uhrbom M, Muhl L, Genové G, Liu J, Palmgren H, Alexandersson I, Karlsson F, Zhou AX, Lunnerdal S, Gustafsson S, Buyandelger B, Petkevicius K, Ahlstedt I, Karlsson D, Aasehaug L, He L, Jeansson M, Betsholtz C, Peng XR. Adipose stem cells are sexually dimorphic cells with dual roles as preadipocytes and resident fibroblasts. Nat Commun 2024; 15:7643. [PMID: 39223126 PMCID: PMC11369120 DOI: 10.1038/s41467-024-51867-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Cell identities are defined by intrinsic transcriptional networks and spatio-temporal environmental factors. Here, we explored multiple factors that contribute to the identity of adipose stem cells, including anatomic location, microvascular neighborhood, and sex. Our data suggest that adipose stem cells serve a dual role as adipocyte precursors and fibroblast-like cells that shape the adipose tissue's extracellular matrix in an organotypic manner. We further find that adipose stem cells display sexual dimorphism regarding genes involved in estrogen signaling, homeobox transcription factor expression and the renin-angiotensin-aldosterone system. These differences could be attributed to sex hormone effects, developmental origin, or both. Finally, our data demonstrate that adipose stem cells are distinct from mural cells, and that the state of commitment to adipogenic differentiation is linked to their anatomic position in the microvascular niche. Our work supports the importance of sex and microvascular function in adipose tissue physiology.
Collapse
Affiliation(s)
- Martin Uhrbom
- Department of Medicine, Huddinge, Karolinska Institutet Campus Flemingsberg, Neo building, 141 52, Huddinge, Sweden.
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| | - Lars Muhl
- Department of Medicine, Huddinge, Karolinska Institutet Campus Flemingsberg, Neo building, 141 52, Huddinge, Sweden
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, 5020, Bergen, Norway
| | - Guillem Genové
- Department of Medicine, Huddinge, Karolinska Institutet Campus Flemingsberg, Neo building, 141 52, Huddinge, Sweden
| | - Jianping Liu
- Department of Medicine, Huddinge, Karolinska Institutet Campus Flemingsberg, Neo building, 141 52, Huddinge, Sweden
| | - Henrik Palmgren
- Bioscience Renal, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ida Alexandersson
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Fredrik Karlsson
- Data Sciences & Quantitative Biology, Discovery Sciences, R&D AstraZeneca, Gothenburg, Sweden
| | - Alex-Xianghua Zhou
- Bioscience Renal, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Sandra Lunnerdal
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Sonja Gustafsson
- Department of Medicine, Huddinge, Karolinska Institutet Campus Flemingsberg, Neo building, 141 52, Huddinge, Sweden
| | - Byambajav Buyandelger
- Department of Medicine, Huddinge, Karolinska Institutet Campus Flemingsberg, Neo building, 141 52, Huddinge, Sweden
| | - Kasparas Petkevicius
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ingela Ahlstedt
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Daniel Karlsson
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Leif Aasehaug
- Bioscience Cardiovascular, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Liqun He
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 23, Uppsala, Sweden
| | - Marie Jeansson
- Department of Medicine, Huddinge, Karolinska Institutet Campus Flemingsberg, Neo building, 141 52, Huddinge, Sweden
| | - Christer Betsholtz
- Department of Medicine, Huddinge, Karolinska Institutet Campus Flemingsberg, Neo building, 141 52, Huddinge, Sweden.
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 23, Uppsala, Sweden.
| | - Xiao-Rong Peng
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
24
|
Shi Q, Song G, Song L, Wang Y, Ma J, Zhang L, Yuan E. Unravelling the function of prdm16 in human tumours: A comparative analysis of haematologic and solid tumours. Biomed Pharmacother 2024; 178:117281. [PMID: 39137651 DOI: 10.1016/j.biopha.2024.117281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024] Open
Abstract
Extensive research has shown that PR domain 16 (PRDM16) plays a critical role in adipose tissue metabolism, including processes such as browning and thermogenesis of adipocytes, beigeing of adipocytes, and adipogenic differentiation of myoblasts. These functions have been associated with diseases such as obesity and diabetes. Additionally, PRDM16 has been correlated with various other conditions, including migraines, heterochromatin abnormalities, metabolic syndrome, cardiomyopathy, sarcopenia, nonsyndromic cleft lip, and essential hypertension, among others. However, there is currently no systematic or comprehensive conclusion regarding the mechanism of PRDM16 in human tumours, including haematologic and solid tumours. The aim of this review is to provide an overview of the research progress on PRDM16 in haematologic and solid tumours by incorporating recent literature findings. Furthermore, we explore the prospects of PRDM16 in the precise diagnosis and treatment of human haematologic and solid tumours.
Collapse
Affiliation(s)
- Qianqian Shi
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, Henan 450052, China; Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan 450000, China.
| | - Guangyong Song
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Liying Song
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, Henan 450052, China
| | - Yu Wang
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, Henan 450052, China
| | - Jun Ma
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, Henan 450052, China
| | - Linlin Zhang
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, Henan 450052, China; Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan 450000, China.
| | - Enwu Yuan
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, Henan 450052, China; Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan 450000, China.
| |
Collapse
|
25
|
Thanaj M, Basty N, Whitcher B, Bell JD, Thomas EL. MRI assessment of adipose tissue fatty acid composition in the UK Biobank and its association with diet and disease. Obesity (Silver Spring) 2024; 32:1699-1708. [PMID: 39051177 DOI: 10.1002/oby.24108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVE This study aimed to assess the fatty acid (FA) composition of abdominal subcutaneous and visceral adipose tissue (ASAT and VAT, respectively) in the UK Biobank imaging cohort (N = 33,823) using magnetic resonance imaging (MRI). METHODS We measured the fractions of saturated, monounsaturated, and polyunsaturated FA (fSFA, fMUFA, and fPUFA, respectively) in ASAT and VAT from multiecho MRI scans. We selected a subcohort of participants who followed a vegan and an omnivore diet (N = 36) to validate the effect of diet on adipose tissue. In the wider imaging cohort, we examined the relationships between adipose tissue FA composition and various traits related to disease and body size. RESULTS We measured adipose tissue FA composition for over 33,000 participants, revealing higher fSFA and fPUFA and lower fMUFA in VAT (p < 0.00016). fMUFA and fPUFA were higher in ASAT and lower in VAT for women (p < 0.00016). Vegan participants exhibited lower fSFA in both ASAT and VAT (p < 0.00016). VAT fSFA and fMUFA showed significant associations with disease, as well as anthropometric variables. CONCLUSIONS This extensive analysis revealed the relationships between adipose tissue FA composition and a range of factors in a diverse population, highlighting the importance of studying body adipose tissue beyond its quantity.
Collapse
Affiliation(s)
- Marjola Thanaj
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, UK
| | - Nicolas Basty
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, UK
| | - Brandon Whitcher
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, UK
| | - Jimmy D Bell
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, UK
| | - E Louise Thomas
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, UK
| |
Collapse
|
26
|
Okumuş EB, Böke ÖB, Turhan SŞ, Doğan A. From development to future prospects: The adipose tissue & adipose tissue organoids. Life Sci 2024; 351:122758. [PMID: 38823504 DOI: 10.1016/j.lfs.2024.122758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Living organisms store their energy in different forms of fats including lipid droplets, triacylglycerols, and steryl esters. In mammals and some non-mammal species, the energy is stored in adipose tissue which is the innervated specialized connective tissue that incorporates a variety of cell types such as macrophages, fibroblasts, pericytes, endothelial cells, adipocytes, blood cells, and several kinds of immune cells. Adipose tissue is so complex that the scope of its function is not only limited to energy storage, it also encompasses to thermogenesis, mechanical support, and immune defense. Since defects and complications in adipose tissue are heavily related to certain chronic diseases such as obesity, cardiovascular diseases, type 2 diabetes, insulin resistance, and cholesterol metabolism defects, it is important to further study adipose tissue to enlighten further mechanisms behind those diseases to develop possible therapeutic approaches. Adipose organoids are accepted as very promising tools for studying fat tissue development and its underlying molecular mechanisms, due to their high recapitulation of the adipose tissue in vitro. These organoids can be either derived using stromal vascular fractions or pluripotent stem cells. Due to their great vascularization capacity and previously reported incontrovertible regulatory role in insulin sensitivity and blood glucose levels, adipose organoids hold great potential to become an excellent candidate for the source of stem cell therapy. In this review, adipose tissue types and their corresponding developmental stages and functions, the importance of adipose organoids, and the potential they hold will be discussed in detail.
Collapse
Affiliation(s)
- Ezgi Bulut Okumuş
- Faculty of Engineering, Genetics and Bioengineering Department, Yeditepe University, İstanbul, Turkey
| | - Özüm Begüm Böke
- Faculty of Engineering, Genetics and Bioengineering Department, Yeditepe University, İstanbul, Turkey
| | - Selinay Şenkal Turhan
- Faculty of Engineering, Genetics and Bioengineering Department, Yeditepe University, İstanbul, Turkey
| | - Ayşegül Doğan
- Faculty of Engineering, Genetics and Bioengineering Department, Yeditepe University, İstanbul, Turkey.
| |
Collapse
|
27
|
Ma Y, Nenkov M, Chen Y, Gaßler N. The Role of Adipocytes Recruited as Part of Tumor Microenvironment in Promoting Colorectal Cancer Metastases. Int J Mol Sci 2024; 25:8352. [PMID: 39125923 PMCID: PMC11313311 DOI: 10.3390/ijms25158352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/15/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Adipose tissue dysfunction, which is associated with an increased risk of colorectal cancer (CRC), is a significant factor in the pathophysiology of obesity. Obesity-related inflammation and extracellular matrix (ECM) remodeling promote colorectal cancer metastasis (CRCM) by shaping the tumor microenvironment (TME). When CRC occurs, the metabolic symbiosis of tumor cells recruits adjacent adipocytes into the TME to supply energy. Meanwhile, abundant immune cells, from adipose tissue and blood, are recruited into the TME, which is stimulated by pro-inflammatory factors and triggers a chronic local pro-inflammatory TME. Dysregulated ECM proteins and cell surface adhesion molecules enhance ECM remodeling and further increase contractibility between tumor and stromal cells, which promotes epithelial-mesenchymal transition (EMT). EMT increases tumor migration and invasion into surrounding tissues or vessels and accelerates CRCM. Colorectal symbiotic microbiota also plays an important role in the promotion of CRCM. In this review, we provide adipose tissue and its contributions to CRC, with a special emphasis on the role of adipocytes, macrophages, neutrophils, T cells, ECM, and symbiotic gut microbiota in the progression of CRC and their contributions to the CRC microenvironment. We highlight the interactions between adipocytes and tumor cells, and potential therapeutic approaches to target these interactions.
Collapse
Affiliation(s)
| | | | | | - Nikolaus Gaßler
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany (M.N.)
| |
Collapse
|
28
|
Zhou P, Kessinger CW, Gu F, Davenport A, King JS, Wang G, Negron SG, Deplancke B, Pu WT, Lin Z. Vestigial like 4 regulates the adipogenesis of classical brown adipose tissue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.602788. [PMID: 39026854 PMCID: PMC11257599 DOI: 10.1101/2024.07.09.602788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Brown adipose tissue (BAT) is mammals' primary non-shivering thermogenesis organ, and the molecular mechanisms regulating BAT growth and adipogenesis are largely unknown. The Hippo-YAP pathway has been well-known for controlling organ size, and Vestigial like 4 (VGLL4) is a transcriptional regulator that modulates the Hippo-YAP pathway by competing against YAP for binding to TEAD proteins. In this study, we dissected the function of VGLL4 in regulating BAT development. We generated a conventional Vgll4 mutant mouse line, in which the two Tondu (TDU) domains of VGLL4 were disrupted. We found that deletion of the TDU domains of VGLL4 resulted in perinatal lethality and paucity of the interscapular BAT. Histological and magnetic resonance imaging studies confirmed that the adipogenesis of BAT was impaired in Vgll4 mutants. Adeno-associated virus (AAV) mediated, brown adipocyte-specific overexpression of VGLL4 increased BAT volume and protected the adult male mice from acute cold stress. Genomic studies suggest that VGLL4/TEAD1 complex directly regulates the myogenic and adipogenic gene expression programs of BAT. In conclusion, our data identify VGLL4 as a previously unrecognized adipogenesis factor that regulates classical BAT development.
Collapse
Affiliation(s)
- Pingzhu Zhou
- Boston Children’s Hospital, 300 Longwood Ave, Boston, MA, 02115
| | - Chase W. Kessinger
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY 13501
| | - Fei Gu
- Boston Children’s Hospital, 300 Longwood Ave, Boston, MA, 02115
| | - Amanda Davenport
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY 13501
| | - Justin S. King
- Boston Children’s Hospital, 300 Longwood Ave, Boston, MA, 02115
| | - Genyu Wang
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY 13501
| | - Steven G. Negron
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY 13501
| | - Bart Deplancke
- Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - William T. Pu
- Boston Children’s Hospital, 300 Longwood Ave, Boston, MA, 02115
| | - Zhiqiang Lin
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY 13501
| |
Collapse
|
29
|
Nicze M, Dec A, Borówka M, Krzyżak D, Bołdys A, Bułdak Ł, Okopień B. Molecular Mechanisms behind Obesity and Their Potential Exploitation in Current and Future Therapy. Int J Mol Sci 2024; 25:8202. [PMID: 39125772 PMCID: PMC11311839 DOI: 10.3390/ijms25158202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Obesity is a chronic disease caused primarily by the imbalance between the amount of calories supplied to the body and energy expenditure. Not only does it deteriorate the quality of life, but most importantly it increases the risk of cardiovascular diseases and the development of type 2 diabetes mellitus, leading to reduced life expectancy. In this review, we would like to present the molecular pathomechanisms underlying obesity, which constitute the target points for the action of anti-obesity medications. These include the central nervous system, brain-gut-microbiome axis, gastrointestinal motility, and energy expenditure. A significant part of this article is dedicated to incretin-based drugs such as GLP-1 receptor agonists (e.g., liraglutide and semaglutide), as well as the brand new dual GLP-1 and GIP receptor agonist tirzepatide, all of which have become "block-buster" drugs due to their effectiveness in reducing body weight and beneficial effects on the patient's metabolic profile. Finally, this review article highlights newly designed molecules with the potential for future obesity management that are the subject of ongoing clinical trials.
Collapse
Affiliation(s)
- Michał Nicze
- Department of Internal Medicine and Clinical Pharmacology, Faculty of Medical Sciences, Medical University of Silesia in Katowice, Medyków 18, 40-752 Katowice, Poland (A.B.); (B.O.)
| | | | | | | | | | - Łukasz Bułdak
- Department of Internal Medicine and Clinical Pharmacology, Faculty of Medical Sciences, Medical University of Silesia in Katowice, Medyków 18, 40-752 Katowice, Poland (A.B.); (B.O.)
| | | |
Collapse
|
30
|
Krüger P, Hartinger R, Djabali K. Navigating Lipodystrophy: Insights from Laminopathies and Beyond. Int J Mol Sci 2024; 25:8020. [PMID: 39125589 PMCID: PMC11311807 DOI: 10.3390/ijms25158020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/06/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024] Open
Abstract
Recent research into laminopathic lipodystrophies-rare genetic disorders caused by mutations in the LMNA gene-has greatly expanded our knowledge of their complex pathology and metabolic implications. These disorders, including Hutchinson-Gilford progeria syndrome (HGPS), Mandibuloacral Dysplasia (MAD), and Familial Partial Lipodystrophy (FPLD), serve as crucial models for studying accelerated aging and metabolic dysfunction, enhancing our understanding of the cellular and molecular mechanisms involved. Research on laminopathies has highlighted how LMNA mutations disrupt adipose tissue function and metabolic regulation, leading to altered fat distribution and metabolic pathway dysfunctions. Such insights improve our understanding of the pathophysiological interactions between genetic anomalies and metabolic processes. This review merges current knowledge on the phenotypic classifications of these diseases and their associated metabolic complications, such as insulin resistance, hypertriglyceridemia, hepatic steatosis, and metabolic syndrome, all of which elevate the risk of cardiovascular disease, stroke, and diabetes. Additionally, a range of published therapeutic strategies, including gene editing, antisense oligonucleotides, and novel pharmacological interventions aimed at addressing defective adipocyte differentiation and lipid metabolism, will be explored. These therapies target the core dysfunctional lamin A protein, aiming to mitigate symptoms and provide a foundation for addressing similar metabolic and genetic disorders.
Collapse
Affiliation(s)
| | | | - Karima Djabali
- Epigenetics of Aging, Department of Dermatology and Allergy, TUM School of Medicine, Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich (TUM), 85748 Garching, Germany; (P.K.); (R.H.)
| |
Collapse
|
31
|
Lee SO, Kim IK. Molecular pathophysiology of secondary lymphedema. Front Cell Dev Biol 2024; 12:1363811. [PMID: 39045461 PMCID: PMC11264244 DOI: 10.3389/fcell.2024.1363811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 06/20/2024] [Indexed: 07/25/2024] Open
Abstract
Lymphedema occurs as a result of lymphatic vessel damage or obstruction, leading to the lymphatic fluid stasis, which triggers inflammation, tissue fibrosis, and adipose tissue deposition with adipocyte hypertrophy. The treatment of lymphedema is divided into conservative and surgical approaches. Among surgical treatments, methods like lymphaticovenular anastomosis and vascularized lymph node transfer are gaining attention as they focus on restoring lymphatic flow, constituting a physiologic treatment approach. Lymphatic endothelial cells form the structure of lymphatic vessels. These cells possess button-like junctions that facilitate the influx of fluid and leukocytes. Approximately 10% of interstitial fluid is connected to venous return through lymphatic capillaries. Damage to lymphatic vessels leads to lymphatic fluid stasis, resulting in the clinical condition of lymphedema through three mechanisms: Inflammation involving CD4+ T cells as the principal contributing factor, along with the effects of immune cells on the VEGF-C/VEGFR axis, consequently resulting in abnormal lymphangiogenesis; adipocyte hypertrophy and adipose tissue deposition regulated by the interaction of CCAAT/enhancer-binding protein α and peroxisome proliferator-activated receptor-γ; and tissue fibrosis initiated by the overactivity of Th2 cells, leading to the secretion of profibrotic cytokines such as IL-4, IL-13, and the growth factor TGF-β1. Surgical treatments aimed at reconstructing the lymphatic system help facilitate lymphatic fluid drainage, but their effectiveness in treating already damaged lymphatic vessels is limited. Therefore, reviewing the pathophysiology and molecular mechanisms of lymphedema is crucial to complement surgical treatments and explore novel therapeutic approaches.
Collapse
|
32
|
Lu Z, Ding L, Jiang X, Zhang S, Yan M, Yang G, Tian X, Wang Q. Single-nucleus RNA transcriptome profiling reveals murine adipose tissue endothelial cell proliferation gene networks involved in obesity development. Arch Biochem Biophys 2024; 757:110029. [PMID: 38729594 DOI: 10.1016/j.abb.2024.110029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/18/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Endothelial cells play an important role in the metabolism of adipose tissue (AT). This study aimed to analyze the changes that adipose tissue in AT endothelial cells undergo during the development of obesity, using single-nucleus RNA sequence (snRNA-seq). Mouse paraepididymal AT cells were subjected to snRNA-seq with the 10X Genomics platform. The cell types were then clustered using t-distributed stochastic neighbor embedding and unbiased computational informatics analyses. Protein-protein interactions network was established using the STRING database and visualized using Cytoscape. The dataset was subjected to differential gene enrichment analysis. In total, 21,333 cells acquired from 24 mouse paraepididymal AT samples were analyzed using snRNA-seq. This study identified 18 distinct clusters and annotated macrophages, fibroblasts, epithelial cells, T cells, endothelial cells, stem cells, neutrophil cells, and neutrophil cell types based on representative markers. Cluster 12 was defined as endothelial cells. The proportion of endothelial cells decreased with the development of obesity. Inflammatory factors, such as Vegfa and Prdm16 were upregulated in the medium obesity group but downregulated in the obesity group. Genes, such as Prox1, Erg, Flt4, Kdr, Flt1, and Pecam1 promoted the proliferation of AT endothelial cells and maintained the internal environment of AT. This study established a reference model and general framework for studying the mechanisms, biomarkers, and therapeutic targets of endothelial cell dysfunction-related diseases at the single-cell level.
Collapse
Affiliation(s)
- Zhimin Lu
- College of Sport and Health, Shandong Sport University, 250102, Jinan, China
| | - Ling Ding
- College of Sport and Health, Shandong Sport University, 250102, Jinan, China
| | - Xing Jiang
- College of Sport and Health, Shandong Sport University, 250102, Jinan, China
| | - Sen Zhang
- College of Sport and Health, Shandong Sport University, 250102, Jinan, China
| | - Min Yan
- College of Sport and Health, Shandong Sport University, 250102, Jinan, China
| | - Guangxin Yang
- College of Sport and Health, Shandong Sport University, 250102, Jinan, China
| | - Xuewen Tian
- College of Sport and Health, Shandong Sport University, 250102, Jinan, China.
| | - Qinglu Wang
- College of Sport and Health, Shandong Sport University, 250102, Jinan, China.
| |
Collapse
|
33
|
Zhang X, Tian L, Majumdar A, Scheller EL. Function and Regulation of Bone Marrow Adipose Tissue in Health and Disease: State of the Field and Clinical Considerations. Compr Physiol 2024; 14:5521-5579. [PMID: 39109972 PMCID: PMC11725182 DOI: 10.1002/cphy.c230016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Bone marrow adipose tissue (BMAT) is a metabolically and clinically relevant fat depot that exists within bone. Two subtypes of BMAT, regulated and constitutive, reside in hematopoietic-rich red marrow and fatty yellow marrow, respectively, and exhibit distinct characteristics compared to peripheral fat such as white and brown adipose tissues. Bone marrow adipocytes (BMAds) are evolutionally preserved in most vertebrates, start development after birth and expand throughout life, and originate from unique progenitor populations that control bone formation and hematopoiesis. Mature BMAds also interact closely with other cellular components of the bone marrow niche, serving as a nearby energy reservoir to support the skeletal system, a signaling hub that contributes to both local and systemic homeostasis, and a final fuel reserve for survival during starvation. Though BMAT and bone are often inversely correlated, more BMAT does not always mean less bone, and the prevention of BMAT expansion as a strategy to prevent bone loss remains questionable. BMAT adipogenesis and lipid metabolism are regulated by the nervous systems and a variety of circulating hormones. This contributes to the plasticity of BMAT, including BMAT expansion in common physiological or pathological conditions, and BMAT catabolism under certain extreme circumstances, which are often associated with malnutrition and/or systemic inflammation. Altogether, this article provides a comprehensive overview of the local and systemic functions of BMAT and discusses the regulation and plasticity of this unique adipose tissue depot in health and disease. © 2024 American Physiological Society. Compr Physiol 14:5521-5579, 2024.
Collapse
Affiliation(s)
- Xiao Zhang
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
| | - Linda Tian
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
| | - Anurag Majumdar
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
| | - Erica L. Scheller
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
- Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
34
|
Liu M, Lu F, Feng J. Aging and homeostasis of the hypodermis in the age-related deterioration of skin function. Cell Death Dis 2024; 15:443. [PMID: 38914551 PMCID: PMC11196735 DOI: 10.1038/s41419-024-06818-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 02/01/2024] [Accepted: 06/10/2024] [Indexed: 06/26/2024]
Abstract
Adipose tissues in the hypodermis, the crucial stem cell reservoir in the skin and the endocrine organ for the maintenance of skin homeostasis undergo significant changes during skin aging. Dermal white adipose tissue (dWAT) has recently been recognized as an important organ for both non-metabolic and metabolic health in skin regeneration and rejuvenation. Defective differentiation, adipogenesis, improper adipocytokine production, and immunological dissonance dysfunction in dWAT lead to age-associated clinical changes. Here, we review age-related alterations in dWAT across levels, emphasizing the mechanisms underlying the regulation of aging. We also discuss the pathogenic changes involved in age-related fat dysfunction and the unfavorable consequences of accelerated skin aging, such as chronic inflammaging, immunosenescence, delayed wound healing, and fibrosis. Research has shown that adipose aging is an early initiation event and a potential target for extending longevity. We believe that adipose tissues play an essential role in aging and form a potential therapeutic target for the treatment of age-related skin diseases. Further research is needed to improve our understanding of this phenomenon.
Collapse
Affiliation(s)
- Meiqi Liu
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Feng Lu
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Jingwei Feng
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, People's Republic of China.
| |
Collapse
|
35
|
Giammona A, Di Franco S, Lo Dico A, Stassi G. The miRNA Contribution in Adipocyte Maturation. Noncoding RNA 2024; 10:35. [PMID: 38921832 PMCID: PMC11206860 DOI: 10.3390/ncrna10030035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
Mesenchymal stem cells, due to their multipotent ability, are considered one of the best candidates to be used in regenerative medicine. To date, the most used source is represented by the bone marrow, despite the limited number of cells and the painful/invasive procedure for collection. Therefore, the scientific community has investigated many alternative sources for the collection of mesenchymal stem cells, with the adipose tissue representing the best option, given the abundance of mesenchymal stem cells and the easy access. Although adipose mesenchymal stem cells have recently been investigated for their multipotency, the molecular mechanisms underlying their adipogenic potential are still unclear. In this scenario, this communication is aimed at defining the role of miRNAs in adipogenic potential of adipose-derived mesenchymal stem cells via real-time PCR. Even if preliminary, our data show that cell culture conditions affect the expression of specific miRNA involved in the adipogenic potential of mesenchymal stem cells. The in vitro/in vivo validation of these results could pave the way for novel therapeutic strategies in the field of regenerative medicine. In conclusion, our research highlights how specific cell culture conditions can modulate the adipogenic potential of adipose mesenchymal stem cells through the regulation of specific miRNAs.
Collapse
Affiliation(s)
- Alessandro Giammona
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), 20054 Segrate, Italy;
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
- Laboratory of Cellular and Molecular Pathophysiology, Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, 90127 Palermo, Italy;
| | - Simone Di Franco
- Laboratory of Cellular and Molecular Pathophysiology, Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, 90127 Palermo, Italy;
| | - Alessia Lo Dico
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), 20054 Segrate, Italy;
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Giorgio Stassi
- Laboratory of Cellular and Molecular Pathophysiology, Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, 90127 Palermo, Italy;
| |
Collapse
|
36
|
Amri EZ. Beige or brite adipocytes of the adipose organ: Link with white and brown adipocytes. ANNALES D'ENDOCRINOLOGIE 2024; 85:253-254. [PMID: 38871507 DOI: 10.1016/j.ando.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
MESH Headings
- Animals
- Humans
- Adipocytes/physiology
- Adipocytes, Beige/physiology
- Adipocytes, Beige/metabolism
- Adipocytes, Beige/cytology
- Adipocytes, Brown/physiology
- Adipocytes, White/physiology
- Adipocytes, White/cytology
- Adipocytes, White/metabolism
- Adipose Tissue/physiology
- Adipose Tissue/metabolism
- Adipose Tissue/cytology
- Adipose Tissue, Brown/physiology
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, White/physiology
- Adipose Tissue, White/cytology
- Obesity/pathology
Collapse
Affiliation(s)
- Ez-Zoubir Amri
- Université Côte d'Azur, CNRS, Inserm, iBV, Adipocible, Nice, France.
| |
Collapse
|
37
|
Yuan N, Shen L, Peng Q, Sha R, Wang Z, Xie Z, You X, Feng Y. SRSF1 Is Required for Mitochondrial Homeostasis and Thermogenic Function in Brown Adipocytes Through its Control of Ndufs3 Splicing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306871. [PMID: 38569495 PMCID: PMC11151030 DOI: 10.1002/advs.202306871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/04/2024] [Indexed: 04/05/2024]
Abstract
RNA splicing dysregulation and the involvement of specific splicing factors are emerging as common factors in both obesity and metabolic disorders. The study provides compelling evidence that the absence of the splicing factor SRSF1 in mature adipocytes results in whitening of brown adipocyte tissue (BAT) and impaired thermogenesis, along with the inhibition of white adipose tissue browning in mice. Combining single-nucleus RNA sequencing with transmission electron microscopy, it is observed that the transformation of BAT cell types is associated with dysfunctional mitochondria, and SRSF1 deficiency leads to degenerated and fragmented mitochondria within BAT. The results demonstrate that SRSF1 effectively binds to constitutive exon 6 of Ndufs3 pre-mRNA and promotes its inclusion. Conversely, the deficiency of SRSF1 results in impaired splicing of Ndufs3, leading to reduced levels of functional proteins that are essential for mitochondrial complex I assembly and activity. Consequently, this deficiency disrupts mitochondrial integrity, ultimately compromising the thermogenic capacity of BAT. These findings illuminate a novel role for SRSF1 in influencing mitochondrial function and BAT thermogenesis through its regulation of Ndufs3 splicing within BAT.
Collapse
Affiliation(s)
- Ningyang Yuan
- CAS Key Laboratory of Nutrition, Metabolism and Food SafetyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
- Lin He's Academician Workstation of New Medicine and Clinical Translation in Jining Medical UniversityJining Medical UniversityJining272067China
| | - Lei Shen
- Department of General SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Qian Peng
- CAS Key Laboratory of Nutrition, Metabolism and Food SafetyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Rula Sha
- CAS Key Laboratory of Nutrition, Metabolism and Food SafetyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Zhenzhen Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food SafetyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Zhiqi Xie
- CAS Key Laboratory of Nutrition, Metabolism and Food SafetyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Xue You
- Lin He's Academician Workstation of New Medicine and Clinical Translation in Jining Medical UniversityJining Medical UniversityJining272067China
| | - Ying Feng
- CAS Key Laboratory of Nutrition, Metabolism and Food SafetyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
- Lin He's Academician Workstation of New Medicine and Clinical Translation in Jining Medical UniversityJining Medical UniversityJining272067China
| |
Collapse
|
38
|
Perez-Leighton C, Kerr B, Scherer PE, Baudrand R, Cortés V. The interplay between leptin, glucocorticoids, and GLP1 regulates food intake and feeding behaviour. Biol Rev Camb Philos Soc 2024; 99:653-674. [PMID: 38072002 DOI: 10.1111/brv.13039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 05/09/2024]
Abstract
Nutritional, endocrine, and neurological signals converge in multiple brain centres to control feeding behaviour and food intake as part of the allostatic regulation of energy balance. Among the several neuroendocrine systems involved, the leptin, glucocorticoid, and glucagon-like peptide 1 (GLP1) systems have been extensively researched. Leptin is at the top hierarchical level since its complete absence is sufficient to trigger severe hyperphagia. Glucocorticoids are key regulators of the energy balance adaptation to stress and their sustained excess leads to excessive adiposity and metabolic perturbations. GLP1 participates in metabolic adaptation to food intake, regulating insulin secretion and satiety by parallel central and peripheral signalling systems. Herein, we review the brain and peripheral targets of these three hormone systems that integrate to regulate food intake, feeding behaviour, and metabolic homeostasis. We examine the functional relationships between leptin, glucocorticoids, and GLP1 at the central and peripheral levels, including the cross-regulation of their circulating levels and their cooperative or antagonistic actions at different brain centres. The pathophysiological roles of these neuroendocrine systems in dysregulated intake are explored in the two extremes of body adiposity - obesity and lipodystrophy - and eating behaviour disorders.
Collapse
Affiliation(s)
- Claudio Perez-Leighton
- Departmento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, Santiago, 830024, Chile
| | - Bredford Kerr
- Centro de Biología Celular y Biomedicina-CEBICEM, Facultad de Medicina y Ciencia, Universidad San Sebastián, Carmen Sylva 2444, Providencia, Santiago, Chile
| | - Philipp E Scherer
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - René Baudrand
- Departmento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, Santiago, 830024, Chile
- Centro Translacional de Endocrinología (CETREN), Facultad de Medicina, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, Santiago, 830024, Chile
| | - Víctor Cortés
- Departmento de Nutrición, Diabetes y Metabolismo, Facultad de Medicina, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, Santiago, 830024, Chile
| |
Collapse
|
39
|
Shah PW, Reinberger T, Hashmi S, Aherrahrou Z, Erdmann J. MRAS in coronary artery disease-Unchartered territory. IUBMB Life 2024; 76:300-312. [PMID: 38251784 DOI: 10.1002/iub.2805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/03/2023] [Indexed: 01/23/2024]
Abstract
Genome-wide association studies (GWAS) have identified coronary artery disease (CAD) susceptibility locus on chromosome 3q22.3. This locus contains a cluster of several genes that includes muscle rat sarcoma virus (MRAS). Common MRAS variants are also associated with CAD causing risk factors such as hypertension, dyslipidemia, obesity, and type II diabetes. The MRAS gene is an oncogene that encodes a membrane-bound small GTPase. It is involved in a variety of signaling pathways, regulating cell differentiation and cell survival (mitogen-activated protein kinase [MAPK]/extracellular signal-regulated kinase and phosphatidylinositol 3-kinase) as well as acute phase response signaling (tumor necrosis factor [TNF] and interleukin 6 [IL6] signaling). In this review, we will summarize the role of genetic MRAS variants in the etiology of CAD and its comorbidities with the focus on tissue distribution of MRAS isoforms, cell type/tissue specificity, and mode of action of single nucleotide variants in MRAS associated complex traits. Finally, we postulate that CAD risk variants in the MRAS locus are specific to smooth muscle cells and lead to higher levels of MRAS, particularly in arterial and cardiac tissue, resulting in MAPK-dependent tissue hypertrophy or hyperplasia.
Collapse
Affiliation(s)
- Pashmina Wiqar Shah
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), Lübeck, Germany
- University Heart Center Lübeck, Lübeck, Germany
| | - Tobias Reinberger
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), Lübeck, Germany
- University Heart Center Lübeck, Lübeck, Germany
| | - Satwat Hashmi
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Zouhair Aherrahrou
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), Lübeck, Germany
- University Heart Center Lübeck, Lübeck, Germany
| | - Jeanette Erdmann
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), Lübeck, Germany
- University Heart Center Lübeck, Lübeck, Germany
| |
Collapse
|
40
|
Zhao C, Li J, Hu Y, Li L, Yu M, Huang Y, Zhang T, Shang H, Zou Z. (+)/(-)-Gerbeloid A, a pair of unprecedented coumarin-based polycyclic meroterpenoid enantiomers from Gerbera piloselloides: Structural elucidation, semi-synthesis, and lipid-lowering activity. Acta Pharm Sin B 2024; 14:2657-2668. [PMID: 38828137 PMCID: PMC11143508 DOI: 10.1016/j.apsb.2024.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 06/05/2024] Open
Abstract
A pair of coumarin-based polycyclic meroterpenoid enantiomers (+)/(-)-gerbeloid A [(+)-1a and (-)-1b] were isolated from the medicinal plant Gerbera piloselloides, which have a unique caged oxatricyclo [4.2.2.03,8] decene scaffold. Their planar and three-dimensional structures were exhaustively characterized by comprehensive spectroscopic data and X-ray diffraction analysis. Guided by the hypothetical biosynthetic pathway, the biomimetic synthesis of racemic 1 was achieved using 4-hydroxy-5-methylcoumarin and citral as the starting material via oxa-6π electrocyclization and intramolecular [2 + 2] photocycloaddition. Subsequently, the results of the biological activity assay demonstrated that both (+)-1a and (-)-1b exhibited potent lipid-lowering effects in 3T3-L1 adipocytes and the high-fat diet zebrafish model. Notably, the lipid-lowering activity of (+)-1a is better than that of (-)-1b at the same concentration, and molecular mechanism study has shown that (+)-1a and (-)-1b impairs adipocyte differentiation and stimulate lipolysis by regulating C/EBPα/PPARγ signaling and Perilipin signaling in vitro and in vivo. Our findings provide a promising drug model molecule for the treatment of obesity.
Collapse
Affiliation(s)
- Chenxu Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jingrong Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yue Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Lingyu Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Meng Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yunfeng Huang
- Institute of Chinese Medicine Resources, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning 530000, China
| | - Tao Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Hai Shang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Zhongmei Zou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
41
|
Holman CD, Sakers AP, Calhoun RP, Cheng L, Fein EC, Jacobs C, Tsai L, Rosen ED, Seale P. Aging impairs cold-induced beige adipogenesis and adipocyte metabolic reprogramming. eLife 2024; 12:RP87756. [PMID: 38775132 PMCID: PMC11111218 DOI: 10.7554/elife.87756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024] Open
Abstract
The energy-burning capability of beige adipose tissue is a potential therapeutic tool for reducing obesity and metabolic disease, but this capacity is decreased by aging. Here, we evaluate the impact of aging on the profile and activity of adipocyte stem and progenitor cells (ASPCs) and adipocytes during the beiging process in mice. We found that aging increases the expression of Cd9 and other fibro-inflammatory genes in fibroblastic ASPCs and blocks their differentiation into beige adipocytes. Fibroblastic ASPC populations from young and aged mice were equally competent for beige differentiation in vitro, suggesting that environmental factors suppress adipogenesis in vivo. Examination of adipocytes by single nucleus RNA-sequencing identified compositional and transcriptional differences in adipocyte populations with aging and cold exposure. Notably, cold exposure induced an adipocyte population expressing high levels of de novo lipogenesis (DNL) genes, and this response was severely blunted in aged animals. We further identified Npr3, which encodes the natriuretic peptide clearance receptor, as a marker gene for a subset of white adipocytes and an aging-upregulated gene in adipocytes. In summary, this study indicates that aging blocks beige adipogenesis and dysregulates adipocyte responses to cold exposure and provides a resource for identifying cold and aging-regulated pathways in adipose tissue.
Collapse
Affiliation(s)
- Corey D Holman
- Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
- Department of Cell and Developmental Biology; Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| | - Alexander P Sakers
- Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
- Department of Cell and Developmental Biology; Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| | - Ryan P Calhoun
- Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
- Department of Cell and Developmental Biology; Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| | - Lan Cheng
- Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
- Department of Cell and Developmental Biology; Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| | - Ethan C Fein
- Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
- Department of Cell and Developmental Biology; Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| | - Christopher Jacobs
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical CenterBostonUnited States
- Broad Institute of MIT and HarvardCambridgeUnited States
| | - Linus Tsai
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical CenterBostonUnited States
- Broad Institute of MIT and HarvardCambridgeUnited States
- Harvard Medical SchoolBostonUnited States
| | - Evan D Rosen
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical CenterBostonUnited States
- Broad Institute of MIT and HarvardCambridgeUnited States
- Harvard Medical SchoolBostonUnited States
| | - Patrick Seale
- Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
- Department of Cell and Developmental Biology; Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
42
|
Shi Z, Xiong S, Hu R, Wang Z, Park J, Qian Y, Wang J, Bhalla P, Velupally N, Song Q, Song Z, Jeon MS, Zhang KK, Xie L, Layden BT, Ong SG, Jiang Y. The Notch-PDGFRβ axis suppresses brown adipocyte progenitor differentiation in early post-natal mice. Dev Cell 2024; 59:1233-1251.e5. [PMID: 38569546 PMCID: PMC11874136 DOI: 10.1016/j.devcel.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 12/08/2023] [Accepted: 03/08/2024] [Indexed: 04/05/2024]
Abstract
De novo brown adipogenesis holds potential in combating the epidemics of obesity and diabetes. However, the identity of brown adipocyte progenitor cells (APCs) and their regulation have not been extensively explored. Here, through in vivo lineage tracing and mouse modeling, we observed that platelet-derived growth factor receptor beta (PDGFRβ)+ pericytes give rise to developmental brown adipocytes but not to those in adult homeostasis. By contrast, T-box 18 (TBX18)+ pericytes contribute to brown adipogenesis throughout both developmental and adult stages, though in a depot-specific manner. Mechanistically, Notch inhibition in PDGFRβ+ pericytes promotes brown adipogenesis by downregulating PDGFRβ. Furthermore, inhibition of Notch signaling in PDGFRβ+ pericytes mitigates high-fat, high-sucrose (HFHS)-induced glucose and metabolic impairment in mice during their development and juvenile phases. Collectively, these findings show that the Notch/PDGFRβ axis negatively regulates developmental brown adipogenesis, and its repression promotes brown adipose tissue expansion and improves metabolic health.
Collapse
Affiliation(s)
- Zuoxiao Shi
- Department of Physiology and Biophysics, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Shaolei Xiong
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Ruoci Hu
- Department of Physiology and Biophysics, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Zilai Wang
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Jooman Park
- Department of Physiology and Biophysics, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Yanyu Qian
- Department of Physiology and Biophysics, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Jaden Wang
- Department of Physiology and Biophysics, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Pratibha Bhalla
- Department of Physiology and Biophysics, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Nipun Velupally
- Department of Physiology and Biophysics, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Qing Song
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Zhenyuan Song
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Minsun Stacey Jeon
- Texas A&M Health Science Center, Institute of Biosciences and Technology, Houston, TX 77030, USA
| | - Ke Kurt Zhang
- Texas A&M Health Science Center, Institute of Biosciences and Technology, Houston, TX 77030, USA
| | - Linlin Xie
- Department of Nutrition, Texas A&M University, College Station, TX 77845, USA
| | - Brian T Layden
- Division of Endocrinology, Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; Jesse Brown Medical VA Medical Center, Chicago, IL 60612, USA
| | - Sang-Ging Ong
- Department of Pharmacology and Regenerative Medicine, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; Division of Cardiology, Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Yuwei Jiang
- Department of Physiology and Biophysics, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL 60612, USA; Division of Endocrinology, Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
43
|
Bavaresco A, Mazzeo P, Lazzara M, Barbot M. Adipose tissue in cortisol excess: What Cushing's syndrome can teach us? Biochem Pharmacol 2024; 223:116137. [PMID: 38494065 DOI: 10.1016/j.bcp.2024.116137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Endogenous Cushing's syndrome (CS) is a rare condition due to prolonged exposure to elevated circulating cortisol levels that features its typical phenotype characterised by moon face, proximal myopathy, easy bruising, hirsutism in females and a centripetal distribution of body fat. Given the direct and indirect effects of hypercortisolism, CS is a severe disease burdened by increased cardio-metabolic morbidity and mortality in which visceral adiposity plays a leading role. Although not commonly found in clinical setting, endogenous CS is definitely underestimated leading to delayed diagnosis with consequent increased rate of complications and reduced likelihood of their reversal after disease control. Most of all, CS is a unique model for systemic impairment induced by exogenous glucocorticoid therapy that is commonly prescribed for a number of chronic conditions in a relevant proportion of the worldwide population. In this review we aim to summarise on one side, the mechanisms behind visceral adiposity and lipid metabolism impairment in CS during active disease and after remission and on the other explore the potential role of cortisol in promoting adipose tissue accumulation.
Collapse
Affiliation(s)
- Alessandro Bavaresco
- Department of Medicine DIMED, University of Padua, Padua, Italy; Endocrinology Unit, Department of Medicine DIMED, University-Hospital of Padua, Padua, Italy
| | - Pierluigi Mazzeo
- Department of Medicine DIMED, University of Padua, Padua, Italy; Endocrinology Unit, Department of Medicine DIMED, University-Hospital of Padua, Padua, Italy
| | - Martina Lazzara
- Department of Medicine DIMED, University of Padua, Padua, Italy; Endocrinology Unit, Department of Medicine DIMED, University-Hospital of Padua, Padua, Italy
| | - Mattia Barbot
- Department of Medicine DIMED, University of Padua, Padua, Italy; Endocrinology Unit, Department of Medicine DIMED, University-Hospital of Padua, Padua, Italy.
| |
Collapse
|
44
|
Yang Z, Jiang J, Tan Y, Yang G, Chen M, Huang J, Liu J, Wei X, Wang S, Luo X, Han Z. Sexual dimorphism in thermogenic regulators and metrnl expression in adipose tissue of offspring mice exposed to maternal and postnatal overnutrition. J Physiol Biochem 2024; 80:407-420. [PMID: 38492180 DOI: 10.1007/s13105-024-01013-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/26/2024] [Indexed: 03/18/2024]
Abstract
Current study investigated the impact of maternal and postnatal overnutrition on phenotype of adipose, in relation to offspring thermogenesis and sex. Female C57BL/6 J mice were fed with CHOW or high fat diet (HFD) for 2 weeks before mating, throughout gestation and lactation. At weaning, pups were fed to 9 weeks old with CHOW or HFD, which resulted in four groups for each gender--male or female: CHOW-CHOW (CC), CHOW-HFD (CH), HFD-CHOW (HC), HFD-HFD (HH). Maternal and post-weaning HFD enhanced thermogenic factors such as Acox1, Dio2 and Cox8b in iBAT of male and female offspring, but increased SIRT1, PGC-1α and UCP1 only in female. However, Acox1, Dio2 and Cox8b mRNA expression and SIRT1, PGC-1α and UCP1 protein expression were only enhanced upon maternal and post-weaning HFD in sWAT and pWAT of female offspring. Increased metrnl expression in adipose were observed in sex- and depot-specific manner, while enhanced circulating metrnl level was only observed in male offspring undergoing maternal HFD. Palmitic acid changed metrnl expression during preadipocytes differentiation and siRNA-mediated knockdown of metrnl inhibited preadipocyte differentiation. Female offspring were more prone to resist adverse outcomes induced by maternal and post-weaning overnutrition, which probably related to metrnl expression and thermogenesis.
Collapse
Affiliation(s)
- Zhao Yang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Jianan Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Yutian Tan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Guiying Yang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Miao Chen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jiaqi Huang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Jing Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Xiaojing Wei
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Siyao Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Xiao Luo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
| | - Zhen Han
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
45
|
Cresswell E, Basty N, Atabaki Pasdar N, Karpe F, Pinnick KE. The value of neck adipose tissue as a predictor for metabolic risk in health and type 2 diabetes. Biochem Pharmacol 2024; 223:116171. [PMID: 38552854 DOI: 10.1016/j.bcp.2024.116171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 04/08/2024]
Abstract
Upper-body adiposity is adversely associated with metabolic health whereas the opposite is observed for the lower-body. The neck is a unique upper-body fat depot in adult humans, housing thermogenic brown adipose tissue (BAT), which is increasingly recognised to influence whole-body metabolic health. Loss of BAT, concurrent with replacement by white adipose tissue (WAT), may contribute to metabolic disease, and specific accumulation of neck fat is seen in certain conditions accompanied by adverse metabolic consequences. Yet, few studies have investigated the relationships between neck fat mass (NFM) and cardiometabolic risk, and the influence of sex and metabolic status. Typically, neck circumference (NC) is used as a proxy for neck fat, without considering other determinants of NC, including variability in neck lean mass. In this study we develop and validate novel methods to quantify NFM using dual x-ray absorptiometry (DEXA) imaging, and subsequently investigate the associations of NFM with metabolic biomarkers across approximately 7000 subjects from the Oxford BioBank. NFM correlated with systemic insulin resistance (Homeostatic Model Assessment for Insulin Resistance; HOMA-IR), low-grade inflammation (plasma high-sensitivity C-Reactive Protein; hsCRP), and metabolic markers of adipose tissue function (plasma triglycerides and non-esterified fatty acids; NEFA). NFM was higher in men than women, higher in type 2 diabetes mellitus compared with non-diabetes, after adjustment for total body fat, and also associated with overall cardiovascular disease risk (calculated QRISK3 score). This study describes the development of methods for accurate determination of NFM at scale and suggests a specific relationship between NFM and adverse metabolic health.
Collapse
Affiliation(s)
- Emily Cresswell
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK; The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Nicolas Basty
- Research Centre for Optimal Health, University of Westminster, London, UK
| | - Naeimeh Atabaki Pasdar
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK; Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Department of Clinical Science, Lund University, Malmö, Sweden
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, OUH Foundation Trust, Oxford, UK.
| | - Katherine E Pinnick
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK.
| |
Collapse
|
46
|
Kearns ML, Reynolds CM. Developmentally programmed obesity: Is there a role for anti-inflammatory nutritional strategies? Exp Physiol 2024; 109:633-646. [PMID: 38031876 PMCID: PMC11061634 DOI: 10.1113/ep091209] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/17/2023] [Indexed: 12/01/2023]
Abstract
Pregnancy represents a period of immense maternal physiological adaptation, with progressive increases in lipid storage potential and insulin resistance to support fetal/placental growth. This requires significant change in the adipose tissue. Women living with obesity/overweight are more susceptible to these changes causing complications such as gestational diabetes. This is particularly worrying as up to 60% of European women are living with overweight/obesity at the onset of pregnancy. Furthermore, less than 1% meet all nutrition guidelines. There is now evidence that these deep metabolic changes can result in a predisposition to metabolic disease in both the mother and child in later life. Health and nutrition status during this period therefore represents a window to future health. This period offers a valuable opportunity for intervention to prevent the negative consequences of poor in utero environments and increases the long-term quality of life for mother and offspring. This review will examine a range of in utero factors which determine adipose tissue development, the impact of these factors on later-life obesity and metabolic health and the therapeutic value of dietary anti-inflammatory nutritional interventions during pregnancy and early life. When it comes to early life nutrition, a 'one size fits all' approach is not always appropriate. Understanding the mechanisms of adipose tissue development in response to differing nutritional strategies may be important in the context of complicated or adverse in utero environments and represents a substantial step towards a more personalised nutritional approach for the prevention of obesity, metabolic syndrome and related non-communicable diseases in future generations.
Collapse
Affiliation(s)
- Michelle L. Kearns
- Conway Institute/School of Public Health Physiotherapy and Sports Science/Institute of Food and Health/Diabetes Complications Research CentreUniversity College DublinDublin 4Ireland
| | - Clare M. Reynolds
- Conway Institute/School of Public Health Physiotherapy and Sports Science/Institute of Food and Health/Diabetes Complications Research CentreUniversity College DublinDublin 4Ireland
| |
Collapse
|
47
|
Marinelli Busilacchi E, Morsia E, Poloni A. Bone Marrow Adipose Tissue. Cells 2024; 13:724. [PMID: 38727260 PMCID: PMC11083575 DOI: 10.3390/cells13090724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Bone marrow (BM) acts as a dynamic organ within the bone cavity, responsible for hematopoiesis, skeletal remodeling, and immune system control. Bone marrow adipose tissue (BMAT) was long simply considered a filler of space, but now it is known that it instead constitutes an essential element of the BM microenvironment that participates in homeostasis, influences bone health and bone remodeling, alters hematopoietic stem cell functions, contributes to the commitment of mesenchymal stem cells, provides effects to immune homeostasis and defense against infections, and participates in energy metabolism and inflammation. BMAT has emerged as a significant contributor to the development and progression of various diseases, shedding light on its complex relationship with health. Notably, BMAT has been implicated in metabolic disorders, hematological malignancies, and skeletal conditions. BMAT has been shown to support the proliferation of tumor cells in acute myeloid leukemia and niche adipocytes have been found to protect cancer cells against chemotherapy, contributing to treatment resistance. Moreover, BMAT's impact on bone density and remodeling can lead to conditions like osteoporosis, where high levels of BMAT are inversely correlated with bone mineral density, increasing the risk of fractures. BMAT has also been associated with diabetes, obesity, and anorexia nervosa, with varying effects on individuals depending on their weight and health status. Understanding the interaction between adipocytes and different diseases may lead to new therapeutic strategies.
Collapse
Affiliation(s)
- Elena Marinelli Busilacchi
- Hematology Laboratory, Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, 60126 Ancona, Italy; (E.M.B.); (E.M.)
| | - Erika Morsia
- Hematology Laboratory, Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, 60126 Ancona, Italy; (E.M.B.); (E.M.)
- Hematology, AOU delle Marche, 60126 Ancona, Italy
| | - Antonella Poloni
- Hematology Laboratory, Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, 60126 Ancona, Italy; (E.M.B.); (E.M.)
- Hematology, AOU delle Marche, 60126 Ancona, Italy
| |
Collapse
|
48
|
Noh YH, Jung KI. The Relationship between Myopia and Obesity in Adults. KOREAN JOURNAL OF OPHTHALMOLOGY 2024; 38:137-146. [PMID: 38449306 PMCID: PMC11016688 DOI: 10.3341/kjo.2023.0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 03/08/2024] Open
Abstract
PURPOSE To investigate the relationship between myopia and obesity through direct measurements of fat content. METHODS A cross-sectional study used a stratified, multistage survey, the Korea National Health and Nutrition Examination Survey (2008-2010). Subjects 19 years or older (n = 10,305) were included. Participants were divided into three groups according to refractive status: myopia (spherical equivalent [SE] ≤ -1.0 diopter [D]), emmetropia (-1.0 D < SE ≤ 1.0 D), and hyperopia (SE > 1.0 D). Obesity was investigated with assessment of fat mass and body mass index or waist circumference. Fat mass was measured with whole-body dual energy x-ray absorptiometry. Body fat percentage was calculated as (total fat mass / body weight × 100). RESULTS Higher obesity index was found in individuals with myopic eyes after adjustment for age, sex, education level, income status, physical activity, residence, and serum vitamin D level. The significant difference in total body fat percentages among myopia, emmetropia, and hyperopia was significant in the young age group (19-39 years, p < 0.05) but not in the middle age group (40-64 years) and the old age group (≥65 years). Individuals with a higher percentage of total body fat had greater odds ratios for myopia (fourth quartile of body fat; odds ratio, 1.352; 95% confidence interval, 1.178-1.551). CONCLUSIONS An association was found between adiposity and myopia in relatively young adults using direct measurements of fat mass.
Collapse
Affiliation(s)
- Young Ho Noh
- Department of Ophthalmology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kyoung In Jung
- Department of Ophthalmology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
49
|
Shan Q, Liu J, Qu F, Chen A, He W. Polychlorinated biphenyls exposure and type 2 diabetes: Molecular mechanism that causes insulin resistance and islet damage. ENVIRONMENTAL TOXICOLOGY 2024; 39:2466-2476. [PMID: 38305644 DOI: 10.1002/tox.24094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/18/2023] [Accepted: 12/01/2023] [Indexed: 02/03/2024]
Abstract
Polychlorinated biphenyls (PCBs) are typical persistent organic pollutants that have been associated with type 2 diabetes (T2DM) in cohort studies. This review aims to comprehensively assess the molecular mechanisms of PCBs-induced T2DM. Recent progress has been made in the research of PCBs in liver tissue, adipose tissue, and other tissues. By influencing the function of nuclear receptors, such as the aryl hydrocarbon receptor (AhR), pregnancy X receptor (PXR), and peroxisome proliferator activated receptor γ (PPARγ), as well as the inflammatory response, PCBs disrupt the balance of hepatic glucose and lipid metabolism. This is associated with insulin resistance (IR) in the target organ of insulin. Through androgen receptor (AR), estrogen receptor α/β (ERα/β), and pancreato-duodenal-homeobox gene-1 (PDX-1), PCBs affect the secretion of insulin and increase blood glucose. Thus, this review is a discussion on the relationship between PCBs exposure and the pathogenesis of T2DM. It is hoped to provide basic concepts for diabetes research and disease treatment.
Collapse
Affiliation(s)
- Qiuli Shan
- College of Biological Science and Technology, University of Jinan, Jinan, China
| | - Jingyu Liu
- College of Biological Science and Technology, University of Jinan, Jinan, China
| | - Fan Qu
- College of Biological Science and Technology, University of Jinan, Jinan, China
| | - Anhui Chen
- Jiangsu Key Laboratory of Food Resource Development and Quality Safe, Xuzhou University of Technology, Xuzhou, China
| | - Wenxing He
- College of Biological Science and Technology, University of Jinan, Jinan, China
| |
Collapse
|
50
|
Sun JY, Su Z, Yang J, Sun W, Kong X. The potential mechanisms underlying the modulating effect of perirenal adipose tissue on hypertension: Physical compression, paracrine, and neurogenic regulation. Life Sci 2024; 342:122511. [PMID: 38387699 DOI: 10.1016/j.lfs.2024.122511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024]
Abstract
Hypertension, a prevalent global cardiovascular disease, affects approximately 45.4 % of adults worldwide. Despite advances in therapy, hypertension continues to pose a significant health risk due to inadequate management. It has been established that excessive adiposity contributes majorly to hypertension, accounting for 65 to 75 % of primary cases. Fat depots can be categorised into subcutaneous and visceral adipose tissue based on anatomical and physiological characteristics. The metabolic impact and the risk of hypertension are determined more significantly by visceral fat. Perirenal adipose tissue (PRAT), a viscera enveloping the kidney, is known for its superior vascularisation and abundant innervation. Although traditionally deemed as a mechanical support tissue, recent studies have indicated its contributing potential to hypertension. Hypertensive patients tend to have increased PRAT thickness compared to those without, and there is a positive correlation between PRAT thickness and elevated systolic blood pressure. This review encapsulates the anatomical characteristics and biogenesis of PRAT. We provide an overview of the potential mechanisms where PRAT may modulate blood pressure, including physical compression, paracrine effects, and neurogenic regulation. PRAT has become a promising target for hypertension management, and continuous effort is required to further explore the underlying mechanisms.
Collapse
Affiliation(s)
- Jin-Yu Sun
- Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China; Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Zhenyang Su
- Medical School of Southeast University, Nanjing 21000, China
| | - Jiaming Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Wei Sun
- Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China; Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China.
| | - Xiangqing Kong
- Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China; Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China.
| |
Collapse
|