1
|
Zhao X, Liu Y, Wang D, Li T, Xu Z, Li Z, Bai X, Wang Y. Role of GLP‑1 receptor agonists in sepsis and their therapeutic potential in sepsis‑induced muscle atrophy (Review). Int J Mol Med 2025; 55:74. [PMID: 40052580 PMCID: PMC11936484 DOI: 10.3892/ijmm.2025.5515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/17/2025] [Indexed: 03/27/2025] Open
Abstract
Sepsis‑induced myopathy (SIM) is a common complication in intensive care units, which is often associated with adverse outcomes, primarily manifested as skeletal muscle weakness and atrophy. Currently, the management of SIM focuses on prevention strategies, as effective therapeutic options remain elusive. Glucagon‑like peptide‑1 (GLP‑1) receptor agonists (GLP‑1RAs) have garnered attention as hypoglycemic and weight‑loss agents, with an increasing body of research focusing on the extrapancreatic effects of GLP‑1. In preclinical settings, GLP‑1RAs exert protective effects against sepsis‑related multiple organ dysfunction through anti‑inflammatory and antioxidant mechanisms. Based on the existing research, we hypothesized that GLP‑1RAs may serve potential protective roles in the repair and regeneration of skeletal muscle affected by sepsis. The present review aimed to explore the relationship between GLP‑1RAs and sepsis, as well as their impact on muscle atrophy‑related myopathy. Furthermore, the potential mechanisms and therapeutic benefits of GLP‑1RAs are discussed in the context of muscle atrophy induced by sepsis.
Collapse
Affiliation(s)
- Xuan Zhao
- Trauma Center, Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yukun Liu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Dongfang Wang
- Trauma Center, Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Tonghan Li
- Trauma Center, Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhikai Xu
- Trauma Center, Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhanfei Li
- Trauma Center, Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xiangjun Bai
- Trauma Center, Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yuchang Wang
- Trauma Center, Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
2
|
Targher G, Mantovani A, Byrne CD, Tilg H. Recent advances in incretin-based therapy for MASLD: from single to dual or triple incretin receptor agonists. Gut 2025; 74:487-497. [PMID: 39592207 DOI: 10.1136/gutjnl-2024-334023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024]
Abstract
Clinically effective pharmacological treatment(s) for metabolic dysfunction-associated steatotic liver disease (MASLD) and its progressive form metabolic dysfunction-associated steatohepatitis (MASH) represent a largely unmet need in medicine. Since glucagon-like peptide-1 receptor agonists (GLP-1RAs) have been licensed for the treatment of type 2 diabetes mellitus and obesity, they were one of the first drug classes to be examined in individuals with MASLD/MASH. Successful phase 2 randomised clinical trials with these agents have resulted in progression to phase 3 clinical trials (principally testing the long-term efficacy of subcutaneous semaglutide). Over the last few years, in addition to GLP-1RAs, newer agents with glucose-dependent insulinotropic peptide and/or glucagon receptor agonist functions have been tested, with increasing evidence from phase 2 randomised clinical trials of histological improvements in MASLD/MASH, as well as benefits on MASLD-related extrahepatic complications. Based on this background of evidence, single, dual or triple incretin receptor agonists are becoming an attractive and promising treatment option for MASLD or MASH, particularly in individuals with coexisting obesity or type 2 diabetes mellitus. In this narrative review, we examine the rapidly expanding body of clinical evidence supporting a role of incretin-based pharmacotherapies in delaying or reversing MASH progression. We also discuss the biology of incretins and the putative hepatoprotective mechanisms of incretin-based pharmacotherapies for managing MASLD or MASH.
Collapse
Affiliation(s)
- Giovanni Targher
- Metabolic Diseases Research Unit, IRCCS Ospedale Sacro Cuore Don Calabria, Negrar di Valpolicella, Italy
| | - Alessandro Mantovani
- Endocrinology and Metabolism, University of Verona Faculty of Medicine and Surgery, Verona, Italy
| | | | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medizinische Universitat Innsbruck, Innsbruck, Austria
| |
Collapse
|
3
|
Wang X, Yang X, Qi X, Fan G, Zhou L, Peng Z, Yang J. Anti-atherosclerotic effect of incretin receptor agonists. Front Endocrinol (Lausanne) 2024; 15:1463547. [PMID: 39493783 PMCID: PMC11527663 DOI: 10.3389/fendo.2024.1463547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024] Open
Abstract
Incretin receptor agonists (IRAs), primarily composed of glucagon-like peptide-1 receptor agonists (GLP-1RAs) and glucose-dependent insulinotropic polypeptide receptor agonists (GIPRAs), work by mimicking the actions of the endogenous incretin hormones in the body. GLP-1RAs have been approved for use as monotherapy and in combination with GIPRAs for the management of type 2 diabetes mellitus (T2DM). In addition to their role in glucose regulation, IRAs have demonstrated various benefits such as cardiovascular protection, obesity management, and regulation of bone turnover. Some studies have suggested that IRAs not only aid in glycemic control but also exhibit anti-atherosclerotic effects. These agents have been shown to modulate lipid abnormalities, reduce blood pressure, and preserve the structural and functional integrity of the endothelium. Furthermore, IRAs have the ability to mitigate inflammation by inhibiting macrophage activation and promoting M2 polarization. Research has also indicated that IRAs can decrease macrophage foam cell formation and prevent vascular smooth muscle cell (VSMC) phenotype switching, which are pivotal in atheromatous plaque formation and stability. This review offers a comprehensive overview of the protective effects of IRAs in atherosclerotic disease, with a focus on their impact on atherogenesis.
Collapse
Affiliation(s)
- Xin Wang
- Department of Metabolism and Endocrinology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xin Yang
- Department of Metabolism and Endocrinology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiaoyan Qi
- Department of Metabolism and Endocrinology, Shenzhen Nanshan People's Hospital; The Sixth Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Gang Fan
- Department of Urology, Shenzhen Nanshan People's Hospital; The Sixth Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Lingzhi Zhou
- Department of pediatrics, Shenzhen Nanshan People's Hospital; The Sixth Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Zhengliang Peng
- Department of Emergency, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jing Yang
- Department of Metabolism and Endocrinology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Metabolism and Endocrinology, Shenzhen Nanshan People's Hospital; The Sixth Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| |
Collapse
|
4
|
Park S, Kim EK. Machine Learning-Based Plasma Metabolomics in Liraglutide-Treated Type 2 Diabetes Mellitus Patients and Diet-Induced Obese Mice. Metabolites 2024; 14:483. [PMID: 39330490 PMCID: PMC11434292 DOI: 10.3390/metabo14090483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024] Open
Abstract
Liraglutide, a glucagon-like peptide-1 receptor agonist, is effective in the treatment of type 2 diabetes mellitus (T2DM) and obesity. Despite its benefits, including improved glycemic control and weight loss, the common metabolic changes induced by liraglutide and correlations between those in rodents and humans remain unknown. Here, we used advanced machine learning techniques to analyze the plasma metabolomic data in diet-induced obese (DIO) mice and patients with T2DM treated with liraglutide. Among the machine learning models, Support Vector Machine was the most suitable for DIO mice, and Gradient Boosting was the most suitable for patients with T2DM. Through the cross-evaluation of machine learning models, we found that liraglutide promotes metabolic shifts and interspecies correlations in these shifts between DIO mice and patients with T2DM. Our comparative analysis helped identify metabolic correlations influenced by liraglutide between humans and rodents and may guide future therapeutic strategies for T2DM and obesity.
Collapse
Affiliation(s)
- Seokjae Park
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea;
- Neurometabolomics Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea
| | - Eun-Kyoung Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea;
- Neurometabolomics Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea
| |
Collapse
|
5
|
Guo Z. The role of glucagon-like peptide-1/GLP-1R and autophagy in diabetic cardiovascular disease. Pharmacol Rep 2024; 76:754-779. [PMID: 38890260 DOI: 10.1007/s43440-024-00609-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/25/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
Diabetes leads to a significantly accelerated incidence of various related macrovascular complications, including peripheral vascular disease and cardiovascular disease (the most common cause of mortality in diabetes), as well as microvascular complications such as kidney disease and retinopathy. Endothelial dysfunction is the main pathogenic event of diabetes-related vascular disease at the earliest stage of vascular injury. Understanding the molecular processes involved in the development of diabetes and its debilitating vascular complications might bring up more effective and specific clinical therapies. Long-acting glucagon-like peptide (GLP)-1 analogs are currently available in treating diabetes with widely established safety and extensively evaluated efficacy. In recent years, autophagy, as a critical lysosome-dependent self-degradative process to maintain homeostasis, has been shown to be involved in the vascular endothelium damage in diabetes. In this review, the GLP-1/GLP-1R system implicated in diabetic endothelial dysfunction and related autophagy mechanism underlying the pathogenesis of diabetic vascular complications are briefly presented. This review also highlights a possible crosstalk between autophagy and the GLP-1/GLP-1R axis in the treatment of diabetic angiopathy.
Collapse
Affiliation(s)
- Zi Guo
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
6
|
Chatzianagnostou K, Gaggini M, Suman Florentin A, Simonini L, Vassalle C. New Molecules in Type 2 Diabetes: Advancements, Challenges and Future Directions. Int J Mol Sci 2024; 25:6218. [PMID: 38892417 PMCID: PMC11173177 DOI: 10.3390/ijms25116218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024] Open
Abstract
Although good glycemic control in patients with type 2 diabetes (T2D) can prevent cardiovascular complications, many diabetic patients still have poor optimal control. A new class of antidiabetic drugs (e.g., glucagon-like peptide-1-GLP-1 receptor agonists, sodium-glucose co-transporters-SGLT2 inhibitors), in addition to the low hypoglycemic effect, exert multiple beneficial effects at a metabolic and cardiovascular level, through mechanisms other than antihyperglycemic agents. This review aims to discuss the effects of these new antidiabetic drugs, highlighting cardiovascular and metabolic benefits, through the description of their action mechanisms as well as available data by preclinical and clinical studies. Moreover, new innovative tools in the T2D field will be described which may help to advance towards a better targeted T2D personalized care in future.
Collapse
Affiliation(s)
| | - Melania Gaggini
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (M.G.); (A.S.F.)
| | - Adrian Suman Florentin
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (M.G.); (A.S.F.)
| | - Ludovica Simonini
- Department of Surgical, Medical and Molecular Pathology and Critical Area, University of Pisa, 56126 Pisa, Italy;
| | - Cristina Vassalle
- Fondazione CNR-Regione Toscana G Monasterio, Via G. Moruzzi 1, 56124 Pisa, Italy;
| |
Collapse
|
7
|
Hachuła M, Kosowski M, Basiak M, Okopień B. Influence of Dulaglutide on Serum Biomarkers of Atherosclerotic Plaque Instability: An Interventional Analysis of Cytokine Profiles in Diabetic Subjects-A Pilot Study. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:908. [PMID: 38929525 PMCID: PMC11205508 DOI: 10.3390/medicina60060908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
Background and Objectives: The rise in global diabetes cases, reaching a staggering 529 million in 2021 from 108 million in 1980, underscores the urgency of addressing its complications, notably macrovascular ones like coronary artery, cerebrovascular, and peripheral artery diseases, which contribute to over 50% of diabetes mortality. Atherosclerosis, linked to hyperglycemia-induced endothelial dysfunction, is pivotal in cardiovascular disease development. Cytokines, including pentraxin 3 (PTX3), copeptin, lipoprotein(a) [Lp(a)], and matrix metalloproteinase-9 (MMP-9), influence atherosclerosis progression and plaque vulnerability. Inhibiting atherosclerosis progression is crucial, especially in diabetic individuals. Glucagon-like peptide 1 receptor agonists (GLP-1 RAs), increasingly used for type 2 diabetes, show promise in reducing the cardiovascular risk, sparking interest in their effects on atherogenesis. This study sought to examine the effects of glucagon-like peptide-1 receptor agonists (GLP-1 RAs) on biomarkers that indicate the instability of atherosclerotic plaques. These biomarkers include pentraxin 3 (PTX3), copeptin (CPC), matrix metalloproteinase-9 (MMP-9), and lipoprotein(a) [Lp(a)]. Materials and Methods: A total of 34 participants, ranging in age from 41 to 81 years (with an average age of 61), who had been diagnosed with type 2 diabetes mellitus (with a median HbA1c level of 8.8%), dyslipidemia, and verified atherosclerosis using B-mode ultrasonography, were included in the study. All subjects were eligible to initiate treatment with a GLP-1 RA-dulaglutide. Results: Significant reductions in anthropometric parameters, blood pressure, fasting glucose levels, and HbA1c levels were observed posttreatment. Moreover, a notable decrease in biochemical markers associated with atherosclerotic plaque instability, particularly PTX3 and MMP-9 (p < 0.001), as well as Lp(a) (p < 0.05), was evident following the GLP-1 RA intervention. Conclusions: These findings underscore the potential of GLP-1 RAs in mitigating atherosclerosis progression and plaque vulnerability, thus enhancing cardiovascular outcomes in individuals with type 2 diabetes mellitus.
Collapse
Affiliation(s)
| | | | - Marcin Basiak
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland; (M.H.); (M.K.); (B.O.)
| | | |
Collapse
|
8
|
Sardar MB, Nadeem ZA, Babar M. Tirzepatide: A novel cardiovascular protective agent in type 2 diabetes mellitus and obesity. Curr Probl Cardiol 2024; 49:102489. [PMID: 38417475 DOI: 10.1016/j.cpcardiol.2024.102489] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024]
Abstract
Cardiovascular disease (CVD) remains a major global health concern, and obesity and diabetes mellitus have been found to be important risk factors. Tirzepatide a dual glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP1) receptor agonist has been shown to have cardioprotective effects. Noteworthy benefits of Tirzepatide include decreased cardiovascular risk factors in people with Type 2 diabetes mellitus (T2DM). In the SURPASS-4 trial, tirzepatide significant decreased blood pressure, body weight, and HbA1c. Furthermore, the SURMOUNT-1 trial demonstrated the effectiveness of tirzepatide in reducing cardiometabolic risk factors in people with obesity without T2DM. Together, the dual receptor agonism improves lipid profiles, increases insulin secretion, reduces inflammation, and promotes endothelial integrity. Tirzepatide shows promise as a comprehensive therapeutic option for managing cardiovascular risk factors in patients with T2DM and obesity. While further studies are needed to assess the long-term cardiovascular benefits, current evidence supports tirzepatide's potential impact on cardiovascular health beyond its antidiabetic properties.
Collapse
Affiliation(s)
- Muhammad Bilal Sardar
- Department of Cardiology, Allama Iqbal Medical College, Allama Shabbir Ahmed Usmani Road, Lahore 54700, Pakistan.
| | - Zain Ali Nadeem
- Department of Medicine, Allama Iqbal Medical College, Lahore, Pakistan
| | - Muhammad Babar
- Department of Internal Medicine, Social Security Hospital, Faisalabad, Pakistan
| |
Collapse
|
9
|
Park B, Bakbak E, Teoh H, Krishnaraj A, Dennis F, Quan A, Rotstein OD, Butler J, Hess DA, Verma S. GLP-1 receptor agonists and atherosclerosis protection: the vascular endothelium takes center stage. Am J Physiol Heart Circ Physiol 2024; 326:H1159-H1176. [PMID: 38426865 DOI: 10.1152/ajpheart.00574.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Atherosclerotic cardiovascular disease is a chronic condition that often copresents with type 2 diabetes and obesity. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are incretin mimetics endorsed by major professional societies for improving glycemic status and reducing atherosclerotic risk in people living with type 2 diabetes. Although the cardioprotective efficacy of GLP-1RAs and their relationship with traditional risk factors are well established, there is a paucity of publications that have summarized the potentially direct mechanisms through which GLP-1RAs mitigate atherosclerosis. This review aims to narrow this gap by providing comprehensive and in-depth mechanistic insight into the antiatherosclerotic properties of GLP-1RAs demonstrated across large outcome trials. Herein, we describe the landmark cardiovascular outcome trials that triggered widespread excitement around GLP-1RAs as a modern class of cardioprotective agents, followed by a summary of the origins of GLP-1RAs and their mechanisms of action. The effects of GLP-1RAs at each major pathophysiological milestone of atherosclerosis, as observed across clinical trials, animal models, and cell culture studies, are described in detail. Specifically, this review provides recent preclinical and clinical evidence that suggest GLP-1RAs preserve vessel health in part by preventing endothelial dysfunction, achieved primarily through the promotion of angiogenesis and inhibition of oxidative stress. These protective effects are in addition to the broad range of atherosclerotic processes GLP-1RAs target downstream of endothelial dysfunction, which include systemic inflammation, monocyte recruitment, proinflammatory macrophage and foam cell formation, vascular smooth muscle cell proliferation, and plaque development.
Collapse
Affiliation(s)
- Brady Park
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Ehab Bakbak
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Hwee Teoh
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Division of Endocrinology and Metabolism, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Aishwarya Krishnaraj
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Fallon Dennis
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Adrian Quan
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Ori D Rotstein
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Division of General Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Javed Butler
- Baylor Scott and White Research Institute, Dallas, Texas, United States
- Department of Medicine, University of Mississippi, Jackson, Mississippi, United States
| | - David A Hess
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
- Molecular Medicine Research Laboratories, Robarts Research Institute, London, Ontario, Canada
| | - Subodh Verma
- Division of Cardiac Surgery, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Keenan Research Centre of Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Ravic M, Srejovic I, Novakovic J, Andjic M, Sretenovic J, Muric M, Nikolic M, Bolevich S, Alekseevich Kasabov K, Petrovich Fisenko V, Stojanovic A, Jakovljevic V. Effect of GLP-1 Receptor Agonist on Ischemia Reperfusion Injury in Rats with Metabolic Syndrome. Pharmaceuticals (Basel) 2024; 17:525. [PMID: 38675485 PMCID: PMC11053642 DOI: 10.3390/ph17040525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Metabolic syndrome (MetS) represents an important factor that increases the risk of myocardial infarction, and more severe complications. Glucagon Like Peptide-1 Receptor Agonists (GLP-1RAs) exhibit cardioprotective potential, but their efficacy in MetS-related myocardial dysfunction has not been fully explored. Therefore, we aimed to assess the effects of exenatide and dulaglutide on heart function and redox balance in MetS-induced rats. Twenty-four Wistar albino rats with induced MetS were divided into three groups: MetS, exenatide-treated (5 µg/kg), dulaglutide-treated (0.6 mg/kg). After 6 weeks of treatment, in vivo heart function was assessed via echocardiography, while ex vivo function was evaluated using a Langendorff apparatus to simulate ischemia-reperfusion injury. Heart tissue samples were analyzed histologically, and oxidative stress biomarkers were measured spectrophotometrically from the coronary venous effluent. Both exenatide and dulaglutide significantly improved the ejection fraction by 3% and 7%, respectively, compared to the MetS group. Histological analyses corroborated these findings, revealing a reduction in the cross-sectional area of cardiomyocytes by 11% in the exenatide and 18% in the dulaglutide group, indicating reduced myocardial damage in GLP-1RA-treated rats. Our findings suggest strong cardioprotective potential of GLP-1RAs in MetS, with dulaglutide showing a slight advantage. Thus, both exenatide and dulaglutide are potentially promising targets for cardioprotection and reducing mortality in MetS patients.
Collapse
Affiliation(s)
- Marko Ravic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (M.R.); (J.N.); (M.A.)
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (I.S.); (J.S.); (M.M.); (M.N.); (V.J.)
| | - Ivan Srejovic
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (I.S.); (J.S.); (M.M.); (M.N.); (V.J.)
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
- Department of Pharmacology, First Moscow State Medical University I.M. Sechenov, Trubetskaya Street 8, Str. 2, 119991 Moscow, Russia; (K.A.K.); (V.P.F.)
| | - Jovana Novakovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (M.R.); (J.N.); (M.A.)
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (I.S.); (J.S.); (M.M.); (M.N.); (V.J.)
| | - Marijana Andjic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (M.R.); (J.N.); (M.A.)
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (I.S.); (J.S.); (M.M.); (M.N.); (V.J.)
| | - Jasmina Sretenovic
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (I.S.); (J.S.); (M.M.); (M.N.); (V.J.)
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Maja Muric
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (I.S.); (J.S.); (M.M.); (M.N.); (V.J.)
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Marina Nikolic
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (I.S.); (J.S.); (M.M.); (M.N.); (V.J.)
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Sergey Bolevich
- Department of Human Pathology, First Moscow State Medical University I.M. Sechenov, Trubetskaya Street 8, Str. 2, 119991 Moscow, Russia;
| | - Kirill Alekseevich Kasabov
- Department of Pharmacology, First Moscow State Medical University I.M. Sechenov, Trubetskaya Street 8, Str. 2, 119991 Moscow, Russia; (K.A.K.); (V.P.F.)
| | - Vladimir Petrovich Fisenko
- Department of Pharmacology, First Moscow State Medical University I.M. Sechenov, Trubetskaya Street 8, Str. 2, 119991 Moscow, Russia; (K.A.K.); (V.P.F.)
| | - Aleksandra Stojanovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (M.R.); (J.N.); (M.A.)
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (I.S.); (J.S.); (M.M.); (M.N.); (V.J.)
| | - Vladimir Jakovljevic
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (I.S.); (J.S.); (M.M.); (M.N.); (V.J.)
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
- Department of Human Pathology, First Moscow State Medical University I.M. Sechenov, Trubetskaya Street 8, Str. 2, 119991 Moscow, Russia;
| |
Collapse
|
11
|
Akbari A, Hadizadeh S, Heidary L. Effects of Glucagon-Like Peptide-1 Receptor Agonists and Sodium-Glucose Cotransporter 2 Inhibitors on Intima-Media Thickness: Systematic Review and Meta-Analysis. J Diabetes Res 2024; 2024:3212795. [PMID: 38529046 PMCID: PMC10963118 DOI: 10.1155/2024/3212795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/08/2024] [Accepted: 02/23/2024] [Indexed: 03/27/2024] Open
Abstract
Background Beyond glycemic control, glucagon-like peptide-1 receptor agonists (GLP-1 RAs) and sodium-glucose cotransporter 2 inhibitors (SGLT2is) have been proposed to reduce the risk of cardiovascular events. The aim of the present systematic review and meta-analysis is to demonstrate the effects of GLP-1 RA and SGLT2is on intima-media thickness (IMT). Methods PubMed, EMBASE, Web of Science, SCOPUS, and Google Scholar databases were searched from inception to September 9, 2023. All interventional and observational studies that provided data on the effects of GLP-1 RAs or SGLT2is on IMT were included. Critical appraisal was performed using the Joanna Briggs Institute checklists. IMT changes (preintervention and postintervention) were pooled and meta-analyzed using a random-effects model. Subgroup analyses were based on type of medication (GLP-1 RA: liraglutide and exenatide; SGLT2i: empagliflozin, ipragliflozin, tofogliflozin, and dapagliflozin), randomized clinical trials (RCTs), and diabetic patients. Results The literature search yielded 708 related articles after duplicates were removed. Eighteen studies examined the effects of GLP-1 RA, and eleven examined the effects of SGLT2i. GLP-1 RA and SGLT2i significantly decreased IMT (MD = -0.123, 95% CI (-0.170, -0.076), P < 0.0001, I2 = 98% and MD = -0.048, 95% CI (-0.092, -0.004), P = 0.031, I2 = 95%, respectively). Metaregression showed that IMT change correlated with baseline IMT, whereas it did not correlate with gender, duration of diabetes, and duration of treatment. Conclusions Treatment with GLP-1 RA and SGLT2i can lower IMT in diabetic patients, and GLP-1 RA may be more effective than SGLT2i.
Collapse
Affiliation(s)
- Abolfazl Akbari
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shiva Hadizadeh
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Women Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leida Heidary
- Laboratory of Medical Genetics, ART and Stem Cell Research Centre (ACECR), Tabriz, Iran
- Nahal Infertility Center, Tabriz, Iran
| |
Collapse
|
12
|
Terenzi DC, Bakbak E, Teoh H, Krishnaraj A, Puar P, Rotstein OD, Cosentino F, Goldenberg RM, Verma S, Hess DA. Restoration of blood vessel regeneration in the era of combination SGLT2i and GLP-1RA therapy for diabetes and obesity. Cardiovasc Res 2024; 119:2858-2874. [PMID: 38367275 DOI: 10.1093/cvr/cvae016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/20/2022] [Accepted: 01/05/2023] [Indexed: 02/19/2024] Open
Abstract
Ischaemic cardiovascular diseases, including peripheral and coronary artery disease, myocardial infarction, and stroke, remain major comorbidities for individuals with type 2 diabetes (T2D) and obesity. During cardiometabolic chronic disease (CMCD), hyperglycaemia and excess adiposity elevate oxidative stress and promote endothelial damage, alongside an imbalance in circulating pro-vascular progenitor cells that mediate vascular repair. Individuals with CMCD demonstrate pro-vascular 'regenerative cell exhaustion' (RCE) characterized by excess pro-inflammatory granulocyte precursor mobilization into the circulation, monocyte polarization towards pro-inflammatory vs. anti-inflammatory phenotype, and decreased pro-vascular progenitor cell content, impairing the capacity for vessel repair. Remarkably, targeted treatment with the sodium-glucose cotransporter-2 inhibitor (SGLT2i) empagliflozin in subjects with T2D and coronary artery disease, and gastric bypass surgery in subjects with severe obesity, has been shown to partially reverse these RCE phenotypes. SGLT2is and glucagon-like peptide-1 receptor agonists (GLP-1RAs) have reshaped the management of individuals with T2D and comorbid obesity. In addition to glucose-lowering action, both drug classes have been shown to induce weight loss and reduce mortality and adverse cardiovascular outcomes in landmark clinical trials. Furthermore, both drug families also act to reduce systemic oxidative stress through altered activity of overlapping oxidase and antioxidant pathways, providing a putative mechanism to augment circulating pro-vascular progenitor cell content. As SGLT2i and GLP-1RA combination therapies are emerging as a novel therapeutic opportunity for individuals with poorly controlled hyperglycaemia, potential additive effects in the reduction of oxidative stress may also enhance vascular repair and further reduce the ischaemic cardiovascular comorbidities associated with T2D and obesity.
Collapse
Affiliation(s)
- Daniella C Terenzi
- UCD School of Medicine, University College Dublin, Belfield, Dublin 4 D04 V1W8, Ireland
- Division of Cardiovascular Surgery, St. Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
| | - Ehab Bakbak
- Division of Cardiovascular Surgery, St. Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
- Department of Pharmacology and Toxicology, University of Toronto, 27 King's College Circle, Toronto, ON M5S 3J3, Canada
| | - Hwee Teoh
- Division of Cardiovascular Surgery, St. Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
- Division of Endocrinology and Metabolism, St. Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
| | - Aishwarya Krishnaraj
- Division of Cardiovascular Surgery, St. Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
- Department of Pharmacology and Toxicology, University of Toronto, 27 King's College Circle, Toronto, ON M5S 3J3, Canada
| | - Pankaj Puar
- Division of Cardiovascular Surgery, St. Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
| | - Ori D Rotstein
- Division of General Surgery, St. Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
- Department of Surgery, University of Toronto, Stewart Building, 149 College Street, 5th floor, Toronto, ON M5T 1P5, Canada
| | - Francesco Cosentino
- Cardiology Unit, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Solnavagen 1, 171 77 Solna, Sweden
| | | | - Subodh Verma
- Division of Cardiovascular Surgery, St. Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
- Department of Pharmacology and Toxicology, University of Toronto, 27 King's College Circle, Toronto, ON M5S 3J3, Canada
- Department of Surgery, University of Toronto, Stewart Building, 149 College Street, 5th floor, Toronto, ON M5T 1P5, Canada
| | - David A Hess
- Department of Pharmacology and Toxicology, University of Toronto, 27 King's College Circle, Toronto, ON M5S 3J3, Canada
- Molecular Medicine Research Laboratories, Krembil Centre for Stem Cells Biology, Robarts Research Institute, University of Western Ontario, 1151 Richmond Street North, London, ON N6H 0E8, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, 1151 Richmond Street North, London, ON N6H 0E8, Canada
| |
Collapse
|
13
|
Monda VM, Voci C, Strollo F, Passaro A, Greco S, Monesi M, Bigoni R, Porcellati F, Piani D, Satta E, Gentile S. Protective Effects of Home T2DM Treatment with Glucagon-Like Peptide-1 Receptor Agonists and Sodium-Glucose Co-transporter-2 Inhibitors Against Intensive Care Unit Admission and Mortality in the Acute Phase of the COVID-19 Pandemic: A Retrospective Observational Study in Italy. Diabetes Ther 2023; 14:2127-2142. [PMID: 37801224 PMCID: PMC10597965 DOI: 10.1007/s13300-023-01472-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023] Open
Abstract
INTRODUCTION Type 2 diabetes mellitus (T2DM) is a relevant risk factor for severe forms of COVID-19 (SARS coronavrus 2 [SARS-CoV-2] disease 2019), and calls for caution because of the high prevalence of T2DM worldwide and the high mortality rates observed in patients with T2DM who are infected with SARS-CoV-2. People with T2DM often take dipeptidyl peptidase-4 inhibitors (DPP-4is), glucagon-like peptide-1 receptor agonists (GLP-1ras), or sodium-glucose co-transporter-2 inhibitors (SGLT-2is), all of which have clear anti-inflammatory effects. The study aimed to compare (i) the severity and duration of hospital stay between patients with T2DM categorized by pre-hospitalization drug class utilization and (ii) the COVID-19-related death rates of those three groups. METHODS We designed an observational, retrospective, multi-center, population-based study and extracted the hospital admission data from the health care records of 1916 T2DM patients over 18 years old who were previously on GLP-1ra, SGLT-2i, or DPP-4i monotherapy and were hospitalized for COVID-19 (diagnosis based on ICD.9/10 codes) between January 2020 and December 2021 in 14 hospitals throughout Italy. We analyzed general data, pre-admission treatment schedules, date of admission or transfer to the intensive care unit (ICU) (i.e., the index date; taken as a marker of increased COVID-19 disease severity), and death (if it had occurred). Statistics analyzed the impact of drug classes on in-hospital mortality using propensity score logistic regressions for (i) those admitted to intensive care and (ii) those not admitted to intensive care, with a random match procedure used to generate a 1:1 comparison without diabetes cohort replacement for each drug therapy group by applying the nearest neighbor method. After propensity score matching, we checked the balance achieved across selected variables if a balance was ever achieved. We then used propensity score matching between the three drug classes to assemble a sample in which each patient receiving an SGLT-2i was matched to one on a GLP-1ra, and each patient on a DPP-4i was matched to one on a GLP-1ra, adjusting for covariates. We finally used GLP-1ras as references in the logistic regression. RESULTS The overall mortality rate (MR) of the patients was 14.29%. The MR in patients with COVID was 53.62%, and it was as high as 42.42% in the case of associated T2DM, regardless of any glucose-lowering therapy. In those on DPP-4is, there was excess mortality; in those treated with GLP-1ras and SGLT-2is, the death rate was significantly lower, i.e., almost a quarter of the overall mortality observed in COVID-19 patients with T2DM. Indeed, the odds ratio (OR) in the logistic regression resulted in an extremely high risk of in-hospital death in individuals previously treated with DPP-4is [incidence rate (IR) 4.02, 95% confidence interval (CI) 2.2-5.7) and only a slight, nonsignificantly higher risk in those previously treated with SGLT-2is (IR 1.42, 95% CI 0.6-2.1) compared to those on GLP-1ras. Moreover, the longer the stay, the higher the death rate, which ranged from 22.3% for ≤ 3-day stays to 40.3% for 4- to 14-day stays (p < 0.01 vs. the former) and 77.4% for over-14-day stays (p < 0.001 vs. both the others). DISCUSSION Our data do not support a protective role of DPP-4is; indeed, this role has already been questioned due to previous observations. However, the data do show a strong protective effect of SGLT-2is and GLP-1ras. Beyond lowering circulating glucose levels, those two drug classes were found to exert marked anti-phlogistic effects: SGLT-2is increased adiponectin and reduced urate, leptin, and insulin concentrations, thus positively affecting overall low-grade inflammation, and GLP-1ras may also greatly help at the lung tissue level, meaning that their extra-glycemic effects extend well beyond those acknowledged in the cardiovascular and renal fields. CONCLUSIONS The aforedescribed observational clinical data relating to a population of Italian inpatients with T2DM suggest that GLP-1ras and SGLT-2is can be considered antidiabetic drugs of choice against COVID-19, and might even prove beneficial in the event of any upcoming pandemic that has life-threatening effects on the pulmonary and cardiovascular systems.
Collapse
Affiliation(s)
- Vincenzo M. Monda
- Primary Care Department, Diabetes Unit “Santissima Annunziata” Hospital, Cento, Ferrara Italy
| | - Claudio Voci
- University Hospital of the City of Health and Science, Turin, Italy
| | - Felice Strollo
- Department of Endocrinology, IRCCS San Raffaele Pisana, Rome, Italy
| | - Angelina Passaro
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Salvatore Greco
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Department of Internal Medicine, Delta Hospital, Ferrara, Lagosanto Italy
| | - Marcello Monesi
- Primary Care Department, Diabetes Unit, Ferrara “Sant’Anna” Hospital, Ferrara, Italy
| | - Renato Bigoni
- Department of Internal Medicine, Delta Hospital, Ferrara, Lagosanto Italy
| | - Francesca Porcellati
- Section of Internal Medicine, Endocrinology and Metabolism, Department of Medicine, Perugia University School of Medicine, Perugia, Italy
| | - Daniela Piani
- Unit of Internal Medicine and Diabetology, Department of Primary Care, AUSL Modena, Modena, Italy
| | - Ersilia Satta
- Nefrocenter Research Network, Cava dè Tirreni, Salerno, Italy
| | - Sandro Gentile
- Nefrocenter Research Network, Cava dè Tirreni, Salerno, Italy
- Department of Precision Medicine, Campania University “Luigi Vanvitelli”, Naples, Italy
| |
Collapse
|
14
|
Candido R, Gaiotti S, Giudici F, Toffoli B, De Luca F, Velardi V, Petrucco A, Gottardi C, Manca E, Buda I, Fabris B, Bernardi S. Real-World Retrospective Study into the Effects of Oral Semaglutide (As a Switchover or Add-On Therapy) in Type 2 Diabetes. J Clin Med 2023; 12:6052. [PMID: 37762991 PMCID: PMC10532177 DOI: 10.3390/jcm12186052] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
(1) Background: Oral semaglutide represents the first oral GLP-1 RA approved for the treatment of type 2 diabetes mellitus (T2DM). This real-world retrospective study aimed at evaluating its effectiveness and tolerability in the treatment of patients with T2DM when patients switched from a glucose-lowering agent to it and when it was added to the usual therapy. (2) Methods: Adult patients with T2DM taking oral semaglutide and followed in the ASUGI Diabetes Center were identified with the use of electronic medical records between October 2022 and May 2023. (3) Results: A total of 129 patients were recruited. The median follow-up was 6 months. Be it as a switchover or as an add-on therapy, oral semaglutide significantly reduced HbA1c and BMI. Switching from DPPIV inhibitors to oral semaglutide was associated with a significant reduction in HbA1c and BMI, switching from SGLT2 inhibitors was associated with a significant reduction in HbA1c, and switching from sulphonylureas was associated with a significant reduction in BMI. The median HbA1c change was associated with baseline HbA1c. SBP significantly decreased in the add-on group. Oral semaglutide was well tolerated. (4) Conclusions: This study shows that in the real-world setting, oral semaglutide is effective and safe as a switchover or as an add-on therapy for the treatment of T2DM.
Collapse
Affiliation(s)
- Riccardo Candido
- Department of Medical Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (R.C.); (S.G.); (F.G.); (B.T.); (F.D.L.); (V.V.); (B.F.)
- SC Patologie Diabetiche, ASUGI (Azienda Sanitaria Universitaria Giuliano Isontina), 34128 Trieste, Italy; (A.P.); (C.G.); (E.M.); (I.B.)
| | - Sara Gaiotti
- Department of Medical Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (R.C.); (S.G.); (F.G.); (B.T.); (F.D.L.); (V.V.); (B.F.)
| | - Fabiola Giudici
- Department of Medical Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (R.C.); (S.G.); (F.G.); (B.T.); (F.D.L.); (V.V.); (B.F.)
| | - Barbara Toffoli
- Department of Medical Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (R.C.); (S.G.); (F.G.); (B.T.); (F.D.L.); (V.V.); (B.F.)
| | - Federica De Luca
- Department of Medical Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (R.C.); (S.G.); (F.G.); (B.T.); (F.D.L.); (V.V.); (B.F.)
| | - Valerio Velardi
- Department of Medical Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (R.C.); (S.G.); (F.G.); (B.T.); (F.D.L.); (V.V.); (B.F.)
| | - Alessandra Petrucco
- SC Patologie Diabetiche, ASUGI (Azienda Sanitaria Universitaria Giuliano Isontina), 34128 Trieste, Italy; (A.P.); (C.G.); (E.M.); (I.B.)
| | - Chiara Gottardi
- SC Patologie Diabetiche, ASUGI (Azienda Sanitaria Universitaria Giuliano Isontina), 34128 Trieste, Italy; (A.P.); (C.G.); (E.M.); (I.B.)
| | - Elena Manca
- SC Patologie Diabetiche, ASUGI (Azienda Sanitaria Universitaria Giuliano Isontina), 34128 Trieste, Italy; (A.P.); (C.G.); (E.M.); (I.B.)
| | - Iris Buda
- SC Patologie Diabetiche, ASUGI (Azienda Sanitaria Universitaria Giuliano Isontina), 34128 Trieste, Italy; (A.P.); (C.G.); (E.M.); (I.B.)
| | - Bruno Fabris
- Department of Medical Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (R.C.); (S.G.); (F.G.); (B.T.); (F.D.L.); (V.V.); (B.F.)
- SS Endocrinologia Medicina Clinica, ASUGI (Azienda Sanitaria Universitaria Giuliano Isontina), 34128 Trieste, Italy
| | - Stella Bernardi
- Department of Medical Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (R.C.); (S.G.); (F.G.); (B.T.); (F.D.L.); (V.V.); (B.F.)
- SS Endocrinologia Medicina Clinica, ASUGI (Azienda Sanitaria Universitaria Giuliano Isontina), 34128 Trieste, Italy
| |
Collapse
|
15
|
Wang X, Shen Y, Shang M, Liu X, Munn LL. Endothelial mechanobiology in atherosclerosis. Cardiovasc Res 2023; 119:1656-1675. [PMID: 37163659 PMCID: PMC10325702 DOI: 10.1093/cvr/cvad076] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 02/11/2023] [Accepted: 02/21/2023] [Indexed: 05/12/2023] Open
Abstract
Cardiovascular disease (CVD) is a serious health challenge, causing more deaths worldwide than cancer. The vascular endothelium, which forms the inner lining of blood vessels, plays a central role in maintaining vascular integrity and homeostasis and is in direct contact with the blood flow. Research over the past century has shown that mechanical perturbations of the vascular wall contribute to the formation and progression of atherosclerosis. While the straight part of the artery is exposed to sustained laminar flow and physiological high shear stress, flow near branch points or in curved vessels can exhibit 'disturbed' flow. Clinical studies as well as carefully controlled in vitro analyses have confirmed that these regions of disturbed flow, which can include low shear stress, recirculation, oscillation, or lateral flow, are preferential sites of atherosclerotic lesion formation. Because of their critical role in blood flow homeostasis, vascular endothelial cells (ECs) have mechanosensory mechanisms that allow them to react rapidly to changes in mechanical forces, and to execute context-specific adaptive responses to modulate EC functions. This review summarizes the current understanding of endothelial mechanobiology, which can guide the identification of new therapeutic targets to slow or reverse the progression of atherosclerosis.
Collapse
Affiliation(s)
- Xiaoli Wang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310020, China
| | - Yang Shen
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Min Shang
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310020, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lance L Munn
- Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
16
|
Sun L, Yuan Y, Li Y, Rao X. Effect of liraglutide on atherosclerosis in patients with impaired glucose tolerance: A double‑blind, randomized controlled clinical trial. Exp Ther Med 2023; 25:249. [PMID: 37153886 PMCID: PMC10160922 DOI: 10.3892/etm.2023.11948] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 01/10/2023] [Indexed: 05/10/2023] Open
Abstract
Glucagon-like peptide-1 receptor agonist liraglutide may have beneficial effects on atherosclerosis development in impaired glucose tolerance (IGT). To the best of our knowledge, however, little conclusive evidence from clinical trials has been presented. The present study aimed to investigate the effect of liraglutide on atherosclerosis progression in patients with IGT. The present study was a double-blind, randomized controlled clinical trial. A total of 39 of patients aged 20-75 years who were overweight or obese (BMI, 27-40 kg/m2) and presented IGT were randomized to receive liraglutide (n=17) or lifestyle interventions (n=22) for 6 months. Serum glucose and insulin (INS) levels, lipid profile, inflammatory biomarkers and carotid intima-media thickness (CIMT) were assessed at the start and end of each treatment. Side effects were also recorded. Liraglutide treatment was found to significantly improve glycaemia, including glycosylated hemoglobin, fasting and postprandial glucose as well as INS levels (all P<0.001). Liraglutide also significantly decreased serum total cholesterol and low-density lipoprotein levels (all P<0.001). Furthermore, serum levels of inflammatory biomarkers, as well as CIMT, were decreased following liraglutide treatment compared with those in the lifestyle intervention group (all P<0.001). Kaplan-Meier analysis showed that the risk of vasculopathy in the liraglutide group was lower than that in the lifestyle intervention group (log-rank test; P=0.041). The monitoring of drug-associated side effects indicated that the dose of liraglutide (0.6 to 1.2 mg/QD via subcutaneous injection) was safe and well-tolerated. The present study suggested that liraglutide may slow atherosclerosis development and improve inflammatory status as well as intimal function in patients with IGT with few side effects. The trial was registered through the Chinese Clinical Trial Registry (ChiCTR; trial registration no. ChiCTR2200063693; retrospectively registered) on Sep 14, 2022.
Collapse
Affiliation(s)
- Liping Sun
- Department of Endocrinology, Chengyang People's Hospital in Qingdao, Qingdao, Shandong 266109, P.R. China
| | - Yuhong Yuan
- Department of Pharmacy, Chengyang People's Hospital in Qingdao, Qingdao, Shandong 266109, P.R. China
| | - Yongmei Li
- Department of Pharmacy, Chengyang People's Hospital in Qingdao, Qingdao, Shandong 266109, P.R. China
| | - Xiaopang Rao
- Department of Endocrinology, Chengyang People's Hospital in Qingdao, Qingdao, Shandong 266109, P.R. China
- Correspondence to: Dr Xiaopang Rao, Department of Endocrinology, Chengyang People's Hospital in Qingdao, 600 Changcheng Road, Qingdao, Shandong 266109, P.R. China
| |
Collapse
|
17
|
Wang X, Chen W, Jin R, Xu X, Wei J, Huang H, Tang Y, Zou C, Chen T. Engineered probiotics Clostridium butyricum-pMTL007-GLP-1 improves blood pressure via producing GLP-1 and modulating gut microbiota in spontaneous hypertension rat models. Microb Biotechnol 2023; 16:799-812. [PMID: 36528874 PMCID: PMC10034621 DOI: 10.1111/1751-7915.14196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Hypertension is a significant risk factor of cardiovascular diseases (CVDs) with high prevalence worldwide, the current treatment has multiple adverse effects and requires continuous administration. The glucagon-like peptide-1 receptor (GLP-1R) agonists have shown great potential in treating diabetes mellitus, neurodegenerative diseases, obesity and hypertension. Butyric acid is a potential target in treating hypertension. Yet, the application of GLP-1 analogue and butyric acid in reducing blood pressure and reversing ventricular hypertrophy remains untapped. In this study, we combined the therapeutic capability of GLP-1 and butyric acid by transforming Clostridium butyricum (CB) with recombinant plasmid pMTL007 encoded with hGLP gene to construct the engineered probiotics Clostridium butyricum-pMTL007-GLP-1 (CB-GLP-1). We used spontaneous hypertensive rat (SHR) models to evaluate the positive effect of this strain in treating hypertension. The results revealed that the intragastric administration of CB-GLP-1 had markedly reduced blood pressure and improved cardiac marker ACE2, AT2R, AT1R, ANP, BNP, β-MHC, α-SMA and activating AMPK/mTOR/p70S6K/4EBP1 signalling pathway. The high-throughput sequencing further demonstrated that CB-GLP-1 treatments significantly improved the dysbiosis in the SHR rats via downregulating the relative abundance of Porphyromonadaceae at the family level and upregulating Lactobacillus at the genus level. Hence, we concluded that the CB-GLP-1 greatly improves blood pressure and cardiomegaly by restoring the gut microbiome and reducing ventricular hypertrophy in rat models. This is the first time using engineered CB in treating hypertension, which provides a new idea for the clinical treatment of hypertension.
Collapse
Affiliation(s)
- Xin‐liang Wang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, School of Resources Environmental and Chemical EngineeringMinistry of Education, Nanchang UniversityNanchangChina
- National Engineering Research Center for Bioengineering Drugs and TechnologiesInstitute of Translational Medicine, Nanchang UniversityNanchangChina
| | - Wen‐jie Chen
- National Engineering Research Center for Bioengineering Drugs and TechnologiesInstitute of Translational Medicine, Nanchang UniversityNanchangChina
| | - Rui Jin
- National Engineering Research Center for Bioengineering Drugs and TechnologiesInstitute of Translational Medicine, Nanchang UniversityNanchangChina
| | - Xuan Xu
- National Engineering Research Center for Bioengineering Drugs and TechnologiesInstitute of Translational Medicine, Nanchang UniversityNanchangChina
| | - Jing Wei
- National Engineering Research Center for Bioengineering Drugs and TechnologiesInstitute of Translational Medicine, Nanchang UniversityNanchangChina
| | - Hong Huang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, School of Resources Environmental and Chemical EngineeringMinistry of Education, Nanchang UniversityNanchangChina
| | - Yan‐hua Tang
- Department of Cardiovascular SurgeryThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Chang‐wei Zou
- Key Laboratory of Poyang Lake Environment and Resource Utilization, School of Resources Environmental and Chemical EngineeringMinistry of Education, Nanchang UniversityNanchangChina
| | - Ting‐tao Chen
- National Engineering Research Center for Bioengineering Drugs and TechnologiesInstitute of Translational Medicine, Nanchang UniversityNanchangChina
| |
Collapse
|
18
|
Ribeiro-Silva JC, Tavares CAM, Girardi ACC. The blood pressure lowering effects of glucagon-like peptide-1 receptor agonists: A mini-review of the potential mechanisms. Curr Opin Pharmacol 2023; 69:102355. [PMID: 36857807 DOI: 10.1016/j.coph.2023.102355] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/10/2023] [Accepted: 01/27/2023] [Indexed: 03/03/2023]
Abstract
The incretin hormone glucagon-like peptide 1 (GLP-1) is a key component of the signaling mechanisms promoting glucose homeostasis. Clinical and experimental studies demonstrated that GLP-1 receptor agonists, including GLP-1 itself, have favorable effects on blood pressure and reduce the risk of major cardiovascular events, independently of their effect on glycemic control. GLP-1 receptors are present in the hypothalamus and brainstem, the carotid body, the vasculature, and the kidneys. These organs are involved in blood pressure regulation, have their function altered in hypertension, and are positively benefited by the treatment with GLP-1 receptor agonists. Here, we discuss the potential mechanisms whereby activation of GLP-1R signaling exerts blood pressure-lowering effects beyond glycemic control.
Collapse
Affiliation(s)
- Joao Carlos Ribeiro-Silva
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Caio A M Tavares
- Unidade de Cardiogeriatria, Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil; Academic Research Organization (ARO), Hospital Israelita Albert Einstein, São Paulo, São Paulo, Brazil
| | - Adriana C C Girardi
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
19
|
Vaittinen M, Ilha M, Herbers E, Wagner A, Virtanen KA, Pietiläinen KH, Pirinen E, Pihlajamäki J. Liraglutide demonstrates a therapeutic effect on mitochondrial dysfunction in human SGBS adipocytes in vitro. Diabetes Res Clin Pract 2023; 199:110635. [PMID: 36958431 DOI: 10.1016/j.diabres.2023.110635] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/28/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
AIMS Liraglutide (LG), a glucagon-like peptide-1 receptor (GLP-1R) agonist, has been shown to improve white adipose tissue mitochondrial metabolism in mice but not in human adipocytes. Therefore, we explored whether LG has therapeutic efficacy in mitochondrial dysfunction in human adipocytes in vitro. METHODS We tested the effects of short-term (ST-LG: 24 h) and long-term (LT-LG: D0-15 days) treatments in human SGBS adipocytes on mitochondrial respiration, mRNA and protein expression. GLP-1R inhibition was investigated by the co-treatment of GLP-1R inhibitor, exendin 9-39 (Ex9-39) and ST-LG treatment. We also explored the ability of ST-LG to alleviate mitochondrial dysfunction induced by tumor necrosis factor-alpha (TNFα). RESULTS LT-LG treatment induced the formation of smaller lipid droplets and increased the expression of genes related to lipolysis. Both ST-LG and LT-LG treatments promoted mitochondrial respiration. Additionally, LT-LG treatment increased the expression of a brown adipocyte marker, uncoupling protein 1 (UCP-1), and the markers of mitochondrial biogenesis. Interestingly, ST-LG rescued TNFα-induced defects in mitochondrial energy metabolism and inflammation in SGBS adipocytes. CONCLUSION LG stimulates mitochondrial respiration and biogenesis in human adipocytes, potentially via UCP-1-mediated adipocyte browning. Importantly, our study demonstrates for the first time that LG has a therapeutic potential on mitochondrial activity in human adipocytes.
Collapse
Affiliation(s)
- Maija Vaittinen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland.
| | - Mariana Ilha
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Elena Herbers
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Finland
| | - Anita Wagner
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, FIN-00290 Helsinki, Finland; Research Unit for Internal Medicine, Faculty of Medicine, University of Oulu, FIN-90220 Oulu, Finland
| | - Kirsi A Virtanen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Department of Medicine, Endocrinology, and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland; Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Kirsi H Pietiläinen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Finland; Obesity Center, Abdominal Center, Helsinki University Hospital and University of Helsinki, Finland
| | - Eija Pirinen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, FIN-00290 Helsinki, Finland; Research Unit for Internal Medicine, Faculty of Medicine, University of Oulu, FIN-90220 Oulu, Finland
| | - Jussi Pihlajamäki
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Department of Medicine, Endocrinology, and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
20
|
Gan J, Guo L, Zhang X, Yu Q, Yang Q, Zhang Y, Zeng W, Jiang X, Guo M. Anti-inflammatory therapy of atherosclerosis: focusing on IKKβ. J Inflamm (Lond) 2023; 20:8. [PMID: 36823573 PMCID: PMC9951513 DOI: 10.1186/s12950-023-00330-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/24/2023] [Indexed: 02/25/2023] Open
Abstract
Chronic low-grade inflammation has been identified as a major contributor in the development of atherosclerosis. Nuclear Factor-κappa B (NF-κB) is a critical transcription factors family of the inflammatory pathway. As a major catalytic subunit of the IKK complex, IκB kinase β (IKKβ) drives canonical activation of NF-κB and is implicated in the link between inflammation and atherosclerosis, making it a promising therapeutic target. Various natural product derivatives, extracts, and synthetic, show anti-atherogenic potential by inhibiting IKKβ-mediated inflammation. This review focuses on the latest knowledge and current research landscape surrounding anti-atherosclerotic drugs that inhibit IKKβ. There will be more opportunities to fully understand the complex functions of IKKβ in atherogenesis and develop new effective therapies in the future.
Collapse
Affiliation(s)
- Jiali Gan
- grid.410648.f0000 0001 1816 6218School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Guo
- grid.410648.f0000 0001 1816 6218School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaolu Zhang
- grid.410648.f0000 0001 1816 6218School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qun Yu
- grid.410648.f0000 0001 1816 6218School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qiuyue Yang
- grid.410648.f0000 0001 1816 6218School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yilin Zhang
- grid.410648.f0000 0001 1816 6218School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenyun Zeng
- grid.459559.10000 0004 9344 2915Oncology department, Ganzhou People’s Hospital, Ganzhou, Jiangxi China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Maojuan Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
21
|
Yanai H, Adachi H, Hakoshima M, Katsuyama H. Glucagon-Like Peptide 1 Receptor Agonists Versus Sodium-Glucose Cotransporter 2 Inhibitors for Atherosclerotic Cardiovascular Disease in Patients With Type 2 Diabetes. Cardiol Res 2023; 14:12-21. [PMID: 36896226 PMCID: PMC9990545 DOI: 10.14740/cr1459] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/11/2023] [Indexed: 02/27/2023] Open
Abstract
Beyond improving hemoglobin A1c (HbA1c) in adults with type 2 diabetes, glucagon-like peptide 1 receptor agonists (GLP-1RA) have been approved for reducing risk of major adverse cardiovascular events (MACE) with established cardiovascular disease (CVD) or multiple CV risk factors. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) also reduced the risk for the primary composite CV outcome in patients with type 2 diabetes at high risk for CV events. In the American Diabetes Association (ADA) and European Association of Study in Diabetes (EASD) consensus report 2022, there is the description "In people with established atherosclerotic CVD (ASCVD) or with a high risk for ASCVD, GLP-1RA were prioritized over SGLT2i"; however, the evidence supporting such statement is limited. Therefore, we studied the superiority of GLP-1RA over SGLT2i for prevention of ASCVD from various viewpoints. We could not find a meaningful difference in the risk reduction in three-point MACE (3P-MACE), mortality due to any cause, mortality due to CV cause and nonfatal myocardial infarction between GLP-1RA and SGLT2i trials. The risk of nonfatal stroke decreased in all five GLP-1RA trials; however, two of three SGLT2i trials showed an increase in risk of nonfatal stroke. The risk of hospitalization for heart failure (HHF) decreased in all three SGLT2i trials, and one GLP-1RA trial showed an increase in risk of HHF. The risk reduction of HHF in SGLT2i trials was greater than that in GLP-1RA trials. These findings were consistent with current systematic reviews and meta-analyses. The risk reduction of 3P-MACE was significantly and negatively correlated with changes in HbA1c (R = -0.861, P = 0.006) and body weight (R = -0.895, P = 0.003) in GLP-1RA and SGLT2i trials. The studies using SGLT2i failed to reduce carotid intima media thickness (cIMT), the surrogate marker for atherosclerosis; however, several studies using GLP-1RA successfully reduced cIMT in patients with type 2 diabetes. Compared with SGLT2i, GLP-1RA had a higher probability of decreasing serum triglyceride. GLP-1RA have multiple vascular biological anti-atherogenic properties.
Collapse
Affiliation(s)
- Hidekatsu Yanai
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, Chiba, Japan
| | - Hiroki Adachi
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, Chiba, Japan
| | - Mariko Hakoshima
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, Chiba, Japan
| | - Hisayuki Katsuyama
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, Chiba, Japan
| |
Collapse
|
22
|
Johnston EK, Abbott RD. Adipose Tissue Paracrine-, Autocrine-, and Matrix-Dependent Signaling during the Development and Progression of Obesity. Cells 2023; 12:407. [PMID: 36766750 PMCID: PMC9913478 DOI: 10.3390/cells12030407] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Obesity is an ever-increasing phenomenon, with 42% of Americans being considered obese (BMI ≥ 30) and 9.2% being considered morbidly obese (BMI ≥ 40) as of 2016. With obesity being characterized by an abundance of adipose tissue expansion, abnormal tissue remodeling is a typical consequence. Importantly, this pathological tissue expansion is associated with many alterations in the cellular populations and phenotypes within the tissue, lending to cellular, paracrine, mechanical, and metabolic alterations that have local and systemic effects, including diabetes and cardiovascular disease. In particular, vascular dynamics shift during the progression of obesity, providing signaling cues that drive metabolic dysfunction. In this review, paracrine-, autocrine-, and matrix-dependent signaling between adipocytes and endothelial cells is discussed in the context of the development and progression of obesity and its consequential diseases, including adipose fibrosis, diabetes, and cardiovascular disease.
Collapse
Affiliation(s)
| | - Rosalyn D. Abbott
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
23
|
Biesenbach IIA, Heinsen LJ, Overgaard KS, Andersen TR, Auscher S, Egstrup K. The Effect of Clinically Indicated Liraglutide on Pericoronary Adipose Tissue in Type 2 Diabetic Patients. Cardiovasc Ther 2023; 2023:5126825. [PMID: 36714196 PMCID: PMC9867582 DOI: 10.1155/2023/5126825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023] Open
Abstract
Vascular inflammation can be detected in the pericoronary adipose tissue (PCAT) by coronary computed tomography angiography (CCTA) attenuation. Treatment with liraglutide is associated with anti-inflammatory effects and reduces cardiovascular risk in diabetic patients. This study is aimed at examining the effect of clinically indicated liraglutide on PCAT attenuation. Asymptomatic patients with type 2 diabetes mellitus (T2DM) and without known ischemic heart disease underwent clinical examination, blood analysis, and CCTA. The main coronary arteries were outlined and PCAT attenuation was measured on the proximal 40 mm. Patients treated with liraglutide on a clinical indication were compared to patients not receiving liraglutide. The study included 190 patients; 53 (28%) received liraglutide (Lira+) and 137 (72%) did not (Lira-). There were no significant differences in PCAT attenuation between the two groups in either artery. However, PCAT attenuation measured around the left anterior descending artery (LAD) was lower in the Lira+ group after adjustment for age, sex, body mass index, and T2DM duration (b coefficient -2.4, p = 0.029). In a population of cardiac asymptomatic T2DM patients, treatment with clinically indicated liraglutide was not associated with differences in PCAT attenuation compared to nonliraglutide treatment in the unadjusted model. An association was seen in the adjusted model for the left anterior descending artery, possibly indicating an anti-inflammatory effect.
Collapse
Affiliation(s)
- Irmelin I. A. Biesenbach
- Faculty of Health Science, University of Southern Denmark, Winsløwparken 19, 5000 Odense C, Denmark
- Cardiovascular Research Unit, Odense University Hospital Svendborg, Baagøes Alle 15, 5700 Svendborg, Denmark
| | - Laurits J. Heinsen
- Cardiovascular Research Unit, Odense University Hospital Svendborg, Baagøes Alle 15, 5700 Svendborg, Denmark
| | - Katrine S. Overgaard
- Cardiovascular Research Unit, Odense University Hospital Svendborg, Baagøes Alle 15, 5700 Svendborg, Denmark
| | - Thomas R. Andersen
- Cardiovascular Research Unit, Odense University Hospital Svendborg, Baagøes Alle 15, 5700 Svendborg, Denmark
| | - Søren Auscher
- Cardiovascular Research Unit, Odense University Hospital Svendborg, Baagøes Alle 15, 5700 Svendborg, Denmark
| | - Kenneth Egstrup
- Faculty of Health Science, University of Southern Denmark, Winsløwparken 19, 5000 Odense C, Denmark
- Cardiovascular Research Unit, Odense University Hospital Svendborg, Baagøes Alle 15, 5700 Svendborg, Denmark
| |
Collapse
|
24
|
Akarsu E, Sayiner ZA, Balcı SO, Demirel C, Bozdag Z, Korkmaz M, Yılmaz I. Effects of antidiabetics and exercise therapy on suppressors of cytokine signaling-1, suppressors of cytokine signaling-3, and insulin receptor substrate-1 molecules in diabetes and obesity. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2023; 69:112-118. [PMID: 36629649 PMCID: PMC9937604 DOI: 10.1590/1806-9282.20220856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 08/20/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Pathological destruction of insulin signaling molecules such as insulin receptor substrate, especially due to the increase in suppressors of cytokine signaling molecules, has been demonstrated in experimental diabetes. The contribution of suppressors of cytokine signaling proteins to the development of insulin resistance and the effects of antidiabetic drugs and exercise on suppressors of cytokine signaling proteins are not clearly known. METHODS A total of 48 Wistar albino adult male rats were divided into six groups: control group, obese group with diabetes, obese diabetic rats treated with metformin, obese diabetic rats treated with pioglitazone, obese diabetic rats treated with exenatide, and obese diabetic rats with applied exercise program. Immunohistochemical staining was performed in both the liver and adipose tissue. RESULTS There was a statistically significant decrease in suppressors of cytokine signaling-1, a decrease in suppressors of cytokine signaling-3, an increase in insulin receptor substrate-1, and a decrease in immunohistochemical staining in the obese group treated with metformin and exenatide compared to the obese group without treatment in the liver tissue (p<0.05). A statistically significant decrease in immunohistochemical staining of suppressors of cytokine signaling-1 and suppressors of cytokine signaling-3 was found in the obese group receiving exercise therapy compared to the obese group without treatment in visceral adipose tissue (p<0.05). Likewise, no significant immunohistochemistry staining was seen in diabetic obese groups. CONCLUSION Metformin or exenatide treatment could prevent the degradation of insulin receptor substrate-1 protein by reducing the effect of suppressors of cytokine signaling-1 and suppressors of cytokine signaling-3 proteins, especially in the liver tissue. In addition, exercise can play a role as a complementary therapy by reducing suppressors of cytokine signaling-1 and suppressors of cytokine signaling-3 proteins in visceral adipose tissue.
Collapse
Affiliation(s)
- Ersin Akarsu
- University of Gaziantep, Faculty of Medicine, Department of Endocrinology and Metabolism – Gaziantep, Turkey
| | - Zeynel Abidin Sayiner
- University of Gaziantep, Faculty of Medicine, Department of Endocrinology and Metabolism – Gaziantep, Turkey.,Corresponding author:
| | - Sibel Oğuzkan Balcı
- University of Gaziantep, Faculty of Medicine, Department of Medical Biology – Gaziantep, Turkey
| | - Can Demirel
- University of Gaziantep, Faculty of Medicine, Department of Biophysics – Gaziantep, Turkey
| | - Zehra Bozdag
- University of Gaziantep, Faculty of Medicine, Department of Pathology – Gaziantep, Turkey
| | - Murat Korkmaz
- University of Gaziantep, Faculty of Medicine, Department of Medical Biology – Gaziantep, Turkey
| | - Ibrahim Yılmaz
- University of Gaziantep, Faculty of Medicine, Department of Biophysics – Gaziantep, Turkey
| |
Collapse
|
25
|
Yang Z, Tian R, Zhang XJ, Cai J, She ZG, Li H. Effects of treatment of non-alcoholic fatty liver disease on heart failure with preserved ejection fraction. Front Cardiovasc Med 2023; 9:1120085. [PMID: 36712249 PMCID: PMC9877359 DOI: 10.3389/fcvm.2022.1120085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 12/30/2022] [Indexed: 01/14/2023] Open
Abstract
In the past few decades, non-alcoholic fatty liver disease (NAFLD) and heart failure with preserved ejection fraction (HFpEF) have become the most common chronic liver disease and the main form of heart failure (HF), respectively. NAFLD is closely associated with HFpEF by sharing common risk factors and/or by boosting systemic inflammation, releasing other secretory factors, and having an expansion of epicardial adipose tissue (EAT). Therefore, the treatments of NAFLD may also affect the development and prognosis of HFpEF. However, no specific drugs for NAFLD have been approved by the Food and Drug Administration (FDA) and some non-specific treatments for NAFLD are applied in the clinic. Currently, the treatments of NAFLD can be divided into non-pharmacological and pharmacological treatments. Non-pharmacological treatments mainly include dietary intervention, weight loss by exercise, caloric restriction, and bariatric surgery. Pharmacological treatments mainly include administering statins, thiazolidinediones, glucagon-like peptide-1 receptor agonists, sodium-glucose cotransporter 2 inhibitors, and metformin. This review will mainly focus on analyzing how these treatments may affect the development and prognosis of HFpEF.
Collapse
Affiliation(s)
- Zifeng Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Institute of Model Animal, Wuhan University, Wuhan, China
| | - Ruifeng Tian
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Institute of Model Animal, Wuhan University, Wuhan, China
| | - Xiao-Jing Zhang
- Institute of Model Animal, Wuhan University, Wuhan, China,School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jingjing Cai
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Institute of Model Animal, Wuhan University, Wuhan, China,*Correspondence: Zhi-Gang She,
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Institute of Model Animal, Wuhan University, Wuhan, China,School of Basic Medical Sciences, Wuhan University, Wuhan, China,Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China,Hongliang Li,
| |
Collapse
|
26
|
Zhang L, Jiang F, Xie Y, Mo Y, Zhang X, Liu C. Diabetic endothelial microangiopathy and pulmonary dysfunction. Front Endocrinol (Lausanne) 2023; 14:1073878. [PMID: 37025413 PMCID: PMC10071002 DOI: 10.3389/fendo.2023.1073878] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/17/2023] [Indexed: 04/08/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a widespread metabolic condition with a high global morbidity and mortality rate that affects the whole body. Their primary consequences are mostly caused by the macrovascular and microvascular bed degradation brought on by metabolic, hemodynamic, and inflammatory variables. However, research in recent years has expanded the target organ in T2DM to include the lung. Inflammatory lung diseases also impose a severe financial burden on global healthcare. T2DM has long been recognized as a significant comorbidity that influences the course of various respiratory disorders and their disease progress. The pathogenesis of the glycemic metabolic problem and endothelial microangiopathy of the respiratory disorders have garnered more attention lately, indicating that the two ailments have a shared history. This review aims to outline the connection between T2DM related endothelial cell dysfunction and concomitant respiratory diseases, including Coronavirus disease 2019 (COVID-19), asthma, chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF).
Collapse
Affiliation(s)
- Lanlan Zhang
- Department of Respiratory and Critical Care Medicine, Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- *Correspondence: Lanlan Zhang, ; Xin Zhang, ; Chuntao Liu,
| | - Faming Jiang
- Department of Respiratory and Critical Care Medicine, Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Yingying Xie
- Department of Nephrology, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yan Mo
- Department of Neurology Medicine, The Aviation Industry Corporation of China (AVIC) 363 Hospital, Chengdu, China
| | - Xin Zhang
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
- *Correspondence: Lanlan Zhang, ; Xin Zhang, ; Chuntao Liu,
| | - Chuntao Liu
- Department of Respiratory and Critical Care Medicine, Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- *Correspondence: Lanlan Zhang, ; Xin Zhang, ; Chuntao Liu,
| |
Collapse
|
27
|
Bordeianu G, Mitu I, Stanescu RS, Ciobanu CP, Petrescu-Danila E, Marculescu AD, Dimitriu DC. Circulating Biomarkers for Laboratory Diagnostics of Atherosclerosis-Literature Review. Diagnostics (Basel) 2022; 12:diagnostics12123141. [PMID: 36553147 PMCID: PMC9777004 DOI: 10.3390/diagnostics12123141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis is still considered a disease burden with long-term damaging processes towards the cardiovascular system. Evaluation of atherosclerotic stages requires the use of independent markers such as those already considered traditional, that remain the main therapeutic target for patients with atherosclerosis, together with emerging biomarkers. The challenge is finding models of predictive markers that are particularly tailored to detect and evaluate the evolution of incipient vascular lesions. Important advances have been made in this field, resulting in a more comprehensible and stronger linkage between the lipidic profile and the continuous inflammatory process. In this paper, we analysed the most recent data from the literature studying the molecular mechanisms of biomarkers and their involvement in the cascade of events that occur in the pathophysiology of atherosclerosis.
Collapse
Affiliation(s)
| | - Ivona Mitu
- Correspondence: (I.M.); (R.S.S.); Tel.: +40-75206-1747 (I.M.)
| | | | | | | | | | | |
Collapse
|
28
|
Avogaro A, de Kreutzenberg SV, Morieri ML, Fadini GP, Del Prato S. Glucose-lowering drugs with cardiovascular benefits as modifiers of critical elements of the human life history. Lancet Diabetes Endocrinol 2022; 10:882-889. [PMID: 36182702 DOI: 10.1016/s2213-8587(22)00247-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 11/28/2022]
Abstract
The life history theory assumes that all organisms are under selective pressure to harvest external resources and allocate them to maximise fitness: only organisms making the best use of energy obtain the greatest fitness benefits. The trade-off of energy spans four functions: maintenance, growth, reproduction, and defence against pathogens. The innovative antihyperglycaemic agents glucagon-like peptide 1 (GLP-1) receptor agonists and sodium-glucose cotransporter 2 (SGLT2) inhibitors decrease bodyweight and have the potential to counter low-grade inflammation. These key activities could rewire two components of the life history theory operative in adulthood-ie, maintenance and defence. In this Personal View, we postulate that the benefits of these medications on the cardiovascular system, beyond their glucose-lowering effects, could be mediated by the reduction of the maintenance cost driven by obesity and efforts spent on blunting low-grade inflammation.
Collapse
Affiliation(s)
- Angelo Avogaro
- Section of Diabetes and Metabolic Diseases, Department of Medicine, University of Padova, Padova, Italy.
| | | | - Mario Luca Morieri
- Section of Diabetes and Metabolic Diseases, Department of Medicine, University of Padova, Padova, Italy
| | - Gian Paolo Fadini
- Section of Diabetes and Metabolic Diseases, Department of Medicine, University of Padova, Padova, Italy
| | - Stefano Del Prato
- Section of Diabetes and Metabolic Diseases, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
29
|
DeMarsilis A, Reddy N, Boutari C, Filippaios A, Sternthal E, Katsiki N, Mantzoros C. Pharmacotherapy of type 2 diabetes: An update and future directions. Metabolism 2022; 137:155332. [PMID: 36240884 DOI: 10.1016/j.metabol.2022.155332] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
Type 2 diabetes (T2D) is a widely prevalent disease with substantial economic and social impact for which multiple conventional and novel pharmacotherapies are currently available; however, the landscape of T2D treatment is constantly changing as new therapies emerge and the understanding of currently available agents deepens. This review aims to provide an updated summary of the pharmacotherapeutic approach to T2D. Each class of agents is presented by mechanism of action, details of administration, side effect profile, cost, and use in certain populations including heart failure, non-alcoholic fatty liver disease, obesity, chronic kidney disease, and older individuals. We also review targets of novel therapeutic T2D agent development. Finally, we outline an up-to-date treatment approach that starts with identification of an individualized goal for glycemic control then selection, initiation, and further intensification of a personalized therapeutic plan for T2D.
Collapse
Affiliation(s)
- Antea DeMarsilis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Niyoti Reddy
- Department of Medicine, School of Medicine, Boston University, Boston, USA
| | - Chrysoula Boutari
- Second Propedeutic Department of Internal Medicine, Hippocration Hospital, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Andreas Filippaios
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Elliot Sternthal
- Section of Endocrinology, VA Boston Healthcare System, Harvard Medical School, Boston, MA 02115, USA
| | - Niki Katsiki
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Sindos, Greece; School of Medicine, European University Cyprus, Nicosia, Cyprus.
| | - Christos Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA; Section of Endocrinology, VA Boston Healthcare System, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
30
|
Theofilis P, Sagris M, Oikonomou E, Antonopoulos AS, Siasos G, Tsioufis K, Tousoulis D. The Anti-Inflammatory Effect of Novel Antidiabetic Agents. Life (Basel) 2022; 12:1829. [PMID: 36362984 PMCID: PMC9696750 DOI: 10.3390/life12111829] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/28/2022] [Accepted: 11/05/2022] [Indexed: 08/10/2023] Open
Abstract
The incidence of type 2 diabetes (T2DM) has been increasing worldwide and remains one of the leading causes of atherosclerotic disease. Several antidiabetic agents have been introduced in trying to regulate glucose control levels with different mechanisms of action. These agents, and sodium-glucose cotransporter-2 inhibitors in particular, have been endorsed by contemporary guidelines in patients with or without T2DM. Their widespread usage during the last three decades has raised awareness in the scientific community concerning their pleiotropic mechanisms of action, including their putative anti-inflammatory effect. In this review, we delve into the anti-inflammatory role and mechanism of the existing antidiabetic agents in the cardiovascular system and their potential use in other chronic sterile inflammatory conditions.
Collapse
Affiliation(s)
- Panagiotis Theofilis
- 1st Cardiology Department, “Hippokration” General Hospital, University of Athens Medical School, 11527 Athens, Greece
| | - Marios Sagris
- 3rd Cardiology Department, Thoracic Diseases Hospital “Sotiria”, University of Athens Medical School, 11527 Athens, Greece
| | - Evangelos Oikonomou
- 1st Cardiology Department, “Hippokration” General Hospital, University of Athens Medical School, 11527 Athens, Greece
- 3rd Cardiology Department, Thoracic Diseases Hospital “Sotiria”, University of Athens Medical School, 11527 Athens, Greece
| | - Alexios S. Antonopoulos
- 1st Cardiology Department, “Hippokration” General Hospital, University of Athens Medical School, 11527 Athens, Greece
| | - Gerasimos Siasos
- 1st Cardiology Department, “Hippokration” General Hospital, University of Athens Medical School, 11527 Athens, Greece
- 3rd Cardiology Department, Thoracic Diseases Hospital “Sotiria”, University of Athens Medical School, 11527 Athens, Greece
| | - Kostas Tsioufis
- 1st Cardiology Department, “Hippokration” General Hospital, University of Athens Medical School, 11527 Athens, Greece
| | - Dimitris Tousoulis
- 1st Cardiology Department, “Hippokration” General Hospital, University of Athens Medical School, 11527 Athens, Greece
| |
Collapse
|
31
|
Theofilis P, Vordoni A, Kalaitzidis RG. Oxidative Stress Management in Cardiorenal Diseases: Focus on Novel Antidiabetic Agents, Finerenone, and Melatonin. Life (Basel) 2022; 12:1663. [PMID: 36295098 PMCID: PMC9605243 DOI: 10.3390/life12101663] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/15/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
Oxidative stress is characterized by excessive production of reactive oxygen species together with exhausted antioxidant defenses. This constitutes a main pathophysiologic process that is implicated in cardiovascular and renal diseases. In particular, enhanced oxidative stress may lead to low-density lipoprotein accumulation and oxidation, endothelial cell activation, adhesion molecule overexpression, macrophage activation, and foam cell formation, promoting the development and progression of atherosclerosis. The deleterious kidney effects of oxidative stress are numerous, including podocytopathy, mesangial enlargement, renal hypertrophy, tubulointerstitial fibrosis, and glomerulosclerosis. The prominent role of oxidative mechanisms in cardiorenal diseases may be counteracted by recently developed pharmacotherapies such as novel antidiabetic agents and finerenone. These agents have demonstrated significant antioxidant activity in preclinical and clinical studies. Moreover, the use of melatonin as a treatment in this field has been experimentally investigated, with large-scale clinical studies being awaited. Finally, clinical implications and future directions in this field are presented.
Collapse
Affiliation(s)
| | | | - Rigas G. Kalaitzidis
- Center for Nephrology “G. Papadakis”, General Hospital of Nikaia-Piraeus Agios Panteleimon, 18454 Piraeus, Greece
| |
Collapse
|
32
|
Patel B, Sheth D, Vyas A, Shah S, Parmar S, Patel C, Patel S, Beladiya J, Pande S, Modi K. Amelioration of intracerebroventricular streptozotocin-induced cognitive dysfunction by Ocimum sanctum L. through the modulation of inflammation and GLP-1 levels. Metab Brain Dis 2022; 37:2533-2543. [PMID: 35900690 DOI: 10.1007/s11011-022-01056-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/19/2022] [Indexed: 11/24/2022]
Abstract
DPP-4 inhibitors have been shown to reverse amyloid deposition in Alzheimer's disease (AD) patients with cognitive impairment. Ocimum sanctum L. leaves reported the presence of important phytoconstituents which are reported to have DPP-4 inhibitory activity. To investigate the effects of petroleum ether extract of Ocimum sanctum L. (PEOS) in Intracerebroventricular streptozotocin (ICV-STZ) induced AD rats. ICV-STZ (3 mg/kg) was injected bilaterally into male Wistar rats, while sham animals received the artificial CSF. The ICV-STZ-induced rats were administered with three doses of PEOS (100, 200, and 400 mg/kg, p.o.) for thirty days. All experimental rats were subjected to behaviour parameters (radial arm maze task and novel object recognition test), neurochemical parameters such as GLP-1, Aβ42, and TNF-α levels, and histopathological examination (Congo red staining) of the left brain hemisphere. PEOS significantly reversed the spatial learning and memory deficit exhibited by ICV-STZ-induced rats. Furthermore, PEOS also shows promising results in retreating Aβ deposition, TNF α, and increasing GLP-1 levels. The histopathological study also showed a significant dose-dependent reduction in amyloid plaque formation and dense granule in PEOS -treated rats as compared to the ICV-STZ induced rats (Negative control). The results show that extract of Ocimum sanctum L. attenuated ICV-STZ-induced learning and memory deficits in rats and has the potential to be employed in the therapy of AD.
Collapse
Affiliation(s)
- Bansy Patel
- B. K. Mody Government Pharmacy College, Rajkot, 360003, Gujarat, India
| | - Devang Sheth
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabdad, 380009, Gujarat, India.
| | - Amit Vyas
- B. K. Mody Government Pharmacy College, Rajkot, 360003, Gujarat, India
| | - Sunny Shah
- B. K. Mody Government Pharmacy College, Rajkot, 360003, Gujarat, India
| | - Sachin Parmar
- Department of Pharmaceutical Sciences, Saurashtra University, Rajkot, 360003, Gujarat, India
| | - Chirag Patel
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabdad, 380009, Gujarat, India
| | - Sandip Patel
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabdad, 380009, Gujarat, India
| | - Jayesh Beladiya
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabdad, 380009, Gujarat, India
| | - Sonal Pande
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabdad, 380009, Gujarat, India
| | - Ketan Modi
- Government Pharmacy College, Gandhinagar, 382026, Gujarat, India
| |
Collapse
|
33
|
Coronary Microvascular Dysfunction in Diabetes Mellitus: Pathogenetic Mechanisms and Potential Therapeutic Options. Biomedicines 2022; 10:biomedicines10092274. [PMID: 36140374 PMCID: PMC9496134 DOI: 10.3390/biomedicines10092274] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetic patients are frequently affected by coronary microvascular dysfunction (CMD), a condition consisting of a combination of altered vasomotion and long-term structural change to coronary arterioles leading to impaired regulation of blood flow in response to changing cardiomyocyte oxygen requirements. The pathogenesis of this microvascular complication is complex and not completely known, involving several alterations among which hyperglycemia and insulin resistance play particularly central roles leading to oxidative stress, inflammatory activation and altered barrier function of endothelium. CMD significantly contributes to cardiac events such as angina or infarction without obstructive coronary artery disease, as well as heart failure, especially the phenotype associated with preserved ejection fraction, which greatly impact cardiovascular (CV) prognosis. To date, no treatments specifically target this vascular damage, but recent experimental studies and some clinical investigations have produced data in favor of potential beneficial effects on coronary micro vessels caused by two classes of glucose-lowering drugs: glucagon-like peptide 1 (GLP-1)-based therapy and inhibitors of sodium-glucose cotransporter-2 (SGLT2). The purpose of this review is to describe pathophysiological mechanisms, clinical manifestations of CMD with particular reference to diabetes, and to summarize the protective effects of antidiabetic drugs on the myocardial microvascular compartment.
Collapse
|
34
|
Wu Q, Li D, Huang C, Zhang G, Wang Z, Liu J, Yu H, Song B, Zhang N, Li B, Chu X. Glucose control independent mechanisms involved in the cardiovascular benefits of glucagon-like peptide-1 receptor agonists. Biomed Pharmacother 2022; 153:113517. [DOI: 10.1016/j.biopha.2022.113517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/29/2022] Open
|
35
|
Zhang Z, Dalan R, Hu Z, Wang JW, Chew NW, Poh KK, Tan RS, Soong TW, Dai Y, Ye L, Chen X. Reactive Oxygen Species Scavenging Nanomedicine for the Treatment of Ischemic Heart Disease. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202169. [PMID: 35470476 DOI: 10.1002/adma.202202169] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Ischemic heart disease (IHD) is the leading cause of disability and mortality worldwide. Reactive oxygen species (ROS) have been shown to play key roles in the progression of diabetes, hypertension, and hypercholesterolemia, which are independent risk factors that lead to atherosclerosis and the development of IHD. Engineered biomaterial-based nanomedicines are under extensive investigation and exploration, serving as smart and multifunctional nanocarriers for synergistic therapeutic effect. Capitalizing on cell/molecule-targeting drug delivery, nanomedicines present enhanced specificity and safety with favorable pharmacokinetics and pharmacodynamics. Herein, the roles of ROS in both IHD and its risk factors are discussed, highlighting cardiovascular medications that have antioxidant properties, and summarizing the advantages, properties, and recent achievements of nanomedicines that have ROS scavenging capacity for the treatment of diabetes, hypertension, hypercholesterolemia, atherosclerosis, ischemia/reperfusion, and myocardial infarction. Finally, the current challenges of nanomedicines for ROS-scavenging treatment of IHD and possible future directions are discussed from a clinical perspective.
Collapse
Affiliation(s)
- Zhan Zhang
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Rinkoo Dalan
- Department of Endocrinology, Tan Tock Seng Hospital, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 408433, Singapore
| | - Zhenyu Hu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Jiong-Wei Wang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Department of Diagnostic Radiology and Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Nicholas Ws Chew
- Department of Cardiology, National University Heart Centre, National University Hospital, Singapore, 119074, Singapore
| | - Kian-Keong Poh
- Department of Cardiology, National University Heart Centre, National University Hospital, Singapore, 119074, Singapore
| | - Ru-San Tan
- Department of Cardiology, National Heart Centre Singapore, Singapore, 119609, Singapore
| | - Tuck Wah Soong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Yunlu Dai
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macao, Taipa, Macau SAR, 999078, China
| | - Lei Ye
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Xiaoyuan Chen
- Department of Diagnostic Radiology and Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Department of Chemical and Biomolecular Engineering and Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| |
Collapse
|
36
|
Qi L, Gao R, Chen Z, Lin D, Liu Z, Wang L, Lin L, Liu X, Liu X, Liu L. Liraglutide reduces oxidative stress and improves energy metabolism in methylglyoxal-induced SH-SY5Y cells. Neurotoxicology 2022; 92:166-179. [PMID: 35985417 DOI: 10.1016/j.neuro.2022.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 10/15/2022]
Abstract
Diabetes mellitus can result in severe complications, such as neurodegenerative diseases including cognitive impairment and dementia. The glucagon-like peptide-1 (GLP-1) receptor agonist, liraglutide, is a novel antidiabetic drug with neuroprotective effects against neurodegenerative diseases. In this study, we explored the protective effect of liraglutide on SH-SY5Y cells exposed to methylglyoxal (MG), a byproduct of glucose metabolism that plays a key role in the development of diabetic encephalopathy. We found that liraglutide reduced the MG-induced oxidative stress, increased the activity of superoxide dismutase (SOD) and expression levels of P22phox, Gp91phox, and Xdh genes, and reduced reactive oxygen species (ROS) content. Metabolomics analysis based on 1H nuclear magnetic resonance showed that liraglutide induced alterations in metabolites involved in energy metabolism,including promotion of gluconeogenesis. Moreover, we found that liraglutide promoted oxidative phosphorylation and inhibited glycolysis in SH-SY5Y cells. This study revealed that liraglutide improved diabetes-related neuropathy damage by reducing the level of oxidative stress and maintaining the balance of energy metabolism, thus offering new insights into the potential mechanism of liraglutide in neuronal protection.
Collapse
Affiliation(s)
- Liqin Qi
- Department of Endocrinology, Fujian Institute of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China
| | - Ruonan Gao
- Department of Endocrinology, Fujian Institute of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China
| | - Zhou Chen
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Donghai Lin
- Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Zhiqing Liu
- Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Linxi Wang
- Department of Endocrinology, Fujian Institute of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China
| | - Lijing Lin
- Department of Endocrinology, Fujian Institute of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China
| | - Xiaoying Liu
- Department of Endocrinology, Fujian Institute of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China
| | - Xiaohong Liu
- Department of Endocrinology, Fujian Institute of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China
| | - Libin Liu
- Department of Endocrinology, Fujian Institute of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China.
| |
Collapse
|
37
|
Six I, Guillaume N, Jacob V, Mentaverri R, Kamel S, Boullier A, Slama M. The Endothelium and COVID-19: An Increasingly Clear Link Brief Title: Endotheliopathy in COVID-19. Int J Mol Sci 2022; 23:6196. [PMID: 35682871 PMCID: PMC9181280 DOI: 10.3390/ijms23116196] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 01/08/2023] Open
Abstract
The endothelium has a fundamental role in the cardiovascular complications of coronavirus disease 2019 (COVID-19). Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) particularly affects endothelial cells. The virus binds to the angiotensin-converting enzyme 2 (ACE-2) receptor (present on type 2 alveolar cells, bronchial epithelial cells, and endothelial cells), and induces a cytokine storm. The cytokines tumor necrosis factor alpha, interleukin-1 beta, and interleukin-6 have particular effects on endothelial cells-leading to endothelial dysfunction, endothelial cell death, changes in tight junctions, and vascular hyperpermeability. Under normal conditions, apoptotic endothelial cells are removed into the bloodstream. During COVID-19, however, endothelial cells are detached more rapidly, and do not regenerate as effectively as usual. The loss of the endothelium on the luminal surface abolishes all of the vascular responses mediated by the endothelium and nitric oxide production in particular, which results in greater contractility. Moreover, circulating endothelial cells infected with SARS-CoV-2 act as vectors for viral dissemination by forming clusters that migrate into the circulation and reach distant organs. The cell clusters and the endothelial dysfunction might contribute to the various thromboembolic pathologies observed in COVID-19 by inducing the formation of intravascular microthrombi, as well as by triggering disseminated intravascular coagulation. Here, we review the contributions of endotheliopathy and endothelial-cell-derived extracellular vesicles to the pathogenesis of COVID-19, and discuss therapeutic strategies that target the endothelium in patients with COVID-19.
Collapse
Affiliation(s)
- Isabelle Six
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Picardie Jules Verne University, 80025 Amiens, France; (R.M.); (S.K.); (A.B.); (M.S.)
| | - Nicolas Guillaume
- EA Hematim 4666, Picardie Jules Verne University, 80025 Amiens, France; (N.G.); (V.J.)
- Amiens-Picardie University Medical Center, Human Biology Center, 80054 Amiens, France
| | - Valentine Jacob
- EA Hematim 4666, Picardie Jules Verne University, 80025 Amiens, France; (N.G.); (V.J.)
| | - Romuald Mentaverri
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Picardie Jules Verne University, 80025 Amiens, France; (R.M.); (S.K.); (A.B.); (M.S.)
- Amiens-Picardie University Medical Center, Human Biology Center, 80054 Amiens, France
| | - Said Kamel
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Picardie Jules Verne University, 80025 Amiens, France; (R.M.); (S.K.); (A.B.); (M.S.)
- Amiens-Picardie University Medical Center, Human Biology Center, 80054 Amiens, France
| | - Agnès Boullier
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Picardie Jules Verne University, 80025 Amiens, France; (R.M.); (S.K.); (A.B.); (M.S.)
- Amiens-Picardie University Medical Center, Human Biology Center, 80054 Amiens, France
| | - Michel Slama
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Picardie Jules Verne University, 80025 Amiens, France; (R.M.); (S.K.); (A.B.); (M.S.)
- Amiens-Picardie University Medical Center, Medical Intensive Care Unit, 80054 Amiens, France
| |
Collapse
|
38
|
Song R, Qian H, Wang Y, Li Q, Li D, Chen J, Yang J, Zhong J, Yang H, Min X, Xu H, Yang Y, Chen J. Research Progress on the Cardiovascular Protective Effect of Glucagon-Like Peptide-1 Receptor Agonists. J Diabetes Res 2022; 2022:4554996. [PMID: 35434139 PMCID: PMC9012640 DOI: 10.1155/2022/4554996] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 12/25/2022] Open
Abstract
The risk of cardiovascular diseases is closely related to diabetes. Macrovascular disease is the main cause of death and disability in patients with type 2 diabetes. In recent years, the glucagon-like peptide-1 receptor agonist (GLP-1RA), a new type of hypoglycemic drug, has been shown to regulate blood sugar levels, improve myocardial ischemia, regulate lipid metabolism, improve endothelial function, and exert a protective role in the cardiovascular system. This study reviewed the protective effects of GLP-1RA on the cardiovascular system.
Collapse
Affiliation(s)
- Rui Song
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Hang Qian
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Yunlian Wang
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Qingmei Li
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Dongfeng Li
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Jishun Chen
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Jingning Yang
- Department of Immunology, School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Handong Yang
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Xinwen Min
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Hao Xu
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Yong Yang
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Jun Chen
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
- Department of Immunology, School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei 442000, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), China
- Institute of Virology, Hubei University of Medicine, Shiyan, Hubei 442000, China
| |
Collapse
|
39
|
Sazgarnejad S, Yazdanpanah N, Rezaei N. Anti-inflammatory effects of GLP-1 in patients with COVID-19. Expert Rev Anti Infect Ther 2022; 20:373-381. [PMID: 34348067 PMCID: PMC8425436 DOI: 10.1080/14787210.2021.1964955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/03/2021] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Understanding the pathogenesis and risk factors to control the coronavirus disease 2019 (COVID-19) is necessary. Due to the importance of the inflammatory pathways in the pathogenesis of COVID-19 patients, evaluating the effects of anti-inflammatory medications is important. Glucagon-like peptide 1 receptor agonist (GLP-1 RA) is awell-known glucose-lowering agent with anti-inflammatory effects. AREAS COVERED Resources were extracted from the PubMed database, using keywords such as glucagon-like peptide-1, GLP-1 RA, SARS-CoV-2, COVID-19, inflammation, in April2021. In this review, the effects of GLP-1RA in reducing inflammation and modifying risk factors of COVID-19 severe complications are discussed. However, GLP-1 is degraded by DPP-4 with aplasma half-life of about 2-5 minutes, which makes it difficult to measure GLP-1 plasma level in clinical settings. EXPERT OPINION Since no definitive treatment is available for COVID-19 so far, determining promising targets to design and/or repurpose effective medications is necessary.
Collapse
Affiliation(s)
- Saharnaz Sazgarnejad
- School Of Medicine, Tehran University Of Medical Sciences, Tehran, Iran
- Students’ Scientific Research Center, Tehran University Of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (Niima), Universal Scientific Education and Research Network (Usern), Tehran, Iran
| | - Niloufar Yazdanpanah
- School Of Medicine, Tehran University Of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (Niima), Universal Scientific Education and Research Network (Usern), Tehran, Iran
- Research Center For Immunodeficiencies, Children’s Medical Center, Tehran University Of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (Niima), Universal Scientific Education and Research Network (Usern), Tehran, Iran
- Research Center For Immunodeficiencies, Children’s Medical Center, Tehran University Of Medical Sciences, Tehran, Iran
- Department Of Immunology, School Of Medicine, Tehran University Of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
López-Cano C, Ciudin A, Sánchez E, Tinahones FJ, Barbé F, Dalmases M, García-Ramírez M, Soto A, Gaeta AM, Pellitero S, Martí R, Hernández C, Simó R, Lecube A. Liraglutide Improves Forced Vital Capacity in Individuals With Type 2 Diabetes: Data From the Randomized Crossover LIRALUNG Study. Diabetes 2022; 71:315-320. [PMID: 34737187 DOI: 10.2337/db21-0688] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022]
Abstract
To evaluate the effect of liraglutide, a glucagon-like peptide 1 receptor agonist, on pulmonary function and serum levels of surfactant protein D (SP-D) in type 2 diabetes. A double-blind, randomized, crossover, placebo-controlled clinical trial comprising 76 patients with a baseline forced expiratory volume in 1 s <90% of that predicted. Liraglutide was administered for 7 weeks (2 weeks of titration plus 5 weeks at 1.8 mg daily). This short duration was intentional to minimize weight loss as a potential confounding factor. Serum level of SP-D was used as a biomarker of alveolar-capillary barrier integrity. Liraglutide exerted a positive impact on forced vital capacity (FVC) in comparison with placebo (ΔFVC 5.2% of predicted [from 0.8 to 9.6]; P = 0.009). No differences in the other pulmonary variables were observed. Participants under liraglutide treatment also experienced a decrease in serum SP-D (P = 0.038). The absolute change in FVC correlated with final serum SP-D in participants receiving liraglutide (r = -0.313, P = 0.036). Stepwise multivariate regression analysis showed that final serum SP-D independently predicted changes in FVC. In conclusion, liraglutide increased FVC in patients with type 2 diabetes. This effect was associated with a significant decrease of circulating SP-D, thus pointing to a beneficial effect in the alveolar-capillary function.
Collapse
Affiliation(s)
- Carolina López-Cano
- Endocrinology and Nutrition Department, Hospital Universitari Arnau de Vilanova, and Obesity, Diabetes and Metabolism Research Group, Institut de Recerca Biomèdica de Lleida, Universitat de Lleida. Lleida, Spain
| | - Andreea Ciudin
- Endocrinology and Nutrition Department. Hospital Universitari Vall d'Hebron, and Diabetes and Metabolism Research Unit, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Enric Sánchez
- Endocrinology and Nutrition Department, Hospital Universitari Arnau de Vilanova, and Obesity, Diabetes and Metabolism Research Group, Institut de Recerca Biomèdica de Lleida, Universitat de Lleida. Lleida, Spain
| | - Francisco J Tinahones
- Endocrinology and Nutrition Department, Hospital Universitario Virgen de la Victoria de Málaga, Institute of Biomedical Research of Malaga, University of Malaga, Málaga, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Ferran Barbé
- Respiratory Department, Hospital Universitari Arnau de Vilanova-Santa María, and Translational Research in Respiratory Medicine, Institut de Recerca Biomèdica de Lleida, Universitat de Lleida. Lleida, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Mireia Dalmases
- Respiratory Department, Hospital Universitari Arnau de Vilanova-Santa María, and Translational Research in Respiratory Medicine, Institut de Recerca Biomèdica de Lleida, Universitat de Lleida. Lleida, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta García-Ramírez
- Endocrinology and Nutrition Department. Hospital Universitari Vall d'Hebron, and Diabetes and Metabolism Research Unit, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Alfonso Soto
- Endocrinology and Nutrition Department, Hospital Universitario A Coruña, A Coruña, Spain
| | - Anna Michela Gaeta
- Respiratory Department, Hospital Universitari Arnau de Vilanova-Santa María, and Translational Research in Respiratory Medicine, Institut de Recerca Biomèdica de Lleida, Universitat de Lleida. Lleida, Spain
| | - Silvia Pellitero
- Department of Endocrinology and Nutrition, Hospital Universitari Germans Trias i Pujol, Germans Trias i Pujol Research Institute, Badalona, Spain
| | - Raquel Martí
- Endocrinology and Nutrition Department, Hospital Universitari Arnau de Vilanova, and Obesity, Diabetes and Metabolism Research Group, Institut de Recerca Biomèdica de Lleida, Universitat de Lleida. Lleida, Spain
| | - Cristina Hernández
- Endocrinology and Nutrition Department. Hospital Universitari Vall d'Hebron, and Diabetes and Metabolism Research Unit, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael Simó
- Endocrinology and Nutrition Department. Hospital Universitari Vall d'Hebron, and Diabetes and Metabolism Research Unit, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Albert Lecube
- Endocrinology and Nutrition Department, Hospital Universitari Arnau de Vilanova, and Obesity, Diabetes and Metabolism Research Group, Institut de Recerca Biomèdica de Lleida, Universitat de Lleida. Lleida, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
41
|
Baek CH, Kim H, Moon SY, Yang WS. Liraglutide, a glucagon-like peptide-1 receptor agonist, induces ADAM10-dependent ectodomain shedding of RAGE via AMPK activation in human aortic endothelial cells. Life Sci 2022; 292:120331. [PMID: 35041837 DOI: 10.1016/j.lfs.2022.120331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 10/19/2022]
Abstract
AIMS Glucagon-like peptide-1 alleviates the deleterious effects of advanced glycation end products (AGEs), but the underlying mechanisms are not fully understood. In this study, we investigated the protective mechanism using liraglutide, a glucagon-like peptide-1 receptor agonist, in cultured human aortic endothelial cells (HAECs). MAIN METHODS Following liraglutide treatment in HAECs, the receptor for AGEs (RAGE) was measured in both cell lysate and culture supernatant, the cytosolic free Ca2+ level was monitored using Fluo-4 AM, the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) was analyzed, and immunofluorescence staining was used to visualize a disintegrin and metalloprotease 10 (ADAM10) on the cell surface. KEY FINDINGS Liraglutide (100 nM) induced ectodomain shedding of RAGE within 30 min and inhibited the expression of intercellular adhesion molecule-1 (ICAM-1) induced by AGEs of bovine serum albumin (AGE-BSA). Further experiments revealed that liraglutide rapidly increased extracellular Ca2+ influx through L-type calcium channels and activated AMPK, resulting in translocation of ADAM10 to the cell surface, whereas siRNA-mediated ADAM10 depletion prevented liraglutide-induced ectodomain shedding of RAGE and eliminated liraglutide's inhibitory effect on AGE-BSA-induced ICAM-1 expression. Moreover, compound C-mediated AMPK inhibition and siRNA-mediated AMPK depletion both prevented ADAM10 translocation to the cell surface and ADAM10-mediated ectodomain shedding of RAGE. SIGNIFICANCE Liraglutide reduces the number of intact RAGE on the cell surface by inducing ADAM10-mediated ectodomain shedding, which decreases the inflammatory effects of AGEs. AMPK activated by extracellular Ca2+ influx is critically involved in the translocation of ADAM10 to the cell surface, where it cleaves RAGE.
Collapse
Affiliation(s)
- Chung Hee Baek
- Division of Nephrology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyosang Kim
- Division of Nephrology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Soo Young Moon
- Asan Institute for Life Sciences, Seoul, Republic of Korea
| | - Won Seok Yang
- Division of Nephrology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
42
|
Ridout KK, Syed SA, Kao HT, Porton B, Rozenboym AV, Tang J, Fulton S, Perera T, Jackowski AP, Kral JG, Tyrka AR, Coplan J. Relationships Between Telomere Length, Plasma Glucagon-like Peptide 1, and Insulin in Early-Life Stress–Exposed Nonhuman Primates. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2022; 2:54-60. [DOI: 10.1016/j.bpsgos.2021.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022] Open
|
43
|
Avogaro A, Bonora B, Fadini GP. Managing diabetes in diabetic patients with COVID: where do we start from? Acta Diabetol 2021; 58:1441-1450. [PMID: 34173070 PMCID: PMC8231743 DOI: 10.1007/s00592-021-01739-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 05/06/2021] [Indexed: 12/15/2022]
Abstract
AIMS COVID-19 has and still is sweeping away the national health systems worldwide. In this review, we sought to determine the evidence base proofs on the antidiabetic treatment capable to reduce the risk of COVID-19-related mortality. METHODS We have performed a systematic search of published articles using PubMed, and EMBASE from March 2020 to March 31st, 2021. We excluded editorials, commentary, letters to the editor, reviews, and studies that did not have mortality as an outcome. For metformin and insulin only, we performed a meta-analysis using Cochrane RevMan 5.2. RESULTS Among antidiabetic drugs, metformin was the only drug associated with a reduced risk of mortality. Conversely, insulin appears associated with an increased risk. The other classes of drugs were neutral. CONCLUSIONS The totality of articles reports retrospective data strongly affected by "channeling bias" so that most of the existing results on each class of drugs are driven by the phenotype of patients likely to receive that specific drug by prescription.
Collapse
Affiliation(s)
- Angelo Avogaro
- Department of Medicine, Unit of Metabolic Disease, University of Padova, Via Giustiniani 2, 35128, Padova, Italy.
| | - Benedetta Bonora
- Department of Medicine, Unit of Metabolic Disease, University of Padova, Via Giustiniani 2, 35128, Padova, Italy
| | - Gian Paolo Fadini
- Department of Medicine, Unit of Metabolic Disease, University of Padova, Via Giustiniani 2, 35128, Padova, Italy
| |
Collapse
|
44
|
He ST, Wang DX, Meng JJ, Cheng XF, Bi Q, Zhong GQ, Tu RH. HSP90-Mediates Liraglutide Preconditioning-Induced Cardioprotection by Inhibiting C5a and NF-κB. J INVEST SURG 2021; 35:1012-1020. [PMID: 34670452 DOI: 10.1080/08941939.2021.1989729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE We previously showed that HSP90 is involved in postconditioning cardioprotection by inhibiting complement C5a. Here, we investigated whether HSP90-mediated C5a/NF-κB inhibition is responsible for the cardioprotection conferred by liraglutide. METHODS Rat hearts underwent a 30 min occlusion of the anterior descending coronary artery, after which reperfusion was performed for 2 h. A total of 100 rats were randomly assigned to the following groups: ischemia/reperfusion (I/R), sham, liraglutide preconditioning (LP, liraglutide, 0.18 mg/kg, intravenously, 12 h before ischemia), HSP90 inhibitor geldanamycin (GA, 1 mg/kg, intraperitoneally, 30 min before ischemia) plus LP, and C5a receptor antagonist PMX53 (1 mg/kg, intravenously, 30 min before ischemia) plus LP. Cardiac injury, C5a/NF-κB activation, and inflammation were investigated. RESULTS LP significantly attenuated I/R-induced cardiomyocyte apoptosis, infarct size, and secretion of creatine kinase-MB, lactate dehydrogenase and cardiac troponin I. These effects were complemented by decreased C5a levels, nuclear factor (NF)-κB signaling, inflammatory cytokine expression, and increased HSP90 levels. GA, an HSP90 inhibitor, promotes C5a activation, NF-κB signaling, and inflammation and suppresses cardioprotection by LP. By contrast, PMX53, a C5a inhibitor, suppressed C5a activation, NF-κB signaling, and inflammation, and enhanced cardioprotection by LP. CONCLUSION HSP90 markedly contributes to LP cardioprotection by inhibiting inflammatory responsesand C5a/NF-κB signaling , ultimately attenuating I/R-induced cardiomyocyte apoptosis by suppressing the proapoptotic factor Bax, and inducing the anti-apoptotic factor Bcl2.
Collapse
Affiliation(s)
- Shi-Tao He
- Department of Cardiology, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Dong-Xiao Wang
- Department of Cardiology, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Jian-Jun Meng
- Geriatric Healthcare Center, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Xiao-Fang Cheng
- Department of Cardiology, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Qi Bi
- Department of Cardiology, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Guo-Qiang Zhong
- Department of Cardiology, First Affiliated Hospital, Guangxi Medical University, Nanning, China.,Guang Xi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Disease Control and Prevention, Nanning, China.,Guang Xi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning, China
| | - Rong-Hui Tu
- Guang Xi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Disease Control and Prevention, Nanning, China.,Guang Xi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning, China.,Department of Geriatric Cardiology, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| |
Collapse
|
45
|
Kikkawa K, Hoshi H, Isoda A, Okada K, Okada J, Watanabe T, Yamada E, Ohshima K, Okada S. Long-Acting Glucagon-Like Peptide-1 Receptor Agonist-Induced Rheumatoid Arthritis in a Patient with Type 2 Diabetes Mellitus. DUBAI DIABETES AND ENDOCRINOLOGY JOURNAL 2021. [DOI: 10.1159/000519008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
<b><i>Case Presentation:</i></b> We report a case of a male patient with rheumatoid arthritis (RA) diagnosed during treatment with a long-acting glucagon-like peptide-1 (GLP-1) receptor agonist (once-weekly dulaglutide injection). At 3 months after dulaglutide initiation, he began experiencing left shoulder pain that continued despite treatment by an acupuncturist, indicating that the pain was not due to periarthritis scapulohumeralis. His HbA1c level was 7.3% at the 3-month follow-up. At the 6-month follow-up visit, the HbA1c level was 8.2%, the low-density lipoprotein cholesterol level was 132 mg/dL, and he expressed right shoulder pain. After 3 months, the HbA1c level was 9.0%, and his bilateral shoulder pain worsened, due to which he could not use his arms well. Routine laboratory testing revealed no other abnormalities at that time. However, several inflammatory and serological RA markers were detected, including an erythrocyte sedimentation rate of 73 (normal range, <10) mm/h, a C-reactive protein level of 1.89 (normal range, 0.0–0.14) mg/dL, a rheumatoid factor level of 26 (normal range, 0–15) IU/mL, and an anti-cyclic citrullinated protein antibody level of 195 (normal range, <4.5) U/mL. However, tests for antinuclear antibodies, anti-SS-A/Ro antibodies, and anti-RNP antibodies showed negative results. He was diagnosed with RA, and salazosulfapyridine (500 mg/day) was started. At 1 month after RA treatment initiation, his shoulder pain began showing improvement and improved HbA1c levels from 9.0% to 8.0%. <b><i>Discussion:</i></b> Thus, this case report suggests an association between RA and GLP-1. Based on a literature search in PubMed, we believe that this case report is the first to demonstrate that a patient with type 2 diabetes mellitus treated with a long-acting GLP-1 receptor agonist had RA. However, further research is needed to determine whether RA is one of the adverse effects of long-acting GLP-1 receptor agonists. <b><i>Conclusion:</i></b> During treatment with long-acting GLP-1 receptor agonists, it is necessary to consider the possibility of RA as a differential diagnosis when patients complain of persistent joint pain.
Collapse
|
46
|
Wang W, Zhang C. Targeting β-cell dedifferentiation and transdifferentiation: opportunities and challenges. Endocr Connect 2021; 10:R213-R228. [PMID: 34289444 PMCID: PMC8428079 DOI: 10.1530/ec-21-0260] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/21/2021] [Indexed: 12/02/2022]
Abstract
The most distinctive pathological characteristics of diabetes mellitus induced by various stressors or immune-mediated injuries are reductions of pancreatic islet β-cell populations and activity. Existing treatment strategies cannot slow disease progression; consequently, research to genetically engineer β-cell mimetics through bi-directional plasticity is ongoing. The current consensus implicates β-cell dedifferentiation as the primary etiology of reduced β-cell mass and activity. This review aims to summarize the etiology and proposed mechanisms of β-cell dedifferentiation and to explore the possibility that there might be a time interval from the onset of β-cell dysfunction caused by dedifferentiation to the development of diabetes, which may offer a therapeutic window to reduce β-cell injury and to stabilize functionality. In addition, to investigate β-cell plasticity, we review strategies for β-cell regeneration utilizing genetic programming, small molecules, cytokines, and bioengineering to transdifferentiate other cell types into β-cells; the development of biomimetic acellular constructs to generate fully functional β-cell-mimetics. However, the maturation of regenerated β-cells is currently limited. Further studies are needed to develop simple and efficient reprogramming methods for assembling perfectly functional β-cells. Future investigations are necessary to transform diabetes into a potentially curable disease.
Collapse
Affiliation(s)
- Wenrui Wang
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Chuan Zhang
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, People’s Republic of China
- Correspondence should be addressed to C Zhang:
| |
Collapse
|
47
|
Yaribeygi H, Farrokhi FR, Abdalla MA, Sathyapalan T, Banach M, Jamialahmadi T, Sahebkar A. The Effects of Glucagon-Like Peptide-1 Receptor Agonists and Dipeptydilpeptidase-4 Inhibitors on Blood Pressure and Cardiovascular Complications in Diabetes. J Diabetes Res 2021; 2021:6518221. [PMID: 34258291 PMCID: PMC8263148 DOI: 10.1155/2021/6518221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) agonists are a class of newly introduced antidiabetic medications that potentially lower blood glucose by several molecular pathways. DPP-4 inhibitors are the other type of novel antidiabetic medications which act by preventing GLP-1 inactivation and thereby increasing the activity levels of GLP-1, leading to more glucose-induced insulin release from islet β-cells and suppression of glucagon release. Most patients with diabetes have concurrent hypertension and cardiovascular disorder. If antihyperglycemic agents can attenuate the risk of hypertension and cardiovascular disease, they will amplify their overall beneficial effects. There is conflicting evidence on the cardiovascular benefits of GLP-1R induction in laboratory studies and clinical trials. In this study, we have reviewed the main molecular mechanisms by which GLP-1R induction may modulate the cardiovascular function and the results of cardiovascular outcome clinical trials.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Farin Rashid Farrokhi
- Chronic Kidney Disease Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, UK
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Zeromskiego 113, Lodz, Poland
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
48
|
Gan Y, Tong J, Zhou X, Long X, Pan Y, Liu W, Zhao X. Hepatoprotective Effect of Lactobacillus plantarum HFY09 on Ethanol-Induced Liver Injury in Mice. Front Nutr 2021; 8:684588. [PMID: 34249992 PMCID: PMC8264191 DOI: 10.3389/fnut.2021.684588] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/28/2021] [Indexed: 01/30/2023] Open
Abstract
Lactobacillus plantarum is a bacterial strain that is used as a probiotic with health-promoting effects. Our study investigated the hepatoprotective effect of Lactobacillus plantarum HFY09 (LP-HFY09) in mice with ethanol-induced liver injury. The protection afforded by LP-HFY09 was evaluated by observing the morphology of hepatic tissue and measuring liver lipid indexes and function indexes, levels of anti-oxidative enzymes, and anti-inebriation enzymes, as well as oxidative metabolism-related gene expression. Gavage administration of LP-HFY09 [1 × 109 CFU/kg body weight (bw)] limited the loss of bw, alcohol damage to the liver, and maintained the normal hepatic tissue morphology. Lactobacillus plantarum HFY09 intervention in ethanol-induced mice led to decreases in serum triglyceride (TG), total cholesterol (TC), aspartic transaminase, alanine transaminase, hyaluronidase (HAase), and precollagen III (PC III), and increases in liver alcohol dehydrogenase (ADH), and acetaldehyde dehydrogenase (ALDH). Lactobacillus plantarum HFY09 assisted with alleviating inflammation by elevating the level of interleukin 10 (IL-10) and decreasing the levels of pro-inflammatory factors [IL-6, IL-1β, and tumor necrosis factor-α (TNF)-α]. Lactobacillus plantarum HFY09 significantly elevated hepatic levels of superoxide dismutase (SOD) and glutathione (GSH), and decreased liver malondialdehyde (MDA) from 3.45 to 1.64 nmol/mg protein. Lactobacillus plantarum HFY09 exhibited an overall strong regulatory effect on liver protection when compared to that of commercial Lactobacillus delbrueckii subsp. bulgaricus. The hepatoprotective effect of LP-HFY09 was reflected by the upregulated expression of peroxisome proliferator activated-receptors α, SOD1, SOD2, glutathione peroxidase (GSH-Px), nicotinamide adenine dinucleotide phosphate (NADPH), and catalase (CAT), and the downregulated expression of cyclooxygenase-1 (COX1), c-Jun N-terminal kinase (JNK), and extracellular regulated protein kinases (ERK). Administration of LP-HFY09 at a concentration of 1.0 × 109 CFU/kg bw could be a potential intervention, for people who frequently consume alcohol.
Collapse
Affiliation(s)
- Yi Gan
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Jin Tong
- Department of Gastroenterology and Hepatology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China
| | - Xianrong Zhou
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Xingyao Long
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Yanni Pan
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Weiwei Liu
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| |
Collapse
|
49
|
Sivalingam S, Larsen EL, van Raalte DH, Muskiet MHA, Smits MM, Tonneijck L, Joles JA, von Scholten BJ, Zobel EH, Persson F, Henriksen T, Diaz LJ, Hansen TW, Poulsen HE, Rossing P. The effect of liraglutide and sitagliptin on oxidative stress in persons with type 2 diabetes. Sci Rep 2021; 11:10624. [PMID: 34012064 PMCID: PMC8134438 DOI: 10.1038/s41598-021-90191-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/06/2021] [Indexed: 12/15/2022] Open
Abstract
Glucagon-like peptide 1 receptor agonists have shown cardioprotective effects which have been suggested to be mediated through inhibition of oxidative stress. We investigated the effect of treatment with a glucagon-like peptide 1 receptor agonist (liraglutide) on oxidative stress measured as urinary nucleic acid oxidation in persons with type 2 diabetes. Post-hoc analysis of two independent, randomised, placebo-controlled and double-blinded clinical trials. In a cross-over study where persons with type 2 diabetes and microalbuminuria (LIRALBU, n = 32) received liraglutide (1.8 mg/day) or placebo for 12 weeks in random order, separated by 4 weeks of wash-out. In a parallel-grouped study where obese persons with type 2 diabetes (SAFEGUARD, n = 56) received liraglutide (1.8 mg/day), sitagliptin (100 mg/day) or placebo for 12 weeks. Endpoints were changes in the urinary markers of DNA oxidation (8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG)) and RNA oxidation [8-oxo-7,8-dihydroguanosine (8-oxoGuo)]. In LIRALBU, we observed no significant differences between treatment periods in urinary excretion of 8-oxodG [0.028 (standard error (SE): 0.17] nmol/mmol creatinine, p = 0.87) or of 8-oxoGuo [0.12 (0.12) nmol/mmol creatinine, p = 0.31]. In SAFEGUARD, excretion of 8-oxodG was not changed in the liraglutide group [2.8 (− 8.51; 15.49) %, p = 0.62] but a significant decline was demonstrated in the placebo group [12.6 (− 21.3; 3.1) %, p = 0.02], resulting in a relative increase in the liraglutide group compared to placebo (0.16 nmol/mmol creatinine, SE 0.07, p = 0.02). Treatment with sitagliptin compared to placebo demonstrated no significant difference (0.07 (0.07) nmol/mmol creatinine, p = 0.34). Nor were any significant differences for urinary excretion of 8-oxoGuo liraglutide vs placebo [0.09 (SE: 0.07) nmol/mmol creatinine, p = 0.19] or sitagliptin vs placebo [0.07 (SE: 0.07) nmol/mmol creatinine, p = 0.35] observed. This post-hoc analysis could not demonstrate a beneficial effect of 12 weeks of treatment with liraglutide or sitagliptin on oxidatively generated modifications of nucleic acid in persons with type 2 diabetes.
Collapse
Affiliation(s)
- Suvanjaa Sivalingam
- Department of Diabetes Complications Research, Steno Diabetes Center Copenhagen, Niels Steensens Vej 2, 2820, Gentofte, Denmark.
| | - Emil List Larsen
- Department of Clinical Pharmacology, Bispebjerg Frederiksberg Hospitals, University of Copenhagen, Copenhagen, Denmark
| | - Daniel H van Raalte
- Department of Internal Medicine, Diabetes Center, Amsterdam Medical Center, Location VUMC, Amsterdam, The Netherlands
| | - Marcel H A Muskiet
- Department of Internal Medicine, Diabetes Center, Amsterdam Medical Center, Location VUMC, Amsterdam, The Netherlands
| | - Mark M Smits
- Department of Internal Medicine, Diabetes Center, Amsterdam Medical Center, Location VUMC, Amsterdam, The Netherlands
| | - Lennart Tonneijck
- Department of Internal Medicine, Diabetes Center, Amsterdam Medical Center, Location VUMC, Amsterdam, The Netherlands
| | - Jaap A Joles
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - Bernt Johan von Scholten
- Department of Diabetes Complications Research, Steno Diabetes Center Copenhagen, Niels Steensens Vej 2, 2820, Gentofte, Denmark
| | - Emilie Hein Zobel
- Department of Diabetes Complications Research, Steno Diabetes Center Copenhagen, Niels Steensens Vej 2, 2820, Gentofte, Denmark
| | - Frederik Persson
- Department of Diabetes Complications Research, Steno Diabetes Center Copenhagen, Niels Steensens Vej 2, 2820, Gentofte, Denmark
| | - Trine Henriksen
- Department of Clinical Pharmacology, Bispebjerg Frederiksberg Hospitals, University of Copenhagen, Copenhagen, Denmark
| | - Lars Jorge Diaz
- Department of Diabetes Complications Research, Steno Diabetes Center Copenhagen, Niels Steensens Vej 2, 2820, Gentofte, Denmark
| | - Tine W Hansen
- Department of Diabetes Complications Research, Steno Diabetes Center Copenhagen, Niels Steensens Vej 2, 2820, Gentofte, Denmark
| | - Henrik Enghusen Poulsen
- Department of Clinical Pharmacology, Bispebjerg Frederiksberg Hospitals, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Peter Rossing
- Department of Diabetes Complications Research, Steno Diabetes Center Copenhagen, Niels Steensens Vej 2, 2820, Gentofte, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
50
|
Antioxidative Potentials of Incretin-Based Medications: A Review of Molecular Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9959320. [PMID: 34007411 PMCID: PMC8099522 DOI: 10.1155/2021/9959320] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/11/2021] [Accepted: 04/16/2021] [Indexed: 12/16/2022]
Abstract
Glucagon-like peptide 1 receptor agonists and dipeptidyl-peptidase 4 inhibitors are medications used for managing diabetes, mimicking the metabolic effects of incretin hormones. Recent evidence suggests that these medications have antioxidative potentials in the diabetic milieu. The pathophysiology of most diabetic complications involves oxidative stress. Therefore, if incretin-based antidiabetic medications can alleviate the free radicals involved in oxidative stress, they can potentially provide further therapeutic effects against diabetic complications. However, the molecular mechanisms by which these medications protect against oxidative stress are not fully understood. In the current review, we discuss the potential molecular mechanisms behind these pharmacologic agents' antioxidative properties.
Collapse
|