1
|
El-Sawaf EA, Amin BH, Yosri M, Bayoumi H, Hassan MM. The protective effect of Ambrosia maritima versus vitamin D3 against gentamicin-induced acute cortical kidney injury in adult male albino rats: Histological and immunohistochemical study. Tissue Cell 2025; 95:102939. [PMID: 40300308 DOI: 10.1016/j.tice.2025.102939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 05/01/2025]
Abstract
Gentamicin (GM) is a broad-spectrum antibiotic widely used for severe bacterial infections, but itis associated with acute nephrotoxicity. Ambrosia maritima L. is an annual herbaceous plant that has avariety of medicinal and antioxidant activities. Vitamin D3 is involved in a multitude of biological functions and essential antioxidant pathways. This study aims to investigate the protective effects of Damsissa (Ambrosia maritima) versus vitamin D3 against GM-induced nephrotoxicity using 72 male rats that were randomly divided into six groups: control, Damsissa (100 mg/kg/day), vitamin D3 (1000 IU/kg/day), GM(100 mg/kg/day for 7 days), GM + Damsissa, and GM + vitamin D3. Renal function, oxidative stress biomarkers (MDA, CAT, SOD, GSH), cytokine levels (IL-1β, IL-6, TNF-α, IL-4), and gene expression (Caspase-3, Keap1, PPARγ, Nrf2) were assessed. Histopathological and ultrastructural kidney analyses were conducted using H&E, Masson's trichrome, PCNA staining, and transmission electron microscopy. Blood samples were tested for renal and liver markers (creatinine, BUN, AST, ALT). Damsissa enhanced survival rates, returned the renal indices to near normal, and ameliorated pathological changes based on immunohistopathological and ultrastructural results. They further reduced pro-inflammatory cytokine production, optimized oxidative stress markers, and normalized gene expression levels. Both treatments exhibited abundant antioxidant and anti-inflammatory effects, which remarkably reduced GM-induced acute kidney injury. These results suggest that both Damsissa and vitamin D3 may exert protective effects against drug-induced nephrotoxicity.
Collapse
Affiliation(s)
- Eman A El-Sawaf
- Department of Anatomy and Embryology, faculty of medicine, Helwan University, Cairo, Egypt
| | - Basma H Amin
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo 11787, Egypt
| | - Mohammed Yosri
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo 11787, Egypt.
| | - Heba Bayoumi
- Department of Histology and Cell Biology, faculty of medicine, Benha University, Cairo, Egypt
| | - Marwa M Hassan
- Department of Anatomy and Embryology, faculty of medicine, Helwan University, Cairo, Egypt
| |
Collapse
|
2
|
Li F, Zhao X. Astragaloside IV regulates FOXM1 deubiquitination to ameliorate trophoblast damage caused by high glucose. Hereditas 2025; 162:104. [PMID: 40514721 DOI: 10.1186/s41065-025-00465-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 05/25/2025] [Indexed: 06/16/2025] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) is a common metabolic complication during pregnancy that poses significant risks to both the pregnant woman and her fetus. Astragaloside IV (Ast IV) belongs to the class of triterpenoid saponins and exhibits important physiological roles in various aspects, including antidiabetic, antioxidant, and antiviral effects. The main objective of this study is to investigate the effects of Ast IV on trophoblast damage caused by high glucose (HG) and its underlying mechanism of action. METHODS Cell viability was determined by the CCK8 assay. The levels of oxidative stress in cells were determined by lactate dehydrogenase (LDH), malondialdehyde (MDA), and reactive oxygen species (ROS) kits. Ferroptosis in cells was assessed by the iron content kit. Gene expression levels were detected by real-time quantitative reverse transcription PCR (qRT-PCR) and western blot. The protein stability of Forkhead box protein M1 (FOXM1) was determined by the cycloheximide (CHX) assay. The ubiquitination level of FOXM1 was detected by the immunoprecipitation assay. RESULTS Ast IV alleviated the inhibitory effect of HG on the proliferation of HTR-8/SVneo cells and reduced HG-induced oxidative stress and ferroptosis. Ast IV was able to decrease the ubiquitination of FOXM1, thereby ensuring the stability of its expression. The overexpression of FOXM1 significantly mitigated the inhibitory effect of HG on the viability of HTR-8/SVneo cells and concurrently decreased the occurrence of HG-induced oxidative stress and ferroptosis processes. Conversely, knockdown of FOXM1 diminished the protective effect of Ast IV on HTR-8/SVneo cells. CONCLUSIONS Ast IV ameliorates HG-induced trophoblast injury by modulating deubiquitination of FOXM1, which provides a new insight into the treatment of GDM.
Collapse
Affiliation(s)
- Fan Li
- Department of Obstetrics and Gynecology, Ankang People's Hospital, No.38 Jiangbei Avenve, Hanbin District, Ankang, 725000, China
| | - Xiaofang Zhao
- Department of Obstetrics and Gynecology, Ankang People's Hospital, No.38 Jiangbei Avenve, Hanbin District, Ankang, 725000, China.
| |
Collapse
|
3
|
Adedara IA, Weis GCC, Monteiro CS, Soares FAA, Rocha JBT, Schetinger MRC, Emanuelli T, Aschner M. Versatility of Caenorhabditis elegans as a Model Organism for Evaluating Foodborne Neurotoxins and Food Bioactive Compounds in Nutritional Neuroscience. Mol Neurobiol 2025; 62:7205-7229. [PMID: 39863742 DOI: 10.1007/s12035-025-04705-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
Epidemiological evidence has shown that the regular ingestion of vegetables and fruits is associated with reduced risk of developing chronic diseases. The introduction of the 3Rs (replacement, reduction, and refinement) principle into animal experiments has led to the use of valid, cost-effective, and efficient alternative and complementary invertebrate animal models which are simpler and lower in the phylogenetic hierarchy. Caenorhabditis elegans (C. elegans), a nematode with a much simpler anatomy and physiology compared to mammals, share similarities with humans at the cellular and molecular levels, thus making it a valid model organism in neurotoxicology. This review explores the versatility of C. elegans in elucidating the neuroprotective mechanisms elicited by food bioactive compounds against neurotoxic effects of food- and environmental-related contaminants. Several signaling pathways linked to the molecular basis of neuroprotection exerted by bioactive compounds in chemically induced or transgenic C. elegans models of neurodegenerative diseases are also discussed. Specifically, the modulatory effects of bioactive compounds on the DAF-16/FoxO and SKN-1/Nrf2 signaling pathways, stress resistance- and autophagy-related genes, and antioxidant defense enzyme activities were highlighted. Altogether, C. elegans represent a valuable model in nutritional neuroscience for the identification of promising neuroprotective agents and neurotherapeutic targets which could help in overcoming the limitations of current therapeutic agents for neurotoxicity and neurodegenerative diseases.
Collapse
Affiliation(s)
- Isaac A Adedara
- Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, Camobi, Santa Maria, RS, 97105-900, Brazil.
| | - Grazielle C C Weis
- Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Camila S Monteiro
- Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Felix A A Soares
- Department of Biochemistry and Molecular Biology, Center for Natural and Exact Sciences, Federal University of Santa Maria, Camobi, Santa Maria, 97105-900, Brazil
| | - Joao B T Rocha
- Department of Biochemistry and Molecular Biology, Center for Natural and Exact Sciences, Federal University of Santa Maria, Camobi, Santa Maria, 97105-900, Brazil
| | - Maria R C Schetinger
- Department of Biochemistry and Molecular Biology, Center for Natural and Exact Sciences, Federal University of Santa Maria, Camobi, Santa Maria, 97105-900, Brazil
| | - Tatiana Emanuelli
- Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| |
Collapse
|
4
|
Xu W, Wang L, Chen R, Liu Y, Chen W. Pyroptosis and its role in intestinal ischemia-reperfusion injury: a potential therapeutic target. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04261-1. [PMID: 40372474 DOI: 10.1007/s00210-025-04261-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Accepted: 05/02/2025] [Indexed: 05/16/2025]
Abstract
Intestinal ischemia-reperfusion injury (II/RI) is a critical acute condition characterized by complex pathological mechanisms, including various modes of cell death. Among these, pyroptosis has garnered significant attention in recent years. This review explores the characteristics, molecular mechanisms, and implications of pyroptosis in II/RI, with a focus on therapeutic strategies targeting the pyroptosis pathway. Key processes such as NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome activation, caspase-1 activation, and gasdermin D (GSDMD)-mediated membrane pore formation are identified as central to pyroptosis. Compounds like MCC950, CY-09, metformin, and curcumin have shown promise in attenuating II/RI in preclinical studies by modulating these pathways. However, challenges remain in understanding non-canonical pyroptosis pathways, unraveling the exact mechanisms of GSDMD-induced pore formation, and translating these findings into clinical applications. Addressing these gaps will be crucial for developing innovative and effective treatments for II/RI.
Collapse
Affiliation(s)
- Wenping Xu
- Department of Anesthesiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650032, China
| | - Lang Wang
- Department of Anesthesiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650032, China
| | - Ruili Chen
- Department of Anesthesiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650032, China
| | - Yi Liu
- Department of Anesthesiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650032, China
| | - Wendong Chen
- Department of Anesthesiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650032, China.
| |
Collapse
|
5
|
Ma SD, Yuan R, Huang MW, Xin QQ, Miao Y, Zhu YZ, Chen KJ, Cong WH. Natural Anti-aging Herb: Role and Potential of Astragalus membranaceus. Chin J Integr Med 2025:10.1007/s11655-025-4009-4. [PMID: 40366565 DOI: 10.1007/s11655-025-4009-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2024] [Indexed: 05/15/2025]
Affiliation(s)
- Shu-Dong Ma
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Rong Yuan
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Mei-Wen Huang
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Qi-Qi Xin
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Yu Miao
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Yi-Zhun Zhu
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Ke-Ji Chen
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Wei-Hong Cong
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau, 999078, China.
| |
Collapse
|
6
|
Wang Y, Yang Q, Lu Y, Jiang L, Zhang R, Jiang S, Xu Y, Xu S, Geng Z. Network pharmacology and experimental verification to explore the molecular mechanisms of Astragaloside IV against diabetic encephalopathy. Biochem Biophys Res Commun 2025; 763:151778. [PMID: 40239538 DOI: 10.1016/j.bbrc.2025.151778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/26/2025] [Accepted: 04/07/2025] [Indexed: 04/18/2025]
Abstract
PURPOSE Diabetic encephalopathy (DE) is a neurological complication caused by diabetes mellitus, and its underlying mechanism has not been fully clarified. Astragaloside IV (AS-IV) has been demonstrated to have treatment effects on multiple neurologic diseases. The objective of this research is to explore the role and underlying mechanism of AS-IV in the treatment of DE, utilizing the methods of network pharmacology and experimental validation. METHODS Multiple public databases were used to search for the targets of AS-IV. Gene Expression Omnibus (GEO) dataset (GSE16135) was analyzed to identify differentially expressed genes (DEGs) in DE. The Venn diagram was employed to determine the intersecting genes. These genes were considered potential therapeutic targets of AS-IV in DE and were annotated using bioinformatics techniques. Subsequently, a protein-protein interaction (PPI) network was constructed utilizing Cytoscape software to identify the core targets of action. Additionally, molecular docking was conducted to validate the binding affinity of AS-IV to the main targets. Finally, we validated the predictive outcomes of network pharmacology in a DE rat model induced by intraperitoneal injection of streptozotocin (STZ). RESULTS Through the application of network pharmacology and bioinformatics analyses, we discovered the top two hub targets (EGFR and JAK2). Subsequent molecular docking analysis showed that AS-IV was precisely located within the binding sites of both EGFR and JAK2, with binding energies of -8.18 kJ/mol and -10.94 kJ/mol, respectively. Behavioral experiments demonstrated that the treated rats showed improvements in cognitive impairment. Following AS-IV treatment, there was a significant reduction in amyloid-β (Aβ) plaques deposition and neurofibrillary tangles in the hippocampal tissue of DE rats. Furthermore, TUNEL staining and Western blot analyses demonstrated that AS-IV suppressed neuronal apoptosis and inhibited the activation of the EGFR/JAK2/STAT3 signaling pathway. CONCLUSION These results demonstrated that the AS-IV has the potential to improve cognitive impairment in DE rats by mitigating neuronal apoptosis through the EGFR/JAK2/STAT3 signaling pathway, which provides important implications for the treatment of DE.
Collapse
Affiliation(s)
- Yong Wang
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China; Department of Radiology and Nuclear Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Qianqian Yang
- Clinical Pharmacy Department, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Yanchao Lu
- Department of Radiology and Nuclear Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Lei Jiang
- Department of Radiology and Nuclear Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China; Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, 050000, Hebei, China
| | - Rui Zhang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China; Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, 050000, Hebei, China
| | - Siyu Jiang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Yuxuan Xu
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Shunjiang Xu
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China; Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, 050000, Hebei, China.
| | - Zuojun Geng
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
| |
Collapse
|
7
|
Wu J, Ge Y, Huang W, Zhang L, Huang J, Huang N, Luo Y. Natural bioactive compounds modified with mesenchymal stem cells: new hope for regenerative medicine. Front Bioeng Biotechnol 2025; 13:1446537. [PMID: 40416310 PMCID: PMC12098461 DOI: 10.3389/fbioe.2025.1446537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 04/25/2025] [Indexed: 05/27/2025] Open
Abstract
Mesenchymal stem cells (MSCs) have the potential to differentiate into various cell types, providing important sources of cells for the development of regenerative medicine. Although MSCs have various advantages, there are also various problems, such as the low survival rate of transplanted cells and poor migration and homing; therefore, determining how to reform MSCs to improve their utilization is particularly important. Although many natural bioactive compounds have shown great potential for improving MSCs, many mechanisms and pathways are involved; however, in the final analysis, natural bioactive compounds promoted MSC proliferation, migration and homing and promoted differentiation and antiaging. This article reviews the regulatory effects of natural bioactive compounds on MSCs to provide new ideas for the therapeutic effects of modified MSCs on diseases.
Collapse
Affiliation(s)
- Jingjing Wu
- Department of Neurology, Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Zunyi, Guizhou, China
| | - Ying Ge
- Department of Neurology, Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Zunyi, Guizhou, China
| | - Wendi Huang
- Department of Neurology, Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Zunyi, Guizhou, China
| | - Li Zhang
- Department of Neurology, Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Zunyi, Guizhou, China
| | - Juan Huang
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Nanqu Huang
- National Drug Clinical Trial Institution, Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Zunyi, Guizhou, China
- Department of Gerontology, Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Zunyi, Guizhou, China
| | - Yong Luo
- Department of Neurology, Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Zunyi, Guizhou, China
- Department of Gerontology, Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Zunyi, Guizhou, China
| |
Collapse
|
8
|
Yu M, Zhao J, Shan Y, Dai H, Tang L, Sheng L, Zhang L, Sheng M. Genome-wide DNA methylation analysis of Astragalus on the intervention of ID2 promoter via PI3K/Akt signaling pathway in peritoneal fibrosis. Sci Rep 2025; 15:15786. [PMID: 40328830 PMCID: PMC12056223 DOI: 10.1038/s41598-025-96709-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/31/2025] [Indexed: 05/08/2025] Open
Abstract
Peritoneal dialysis (PD) is a successful renal replacement therapy for end-stage renal disease. Continuous infiltration of bioincompatible PD fluid causes mesothelial-mesenchymal transition (MMT) of peritoneal mesothelial cells (PMCs), leading to peritoneal fibrosis (PF). DNA methylation has been characterized as an important regulatory mechanism on multiple fibrosis. However, the mechanisms by which DNA methylation regulates PF are not fully understood resulting in a lack of disease-modifying drugs. Astragalus membranaceus (Astragalus) is naturally phytomedicine that has immunoregulation properties. The study aimed to elucidate the underlying mechanisms of Astragalus in regulating DNA methylation and anti-PF capabilities. In vivo PD rat models were established by inducing with high-glucose PD fluid and Astragalus was intraperitoneal injection. Global DNA methylation sequencing was used to compare the DNA methylation status between control and PF rat models. Methylation profiles and KEGG analysis were identified a possible methylated target gene and its correlation pathway. Through real-time PCR and western blotting, candidate markers and pathways were validated in vivo and in vitro. Chromatin immunoprecipitation and luciferase assays were used to identify the prediction of DNA methyltransferase (Dnmts) binding with methylated target gene. The functions of the validated pathways were further investigated using the knockdown or overexpression strategy. In vivo and in vitro, Astragalus treatment showed a protective effect against PF and Dnmts, characterized by improving pathological manifestation, ameliorating MMT markers, and reducing Dnmt1/3a proteins. Inhibitor of DNA-binding 2 (ID2) was investigated in target gene by integrating the mRNA and methylation profiles involved in PF and Astragalus treatment. PF induced the methylation of ID2 that resulted in recruitment of the Dnmt3a and decreased ID2 expression. The increased ID2 expression in response to Astragalus is a consequence of demethylation in promoter. In addition, phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway correlated with PF, knockdown or overexpression of ID2 regulated this pathway and MMT of PMCs. Astragalus ameliorated PF by targeting Dnmt3a mediated ID2 promoter via PI3K/Akt signaling pathway. The epigenetic regulation of DNA methylation existed the critical role in attenuating PF.
Collapse
Affiliation(s)
- Manshu Yu
- Renal Division, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Junyi Zhao
- Institute of Literature in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yun Shan
- Renal Division, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Huibo Dai
- Renal Division, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Lei Tang
- Renal Division, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Li Sheng
- Renal Division, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Lu Zhang
- Renal Division, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| | - Meixiao Sheng
- Renal Division, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| |
Collapse
|
9
|
Zheng Q, Wang T, Wang S, Chen Z, Jia X, Yang H, Chen H, Sun X, Wang K, Zhang L, Fu F. The anti-inflammatory effects of saponins from natural herbs. Pharmacol Ther 2025; 269:108827. [PMID: 40015518 DOI: 10.1016/j.pharmthera.2025.108827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 11/20/2024] [Accepted: 02/20/2025] [Indexed: 03/01/2025]
Abstract
Inflammation is a protective mechanism that also starts the healing process. However, inflammatory reaction may cause severe tissue damage. The increased influx of phagocytic leukocytes may produce excessive amount of reactive oxygen species, which leads to additional cell injury. Inflammatory response activates the leukocytes and thus induces tissue damage and prolongs inflammation. The inflammation-induced activation of the complement system may also contribute to cell injury. Non-steroidal anti-inflammatory drugs (NSAIDs) and glucocorticoids are chief agents for treating inflammation associated with the diseases. However, the unwanted side effects of NSAIDs (e.g., gastrointestinal disturbances, skin reactions, adverse renal effects, cardiovascular side effects) and glucocorticoids (e.g., suppression of immune system, Cushing's syndrome, osteoporosis, hyperglycemia) limit their use in patients. Natural herbs are important sources of anti-inflammatory drugs. The ingredients extracted from natural herbs display anti-inflammatory effects to work through multiple pathways with lower risk of adverse reaction. At present, the main anti-inflammatory natural agents include saponins, flavonoids, alkaloids, polysaccharides, and so on. The present article will review the anti-inflammatory effects of saponins including escin, ginsenosides, glycyrrhizin, astragaloside, Panax notoginseng saponins, saikosaponin, platycodin, timosaponin, ophiopogonin D, dioscin, senegenin.
Collapse
Affiliation(s)
- Qinpin Zheng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Tian Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Sensen Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Zhuoxi Chen
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Xue Jia
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Hui Yang
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Huijin Chen
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Xin Sun
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Kejun Wang
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Leiming Zhang
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, China.
| | - Fenghua Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China.
| |
Collapse
|
10
|
Stępnik K, Jarząb A, Niedźwiadek R, Głowniak-Lipa A, Głowniak K, Kukula-Koch W. In Vivo Insights into the Role of Astragaloside IV in Preventing and Treating Civilization Diseases: A Comprehensive Review. Int J Mol Sci 2025; 26:4250. [PMID: 40362487 PMCID: PMC12071949 DOI: 10.3390/ijms26094250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/24/2025] [Accepted: 04/27/2025] [Indexed: 05/15/2025] Open
Abstract
Civilization diseases are a growing and global health problem in modern societies. Neurological disorders, cancer, and inflammatory diseases affect a large group of patients around the world. Therefore, it is of utmost importance to search for novel drugs, lifestyle tips, and foods that can help restore balance in the living organism, promote the efficiency of the immune system, and provide satisfactory prophylactic measures. Astragaloside IV (ASIV)-a triterpenoid saponin from Astragalus species, one of the world's most widely used herbs-has been shown to have a variety of biological properties, including anti-inflammatory, antioxidant, antitumor, and neuroprotective effects. In recent years, the number of in vivo studies on this active ingredient in the scientific literature has increased considerably. The aim of this review was therefore to compile the existing knowledge on the use of this compound in the treatment of selected diseases of civilization-cancer, neurological disorders, and inflammatory diseases-in vivo.
Collapse
Affiliation(s)
- Katarzyna Stępnik
- Department of Physical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Pl. M. Curie-Skłodowskiej 3, 20-031 Lublin, Poland
| | - Agata Jarząb
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Rafał Niedźwiadek
- Department of Physical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Pl. M. Curie-Skłodowskiej 3, 20-031 Lublin, Poland
| | - Anna Głowniak-Lipa
- Department of Cosmetology, University of Information, Sucharskiego 2, 35-225 Rzeszów, Poland
| | - Kazimierz Głowniak
- Department of Cosmetology, University of Information, Sucharskiego 2, 35-225 Rzeszów, Poland
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland;
| |
Collapse
|
11
|
Zheng Y, Feng N, Li C, Li Z. Natural products target programmed cell death signaling mechanisms to treat colorectal cancer. Front Pharmacol 2025; 16:1565332. [PMID: 40342991 PMCID: PMC12058791 DOI: 10.3389/fphar.2025.1565332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 04/08/2025] [Indexed: 05/11/2025] Open
Abstract
As a highly prevalent gastrointestinal malignant tumor, colorectal cancer poses a serious challenge in terms of increasing morbidity and mortality and late diagnosis due to the invisibility of the disease. Although existing therapies are diverse but limited in efficacy, the mechanism of programmed cell death (PCD) has become a focus of research due to its central role in maintaining body homeostasis and regulating tumor progression. Multimodal cell death pathways, such as apoptosis, autophagy, pyroptosis and ferroptosis, have shown unique advantages in inhibiting the proliferation and migration of colorectal cancer cells and enhancing the sensitivity to chemotherapy by responding to internal and external environmental stimuli. In recent years, natural products have risen to prominence by virtue of their multi-target synergistic effects and chemo-sensitizing properties, and have opened up a new direction for colorectal cancer treatment by precisely regulating the PCD pathway. In this paper, we searched PubMed, Web of Science and CNKI databases for relevant studies in the last 10 years using the keywords (Colorectal cancer) and (programmed cell death) and natural products. This work retrieved 59 studies (55 from the past 5 years and 4 from the past 10 years) to reveal the mechanism of action of natural products targeting PCD, aiming to provide theoretical support and practical guidance for the optimization of clinical therapeutic strategies and the development of innovative drugs.
Collapse
Affiliation(s)
- Ya Zheng
- The Second Gastroenterology Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Na Feng
- Department of Rehabilitation Medicine, Linyi Maternal and Child Health Center Hospital, Linyi, Shandong, China
| | - Canglin Li
- Medical Management Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zuoqiang Li
- Department of Traditional Chinese Medicine, Shandong Academy of Occupational Health and Occupational Medicine, Jinan, China
| |
Collapse
|
12
|
Chen C, Bu X, Deng L, Xia J, Wang X, Chen L, Li W, Huang J, Chen Q, Wang C. Astragaloside IV as a promising therapeutic agent for liver diseases: current landscape and future perspectives. Front Pharmacol 2025; 16:1574154. [PMID: 40337517 PMCID: PMC12055773 DOI: 10.3389/fphar.2025.1574154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 04/10/2025] [Indexed: 05/09/2025] Open
Abstract
Astragaloside IV (C41H68O14, AS-IV) is a naturally occurring saponin isolated from the root of Astragalus membranaceus, a widely used traditional Chinese botanical drug in medicine. In recent years, AS-IV has attracted considerable attention for its hepatoprotective properties, which are attributed to its low toxicity as well as its anti-inflammatory, antioxidant and antitumour effects. Numerous preclinical studies have demonstrated its potential in the prevention and treatment of various liver diseases, including multifactorial liver injury, metabolic-associated fatty liver disease, liver fibrosis and liver cancer. Given the promising hepatoprotective potential of AS-IV and the growing interest in its research, this review provides a comprehensive summary of the current state of research on the hepatoprotective effects of AS-IV, based on literature available in databases such as CNKI, PubMed, ScienceDirect, Google Scholar and Web of Science. The hepatoprotective mechanisms of AS-IV are multifaceted, encompassing the inhibition of inflammatory responses, reduction of oxidative stress, improvement of insulin and leptin resistance, modulation of the gut microbiota, suppression of hepatocellular carcinoma cell proliferation and induction of tumour cell apoptosis. Notably, key molecular pathways involved in these effects include Nrf2/HO-1, NF-κB, NLRP3/Caspase-1, JNK/c-Jun/AP-1, PPARα/FSP1 and Akt/GSK-3β/β-catenin. Toxicity studies indicate that AS-IV has a high level of safety. In addition, this review discusses the sources, physicochemical properties, and current challenges in the development and clinical application of AS-IV, providing valuable insights into its potential as a hepatoprotective agent in the pharmaceutical and nutraceutical industries.
Collapse
Affiliation(s)
- Chunyan Chen
- School of Clinical Medical, Chengdu Medical College, Chengdu, China
- Department of Pharmacy, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xiaolan Bu
- School of Clinical Medical, Chengdu Medical College, Chengdu, China
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Liping Deng
- School of Clinical Medical, Chengdu Medical College, Chengdu, China
- Department of Orthopedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jiayan Xia
- School of Clinical Medical, Chengdu Medical College, Chengdu, China
- Department of Pediatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xinming Wang
- School of Clinical Medical, Chengdu Medical College, Chengdu, China
- Department of Pharmacy, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Li Chen
- School of Clinical Medical, Chengdu Medical College, Chengdu, China
- Department of Pharmacy, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Wen Li
- School of Clinical Medical, Chengdu Medical College, Chengdu, China
- Department of Pharmacy, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jie Huang
- School of Clinical Medical, Chengdu Medical College, Chengdu, China
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Qixiang Chen
- School of Clinical Medical, Chengdu Medical College, Chengdu, China
- Department of Pharmacy, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Cheng Wang
- School of Clinical Medical, Chengdu Medical College, Chengdu, China
- Department of Pharmacy, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
13
|
Chen M, Fu B, Zhou H, Wu Q. Therapeutic potential and mechanistic insights of astragaloside IV in the treatment of arrhythmia: a comprehensive review. Front Pharmacol 2025; 16:1528208. [PMID: 40276608 PMCID: PMC12018449 DOI: 10.3389/fphar.2025.1528208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 04/02/2025] [Indexed: 04/26/2025] Open
Abstract
Arrhythmia, a common cardiovascular disorder, results from disturbances in cardiac impulse generation and conduction, leading to decreased cardiac output and myocardial oxygenation, with potentially life-threatening consequences. Despite advancements in therapeutic approaches, the incidence and mortality associated with arrhythmia remain high, and drug-related adverse effects continue to pose significant challenges. Traditional Chinese Medicine (TCM) has attracted considerable attention for its potential as a complementary and alternative approach in treating cardiovascular diseases, including arrhythmia. Astragalus, a prominent herb in TCM, is commonly used in clinical practice for its multi-faceted therapeutic properties, encompassing anti-arrhythmic, cardiotonic, anti-inflammatory, and immunomodulatory effects. Astragaloside IV, a primary active compound in Astragalus membranaceus, has demonstrated cardioprotective effects through mechanisms such as antioxidant, anti-inflammatory, and anti-apoptotic activities. Although evidence suggests that astragaloside IV holds promise in arrhythmia treatment, comprehensive reviews of its specific mechanisms and clinical applications in arrhythmia are scarce. This review systematically explores the pharmacological properties and underlying mechanisms of astragaloside IV in arrhythmia treatment. Utilizing a targeted search of databases including PubMed, Web of Science, Cochrane Library, Embase, CNKI, and Wanfang Data, we summarize recent findings and examine astragaloside IV's potential applications in arrhythmia prevention and treatment. Our analysis aims to provide a theoretical foundation for the development of novel arrhythmia treatment strategies, while offering insights into future research directions for clinical application.
Collapse
Affiliation(s)
- Meilian Chen
- Cardiac and Pulmonary Department, Quanzhou Hospital of Traditional Chinese Medicine, Fujian, China
| | - Binlan Fu
- Department of Internal Medicine, Chen Dai Central Health Center, Jinjiang, China
| | - Hao Zhou
- Department of Cardiology, The 966th Hospital of The PLA Joint Logistic Support Force, Dandong, China
| | - Qiaomin Wu
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
14
|
Wang H, Huang Z, Chen G, Li Y, Liu Y, Gu H, Cao Y. Astragaloside IV alleviated bone loss in mice with ovariectomy-induced osteoporosis via modulating gut microbiota and fecal metabolism. Front Pharmacol 2025; 16:1548491. [PMID: 40248089 PMCID: PMC12003300 DOI: 10.3389/fphar.2025.1548491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/12/2025] [Indexed: 04/19/2025] Open
Abstract
Background Astragaloside IV (AS-IV) is one of the most potent components of Astragalus. It has been reported to promote bone formation and inhibit osteoclastogenesis, suggesting its potential as a candidate for the prevention and treatment of postmenopausal osteoporosis (PMOP). The gut microbiota may play a crucial role in mediating the effects of AS-IV. Objective To investigate the impact of gut microbiota on the efficacy of AS-IV in treating PMOP. Methods Mice were randomly divided into three groups: Sham, ovariectomy (OVX), and AS-IV-treated OVX group (80 mg/kg). Bone loss was evaluated using Micro-CT and histopathology. Immunohistochemistry assessed specific bone markers. Inflammatory levels were measured by enzyme-linked immunosorbent assay (ELISA). Intestinal barrier function was examined via colonic histopathology and immunohistochemistry. Gut microbiota composition was analyzed by 16S rDNA sequencing, while metabolomic profiling identified key metabolites. Correlation analysis was performed to explore relationships between differential bacteria, key metabolites, and bone loss. Results AS-IV improved the femur microarchitecture and modulated bone turnover in OVX mice. AS-IV treatment strengthened the intestinal barrier function and decreased gut permeability. This compound reduced colonic oxidative stress and serum and bone marrow inflammatory cytokine production. 16S rDNA sequencing revealed that AS-IV modulated the gut microbiota composition, while metabolomic analysis showed its effects on pathways related to hormone biosynthesis, D-amino acid metabolism, and galactose metabolism. Conclusion This study provides new insights into the use of AS-IV for treating PMOP, highlighting the gut microbiota and its metabolites as key regulatory factors in AS-IV's therapeutic effects.
Collapse
Affiliation(s)
- Huichao Wang
- School of Osteopathy, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Orthopedic Institute of Henan Province, Luoyang, Henan, China
| | - Zhongyue Huang
- Department of Orthopedics, Minhang Hospital, Fudan University, Shanghai, China
| | - Guangnan Chen
- Department of Orthopedics, Minhang Hospital, Fudan University, Shanghai, China
| | - Yang Li
- School of Osteopathy, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Emergency Trauma Center, Henan Provincial Hospital of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Youwen Liu
- Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Orthopedic Institute of Henan Province, Luoyang, Henan, China
| | - Huijie Gu
- Department of Orthopedics, Minhang Hospital, Fudan University, Shanghai, China
| | - Yujing Cao
- School of Osteopathy, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Emergency Trauma Center, Henan Provincial Hospital of Traditional Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
15
|
Zeng Y, Duan T, Huang J, Wang X. Astragaloside IV inhibits nasopharyngeal carcinoma progression by suppressing the SATB2/Wnt signaling axis. Toxicol Res (Camb) 2025; 14:tfaf047. [PMID: 40177383 PMCID: PMC11964083 DOI: 10.1093/toxres/tfaf047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/10/2025] [Accepted: 03/18/2025] [Indexed: 04/05/2025] Open
Abstract
Astragaloside IV (AS-IV), a major bioactive component of Astragalus membranaceus, exhibits anti-cancer and anti-inflammatory properties. However, its precise role in nasopharyngeal carcinoma (NPC) remains unclear. This study investigated the effects of AS-IV on NPC progression and its relationship with Special AT-rich binding protein-2 (SATB2), a diagnostic marker for NPC. AS-IV treatment reduced NPC cell viability in a dose-dependent manner, as assessed by CCK-8 assays. Functional experiments, including transwell, immunofluorescence, and flow cytometry assays, demonstrated that AS-IV inhibited cell migration, invasion, and autophagy while promoting apoptosis. Western blot analysis showed that SATB2 expression was significantly elevated in NPC cells, particularly in C666-1 and HK-1 cells. Overexpression of SATB2 partially reversed AS-IV's inhibitory effects on NPC progression. Further analysis revealed that AS-IV suppressed the Wnt signaling pathway by downregulating SATB2 expression, while SATB2 overexpression restored Wnt pathway activation. This effect was reversed upon treatment with the Wnt pathway inhibitor DKK-1. In vivo, AS-IV administration inhibited tumor growth in a nude mouse subcutaneous xenograft model, reduced Ki-67 positivity, and lowered LC3B expression, indicating decreased proliferation and autophagy. However, these effects were diminished upon SATB2 overexpression. These findings suggest that AS-IV exerts anti-tumor effects in NPC by downregulating SATB2 and suppressing Wnt pathway activation, highlighting its potential as a therapeutic agent for NPC. Highlights Astragaloside IV (AS-IV) reduces nasopharyngeal carcinoma (NPC) cell vitality, suppresses cell migration, invasion and autophagy, and fosters apoptosis.SATB2 exhibits notably high levels in NPC cells.Overexpression of SATB2 counteracts the inhibition of NPC malignant progression by AS-IV.AS-IV impedes NPC progression by decreasing SATB2 and thereby hindering the Wnt pathway.AS-IV deters NPC tumor growth in nude mice.
Collapse
Affiliation(s)
- Yinping Zeng
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Hainan Medical University, 31 Longhua Road, Longhua District, Haikou 570102, Hainan Province, China
| | - Tingting Duan
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Hainan Medical University, 31 Longhua Road, Longhua District, Haikou 570102, Hainan Province, China
| | - Jiajun Huang
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Hainan Medical University, 31 Longhua Road, Longhua District, Haikou 570102, Hainan Province, China
| | - Xiaofeng Wang
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Hainan Medical University, 31 Longhua Road, Longhua District, Haikou 570102, Hainan Province, China
| |
Collapse
|
16
|
Liu H, Wang K, Shang T, Cai Z, Lu C, Shen M, Yu S, Yao X, Shen Y, Chen X, Xu F, Sun H. Astragaloside IV Improves Muscle Atrophy by Modulating the Activity of UPS and ALP via Suppressing Oxidative Stress and Inflammation in Denervated Mice. Mol Neurobiol 2025; 62:4689-4704. [PMID: 39480556 DOI: 10.1007/s12035-024-04590-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
Peripheral nerve injury is common clinically and can lead to neuronal degeneration and atrophy and fibrosis of the target muscle. The molecular mechanisms of muscle atrophy induced by denervation are complex and not fully understood. Inflammation and oxidative stress play an important triggering role in denervated muscle atrophy. Astragaloside IV (ASIV), a monomeric compound purified from astragalus membranaceus, has antioxidant and anti-inflammatory properties. The aim of this study was to investigate the effect of ASIV on denervated muscle atrophy and its molecular mechanism, so as to provide a new potential therapeutic target for the prevention and treatment of denervated muscle atrophy. In this study, an ICR mouse model of muscle atrophy was generated through sciatic nerve dissection. We found that ASIV significantly inhibited the reduction of tibialis anterior muscle mass and muscle fiber cross-sectional area in denervated mice, reducing ROS and oxidative stress-related protein levels. Furthermore, ASIV inhibits the increase in inflammation-associated proteins and infiltration of inflammatory cells, protecting the denervated microvessels in skeletal muscle. We also found that ASIV reduced the expression levels of MAFbx, MuRF1 and FoxO3a, while decreasing the expression levels of autophagy-related proteins, it inhibited the activation of ubiquitin-proteasome and autophagy-lysosome hydrolysis systems and the slow-to-fast myofiber shift. Our results show that ASIV inhibits oxidative stress and inflammatory responses in skeletal muscle due to denervation, inhibits mitophagy and proteolysis, improves microvascular circulation and reverses the transition of muscle fiber types; Therefore, the process of skeletal muscle atrophy caused by denervation can be effectively delayed.
Collapse
Affiliation(s)
- Hua Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, Nantong, Jiangsu Province, 226600, P. R. China
| | - Kexin Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Tongxin Shang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Zhigang Cai
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, Nantong, Jiangsu Province, 226600, P. R. China
| | - Chunfeng Lu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Nantong, Jiangsu Province, 226006, P. R. China
| | - Mi Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Shu Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Xinlei Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Xiaofang Chen
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, Nantong, Jiangsu Province, 226600, P. R. China.
| | - Feng Xu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Nantong, Jiangsu Province, 226006, P. R. China.
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China.
| |
Collapse
|
17
|
Wei D, Hu J, Wu X, Li Y, Wu W, Xu Y, Wang X, Luo Y. Carbohydrate-active enzyme-catalyzed stereoselective glycosylation of complex natural product glycosides. Enzyme Microb Technol 2025; 185:110589. [PMID: 39864143 DOI: 10.1016/j.enzmictec.2025.110589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/29/2024] [Accepted: 01/19/2025] [Indexed: 01/28/2025]
Abstract
Natural products and their derivatives are precious resources with extensive applications in various industrial fields. Enzymatic glycosylation is an efficient approach for chemical structure diversification and biological activity alternation of natural products. Herein, we reported a stereoselective glycosylation of complex natural product glycosides catalyzed by two carbohydrate-active enzymes (CAZys). ASP OleD, a mutant of glycosyltransferase OleD from Streptomyces antibioticus, catalyzed an explicit β-1,x-linkage glycosylation of the OH group of the glycosyl moiety of the representative plant-derived complex natural product glycosides, protodioscin (1) and epimedin C (2), producing two complex glycoside derivatives. The glycoside hydrolase Δ27ThCGT, a truncated cyclodextrin glucanotransferase from Thermoanaerobacter sp., exhibited a definite α-1,x-linkage glycosylation of the OH group of the glycosyl moiety of the glycosides 1, 2, and astragaloside IV (3), generating four complex glycoside derivatives. The chemical structures and absolute configurations of these enzymatic glycosylation products were determined by analysis of their HRMS and NMR data. The present study expands the enzymatic glycosylation diversification of complex glycosides catalyzed by the CAZys.
Collapse
Affiliation(s)
- Daijing Wei
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiawei Hu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xudong Wu
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin 644000, China
| | - Yi Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenlin Wu
- Chengdu Institute of Food Inspection, Chengdu 611130, China
| | - Ying Xu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuefei Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinggang Luo
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China.
| |
Collapse
|
18
|
Chen X, Ding W, Liu Y, Liu H, Zhang C, Huang L. Innovative approaches in atherosclerosis treatment: Harnessing traditional Chinese medicine to target long non-coding RNAs. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156488. [PMID: 39938175 DOI: 10.1016/j.phymed.2025.156488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/31/2025] [Accepted: 02/08/2025] [Indexed: 02/14/2025]
Abstract
BACKGROUND Atherosclerosis (AS) is a major contributor to cardiovascular diseases, characterized by high morbidity and mortality rates. Long non-coding RNAs (LncRNAs), as members of non-protein coding RNAs, play a crucial role in various biological processes that maintain homeostasis and influence disease progression. Research indicates that lncRNAs are involved in the pathogenesis of AS. PURPOSE In this study, we aim to explore the role of lncRNAs in the pathogenesis of AS and the latest progress in the prevention and treatment of AS by targeted regulation of lncRNAs by traditional Chinese medicine (TCM), in order to provide more new beneficial targets for the treatment of AS and expand the application of TCM in the treatment of cardiovascular diseases. METHOD The literature was retrieved, analyzed, and collected using PubMed, Web of Science, Sci-Hub, CNKI, Elsevier, ScienceDirect, SpringerLink, and Google Scholar. Search terms include "atherosclerosis", "traditional Chinese medicine", "natural products", "active ingredient", "lncRNAs", "herbal medicine", "cardiovascular diseases", "pharmacology", "toxicology", "clinical trials", etc., and several combinations of these keywords. RESULTS This study examines the primary mechanisms through which lncRNAs induce AS, such as dysfunction in endothelial cells, abnormal proliferation of vascular smooth muscle cells, cholesterol buildup in macrophages, formation of foam cells, inflammatory responses, and imbalances in lipid metabolism. Additionally, it summarizes 16 herbal monomers and 6 Chinese herbal compounds, along with an analysis of the toxicological aspects of TCM. CONCLUSION The study explores the existing approaches for modulating lncRNAs and emphasizes the significance and potential of herbal monomers, extracts, and formulations in this context.
Collapse
Affiliation(s)
- Xiaofang Chen
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Wenyan Ding
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Yifan Liu
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Hao Liu
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Chi Zhang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Liang Huang
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China.
| |
Collapse
|
19
|
Shen C, Zhang S, Di H, Wang S, Wang Y, Guan F. The Role of Triterpenoids in Gastric Ulcer: Mechanisms and Therapeutic Potentials. Int J Mol Sci 2025; 26:3237. [PMID: 40244034 PMCID: PMC11990034 DOI: 10.3390/ijms26073237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/25/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
Gastric ulcer (GU) is a prevalent gastrointestinal disorder impacting millions worldwide, with complex pathogenic mechanisms that may progress to severe illnesses. Conventional therapies relying on anti-secretory agents and antibiotics are constrained by drug abuse and increased bacterial resistance, highlighting the urgent need for safer therapeutic alternatives. Natural medicinal compounds, particularly triterpenoids derived from plants and herbs, have gained significant attention in recent years due to their favorable efficacy and reduced toxicity profiles. Emerging evidence indicates that triterpenoids exhibit potent anti-ulcer properties across various experimental models, modulating key pathways involved in inflammation, oxidative stress, apoptosis, and mucosal protection. Integrating current knowledge of these bioactive compounds facilitates the development of natural triterpenoids, addresses challenges in their clinical translation, deepens mechanistic understanding of GU pathogenesis, and drives innovation of therapeutic strategies for GU. This review comprehensively evaluates the progress of research on triterpenoids in GU treatment since 2000, discussing their biological sources, structural characteristics, pharmacological activities, and mechanisms of action, the animal models employed in the studies, current limitations, and the challenges associated with their clinical application.
Collapse
Affiliation(s)
- Congcong Shen
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.S.); (S.Z.); (H.D.); (S.W.)
| | - Shengyu Zhang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.S.); (S.Z.); (H.D.); (S.W.)
| | - Han Di
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.S.); (S.Z.); (H.D.); (S.W.)
| | - Shuang Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.S.); (S.Z.); (H.D.); (S.W.)
| | - Yanhong Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.S.); (S.Z.); (H.D.); (S.W.)
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Feng Guan
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.S.); (S.Z.); (H.D.); (S.W.)
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| |
Collapse
|
20
|
Sun W, Chao G, Wu Q, Xia Y, Shang M, Wei Q, Zhou J, Liao L. Astragaloside IV improves the survival rates of retinal ganglion cells in traumatic optic neuropathy by regulating autophagy mediated by the AMPK-MTOR-ULK signaling pathway. Mol Vis 2025; 31:99-112. [PMID: 40384763 PMCID: PMC12085218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 03/26/2025] [Indexed: 05/20/2025] Open
Abstract
Purpose Autophagy is involved in the pathological changes of traumatic optic neuropathy (TON), and the regulation of autophagy mediated by the AMPK-mTOR-ULK pathway is a potential therapeutic approach. Astragaloside IV (AS-IV) can regulate autophagy and play a therapeutic role in various diseases. This study aimed to observe the therapeutic effect of astragaloside on TON and the role of AMPK-MTOR-ULK pathway-mediated autophagy in this process. Methods After the TON model was established, varying doses of AS-IV were administered as an intervention. Additionally, compound C (an AMPK inhibitor) or 3-methyladenine (an autophagy inhibitor) was administered intraperitoneally in conjunction with AS-IV. Samples were collected following a 7-day intervention period. Western blot analysis was conducted to measure the protein and phosphorylation levels of AMPK, mTOR, and ULK proteins. Moreover, western blot and quantitative reverse transcription PCR assays were used to quantify LC3 levels in retinal tissue. LC3 immunofluorescence was performed to examine autophagy levels in the ganglion cell layer (GCL), while transmission electron microscopy was employed to observe autophagosomes. Additionally, BRN3A immunofluorescence was used to label retinal ganglion cells (RGCs) in the GCL, and terminal deoxynucleotidyl transferase dUTP nick-end labeling staining was used to assess apoptosis within the GCL. Finally, optic nerve conduction function was evaluated using flash visual evoked potentials. Results After 7 days, the phosphorylation levels of AMPK, mTOR, and ULK proteins in retinal tissue exhibited significant changes following TON. AS-IV treatment enhanced LC3 messenger RNA and protein levels in TON model rats, and the autophagy-promoting effect of AS-IV was reversed by 3-methyladenine. Moreover, AS-IV elevated P-AMPK and P-ULK levels while decreasing P-mTOR levels. AS-IV also improved the survival rate of RGCs and reduced the P2 peak latency of flash visual evoked potentials. These effects were attenuated by the AMPK inhibitor compound C. Additionally, AS-IV increased the levels of AKT1 and P-AKT1 while decreasing P-S6RP levels in the retinal tissue of TON model rats. Conclusions AS-IV can increase the survival rate of RGCs and improve visual function after TON, which may be related to the improvement of autophagy by regulating the AMPK-MTORC1-ULK pathway.
Collapse
Affiliation(s)
- Wu Sun
- Department of Ophthalmology, Xiyuan Hospital China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Guojun Chao
- Eye Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Qiong Wu
- Beijing Tongren Hospital, Beijing, China
| | - Yanting Xia
- Department of Ophthalmology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Mengqiu Shang
- Eye Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
- Department of Ophthalmology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qiping Wei
- Department of Ophthalmology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jian Zhou
- Beijing University of Chinese Medicine, Beijing, China
- Department of Ophthalmology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Liang Liao
- Beijing University of Chinese Medicine, Beijing, China
- Department of Ophthalmology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
21
|
Zhang S, Li S, Cui L, Xie S, Wang Y. Astragaloside IV Attenuates Angiotensin II-Induced Inflammatory Responses in Endothelial Cells: Involvement of Mitochondria. J Inflamm Res 2025; 18:3951-3967. [PMID: 40125084 PMCID: PMC11927501 DOI: 10.2147/jir.s504427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 03/04/2025] [Indexed: 03/25/2025] Open
Abstract
Background Angiotensin II (Ang II)-triggered endothelial inflammation is a critical mechanism contributing to Ang II-related cardiovascular diseases. The inflammation is highly correlated with mitochondrial function. Although astragaloside IV (AS-IV), a primary bioactive ingredient extracted from the traditional Chinese medicine Astragalus membranaceus Bunge that can effectively treat numerous cardiovascular diseases, posses the actions of antiinflammation and antioxidation in vivo, limited data are made available on the impacts of AS-IV on mitochondrial function in endothelial inflammation triggered by Ang II. This study was performed to evaluate the in vitro actions of AS-IV on Ang II-triggered inflammatory responses in endothelial cells, and to further clarify the potential role of mitochondria in the actions. Methods Human umbilical vein endothelial cells (HUVECs) were preincubated with AS-IV and then exposed to Ang II for 12 h. Results The exposure of HUVECs to Ang II triggered cytokine and chemokine production, the upregulation of adhesive molecules, monocyte attachment, and nuclear factor-kappa B activation. Additionally, our results showed that the inflammatory responses triggered by Ang II were associated with the impairment of mitochondrial function, as evidenced by the reductions of mitochondrial membrane potential, ATP synthesis, and mitochondrial complexes I and III activities. Moreover, the concentrations of malondialdehyde, cellular reactive oxygen species, and mitochondrial superoxide enhanced after HUVECs challenged with Ang II, which were concurrent with the decreases in total superoxide dismutase (SOD) and its isoenzyme activities such as Mn-SOD. These Ang II-induced alterations were reversed by preincubation with AS-IV. Conclusion Our data indicate that AS-IV attenuates Ang II-triggered endothelial inflammation possibly via ameliorating mitochondrial function.
Collapse
Affiliation(s)
- Shiyu Zhang
- Division of Cardiology and Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, People’s Republic of China
| | - Shijie Li
- Division of Cardiology and Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, People’s Republic of China
| | - Lin Cui
- Division of Cardiology and Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, People’s Republic of China
| | - Shiyang Xie
- Division of Cardiology and Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, People’s Republic of China
| | - Youping Wang
- Division of Cardiology and Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, People’s Republic of China
| |
Collapse
|
22
|
Dong L, Dong F, Guo P, Li T, Fang Y, Dong Y, Xu X, Cai T, Liang S, Song X, Li L, Sun W, Zheng Y. Gut microbiota as a new target for hyperuricemia: A perspective from natural plant products. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156402. [PMID: 39874797 DOI: 10.1016/j.phymed.2025.156402] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/29/2024] [Accepted: 01/16/2025] [Indexed: 01/30/2025]
Abstract
BACKGROUND Hyperuricemia, a prevalent chronic metabolic disorder caused by purine metabolism disturbances, is characterized by elevated serum uric acid (UA) levels. Prolonged hyperuricemia can cause severe complications such as gout or kidney damage. However, the toxic side effects of and adverse reactions to UA-lowering drugs are becoming increasingly prominent. Therefore, new targets and drugs for hyperuricemia are needed. PURPOSE This review aims to summarize recent research progress on the prevention and treatment mechanisms for gut microbiota-hyperuricemia from the perspective of plant-derived natural products. METHODS Data from PubMed, Web of Science, ScienceDirect, and the CNKI databases spanning from January 2020 to December 2024 were reviewed. The aim of this study is to categorize and summarize the relevant mechanisms through which natural products improve hyperuricemia via the gut microbiota. The retrieved data followed PRISMA criteria (Preferred Reporting Items for Systematic reviews and Meta-Analyses). RESULTS Regulating gut microbiota as a treatment for hyperuricemia. Targeting the gut microbiota could reduce host UA levels by promoting purine degradation, reducing UA production, and increasing UA excretion. Moreover, the gut microbiota also exerts anti-inflammatory and antioxidant effects that alleviate complications such as renal damage caused by hyperuricemia. Due to their diverse sources, multicomponent synergy, multitarget effects, and minimal side effects, plant-derived natural products have been extensively utilized in the management of hyperuricemia. Especially, utilizing natural products from plants to regulate the gut microbiota has become a new strategy for reducing UA levels. CONCLUSION This review comprehensively summarizes recent advances in understanding the preventive and therapeutic mechanisms of plant-derived natural products in ameliorating hyperuricemia and its comorbidities through gut microbiota modulation. This review contributes a novel perspective for the development of safer and more efficacious UA-lowering products.
Collapse
Affiliation(s)
- Ling Dong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, 255000, China
| | - Fengying Dong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, 255000, China
| | - Pingping Guo
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, 255000, China
| | - Tianxing Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100000, China; Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100007, China
| | - Yini Fang
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100000, China; Basic Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yang Dong
- Monitoring and Statistical Research Center, National Administration of Traditional Chinese Medicine, Beijing, 100021, China
| | - Xiaoxue Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, 255000, China
| | - Tianqi Cai
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, 255000, China
| | - Shufei Liang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, 255000, China
| | - Xinhua Song
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, 255000, China
| | - Lingru Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100000, China.
| | - Wenlong Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, 255000, China.
| | - Yanfei Zheng
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100000, China.
| |
Collapse
|
23
|
Chen Y, Ma L, Yan Y, Wang X, Cao L, Li Y, Li M. Ophiopogon japonicus polysaccharide reduces doxorubicin-induced myocardial ferroptosis injury by activating Nrf2/GPX4 signaling and alleviating iron accumulation. Mol Med Rep 2025; 31:36. [PMID: 39575489 PMCID: PMC11605273 DOI: 10.3892/mmr.2024.13401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/08/2024] [Indexed: 11/30/2024] Open
Abstract
Doxorubicin (DOX) is a principal chemotherapeutic agent in the domain of oncological intervention. However, its clinical application is constrained due to its severe and irreversible side effects, particularly heart damage. Ferroptosis, characterized by iron accumulation and redox system imbalance, serves a key role in DOX‑induced cardiotoxicity. Ophiopogon japonicus polysaccharide (OJP) exhibits diverse pharmacological activities, including cardiovascular protection, and anti‑inflammatory, anti‑oxidative and immune regulatory effects. However, the role and mechanism of OJP in DOX‑mediated ferroptosis‑triggered injury in cardiomyocytes remain elusive. The present study aimed to assess the effect of OJP on DOX‑induced myocardial ferroptosis injury and to reveal its underlying anti‑ferroptosis mechanism. The detection of myocardial injury markers, such as LDH, indicated that OJP can ameliorate myocardial damage. Additionally, western blot analyses reveal that OJP decreases the expression levels of the ferroptosis‑related marker transferrin receptor 1 (TFR1) while simultaneously increasing expression levels of glutathione peroxidase 4 (GPX4) in a concentration‑dependent manner. Furthermore, fluorescence probe assays demonstrate that OJP not only reduces iron accumulation and oxidative stress but also inhibits the production of lipid peroxidation, as evidenced by a decrease in malondialdehyde (MDA) levels measured. In addition, OJP simultaneously decreased ferroptosis by enhancing mitochondrial function. Mechanistically, OJP attenuated ferroptosis by upregulating the endogenous key antioxidant factor nuclear factor erythroid 2‑related factor 2 (Nrf2), which in turn increased the expression of the downstream signaling molecule GPX4 and reduced the accumulation of the labile iron pool. Therefore, OJP may be a novel therapeutic intervention for DOX‑induced ferroptosis‑triggered myocardial injury.
Collapse
Affiliation(s)
- Yongting Chen
- Graduate School, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
- Scientific Research Department, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, P.R. China
| | - Linlin Ma
- Scientific Research Department, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, P.R. China
| | - Yuzhong Yan
- Scientific Research Department, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, P.R. China
| | - Xiaoying Wang
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, P.R. China
| | - Lizhi Cao
- Scientific Research Department, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, P.R. China
| | - Yanfei Li
- Scientific Research Department, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, P.R. China
| | - Ming Li
- Administration Office, East Hospital Affiliated to Tongji University, Shanghai 201318, P.R. China
| |
Collapse
|
24
|
Qu T, Suo S, Yan L, Wang L, Liang T. Anti-Inflammatory Effects of Astragaloside IV-Chitosan Nanoparticles and Associated Anti-Inflammatory Mechanisms Based on Liquid Chromatography-Mass Spectrometry Metabolomic Analysis of RAW264.7 Cells. Chem Biodivers 2025:e202402234. [PMID: 39891602 DOI: 10.1002/cbdv.202402234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 01/28/2025] [Accepted: 02/01/2025] [Indexed: 02/03/2025]
Abstract
Astragaloside IV (ATS) is an active component of Astragalus membranaceus, which has immune regulation and anti-inflammatory effects. However, owing to its large molecular weight and poor solubility in water, the therapeutic effects of ATS are limited. We aimed to prepare ATS-chitosan (ATS-CS) nanoparticles and determine their anti-inflammatory effect and mechanism of action on RAW264.7 cells using metabolomics. The size of the ATS-CS nanoparticles was 200.3 nm with a zeta potential of 30.5 mV, and the encapsulation rate and drug loading were 69% and 13%, respectively. ATS-CS nanoparticles not only significantly decreased the increase of nitric oxide, interleukin-6, and tumor necrosis factor-α levels induced by lipopolysaccharide, but also exerted an anti-inflammatory effect by acting on arginine and proline, glutathione, sphingolipid, glycerophospholipid, glycine, serine, and threonine metabolism. Our findings confirmed that ATS-CS nanoparticles had good anti-inflammatory activity and showed that the activity of high molecular weight could be increased by producing nanoparticles. Our study paves the way for exploring the mechanism of nanoparticles through metabolomics.
Collapse
Affiliation(s)
- Tingli Qu
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, P. R. China
| | - Shasha Suo
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, P. R. China
| | - Liqiu Yan
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, P. R. China
| | - Liwei Wang
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, P. R. China
| | - Taigang Liang
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, P. R. China
| |
Collapse
|
25
|
Kuang G, Zhao Y, Wang L, Wen T, Liu P, Ma B, Peng Q, Xu F, Ye L, Fan J. Astragaloside IV Alleviates Acute Hepatic Injury by Regulating Macrophage Polarization and Pyroptosis via Activation of the AMPK/SIRT1 Signaling Pathway. Phytother Res 2025; 39:733-746. [PMID: 39660635 DOI: 10.1002/ptr.8403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/17/2024] [Accepted: 11/09/2024] [Indexed: 12/12/2024]
Abstract
Acute hepatic injury (AHI) is associated with poor prognosis in sepsis patient; however, to date, no specific therapeutic approach has been established for this disease. Therefore, we aimed to explore the effects and action mechanisms of Astragaloside IV (AS) on AHI. C57BL/6 mice, RAW264.7 cells, and bone marrow-derived macrophages were used in this study. Sepsis-associated AHI model mice were established using lipopolysaccharide + D-galactosamine. Pathological examination of liver tissues and serum alanine aminotransferase/aspartate aminotransferase was performed to evaluate the liver function. Moreover, inflammatory cytokine levels, proportion of M1/M2 macrophages and their marker levels, and cell pyroptosis-related indicator levels were determined in the liver of the AHI model mice with or without AS treatment. AMP-activated protein kinase (AMPK)/sirtuin 1 (SIRT1) expression was determined after AS treatment. Additionally, inflammatory cytokine levels, liver injury, and macrophage polarization were evaluated after inhibiting the AMPK/SIRT1 pathway. AS alleviated lipopolysaccharide + D-galactosamine-induced AHI and inhibited inflammatory reactions in the blood and liver of mice. AS also promoted the M1-to-M2 phenotypic transformation of macrophages in the liver of AHI model mice and in vitro, thereby decreasing the pro-inflammatory cytokine levels and increasing the anti-inflammatory cytokine levels. AS increased AMPK and SIRT1 levels in the liver and macrophages. Furthermore, AS improved liver injury by elevating the expression of the AMPK/SIRT1 signaling pathway and inhibiting pyroptosis in macrophages. Overall, AS alleviated AHI by promoting M1-to-M2 macrophage transformation and inhibiting macrophage pyroptosis via activation of the AMPK/SIRT1 signaling pathway.
Collapse
Affiliation(s)
- Gang Kuang
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, Chongqing, China
- Department of Critical Care Medicine, Affiliated Dazu's Hospital of Chongqing Medical University, Chongqing, China
| | - Yisi Zhao
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, Chongqing, China
| | - Liuyang Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tingyu Wen
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Panting Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, Chongqing, China
| | - Bei Ma
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, Chongqing, China
- Department of Critical Care Medicine, People's Hospital of Chongqing Liangjiang New Area, Chongqing, China
| | - Qiaozhi Peng
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, Chongqing, China
| | - Fang Xu
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lin Ye
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Fan
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
26
|
Hua S, Zhang H, Li J, Zhou X, Zhang S, Zhu Y, Yan X, Gu P, Huang Z, Jiang W. Astragaloside IV ameliorates atherosclerosis by targeting TAK1 to suppress endothelial cell proinflammatory activation. Int Immunopharmacol 2025; 146:113842. [PMID: 39706043 DOI: 10.1016/j.intimp.2024.113842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Atherosclerosis is a chronic inflammatory disease mainly characterized by the activation of endothelial cells and recruitment of macrophages, leading to plaque formation. Astragaloside IV (AS-IV), a natural saponin derived from Astragalus mongholicus Bunge, has been shown to confer protective effects against cardiovascular diseases. PURPOSE The purpose of this study is to explore the role of AS-IV on atherosclerosis and the underlying mechanism. METHODS Mice with atherosclerosis were administered with AS-IV by oral gavage. Atherosclerotic plaques and blood lipid profiles of these mice were assessed. Endothelial cell activation and macrophage infiltration were examined by immunofluorescent or immunohistochemical staining. The effects of AS-IV on endothelial cell activation, macrophage migration and adhesion were determined by transwell experiments, RT-qPCR, and Western blot. RESULTS Mice treated with AS-IV exhibited a dose-dependent reduction in atherosclerotic plaque size, with no concomitant change in blood lipid levels. It significantly suppressed endothelial cell activation and macrophage infiltration in the vasculature. AS-IV inhibited TNF-α-induced endothelial cell activation and macrophage migration and adhesion in vitro. Furthermore, AS-IV reduced the phosphorylation of key kinases in the MAPK pathways and their upstream regulator TAK1 in endothelial cells. The inhibitory effects of AS-IV on MAPK pathways and endothelial cell activation were counteracted by TAK1 deficiency or overexpression of TAK1. Molecular docking analysis suggested AS-IV binds to TAK1 with high affinity. CONCLUSION AS-IV exhibits anti-atherosclerotic effects by targeting TAK1 in endothelial cells, thereby inhibiting endothelial cell activation, and the subsequent adhesion and migration of macrophages, providing a prospective therapeutic strategy for the management of atherosclerosis.
Collapse
Affiliation(s)
- Shuang Hua
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Han Zhang
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jixu Li
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaonian Zhou
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Shujie Zhang
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yao Zhu
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xingqun Yan
- Department of Genetics and Developmental Science, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Gu
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China; Southeast University, School of Medicine, Nanjing, China.
| | - Zhe Huang
- Department of Genetics and Developmental Science, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; Department of Cardiology, Shanghai Pudong New Area People's Hospital, Shanghai, China.
| | - Weimin Jiang
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
27
|
Qian Y, Xu Y, Zhang Q, Huang C, Li H, Gao L, Wu S, Qi C, Wen X, Zhou X, Ying C. Jaranol alleviates cognitive impairment in db/db mice through the PI3K/AKT pathway. Metab Brain Dis 2025; 40:88. [PMID: 39760807 DOI: 10.1007/s11011-024-01527-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 12/31/2024] [Indexed: 01/07/2025]
Abstract
The widely used Radix Astragali (RA) has significant therapeutic effects on cognitive impairment (CI) caused by type 2 diabetes (T2DM). However, the effective active ingredients and the precise mechanism underly RA alleviation of T2DM-induced CI still require further study. In this study, we aim to elucidate whether and how jaranol, a key effective active ingredient in RA, influences CI in db/db mice. We used various online databases and Cytoscape to screen jaranol as the most active ingredient of RA in the treatment of T2DM-induced CI. The fear conditioning experiment, new object recognition (NOR) test, and Morris water maze (MWM) test were conducted to assess the improvement effect of jaranol on CI in diabetic mice. The protein-protein interaction (PPI) network, Cytoscape, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to identify key genes. The levels of AKT and caspase-3 were determined by Western blotting. The number of surviving hippocampal neurons was verified through Nissl staining. AutoDock was utilized for predicting potential binding sites between jaranol and key genes.As a result, jaranol attenuated CI in db/db mice probably through activation of PI3K-AKT signaling pathway by inhibiting cell apoptosis in hippocampus. Furthermore, A329 near the active site of AKT1 had hydrogen bond with jaranol. In conclusion, we suggest that jaranol may have therapeutic applications in T2DM-induced CI by targeting the PI3K-AKT signaling pathway directly via key sites. Our study provides alternative drugs and potential therapeutic targets for the prevention and treatment of T2DM-induced CI.
Collapse
Affiliation(s)
- Ye Qian
- The Graduate School, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yue Xu
- The Graduate School, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Department of Endocrinology, Shuyang County Hospital of Traditional Chinese Medicine, Jiangsu, 223600, China
| | - Qiuyu Zhang
- The Graduate School, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Chengyu Huang
- The Graduate School, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Hui Li
- The Graduate School, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Lin Gao
- The Graduate School, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Shidi Wu
- The Graduate School, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Chengyu Qi
- The Graduate School, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Xiangru Wen
- Department of Chemistry, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Xiaoyan Zhou
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Department of Genetics, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| | - Changjiang Ying
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Department of Genetics, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- Department of Endocrinology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China.
| |
Collapse
|
28
|
Ding Y, Jie K, Xin L, Shao B. Astragaloside IV plays a neuroprotective role by promoting PPARγ in cerebral ischemia-reperfusion rats. Behav Brain Res 2025; 476:115267. [PMID: 39341463 DOI: 10.1016/j.bbr.2024.115267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/03/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Cerebral ischemia-reperfusion injury (CIRI) usually occurs during the treatment phase of ischemic disease, which is closely related to high morbidity and mortality. Promoting neurogenesis and synaptic plasticity are effective neural recovery strategies for CIRI. Astragaloside IV (AS-IV) has been shown to play a neuroprotective role in some neurological diseases. In the current study, we evaluated the effect and possible mechanism of AS-IV in CIRI rats. METHODS The middle cerebral artery occlusion reperfusion (MCAO/R) model was established in rats to simulate the occurrence of human CIRI. First, we determined the cerebral injury on the 1st, 3rd, 5th and 7th day after cerebral ischemia-reperfusion (I/R) surgery by neurological deficit detection, TTC staining, TUNEL staining and Western blot analysis. Furthermore, rats were pre administered with AS-IV and then subjected to cerebral I/R surgery. Brains were collected on the 3rd day to evaluate the neuroprotective effect of AS-IV. RESULTS Our results showed that on the 3rd day after I/R, the neurological impairment score and infarct volume were highest, the levels of apoptosis and expression of Caspase3 and Bax reached the peak. AS-IV treatment apparently attenuated neurological dysfunction, reduced infarct volume and pathological damage, promoted the neurogenesis, and alleviated the pathological damage caused by cerebral I/R involved in thickening and blurring of synaptic membranes, reduction of microtubules and synaptic vesicles, and loss of synaptic cleft. Our study also showed that AS-IV promoted the transcription and expression of the peroxisome proliferators-activated receptors γ (PPARγ) and brain-derived neurotrophic factor (BDNF), increased the expression of phosphorylation of tyrosine kinase receptor B (TrkB) and downstream PI3K/Akt/mTOR pathway proteins. Notably, when GW9662, an inhibitor of PPARγ was administered with AS-IV, the neuroprotective effect of AS-IV was reduced. CONCLUSIONS These findings suggested that AS-IV has neuroprotective function in CIRI rats, and its molecular mechanism may depend on the phosphatidylinositide 3-kinase (PI3K)/protein kinase B (PKB)/Akt signalling pathway activated by PPARγ. AS-IV could be an effective therapeutic drug candidate for CIRI treatment.
Collapse
Affiliation(s)
- Yanping Ding
- School of Life Science, Northwest Normal University, Lanzhou 730000, China
| | - Kang Jie
- School of Life Science, Northwest Normal University, Lanzhou 730000, China
| | - Liu Xin
- School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Baoping Shao
- School of Life Science, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
29
|
Wang L, Sun T, Yang X, Wen Z, Sun Y, Liu H. Astragaloside IV Overcomes Anlotinib Resistance in Non-small Cell Lung Cancer through miR-181a-3p/UPR-ERAD Axis. Curr Comput Aided Drug Des 2025; 21:441-451. [PMID: 38310574 DOI: 10.2174/0115734099252873231117072107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/23/2023] [Accepted: 11/03/2023] [Indexed: 02/06/2024]
Abstract
BACKGROUND Astragaloside IV (AS-IV) has been shown to have a curative effect on non-small cell lung cancer (NSCLC). This study aimed to elucidate the role of AS-IV in NSCLC cell anlotinib resistance (AR). METHODS The NSCLC/AR cells, resistant to anlotinib, have been produced. The role of AS-IV in the AR of NSCLC cells about the miR-181a-3p/unfolded protein response (UPR)- endoplasmic reticulum associated degradation (ERAD) pathway was then discussed by treating the cells with anlotinib or AS-IV, or by manipulating them with inhibitors or mimics of miR- 181a-3p, HRD1 or Derlin-1 overexpression plasmids. RESULTS We found that AS-IV could suppress the AR of NSCLC cells. In addition, miR-181a- 3p was elevated in NSCLC/AR cells. Functionally, AS-IV limited the AR of NSCLC cells by reducing miR-181a-3p. Further, activation of the UPR-ERAD pathway was correlated with AR in NSCLC cells. Increased sensitivity of NSCLC cells to anlotinib caused by miR-181a-3p inhibitor could be reversed by overexpression of HRD1 or Derlin-1. CONCLUSION This research revealed a promising NSCLC/AR treatment approach by showing that AS-IV exposed NSCLC cells to anlotinib by inhibiting the miR-181a-3p/UPR-ERAD axis.
Collapse
Affiliation(s)
- Lihuai Wang
- Department of Oncology, the First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, 410000, Hunan Province, China
| | - Tonglin Sun
- Department of Oncology, the First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, 410000, Hunan Province, China
| | - Xiao Yang
- Department of Oncology, the First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, 410000, Hunan Province, China
| | - Zhi Wen
- Department of Oncology, the First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, 410000, Hunan Province, China
| | - Yinhui Sun
- Department of Pathophysiology, Medical College, Hunan University of Traditional Chinese Medicine, Changsha, 410208, Hunan Province, China
| | - Hua Liu
- Department of Oncology, the First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, 410000, Hunan Province, China
| |
Collapse
|
30
|
Singh U, Sharma R, Kumar R. An Overview on Diabetic Neuropathy. Curr Diabetes Rev 2025; 21:29-42. [PMID: 38919000 DOI: 10.2174/0115733998295741240606104106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/09/2024] [Accepted: 05/30/2024] [Indexed: 06/27/2024]
Abstract
The term "Diabetic neuropathy" refers to a collection of clinical and subclinical symptoms caused by problems with the peripheral nervous system. Diabetes, which affects approximately 381 million people worldwide, is the source of dysfunction due to the emergence of microvascular complications. It is anticipated that in the next ten years, Diabetic neuropathy will manifest in about 50% of patients who are currently diagnosed with diabetes. Clinical diagnosis can be established by getting a thorough patient history and exploring the symptoms to rule out alternative causes. Although distal symmetrical polyneuropathy, or just, is the most common and well-researched variant of the disorder, this review will concentrate on it. The multifactorial pathogenesis is linked to various inflammatory, vascular, metabolic, and neurodegenerative illnesses. The three fundamental molecular alterations that lead to the development of diabetic neuropathic pain are oxidative stress, endothelial dysfunction, and chronic inflammation. These three elements are crucial in the development of polyneuropathy because their combination might result in direct axonal damage and nerve ischemia. The purpose of this article was to provide a narrative review of diabetic neuropathy. We provide an overview of the most recent data on biomarkers, the pathogenesis of the illness, the most recent epidemiology of diabetic neuropathy, and the existing screening and diagnosis outcome measures used in both clinical and research contexts.
Collapse
Affiliation(s)
- Ujjawal Singh
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, India
| | - Ramsha Sharma
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, India
| | - Ranjeet Kumar
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, India
- Narayan Institute of Pharmacy, Gopal Narayan Singh University, Sasaram, Rohtas, Bihar, 821305, India
| |
Collapse
|
31
|
Wang B, Wang J, Liu C, Li C, Meng T, Chen J, Liu Q, He W, Liu Z, Zhou Y. Ferroptosis: Latest evidence and perspectives on plant-derived natural active compounds mitigating doxorubicin-induced cardiotoxicity. J Appl Toxicol 2025; 45:135-158. [PMID: 39030835 DOI: 10.1002/jat.4670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/22/2024]
Abstract
Doxorubicin (DOX) is a chemotherapy drug widely used in clinical settings, acting as a first-line treatment for various malignant tumors. However, its use is greatly limited by the cardiotoxicity it induces, including doxorubicin-induced cardiomyopathy (DIC). The mechanisms behind DIC are not fully understood, but its potential biological mechanisms are thought to include oxidative stress, inflammation, energy metabolism disorders, mitochondrial damage, autophagy, apoptosis, and ferroptosis. Recent studies have shown that cardiac injury induced by DOX is closely related to ferroptosis. Due to their high efficacy, availability, and low side effects, natural medicine treatments hold strong clinical potential. Currently, natural medicines have been shown to mitigate DOX-induced ferroptosis and ease DIC through various functions such as antioxidation, iron ion homeostasis correction, lipid metabolism regulation, and mitochondrial function improvement. Therefore, this review summarizes the mechanisms of ferroptosis in DIC and the regulation by natural plant products, with the expectation of providing a reference for future research and development of inhibitors targeting ferroptosis in DIC. This review explores the mechanisms of ferroptosis in doxorubicin-induced cardiomyopathy (DIC) and summarizes how natural plant products can alleviate DIC by inhibiting ferroptosis through reducing oxidative stress, correcting iron ion homeostasis, regulating lipid metabolism, and improving mitochondrial function.
Collapse
Affiliation(s)
- Boyu Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jiameng Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Changxing Liu
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chengjia Li
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Tianwei Meng
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jia Chen
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qingnan Liu
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wang He
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhiping Liu
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yabin Zhou
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
32
|
Xiong W, Zhang X, Zou XL, Peng S, Lei HJ, Liu XN, Zhao L, Huang ZX. Exosomes Derived from Astragaloside IV-pretreated Endothelial Progenitor Cells (AS-IV-Exos) Alleviated Endothelial Oxidative Stress and Dysfunction via the miR-210/ Nox2/ROS Pathway. Curr Mol Med 2025; 25:320-329. [PMID: 38299414 DOI: 10.2174/0115665240262982240109104620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 02/02/2024]
Abstract
BACKGROUND Chronic hyperglycemia in diabetes induces oxidative stress, leading to damage to the vascular system. In this study, we aimed to evaluate the effects and mechanisms of AS-IV-Exos in alleviating endothelial oxidative stress and dysfunction caused by high glucose (HG). METHODS Histopathological changes were observed using HE staining, and CD31 expression was assessed through immunohistochemistry (IHC). Cell proliferation was evaluated through CCK8 and EDU assays. The levels of ROS, SOD, and GSH-Px in the skin tissues of each group were measured using ELISA. Cell adhesion, migration, and tube formation abilities were assessed using adhesion, Transwell, and tube formation experiments. ROS levels in HUVEC cells were measured using flow cytometry. The levels of miR-210 and Nox2 were determined through quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The expression of Nox2, SOD, GSH-Px, CD63, and CD81 was confirmed using WB. RESULTS The level of miR-210 was reduced in diabetes-induced skin damage, while the levels of Nox2 and ROS increased. Treatment with AS-IV increased the level of miR-210 in EPC-Exos. Compared to Exos, AS-IV-Exos significantly reduced the proliferation rate, adhesion number, migration speed, and tube-forming ability of HGdamaged HUVEC cells. AS-IV-Exos also significantly decreased the levels of SOD and GSH-Px in HG-treated HUVEC cells and reduced the levels of Nox2 and GSH-Px. However, ROS levels and Nox2 could reverse this effect. CONCLUSION AS-IV-Exos effectively alleviated endothelial oxidative stress and dysfunction induced by HG through the miR-210/Nox2/ROS pathway.
Collapse
Affiliation(s)
- Wu Xiong
- Department of Burns and Plastic Surgery, the First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Xi Zhang
- Clinical Medical School of Hunan University of Chinese Medicine, Hunan Brain Hospital, Changsha, 410007, China
| | - Xiao-Ling Zou
- Department of Endocrinology, the First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Sai Peng
- Department of Anesthesiology, the First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Hua-Juan Lei
- Department of Anesthesiology, the First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Xiang-Nan Liu
- College of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Lan Zhao
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Zi-Xin Huang
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| |
Collapse
|
33
|
Yu K, Tang Y, Wang C, Liu W, Hu M, Hu A, Kuang Y, Zacksenhaus E, Yu XZ, Xiao X, Ben-David Y. The Astragalus Membranaceus Herb Attenuates Leukemia by Inhibiting the FLI1 Oncogene and Enhancing Anti-Tumor Immunity. Int J Mol Sci 2024; 25:13426. [PMID: 39769192 PMCID: PMC11676164 DOI: 10.3390/ijms252413426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 01/03/2025] Open
Abstract
Astragalus membranaceus (AM) herb is a component of traditional Chinese medicine used to treat various cancers. Herein, we demonstrate a strong anti-leukemic effect of AM injected (Ai) into the mouse model of erythroleukemia induced by Friend virus. Chemical analysis combined with mass spectrometry of AM/Ai identified the compounds Betulinic acid, Kaempferol, Hederagenin, and formononetin, all major mediators of leukemia inhibition in culture and in vivo. Docking analysis demonstrated binding of these four compounds to FLI1, resulting in downregulation of its targets, induction of apoptosis, differentiation, and suppression of cell proliferation. Chemical composition analysis identified other compounds previously known having anti-tumor activity independent of the FLI1 blockade. Among these, Astragaloside-A (As-A) has marginal effect on cells in culture, but strongly inhibits leukemogenesis in vivo, likely through improvement of anti-tumor immunity. Indeed, both IDO1 and TDO2 were identified as targets of As-A, leading to suppression of tryptophane-mediated Kyn production and leukemia suppression. Moreover, As-A interacts with histamine decarboxylase (HDC), leading to suppression of anti-inflammatory genes TNF, IL1B/IL1A, TNFAIP3, and CXCR2, but not IL6. These results implicate HDC as a novel immune checkpoint mediator, induced in the tumor microenvironment to promote leukemia. Functional analysis of AM components may allow development of combination therapy with optimal anti-leukemia effect.
Collapse
Affiliation(s)
- Kunlin Yu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 561113, China; (K.Y.); (Y.T.); (C.W.); (W.L.); (M.H.); (A.H.); (Y.K.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Yao Tang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 561113, China; (K.Y.); (Y.T.); (C.W.); (W.L.); (M.H.); (A.H.); (Y.K.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Chunlin Wang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 561113, China; (K.Y.); (Y.T.); (C.W.); (W.L.); (M.H.); (A.H.); (Y.K.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Wuling Liu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 561113, China; (K.Y.); (Y.T.); (C.W.); (W.L.); (M.H.); (A.H.); (Y.K.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Maoting Hu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 561113, China; (K.Y.); (Y.T.); (C.W.); (W.L.); (M.H.); (A.H.); (Y.K.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Anling Hu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 561113, China; (K.Y.); (Y.T.); (C.W.); (W.L.); (M.H.); (A.H.); (Y.K.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Yi Kuang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 561113, China; (K.Y.); (Y.T.); (C.W.); (W.L.); (M.H.); (A.H.); (Y.K.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Eldad Zacksenhaus
- Division of Advanced Diagnostics, Toronto General Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada;
| | - Xue-Zhong Yu
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Xiao Xiao
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 561113, China; (K.Y.); (Y.T.); (C.W.); (W.L.); (M.H.); (A.H.); (Y.K.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Yaacov Ben-David
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 561113, China; (K.Y.); (Y.T.); (C.W.); (W.L.); (M.H.); (A.H.); (Y.K.)
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| |
Collapse
|
34
|
Xu Lou I, Yu X, Chen Q. Exploratory review on the effect of Astragalus mongholicus on signaling pathways. Front Pharmacol 2024; 15:1510307. [PMID: 39726784 PMCID: PMC11670317 DOI: 10.3389/fphar.2024.1510307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024] Open
Abstract
Background Astragalus mongholicus Bunge [Fabaceae; Astragali radix] (AM), a traditional Chinese medicinal (TCM) botanical drug, has been used for centuries and is gaining growing recognition in medical research for its therapeutic potential. The currently accepted scientific name is Astragalus mongholicus Bunge, with Astragalus membranaceus Fisch. ex Bunge recognized as a taxonomic synonym. This review explores the most relevant scientific studies on AM, focusing on its chemical composition, mechanisms of action, and associated health benefits. Main body AM is commonly used in clinical practice to treat diabetes mellitus, cardiovascular diseases, oncological processes, lipid metabolism disorders, and ulcerative colitis. Recent research has investigated its potential as a product for anti-aging purposes. These therapeutic effects are attributed to the interactions of bioactive metabolites such as Astragaloside IV, Formononetin, and polysaccharides, with various signaling pathways, leading to the activation or inhibition of gene expression. This review aims to map the signaling pathways affected by these metabolites and their effects on different pathologies. Studies suggest that these metabolites act on signaling pathways such as TLR4/MyD88/NF-κB, PI3K/AKT, RNA expression, and tumor receptors. However, further research is necessary to validate the findings in human trials with better methodological quality. Conclusion AM is rich in bioactive metabolites that interact with various signaling pathways, modulating diseases such as diabetes mellitus type 2, cardiovascular diseases, cancer, lipid metabolism disorders, and ulcerative colitis. Although promising, the majority of the studies are conducted in vitro and animal models, and more rigorous human trials are needed to determine the therapeutic potential of AM.
Collapse
Affiliation(s)
| | | | - Qilan Chen
- Department of Cardiology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
35
|
Zhou X, Wang H, Yan B, Nie X, Chen Q, Yang X, Lei M, Guo X, Ouyang C, Ren Z. Ferroptosis in Cardiovascular Diseases and Ferroptosis-Related Intervention Approaches. Cardiovasc Drugs Ther 2024:10.1007/s10557-024-07642-5. [PMID: 39641901 DOI: 10.1007/s10557-024-07642-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/08/2024] [Indexed: 12/07/2024]
Abstract
OBJECTIVE Cardiovascular diseases (CVDs) are major public health problems that threaten the lives and health of individuals. The article has reviewed recent progresses about ferroptosis and ferroptosis-related intervention approaches for the treatment of CVDs and provided more references and strategies for targeting ferroptosis to prevent and treat CVDs. METHODS A comprehensive review was conducted using the literature researches. RESULTS AND DISCUSSION Many ferroptosis-targeted compounds and ferroptosis-related genes may be prospective targets for treating CVDs and our review provides a solid foundation for further studies about the detailed pathological mechanisms of CVDs. CONCLUSION There are challenges and limitations about the translation of ferroptosis-targeted potential therapies from experimental research to clinical practice. It warrants further exploration to pursure safer and more effective ferroptosis-targeted thereapeutic approaches for CVDs.
Collapse
Affiliation(s)
- Xianpeng Zhou
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - Hao Wang
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - Biao Yan
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - Xinwen Nie
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - Qingjie Chen
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - Xiaosong Yang
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - Min Lei
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - Xiying Guo
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - Changhan Ouyang
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China
| | - Zhanhong Ren
- Hubei University of Science and Technology, Xianning, 437100, Hubei, People's Republic of China.
| |
Collapse
|
36
|
Liu Q, Ding P, Zhu Y, Wang C, Yin L, Zhu J, Nie S, Wang S, Zheng C, Shen H, Mo F. Super Astragalus polysaccharide in specific gut microbiota metabolism alleviates chronic unpredictable mild stress-induced cognitive deficits mice. Int J Biol Macromol 2024; 283:137394. [PMID: 39521210 DOI: 10.1016/j.ijbiomac.2024.137394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Chronic stress affects intestinal microbiota. Astragaloside IV (AS), called super Astragalus polysaccharide, is a monomer component of traditional herbs Astragalus membranaceus which belongs to medicinal food homology (MFH), exerts a neuroprotection effect, but the underlying mechanism has not yet been elucidated. Intestinal flora is also involved in the biotransformation of the active ingredients of MFH species, thus affecting their physiological and pharmacological properties. In this study, we found that AS improved CUMS-induced cognitive impairment, inhibited neuroinflammation, and restored intestinal barrier damage, but the improvement was suppressed by the elimination of gut microbiota, suggesting a key regulatory role for the microbiota. The results of 16S rDNA sequencing showed that AS treatment significantly increased the relative abundance of Lactobacillus reuteri (L. reuteri) and Bacteroides acidifaciens. Furthermore, supplementation of L. reuteri rather than Lactobacillus plantarum restored the effect of AS-supplied dysbiosis mice via inhibition of inflammatory repose and the maintenance of the intestinal epithelial barrier, indicating that dietary AS requires L. reuteri to ameliorate cognitive injury. These findings provide evidence for new therapeutic strategies to treat chronic stress and support the role of specific bacteria in the intestinal environment that metabolizes the AS.
Collapse
Affiliation(s)
- Qing Liu
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Peng Ding
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; Department of Anesthesiology, PLA 983 Hospital, Tianjin 300143, China
| | - Ying Zhu
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Chenxu Wang
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; School of Medicine, Xiamen University, Xiamen 361102, China
| | - Lifeng Yin
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jian Zhu
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Shuang Nie
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Shi Wang
- Department of Neurology, Third Affiliated Hospital of Naval Medical University, Shanghai 200438, China
| | - Chengjian Zheng
- Faculty of Pharmacy, Naval Medical University, Shanghai 200433, China.
| | - Hui Shen
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China.
| | - Fengfeng Mo
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
37
|
Ma Y, Hu Y, Ruan Y, Jiang X, Zhao M, Wang Y, Ke Y, Shi M, Lu G. Astragaloside IV relieves passive heymann nephritis and podocyte injury by suppressing the TRAF6/NF-κb axis. Ren Fail 2024; 46:2371992. [PMID: 39082739 PMCID: PMC11293271 DOI: 10.1080/0886022x.2024.2371992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/01/2024] [Accepted: 06/19/2024] [Indexed: 08/03/2024] Open
Abstract
The pathogenesis of membranous nephropathy (MN) involves podocyte injury that is attributed to inflammatory responses induced by local immune deposits. Astragaloside IV (AS-IV) is known for its robust anti-inflammatory properties. Here, we investigated the effects of AS-IV on passive Heymann nephritis (PHN) rats and TNF-α-induced podocytes to determine the underlying molecular mechanisms of MN. Serum biochemical parameters, 24-h urine protein excretion and renal histopathology were evaluated in PHN and control rats. The expression of tumor necrosis factor receptor associated factor 6 (TRAF6), the phosphorylation of nuclear factor kappa B (p-NF-κB), the expression of associated proinflammatory cytokines (TNF-α, IL-6 and IL-1β) and the ubiquitination of TRAF6 were measured in PHN rats and TNF-α-induced podocytes. We detected a marked increase in mRNA expression of TNF-α, IL-6 and IL-1β and in the protein abundance of p-NF-κB and TRAF6 within the renal tissues of PHN rats and TNF-α-induced podocytes. Conversely, there was a reduction in the K48-linked ubiquitination of TRAF6. Additionally, AS-IV was effective in ameliorating serum creatinine, proteinuria, and renal histopathology in PHN rats. This effect was concomitant with the suppression of NF-κB pathway activation and decreased expression of TNF-α, IL-6, IL-1β and TRAF6. AS-IV decreased TRAF6 levels by promoting K48-linked ubiquitin conjugation to TRAF6, which triggered ubiquitin-mediated degradation. In summary, AS-IV averted renal impairment in PHN rats and TNF-α-induced podocytes, likely by modulating the inflammatory response through the TRAF6/NF-κB axis. Targeting TRAF6 holds therapeutic promise for managing MN.
Collapse
Affiliation(s)
- Yuhua Ma
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
- Department of Nephrology, Traditional Chinese Medicine Hospital of Kunshan, Kunshan, China
| | - Yuwen Hu
- Center for inspection, Jiangsu Medical Products Administration, Nanjing, China
| | - Yilin Ruan
- Department of Nephrology, Shanghai Ruijin Hosptial, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaocheng Jiang
- Department of Nephrology, Traditional Chinese Medicine Hospital of Kunshan, Kunshan, China
| | - Min Zhao
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuxin Wang
- Department of Nephrology, Traditional Chinese Medicine Hospital of Kunshan, Kunshan, China
| | - Yanrong Ke
- Department of Nephrology, Traditional Chinese Medicine Hospital of Kunshan, Kunshan, China
| | - Manman Shi
- Department of Nephrology, Traditional Chinese Medicine Hospital of Kunshan, Kunshan, China
| | - Guoyuan Lu
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| |
Collapse
|
38
|
Mbogho Abogo J, Sima Obiang C, Begouabe H, Ngoua Meye Misso RL, Orango Bourdette JO, Ndong Atome GR, Obame Engonga LC, Ondo JP. Evaluation of the efficacy of medicinal plants based on immunological biomarkers in the treatment of bacterial infections: Current status and future directions. GENE REPORTS 2024; 37:102052. [DOI: 10.1016/j.genrep.2024.102052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
39
|
Li Y, Yang X, Li X, Wang S, Chen P, Ma T, Zhang B. Astragaloside IV and cycloastragenol promote liver regeneration through regulation of hepatic oxidative homeostasis and glucose/lipid metabolism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156165. [PMID: 39461202 DOI: 10.1016/j.phymed.2024.156165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/28/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND The regenerative capacity of the liver is pivotal for mitigating various forms of liver injury and requires the rapid proliferation of hepatocytes. Aquaporin-9 (AQP9) provides vital support for hepatocyte proliferation by preserving hydrogen peroxide (H2O2) oxidative balance and glucose/lipid metabolism equilibrium within hepatocytes. Our previous study demonstrated that Radix Astragali (RA) decoction promotes liver regeneration by upregulating hepatic expression of AQP9, possibly via two major active constituents: astragaloside IV (AS-IV) and cycloastragenol (CAG). PURPOSE To verify that upregulated AQP9 expression in hepatocytes maintains liver oxidative balance and glucose/lipid metabolism homeostasis, and is the main pharmacological mechanism by which AS-IV and CAG promote liver regeneration. STUDY DESIGN/METHODS Effects of AS-IV and CAG on liver regeneration were scrutinized using a mouse model of 70 % partial hepatectomy (PHx). AQP9-targeted liver regeneration mediated by AS-IV and CAG was verified using AQP9 gene knockout mice (AQP9-/-). The AQP9 protein expression pattern in hepatocytes was determined using tdTomato-tagged AQP9 transgenic mice (AQP9-RFP). Potential mechanisms of AS-IV and CAG on liver regeneration were studied using real-time quantitative PCR, immunoblotting, staining with hematoxylin and eosin, oil red O, and periodic acid-Schiff, and immunofluorescence, immunohistochemistry, HyPerRed fluorescence, and biochemical analyses. RESULTS AS-IV and CAG promoted substantial liver regeneration and increased hepatic AQP9 expression in wild-type mice (AQP9+/+) following 70 % PHx, but had no discernible benefits in AQP9-/- mice. Both saponin compounds also helped maintain oxidative homeostasis by reducing levels of oxidative stress markers (reactive oxygen species [ROS], H2O2, and malondialdehyde) and elevating levels of ROS scavengers (glutathione and superoxide dismutase) in AQP9+/+ mice post-70 % PHx. This further activated the PI3K-AKT and insulin signaling pathways, thereby fostering liver regeneration. Furthermore, AS-IV and CAG both promoted hepatocyte glycerol uptake, increased gluconeogenesis, facilitated lipolysis, reduced glycolysis, and inhibited glycogen deposition, thus ensuring the energy supply required for liver regeneration. CONCLUSION This research is the first to demonstrate AS-IV and CAG as major active ingredients of RA that promote liver regeneration by upregulating hepatocyte AQP9 expression, improving hepatocyte glucose/lipid metabolism, and reducing oxidative stress damage, constituting a crucial pharmacological mechanism underlying the liver-protective effects of RA. The augmentation of hepatocyte AQP9 expression underscores an important aspect of the Qi-tonifying effect of RA. This study establishes AQP9 as an effective target for regulation of liver regeneration and provides a universal strategy for clinical drug intervention aimed at enhancing liver regeneration.
Collapse
Affiliation(s)
- Yanghao Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023,PR China; School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Xu Yang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Xiang Li
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Shaodong Wang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Peng Chen
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Tonghui Ma
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023,PR China; School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Bo Zhang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| |
Collapse
|
40
|
Li J, Niu Y, Yuan L, Jiang W, Jiao T, Dou H, Nan Y. Research Progress in the Medicine-Food Dual Use of Astragalus for Gastrointestinal Tumors. J Med Food 2024; 27:1145-1157. [PMID: 39431943 DOI: 10.1089/jmf.2024.k.0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024] Open
Abstract
Gastrointestinal tumors have a major impact on human life expectancy and quality of life and are a major cause of personal and social hygiene stress. Gastrointestinal tumors are the main cause of cancer-related death, and the main treatment methods are surgery, radiotherapy, and chemotherapy. However, they also cause great damage to the body and have a poor prognosis after surgery. Therefore, we urgently need safe and effective drugs to intervene in gastrointestinal tumors. In recent years, Traditional Chinese Medicine has been widely used in tumor treatment as a complementary and alternative therapy. Astragalus membranaceus is one of the main herbal medicines with tonic effect and one of the important components of many antitumor herbal compounds. Astragalus polysaccharides, saponins, and flavonoids are the main active components of Astragalus, all of which have antitumor effects. In this article, we studied the mechanism of action of Astragalus and its active ingredients in the intervention of gastrointestinal tumors in recent years and suggested a new approach for the study of Astragalus intervention in gastrointestinal tumors from the perspective of the homology of medicine and food.
Collapse
Affiliation(s)
- Jiaqing Li
- Ningxia Medical University Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Yinchuan, China
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, China
| | - Yang Niu
- Ningxia Medical University Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Yinchuan, China
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, China
| | - Ling Yuan
- Pharmacy College of Ningxia Medical University, Yinchuan, China
| | - Wenjie Jiang
- Ningxia Medical University Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Yinchuan, China
| | - Taiqiang Jiao
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, China
| | - Hongli Dou
- Ningxia Medical University Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Yinchuan, China
- Marxist College of Shaanxi University of Chinese Medicine, Xi'an, China
| | - Yi Nan
- Ningxia Medical University Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Yinchuan, China
| |
Collapse
|
41
|
Tian H, Zhang Y, Li W, Xie G, Wu J, Liu J. Astragaloside IV Inhibits Lung Injury and Fibrosis Induced by PM2.5 by Targeting RUNX1 Through miR-362-3p. Mol Biotechnol 2024:10.1007/s12033-024-01320-5. [PMID: 39535691 DOI: 10.1007/s12033-024-01320-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/02/2024] [Indexed: 11/16/2024]
Abstract
To discover the molecular mechanism of Astragaloside IV (AS IV) in PM2.5-induced lung injury and pulmonary fibrosis (PF). A lung injury rat model was induced by PM2.5 and injected intraperitoneally with AS IV. Lungs were harvested to evaluate lung tissue injury and apoptosis. Rat alveolar epithelial cells L2 were exposed to PM2.5 and treated with AS IV. After cellular transfection, cell proliferation, LDH production, and apoptosis were measured. In both models, inflammatory factors and fibrotic indices were measured by ELISA and Western blot. miR-362-3p and RUNX1 interplay was explored and confirmed. Administration of AS IV attenuated PM2.5-induced lung tissue injury, inflammation, apoptosis, and PF in rats. AS IV enhanced proliferation and reduced LDH release, apoptosis, inflammation, and PF in PM2.5-treated L2 cells. MiR-362-3p upregulation improved PM2.5-induced L2 cell injury. AS IV improved PM2.5-induced lung injury by upregulating miR-362-3p. miR-362-3p had an inhibition effect on RUNX1 expression. RUNX1 upregulation weakened the therapeutic effect of AS IV on PM2.5-induced alveolar epithelial cell injury. AS IV inhibits lung injury and PF induced by PM2.5 by targeting RUNX1 through upregulation of miR-362-3p.
Collapse
Affiliation(s)
- Hao Tian
- Department of Pharmacy, Yantai Qishan Hospital, Yantai City, 264000, Shandong Province, China
| | - Yan Zhang
- Department of Pharmacy, Yantai Qishan Hospital, Yantai City, 264000, Shandong Province, China
| | - Wei Li
- Department of Pharmacy, Yantai Qishan Hospital, Yantai City, 264000, Shandong Province, China
| | - GenTan Xie
- Binzhou Vocational College, Binzhou City, 256603, Shandong Province, China
| | - JunJing Wu
- Department of Otorhinolaryngology, Zibo Central Hospital, Zibo City, 255020, Shandong Province, China
| | - Jing Liu
- Department of Intravenous Drug Dispensing, Zibo Central Hospital, No. 54, Gongqingtuan West Road, Zhangdian District, Zibo City, 255020, Shandong Province, China.
| |
Collapse
|
42
|
Wang H, Luo Y, Wang L, Liu Z, Kang Z, Che X. A separable double-layer self-pumping dressing containing astragaloside for promoting wound healing. Int J Biol Macromol 2024; 281:136342. [PMID: 39374715 DOI: 10.1016/j.ijbiomac.2024.136342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Some skin wounds often have many exudate. Ordinary single layer electrospunning nanofiber wound dressings often don't have enough capacity to absorb them. Therefore, a separable double layer electrospunning nanofiber dressing was developed in this work. The dressing had a separable feature that allowed the upper layer to be separated and removed after it had absorbed a significant amount of wound exudate. This dressing consisted of an upper layer of super hydrophilic sodium polyacrylate nanofibers and a bottom layer of 3D-structure coaxial nanofibers with encapsulated Astragaloside (AS). The results showed that nanofibers had better morphology. The water absorption rate, water vapor transmission rate and free radical scavenging rate of the double-layer dressings were 1461.71 ± 39.72 %, 1193.63 ± 134 g·m-2·day-1, and 63.35 ± 3.65 %, respectively. The double-layer nanofiber dressing achieved 65.69 ± 2.62 % and 75.10 ± 6.26 % inhibition against Staphylococcus aureus and Escherichia coli, respectively. The double-layer dressing had proliferative, migratory, and adhesive effects on L929 fibroblasts. And the double-layer dressing resulted in a 96.78 ± 1.0 % wound healing rate in rats after giving a 14 days treatment. Therefore, the 3D-structure separable double-layer wound dressing designed and prepared in this study was effective in promoting wound healing.
Collapse
Affiliation(s)
- Hongwei Wang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guizhou 550025, China
| | - Yongming Luo
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guizhou 550025, China
| | - Lihong Wang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guizhou 550025, China
| | - Zemei Liu
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guizhou 550025, China
| | - Zhichao Kang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guizhou 550025, China
| | - Xin Che
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guizhou 550025, China.
| |
Collapse
|
43
|
Sha Z, Liu W, Jiang T, Zhang K, Yu Z. Astragaloside IV induces the protective effect of bone marrow mesenchymal stem cells derived exosomes in acute myocardial infarction by inducing angiogenesis and inhibiting apoptosis. Biotechnol Genet Eng Rev 2024; 40:1438-1455. [PMID: 36971224 DOI: 10.1080/02648725.2023.2194087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023]
Abstract
Bone marrow mesenchymal stem cells (BMECs)-derived exosomes (MSC-Exo) can improve acute myocardial infarction (AMI). Astragaloside IV (AS-IV) has also been reported to have cardioprotective pharmacological effects. However, it is not entirely clear whether AS-IV can improve AMI by inducing MSC-Exo. BMSCs and MSC-Exo were isolated and identified, and we also established the AMI rat model and the OGD/R model with H9c2 cells. After MSC-Exo or AS-IV-mediated MSC-Exo treatment, cell angiogenesis, migration, and apoptosis were evaluated by tube formation, wound healing, and TUNEL staining. The cardiac function of the rats was measured by echocardiography. The pathological changes and collagen deposition in rats were also assessed with Masson and Sirius red staining. The levels of α-SMA, CD31 and inflammatory factors were determined by immunohistochemistry and enzyme-linked immunosorbent assay (ELISA). In vitro, AS-IV-mediated MSC-Exo can significantly enhance the angiogenesis and migration of H9c2 cells induced by OGD/R, and significantly reduce their apoptosis. In vivo, AS-IV-mediated MSC-Exo can improve the cardiac function of rats, and attenuate pathological damage and collagen deposition in AMI model rats. In addition, AS-IV-mediated MSC-Exo can also promote angiogenesis and reduce inflammatory factors in rats with AMI. AS-IV-stimulated MSC-Exo can improve myocardial contractile function, myocardial fibrosis and angiogenesis, reduce inflammatory factors and induce apoptosis in rats after AMI.
Collapse
Affiliation(s)
- Zhongxin Sha
- Department of Hypertension, The Affiliated Hospital of Guizhou Medical University, Guiyang, P.R. China
| | - Wupeng Liu
- Department of Cardiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, P. R. China
| | - Tianpeng Jiang
- Department of Interventional Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, P.R. China
| | - Kaiping Zhang
- Department of Cardiology, Guihang 302 Hospital, Anshun, P.R. China
| | - Zhenqiu Yu
- Department of Hypertension, The Affiliated Hospital of Guizhou Medical University, Guiyang, P.R. China
| |
Collapse
|
44
|
Xu B, Huang JP, Peng G, Cao W, Liu Z, Chen Y, Yao J, Wang YJ, Li J, Zhang G, Chen S, Huang SX. Total biosynthesis of the medicinal triterpenoid saponin astragalosides. NATURE PLANTS 2024; 10:1826-1837. [PMID: 39433972 DOI: 10.1038/s41477-024-01827-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/23/2024] [Indexed: 10/23/2024]
Abstract
Astragalus membranaceus has been used in traditional Chinese medicine for over 2,000 years. Its major active triterpenoid saponins, astragalosides, have attracted great attention due to their multiple health benefits and applications in medicine. Despite this, the biosynthetic machinery for astragalosides remains enigmatic. Here a chromosome-level genome assembly of A. membranaceus was generated. The identification of two tailoring enzymes required for astragaloside biosynthesis enabled the discovery of a triterpenoid biosynthetic gene cluster, leading to elucidation of the complete astragaloside biosynthetic pathway. This pathway is characterized by a sequence of selective hydroxylation, epoxidation and glycosylation reactions, which are mediated by three cytochrome P450s, one 2-oxoglutarate-dependent dioxygenase and two glycosyltransferases. Reconstitution of this biosynthetic machinery in Nicotiana benthamiana allowed for heterologous production of astragaloside IV. These findings build a solid foundation for addressing the sourcing issues associated with astragalosides and broaden our understanding of the diversity of terpene biosynthetic gene clusters.
Collapse
Affiliation(s)
- Bingyan Xu
- Key Laboratory of Phytochemistry and Natural Medicines and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Jian-Ping Huang
- Key Laboratory of Phytochemistry and Natural Medicines and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Institute of Herbgenomics, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guoqing Peng
- Key Laboratory of Phytochemistry and Natural Medicines and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Institute of Herbgenomics, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenying Cao
- Key Laboratory of Phytochemistry and Natural Medicines and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of the Chinese Academy of Sciences, Beijing, China
- Department of Chemistry, Westlake University, Hangzhou, China
| | - Zhong Liu
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, China
| | - Yin Chen
- Key Laboratory of Phytochemistry and Natural Medicines and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Jingchun Yao
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, China
| | - Yong-Jiang Wang
- Key Laboratory of Phytochemistry and Natural Medicines and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jie Li
- Key Laboratory of Phytochemistry and Natural Medicines and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Guimin Zhang
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, China
| | - Shilin Chen
- Institute of Herbgenomics, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sheng-Xiong Huang
- Key Laboratory of Phytochemistry and Natural Medicines and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.
- Institute of Herbgenomics, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
45
|
Zhang S, Li S, Xie S, Cui L, Gao Y, Wang Y. The Role of Ca 2+/PI3K/Akt/eNOS/NO Pathway in Astragaloside IV-Induced Inhibition of Endothelial Inflammation Triggered by Angiotensin II. Mediators Inflamm 2024; 2024:3193950. [PMID: 39512364 PMCID: PMC11540887 DOI: 10.1155/2024/3193950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 09/29/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024] Open
Abstract
Inflammation induced by angiotensin II (Ang II) is a key event in the progression of numerous cardiovascular diseases. Astragaloside IV (AS-IV), a glycoside extracted from Astragalus membranaceus Bunge, has been shown to inhibit Ang II-induced inflammatory responses in vivo. However, the mechanisms underlying the beneficial effects are still unclear. This study investigated whether AS-IV attenuates endothelial inflammation induced by Ang II via the activation of endothelial nitric oxide synthase (eNOS)/nitric oxide (NO) pathway. Human umbilical vein endothelial cells (HUVECs) were cultured in the presence of AS-IV with or without the specific inhibitor of NOS or Ca2+- and phosphatidylinositol 3-kinase (PI3K)/Akt-dependent cascade prior to Ang II exposure. Incubation of HUVECs with AS-IV enhanced NO production and eNOSser1177 phosphorylation. These responses were abrogated by the inhibition of NOS or Ca2+- and PI3K/Akt-dependent pathway. In addition, preincubation of HUVECs with AS-IV inhibited Ang II-induced cytokine and chemokine production, adhesion molecule expression, monocyte adhesion, and nuclear factor kappa B (NF-κB) activation as evidenced by the attenuation of inhibitor of kappa B alpha phosphorylation and subsequent NF-κB DNA binding. These effects of AS-IV were abolished by the suppression of NOS or Ca2+- and PI3K/Akt-dependent cascade. Our findings indicate that AS-IV attenuates inflammatory responses triggered by Ang II possibly via the activation of Ca2+/PI3K/Akt/eNOS/NO pathway in endothelial cells.
Collapse
Affiliation(s)
- Shiyu Zhang
- Division of Cardiology and Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou 450000, China
| | - Shijie Li
- Division of Cardiology and Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou 450000, China
| | - Shiyang Xie
- Division of Cardiology and Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou 450000, China
| | - Lin Cui
- Division of Cardiology and Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou 450000, China
| | - Yuan Gao
- Division of Cardiology and Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou 450000, China
| | - Youping Wang
- Division of Cardiology and Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou 450000, China
| |
Collapse
|
46
|
Hao XD, Xu WH, Zhang X, Xue J. Targeting ferroptosis: a novel therapeutic strategy for the treatment of retinal diseases. Front Pharmacol 2024; 15:1489877. [PMID: 39539617 PMCID: PMC11557320 DOI: 10.3389/fphar.2024.1489877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Ferroptosis plays a vital role in the progression of various retinal diseases. The analysis of the mechanism of retinal cell ferroptosis has brought new targeted strategies for treating retinal vascular diseases, retinal degeneration and retinal nerve diseases, and is also a major scientific issue in the field of ferroptosis. In this review, we summarized results from currently available in vivo and in vitro studies of multiple eye disease models, clarified the pathological role and molecular mechanism of ferroptosis in retinal diseases, summed up the existing pharmacological agents targeting ferroptosis in retinal diseases as well as highlighting where future research efforts should be directed for the application of ferroptosis targeting agents. This review indicates that ferroptosis of retinal cells is involved in the progression of age-related/inherited macular degeneration, blue light-induced retinal degeneration, glaucoma, diabetic retinopathy, and retinal damage caused by retinal ischemia-reperfusion via multiple molecular mechanisms. Nearly 20 agents or extracts, including iron chelators and transporters, antioxidants, pharmacodynamic elements from traditional Chinese medicine, ferroptosis-related protein inhibitors, and neuroprotective agents, have a remissioning effect on retinal disease in animal models via ferroptosis inhibition. However, just a limited number of agents have received approval or are undergoing clinical trials for conditions such as iron overload-related diseases. The application of most ferroptosis-targeting agents in retinal diseases is still in the preclinical stage, and there are no clinical trials yet. Future research should focus on the development of more potent ferroptosis inhibitors, improved drug properties, and ideally clinical testing related to retinal diseases.
Collapse
Affiliation(s)
- Xiao-Dan Hao
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Wen-Hua Xu
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong, China
| | - Xiaoping Zhang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Junqiang Xue
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
47
|
Zheng S, Qi W, Xue T, Zao X, Xie J, Zhang P, Li X, Ye Y, Liu A. Chinese medicine in the treatment of chronic hepatitis B: The mechanisms of signal pathway regulation. Heliyon 2024; 10:e39176. [PMID: 39640799 PMCID: PMC11620126 DOI: 10.1016/j.heliyon.2024.e39176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 12/07/2024] Open
Abstract
Chronic hepatitis B (CHB) is a chronic inflammatory disease of the liver caused by infection with the hepatitis B virus (HBV), which in later stages can lead to the development of end-stage liver diseases such as cirrhosis and hepatocellular carcinoma in severe cases, jeopardizing long-term quality of life, with a poor prognosis, and placing a serious financial burden on many families around the world. The pathogenesis of the disease is complex and closely related to the immune function of the body, which has not yet been fully elucidated. The development of chronic hepatitis B is closely related to the involvement of various signaling pathways, such as JAK/STAT, PI3K/Akt, Toll-like receptor, NF-κB and MAPK signaling pathways. A large number of studies have shown that Chinese medicine has obvious advantages in anti-hepatitis B virus, and it can effectively treat the disease by modulating relevant signaling pathways, strengthening immune resistance and defense, and inhibiting inflammatory responses, and certain research progress has been made, but there is still a lack of a comprehensive review on the modulation of relevant signaling pathways in Chinese medicine for the treatment of CHB. Therefore, this article systematically combed and elaborated the relevant literature on the modulation of relevant signaling pathways by traditional Chinese medicine in recent years, with a view to providing new ideas for the treatment of CHB and further drug development.
Collapse
Affiliation(s)
- Shihao Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China
- Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Wenying Qi
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China
- Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Tianyu Xue
- Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, 050000, China
| | - Xiaobin Zao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China
| | - Jinchi Xie
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Peng Zhang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Xiaoke Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yongan Ye
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Aimin Liu
- Shangzhuang Township Community Health Service Center, Beijing, 100094, China
| |
Collapse
|
48
|
Aydoğan F, Pandey P, Fronczek FR, Ferreira D, Khan IA, Ali Z, Chittiboyina AG. Revisiting the Cyclocephagenols via Astragalus condensatus: Structural Insights and Configurational Revision. JOURNAL OF NATURAL PRODUCTS 2024. [PMID: 39460711 DOI: 10.1021/acs.jnatprod.4c00751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
The phytochemical investigation of the MeOH extract of Astragalus condensatus roots led to the discovery of a new tetrahydropyran cycloartane-type triterpenoid, astracondensatol A (1), alongside six known cyclocephagenol derivatives (2, 3, 20, 32, 35, and 36). Elucidation of their structures involved 1D and 2D-NMR spectroscopy and mass data analysis. Upon comparing NMR spectroscopic data with prior literature, several carbon shift anomalies, particularly at C-24, prompted a reevaluation using quantum chemical calculations, resulting in the revision of the 24S to 24R absolute configuration for compound 2 and 38 other reported cyclocephagenol-type triterpenoids. X-ray crystallography data further supported the analysis in establishing the absolute configuration of compound 2. Ambiguous NOE correlations and publication bias could have played a significant role in miss-assigning the C-24 absolute configuration in tetrahydropyran cycloartane-type triterpenoids.
Collapse
Affiliation(s)
- Fadime Aydoğan
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Pankaj Pandey
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Frank R Fronczek
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Daneel Ferreira
- National Center for Natural Products Research and Department of BioMolecular Sciences, Division of Pharmacognosy, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Ikhlas A Khan
- National Center for Natural Products Research and Department of BioMolecular Sciences, Division of Pharmacognosy, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Zulfiqar Ali
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Amar G Chittiboyina
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| |
Collapse
|
49
|
Che Y, Li L, Kong M, Geng Y, Wang D, Li B, Deng L, Chen G, Wang J. Dietary supplementation of Astragalus flavonoids regulates intestinal immunology and the gut microbiota to improve growth performance and intestinal health in weaned piglets. Front Immunol 2024; 15:1459342. [PMID: 39416777 PMCID: PMC11479930 DOI: 10.3389/fimmu.2024.1459342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024] Open
Abstract
Astragali Radix (AS) is a widely used herb in traditional Chinese medicine, with calycosin as its main isoflavonoid. Our previous study discovered that calycosin triggers host defense peptide (HDP) production in IPEC-J2 cells. The aim of this study is to investigate the alleviation effects of AS total flavone and AS calycosin on growth performance, intestinal immunity, and microflora in weaned piglets. Sixty-four piglets were assigned randomly to 4 treatment groups, (1) CON: the basal diet, (2) P-CON: the basal diet plus antibiotics (1 g/kg), (3) AS-TF: the basal diet plus AS total flavone at 60 mg/day per piglet, (4) AS-CA: the basal diet plus AS calycosin at 30 mg/day per piglet. Each treatment consists of 4 replicates with 4 piglets per replicate. Results showed that treatment with AS-TF and AS-CA enhanced average daily growth and average daily feed intake compared to the CON group (P < 0.01), while AS-CA significantly reduced the diarrhea rate (P < 0.05). Both AS-TF and AS-CA significantly increased serum immunoglobulin (Ig) A and IgG levels, with AS-CA further boosting intestinal mucosal secretory IgA levels (P < 0.05). Histological analysis revealed improvements in the morphology of the jejunum and ileum and goblet cell count by AS-TF and AS-CA (P < 0.05). Supplementation of AS-TF and AS-CA promoted the expression of several intestinal HDPs (P < 0.05), and the effect of AS-CA was better than that of AS-TF. In addition, the AS-TF and AS-CA regulated jejunal microbial diversity and composition, with certain differential bacteria genera were showing high correlation with serum cytokines and immunoglobulin levels, suggesting that the intestinal flora affected by AS-TF and AS-CA may contribute to host immunity. Overall, AS CA and AS TF all improved growth performance and health, likely by enhancing nutrition digestibility, serum and intestinal immunity, and intestinal microbial composition. They showed the similar beneficial effect, indicating AS CA appears to be a major compound contributing to the effects of AS TF. This study demonstrated the positive effect of AS flavonoids on weaned piglets and provided a scientific reference for the efficient use of AS products.
Collapse
Affiliation(s)
- Yuyan Che
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Sino-US Joint Laboratory of Animal Science, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Lu Li
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Sino-US Joint Laboratory of Animal Science, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Mengjie Kong
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yiwen Geng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Dong Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Bin Li
- Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Lufang Deng
- Department of Technology, Feed Branch of Beijing Sanyuan Breeding Technology Co., Ltd, Beijing, China
| | - Guoshun Chen
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jing Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Sino-US Joint Laboratory of Animal Science, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
50
|
Yin W, Liao X, Sun J, Chen Q, Fan S. Astragaloside IV inhibits the proliferation, migration, invasion, and epithelial-mesenchymal transition of oral cancer cells by aggravating autophagy. Tissue Cell 2024; 90:102524. [PMID: 39167929 DOI: 10.1016/j.tice.2024.102524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
Oral cancer is one usual tumor that sorely affects the health of people and even result into death. Astragaloside IV (AS-IV) is one of the major components of Astragalus membranaceus extract, and has been identified to exhibit ameliorative functions in some cancers. Nevertheless, the regulatory impacts and correlative pathways of AS-IV in oral cancer remain vague. In this study, it was discovered that cell growth was gradually weakened with the increased dose of AS-IV (25, 50 and 100 μM). Additionally, it was uncovered that AS-IV restrained the EMT progress in oral cancer. The cell migration and invasion abilities were both gradually alleviated after AS-IV treatment in a dose-dependent manner. Moreover, AS-IV accelerated autophagy through intensifying LC3II/LC3I level and LC3B fluorescence intensity. At last, it was clarified that AS-IV triggered the AMPK pathway and retarded the AKT/mTOR pathway. In conclusion, AS-IV restrained cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) progress in oral cancer by aggravating autophagy through modulating the AMPK and AKT/mTOR pathways. This work may offer novel evidence on AS-IV in the treatment of oral cancer.
Collapse
Affiliation(s)
- Weijia Yin
- Department of Stomatology, Beijing Luhe Hospital.Capital Medical University, Beijing 101100, China
| | - Xiangling Liao
- Department of Stomatology, Beijing Luhe Hospital.Capital Medical University, Beijing 101100, China.
| | - Jieli Sun
- Department of Stomatology, Beijing Luhe Hospital.Capital Medical University, Beijing 101100, China
| | - Qu Chen
- Department of Stomatology, Beijing Luhe Hospital.Capital Medical University, Beijing 101100, China
| | - Shan Fan
- Department of Stomatology, Beijing Luhe Hospital.Capital Medical University, Beijing 101100, China
| |
Collapse
|