1
|
Warrington S, Hoang TT, Seirup M, Abdelhamid L, Saha H, Bing S, Saleh S, Phue JN, Mazor R. Unveiling the sex bias: higher preexisting and neutralizing titers against AAV in females and implications for gene therapy. Gene Ther 2025:10.1038/s41434-025-00528-7. [PMID: 40325207 DOI: 10.1038/s41434-025-00528-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 03/04/2025] [Accepted: 03/14/2025] [Indexed: 05/07/2025]
Abstract
Gene therapy with AAV vectors is a promising approach for treating numerous genetic disorders but is often hindered by preexisting antibodies that neutralize the vectors. Given that females may exhibit stronger immune responses than males, this study hypothesizes that females may have higher preexisting antibody titers against AAV. Serum samples from two U.S. cohorts were analyzed for antibody titers, antibody subtypes, and transduction inhibition activity against AAV serotypes AAV1, AAV2, AAV5, AAV8, and AAV9. We found that among seropositive samples, females had higher preexisting antibody levels and neutralizing activities against AAV9 and other serotypes. Immunoglobulin subclass analysis showed IgG1 dominance in both sexes, but females had higher IgA levels, whereas males had higher levels of IgG2. We further evaluated the cellular level of this differential immune response to AAV by stimulation of male and female human PBMCs. We observed dose-dependent increase in cytokines and chemokines in female PBMCs which suggests a differential inflammatory response. Altogether, our findings suggest that the enhanced immune response in females could lead to neutralization and faster clearance of AAV vectors with potential to impact the efficacy of gene therapy.
Collapse
Affiliation(s)
- Stephanee Warrington
- Office of Gene Therapy, Office of Therapeutic Products, Center for Biologics Evaluation and Research, U. S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | | | | | - Leila Abdelhamid
- Office of Gene Therapy, Office of Therapeutic Products, Center for Biologics Evaluation and Research, U. S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Hrittal Saha
- Office of Gene Therapy, Office of Therapeutic Products, Center for Biologics Evaluation and Research, U. S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Sojin Bing
- Office of Gene Therapy, Office of Therapeutic Products, Center for Biologics Evaluation and Research, U. S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Sima Saleh
- Office of Gene Therapy, Office of Therapeutic Products, Center for Biologics Evaluation and Research, U. S. Food and Drug Administration, Silver Spring, MD, 20993, USA
- Office of Nonprescription Drugs, Office of New Drugs, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Je-Nie Phue
- Facility for Biotechnology Resources, Center for Biologics Evaluation & Research, U. S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Ronit Mazor
- Office of Gene Therapy, Office of Therapeutic Products, Center for Biologics Evaluation and Research, U. S. Food and Drug Administration, Silver Spring, MD, 20993, USA.
| |
Collapse
|
2
|
Zhao Q, Yu S, Fu D, Wu Z, Zhou J, Yang Y, Chen C, Wu N, Wang Y, Xi W, Lou N, Wu X, Han X. Pre-existing Anti-AAV9 antibodies in the Chinese healthy and rare disease populations: Implications for gene therapy. Virus Res 2025; 354:199549. [PMID: 39993606 PMCID: PMC11925575 DOI: 10.1016/j.virusres.2025.199549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 02/26/2025]
Abstract
The adeno-associated virus 9 (AAV9) vector was particularly notable for its broad tissue tropism, making it a preferred vector for gene therapy. Goals: The study aimed to investigate the patterns of pre-existing immunity against AAV9 in the Chinese population. In this study, we conducted a serological research from November 2022 to June 2024. The study included 341 participants in total with age ranged from 0 to 90 years old: 270 healthy individuals, 30 pediatric patients and 41 adults with rare diseases. Total AAV9-binding antibodies (TAbs) and neutralizing antibodies (NAbs) were measured. The seroprevalence of anti-AAV9 NAbs showed no significant differences between healthy individuals and rare disease patients across both pediatric and adult groups. Newborns exhibited a high NAb-positive rate (64.3 %), while children aged 6 months to 3 years had the lowest prevalence (7.7 %). This rate progressively increased through childhood and adolescence. Overall, 58.7 % of the Chinese population aged 0-90 years tested positive for anti-AAV9 NAbs, with adults showing a significantly higher prevalence than children (75.0 % vs. 34.3 %). Additionally, 58.1 % of the population exhibited low levels of anti-AAV9 NAb titers (IC50 ≤ 100). No significant sex-specific differences were observed, and antibody titers (NAbs or TAbs) showed no strong correlation with age. A strong correlation was identified between TAb and NAb positivity rates and titers. The optimal AAV9-based GT period was between 6 months and 3 years in that patients possessed lowest pre-existing immunity. Since TAbs had a strong association with NAbs, TAbs was considered as an alternative indicator to screen rare diseases.
Collapse
Affiliation(s)
- Qian Zhao
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Key Technologies for Early Clinical Trial Evaluation of Innovative Drugs for Major Diseases, Beijing 100730, China
| | | | - Diyi Fu
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Key Technologies for Early Clinical Trial Evaluation of Innovative Drugs for Major Diseases, Beijing 100730, China
| | - Zhen Wu
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Key Technologies for Early Clinical Trial Evaluation of Innovative Drugs for Major Diseases, Beijing 100730, China
| | | | - Yi Yang
- Genecradle Therapeutics Inc, Beijing 100176, China
| | - Chen Chen
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Key Technologies for Early Clinical Trial Evaluation of Innovative Drugs for Major Diseases, Beijing 100730, China
| | - Ni Wu
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Key Technologies for Early Clinical Trial Evaluation of Innovative Drugs for Major Diseases, Beijing 100730, China
| | - Yucan Wang
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Key Technologies for Early Clinical Trial Evaluation of Innovative Drugs for Major Diseases, Beijing 100730, China
| | - Wanlin Xi
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Key Technologies for Early Clinical Trial Evaluation of Innovative Drugs for Major Diseases, Beijing 100730, China
| | - Ning Lou
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Key Technologies for Early Clinical Trial Evaluation of Innovative Drugs for Major Diseases, Beijing 100730, China
| | - Xiaobing Wu
- Genecradle Therapeutics Inc, Beijing 100176, China.
| | - Xiaohong Han
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Key Technologies for Early Clinical Trial Evaluation of Innovative Drugs for Major Diseases, Beijing 100730, China.
| |
Collapse
|
3
|
Corazolla EM, Eskes ECB, Veldwijk J, Brands MMMG, Dekker H, van de Mheen E, Langeveld M, Hollak CEM, Sjouke B. Different diseases, different needs: Patient preferences for gene therapy in lysosomal storage disorders, a probabilistic threshold technique survey. Orphanet J Rare Dis 2024; 19:367. [PMID: 39363355 PMCID: PMC11451020 DOI: 10.1186/s13023-024-03371-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 09/18/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Gene therapy is currently in development for several monogenetic diseases including lysosomal storage disorders. Limited evidence is available on patient preferences for gene therapy in this population. In this study, we compare gene therapy-related risk tolerance between people affected by three lysosomal storage diseases currently faced with different therapeutic options and prognoses. METHODS A survey including the probabilistic threshold technique was developed in which respondents were asked to choose between gene therapy and the current standard of care. The attributes included to establish participants' risk tolerance were previously identified in focus groups of affected people or their representatives, namely: risk of mild side effects, severe side effects, the need for additional medication, and the likelihood of long-term effectiveness. The survey was distributed among people receiving outpatient care for type 1 Gaucher disease (good prognosis with current treatment options), Fabry disease (varying prognosis with current treatment options, XY-genotype on average more severely affected than XX), and parents representing people with severe forms of mucopolysaccharidosis type III A/B (poor prognosis, no disease-specific therapy available). RESULTS A total of 85 surveys were completed (15 Gaucher disease respondents, 62 Fabry disease respondents (17 self-identifying male), eight parents of ten people with mucopolysaccharidosis type III). Disease groups with higher disease severity trended towards higher risk tolerance: Gaucher disease respondents were most cautious and predominantly preferred the current standard of care as opposed to MPS III representatives who were more risk tolerant. Respondents with Fabry disease were most heterogeneous in their risk tolerance, with male participants being more risk tolerant than female participants. Long-term effectiveness was the attribute in which respondents tolerated the least risk. CONCLUSIONS People affected by a lysosomal storage disease associated with a poorer prognosis and less effective current treatment options trended towards more risk tolerance when choosing between gene therapy and the current standard of care. This study shows the importance of involvement of patient preferences before and during the development process of new treatment modalities such as gene therapy for rare diseases, to ensure that innovative therapies align with the wishes and needs of people affected by these diseases.
Collapse
Affiliation(s)
- Eleonore M Corazolla
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Inborn Errors of Metabolism, Research Institute of Amsterdam Gastroenterology Endocrinology and Metabolism, Meibergdreef 9, Amsterdam, The Netherlands
| | - Eline C B Eskes
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Inborn Errors of Metabolism, Research Institute of Amsterdam Gastroenterology Endocrinology and Metabolism, Meibergdreef 9, Amsterdam, The Netherlands
| | - Jorien Veldwijk
- Erasmus School of Health Policy and Management, Erasmus University Rotterdam, Rotterdam, The Netherlands
- Erasmus Choice Modelling Centre, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Marion M M G Brands
- Inborn Errors of Metabolism, Research Institute of Amsterdam Gastroenterology Endocrinology and Metabolism, Meibergdreef 9, Amsterdam, The Netherlands
- Department of Pediatrics, Division of Metabolic Diseases, Emma Children's Hospital, Amsterdam UMC, Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Hanka Dekker
- The Dutch Patient Association for Inherited Metabolic Diseases (VKS), Zwolle, The Netherlands
| | - Erica van de Mheen
- Fabry Support and Information Group the Netherlands (FSIGN), Drachten, The Netherlands
| | - Mirjam Langeveld
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Inborn Errors of Metabolism, Research Institute of Amsterdam Gastroenterology Endocrinology and Metabolism, Meibergdreef 9, Amsterdam, The Netherlands
| | - Carla E M Hollak
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Inborn Errors of Metabolism, Research Institute of Amsterdam Gastroenterology Endocrinology and Metabolism, Meibergdreef 9, Amsterdam, The Netherlands
| | - Barbara Sjouke
- Inborn Errors of Metabolism, Research Institute of Amsterdam Gastroenterology Endocrinology and Metabolism, Meibergdreef 9, Amsterdam, The Netherlands.
- Department of Internal Medicine, Radboudumc, Nijmegen, The Netherlands.
| |
Collapse
|
4
|
Bashir B, Ferdousi M, Durrington P, Soran H. Pancreatic and cardiometabolic complications of severe hypertriglyceridaemia. Curr Opin Lipidol 2024; 35:208-218. [PMID: 38841827 PMCID: PMC11224574 DOI: 10.1097/mol.0000000000000939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
PURPOSE OF REVIEW This review endeavours to explore the aetiopathogenesis and impact of severe hypertriglyceridemia (SHTG) and chylomicronaemia on cardiovascular, and pancreatic complications and summarizes the novel pharmacological options for management. RECENT FINDINGS SHTG, although rare, presents significant diagnostic and therapeutic challenges. Familial chylomicronaemia syndrome (FCS), is the rare monogenic form of SHTG, associated with increased acute pancreatitis (AP) risk, whereas relatively common multifactorial chylomicronaemia syndrome (MCS) leans more towards cardiovascular complications. Despite the introduction and validation of the FCS Score, FCS continues to be underdiagnosed and diagnosis is often delayed. Longitudinal data on disease progression remains scant. SHTG-induced AP remains a life-threatening concern, with conservative treatment as the cornerstone while blood purification techniques offer limited additional benefit. Conventional lipid-lowering medications exhibit minimal efficacy, underscoring the growing interest in novel therapeutic avenues, that is, antisense oligonucleotides (ASO) and short interfering RNA (siRNA) targeting apolipoprotein C3 (ApoC3) and angiopoietin-like protein 3 and/or 8 (ANGPTL3/8). SUMMARY Despite advancements in understanding the genetic basis and pathogenesis of SHTG, diagnostic and therapeutic challenges persist. The rarity of FCS and the heterogenous phenotype of MCS underscore the need for the development of predictive models for complications and tailored personalized treatment strategies. The establishment of national and international registries is advocated to augment disease comprehension and identify high-risk individuals.
Collapse
Affiliation(s)
- Bilal Bashir
- Faculty of Biology, Medicine and Health, University of Manchester
- Department of Endocrinology, Diabetes and Metabolism, Peter Mount Building, Manchester University NHS Foundation Trust
- NIHR/WELLCOME Trust Clinical Research Facility, Manchester, UK
| | - Maryam Ferdousi
- Faculty of Biology, Medicine and Health, University of Manchester
- NIHR/WELLCOME Trust Clinical Research Facility, Manchester, UK
| | - Paul Durrington
- Faculty of Biology, Medicine and Health, University of Manchester
| | - Handrean Soran
- Faculty of Biology, Medicine and Health, University of Manchester
- Department of Endocrinology, Diabetes and Metabolism, Peter Mount Building, Manchester University NHS Foundation Trust
- NIHR/WELLCOME Trust Clinical Research Facility, Manchester, UK
| |
Collapse
|
5
|
Alves M, Laranjeira F, Correia-da-Silva G. Understanding Hypertriglyceridemia: Integrating Genetic Insights. Genes (Basel) 2024; 15:190. [PMID: 38397180 PMCID: PMC10887881 DOI: 10.3390/genes15020190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Hypertriglyceridemia is an exceptionally complex metabolic disorder characterized by elevated plasma triglycerides associated with an increased risk of acute pancreatitis and cardiovascular diseases such as coronary artery disease. Its phenotype expression is widely heterogeneous and heavily influenced by conditions as obesity, alcohol consumption, or metabolic syndromes. Looking into the genetic underpinnings of hypertriglyceridemia, this review focuses on the genetic variants in LPL, APOA5, APOC2, GPIHBP1 and LMF1 triglyceride-regulating genes reportedly associated with abnormal genetic transcription and the translation of proteins participating in triglyceride-rich lipoprotein metabolism. Hypertriglyceridemia resulting from such genetic abnormalities can be categorized as monogenic or polygenic. Monogenic hypertriglyceridemia, also known as familial chylomicronemia syndrome, is caused by homozygous or compound heterozygous pathogenic variants in the five canonical genes. Polygenic hypertriglyceridemia, also known as multifactorial chylomicronemia syndrome in extreme cases of hypertriglyceridemia, is caused by heterozygous pathogenic genetic variants with variable penetrance affecting the canonical genes, and a set of common non-pathogenic genetic variants (polymorphisms, using the former nomenclature) with well-established association with elevated triglyceride levels. We further address recent progress in triglyceride-lowering treatments. Understanding the genetic basis of hypertriglyceridemia opens new translational opportunities in the scope of genetic screening and the development of novel therapies.
Collapse
Affiliation(s)
- Mara Alves
- Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Francisco Laranjeira
- CGM—Centro de Genética Médica Jacinto de Magalhães, Centro Hospitalar Universitário de Santo António (CHUdSA), 4099-028 Porto, Portugal;
- UMIB—Unit for Multidisciplinary Research in Biomedicine, ICBAS—School of Medicine and Biomedical Sciences, University of Porto, 4050-346 Porto, Portugal
- ITR—Laboratory for Integrative and Translational Research in Population Health, 4050-600 Porto, Portugal
| | - Georgina Correia-da-Silva
- UCIBIO Applied Molecular Biosciences Unit and Associate Laboratory i4HB—Institute for Health and Bioeconomy Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
6
|
Barhate A, Bajaj P, Shirbhate U, Reche A, Pahade A, Agrawal R. Implications of Gene Therapy in Dentistry and Periodontics: A Narrative Review. Cureus 2023; 15:e49437. [PMID: 38149156 PMCID: PMC10750132 DOI: 10.7759/cureus.49437] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/26/2023] [Indexed: 12/28/2023] Open
Abstract
The relentless march of technological progress entails constant evolution and adaptation. A concerted effort is underway in medical research to unravel various diseases' cellular and molecular underpinnings. The traditional approaches to disease treatment often fall short of delivering entirely satisfactory outcomes, which has prompted a shifting spotlight on gene therapy as a versatile solution for many inherited and acquired disorders. Genes, intricate sequences of genetic code, are the complicated blueprints dictating the production of essential proteins within the human body. Remarkably, each individual's genetic makeup is uniquely distinct, with variations in these genetic sequences serving as the bedrock of our diversity. Gene therapy represents an innovative medical strategy that harnesses the power of genes themselves to function as therapeutic agents. It serves as a conduit through which defective genes are either substituted or mended with the introduction of remedial genetic material. This groundbreaking method can tackle various illnesses, from conditions originating from single-gene abnormalities to intricate disorders influenced by multiple genes. In dentistry and periodontics, gene therapy finds a promising array of applications. It contributes significantly to managing salivary gland disorders, autoimmune diseases, and the regeneration of damaged bone tissue, as well as addressing cancerous and precancerous conditions. Moreover, the possibilities extend into DNA vaccination and broader areas of oral health. The advent of gene therapy in dentistry represents a new era of significant progress, offering substantial advancements in the management of periodontal disease and the reconstruction of the dental alveolar apparatus. The aim of this narrative review is to provide a comprehensive overview of the landscape of gene therapy investigations in these disciplines, shedding light on its potential implications for oral health and treatment. With its potential to rectify the genetic underpinnings of various conditions, gene therapy offers a novel frontier in healthcare that continually shapes the landscape of medicine and holds the promise of more effective and personalised treatments.
Collapse
Affiliation(s)
- Arpit Barhate
- Department of Dentistry, Sharad Pawar Dental College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Pavan Bajaj
- Department of Periodontics, Sharad Pawar Dental College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Unnati Shirbhate
- Department of Periodontics, Sharad Pawar Dental College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Amit Reche
- Department of Public Health Dentistry, Sharad Pawar Dental College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Abhishek Pahade
- Department of Dentistry, Sharad Pawar Dental College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Ritiksha Agrawal
- Department of Dentistry, Sharad Pawar Dental College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
7
|
Laranjeira FS, Neves NM, Raimundo A, Horta AB. Severe Hypertriglyceridemia: A 10-Year Review in a Portuguese Hospital. Cureus 2023; 15:e41239. [PMID: 37529514 PMCID: PMC10387820 DOI: 10.7759/cureus.41239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2023] [Indexed: 08/03/2023] Open
Abstract
INTRODUCTION Severe hypertriglyceridemia (SHTG) is a rare condition associated with serious complications, such as acute pancreatitis (AP), and the best treatment is still a matter of discussion. The aim of this study is to outline the demographics, management, and outcomes (recurrence and mortality) of complications in patients with SHTG. MATERIAL AND METHODS A retrospective, observational, and analytical study was carried out by obtaining clinical data from the electronic health records of patients with SHTG admitted to the Internal and Intensive Medicine units from the 1st of January 2009 to the 31st of December 2020 in a university hospital. RESULTS The cohort included 17 patients. The most common complication was AP (13/17 = 76.5%). Admission to the intensive care unit (ICU) was observed in 84.2%. Among patients with AP, the most commonly administered therapies were insulin (82.4%) and fibrates (76.5%). Plasmapheresis was used in 58.8%, and the criteria for using this technique were mainly based on clinical and laboratory abnormalities. There were no deaths. The readmission rate at 30 days was 36.3%. CONCLUSION This study shows the morbidity profile associated with SHTG, with a high level of ICU admissions and also a high level of the use of plasmapheresis. In our population, this approach had good results, and this should be highlighted as there are no clear international guidelines for this intervention. Distinguishing between patients with familial chylomicronemia syndrome or with multifactorial chylomicronemia is important as recent specific therapy for lipoprotein lipase (LPL) genetic deficit is available. In the near future, the performance of a genetic study should be considered in patients with SHTG as an attempt to avoid the high recurrence rate of complications of this disease.
Collapse
Affiliation(s)
| | - Nuno M Neves
- Internal Medicine Department, Hospital da Luz Lisboa, Lisboa, PRT
| | - Anabela Raimundo
- Internal Medicine Department, Hospital da Luz Lisboa, Lisboa, PRT
| | | |
Collapse
|
8
|
Bashir B, Ho JH, Downie P, Hamilton P, Ferns G, Datta D, Cegla J, Wierzbicki AS, Dawson C, Jenkinson F, Delaney H, Mansfield M, Teoh Y, Miedzybrodzka Z, Haso H, Durrington PN, Soran H. Severe Hypertriglyceridaemia and Chylomicronaemia Syndrome-Causes, Clinical Presentation, and Therapeutic Options. Metabolites 2023; 13:metabo13050621. [PMID: 37233662 DOI: 10.3390/metabo13050621] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/27/2023] [Accepted: 04/11/2023] [Indexed: 05/27/2023] Open
Abstract
We have reviewed the genetic basis of chylomicronaemia, the difference between monogenic and polygenic hypertriglyceridaemia, its effects on pancreatic, cardiovascular, and microvascular complications, and current and potential future pharmacotherapies. Severe hypertriglyceridaemia (TG > 10 mmol/L or 1000 mg/dL) is rare with a prevalence of <1%. It has a complex genetic basis. In some individuals, the inheritance of a single rare variant with a large effect size leads to severe hypertriglyceridaemia and fasting chylomicronaemia of monogenic origin, termed as familial chylomicronaemia syndrome (FCS). Alternatively, the accumulation of multiple low-effect variants causes polygenic hypertriglyceridaemia, which increases the tendency to develop fasting chylomicronaemia in presence of acquired factors, termed as multifactorial chylomicronaemia syndrome (MCS). FCS is an autosomal recessive disease characterized by a pathogenic variant of the lipoprotein lipase (LPL) gene or one of its regulators. The risk of pancreatic complications and associated morbidity and mortality are higher in FCS than in MCS. FCS has a more favourable cardiometabolic profile and a low prevalence of atherosclerotic cardiovascular disease (ASCVD) compared to MCS. The cornerstone of the management of severe hypertriglyceridaemia is a very-low-fat diet. FCS does not respond to traditional lipid-lowering therapies. Several novel pharmacotherapeutic agents are in various phases of development. Data on the correlation between genotype and phenotype in FCS are scarce. Further research to investigate the impact of individual gene variants on the natural history of the disease, and its link with ASCVD, microvascular disease, and acute or recurrent pancreatitis, is warranted. Volanesorsen reduces triglyceride concentration and frequency of pancreatitis effectively in patients with FCS and MCS. Several other therapeutic agents are in development. Understanding the natural history of FCS and MCS is necessary to rationalise healthcare resources and decide when to deploy these high-cost low-volume therapeutic agents.
Collapse
Affiliation(s)
- Bilal Bashir
- Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PL, UK
- Department of Endocrinology, Diabetes & Metabolism, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| | - Jan H Ho
- Department of Endocrinology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK
| | - Paul Downie
- Department of Laboratory Medicine, Salisbury NHS Foundation Trust, Salisbury SP2 8BJ, UK
| | - Paul Hamilton
- Centre for Medical Education, Queen's University Belfast, Belfast BT7 1NN, UK
- Department of Clinical Biochemistry, Belfast Health and Social Care Trust, Belfast BT13 1FD, UK
| | - Gordon Ferns
- Brighton and Sussex Medical School, Brighton BN1 9PH, UK
| | - Dev Datta
- Lipid Unit, University Hospital Llandough, Cardiff CF64 2XX, UK
| | - Jaimini Cegla
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London SW7 2BX, UK
| | - Anthony S Wierzbicki
- Department of Metabolic Medicine and Chemical Pathology, Guy's and St. Thomas' Hospitals, London SE1 7EH, UK
| | - Charlotte Dawson
- Department of Metabolic Medicine, Queen Elizabeth Hospital NHS Foundation Trust, Birmingham PE30 4ET, UK
| | - Fiona Jenkinson
- Clinical Biochemistry and Metabolic Medicine, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, UK
| | - Hannah Delaney
- Department of Clinical Chemistry, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield S10 2JF, UK
| | - Michael Mansfield
- Leeds Centre for Diabetes & Endocrinology, Leeds Teaching Hospitals NHS Trust, Leeds LS9 7TF, UK
| | - Yee Teoh
- Department of Chemical Pathology & Metabolic Medicine, Wrexham Maelor Hospital, Wrexham LL13 7TD, UK
| | - Zosia Miedzybrodzka
- Department of Medical Genetics, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB24 3FX, UK
| | - Haya Haso
- School of Medicine, University of Kurdistan Hewler, Erbil 44001, Iraq
| | - Paul N Durrington
- Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Handrean Soran
- Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PL, UK
- Department of Endocrinology, Diabetes & Metabolism, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
| |
Collapse
|
9
|
Hosseinkhani H, Domb AJ, Sharifzadeh G, Nahum V. Gene Therapy for Regenerative Medicine. Pharmaceutics 2023; 15:856. [PMID: 36986717 PMCID: PMC10057434 DOI: 10.3390/pharmaceutics15030856] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
The development of biological methods over the past decade has stimulated great interest in the possibility to regenerate human tissues. Advances in stem cell research, gene therapy, and tissue engineering have accelerated the technology in tissue and organ regeneration. However, despite significant progress in this area, there are still several technical issues that must be addressed, especially in the clinical use of gene therapy. The aims of gene therapy include utilising cells to produce a suitable protein, silencing over-producing proteins, and genetically modifying and repairing cell functions that may affect disease conditions. While most current gene therapy clinical trials are based on cell- and viral-mediated approaches, non-viral gene transfection agents are emerging as potentially safe and effective in the treatment of a wide variety of genetic and acquired diseases. Gene therapy based on viral vectors may induce pathogenicity and immunogenicity. Therefore, significant efforts are being invested in non-viral vectors to enhance their efficiency to a level comparable to the viral vector. Non-viral technologies consist of plasmid-based expression systems containing a gene encoding, a therapeutic protein, and synthetic gene delivery systems. One possible approach to enhance non-viral vector ability or to be an alternative to viral vectors would be to use tissue engineering technology for regenerative medicine therapy. This review provides a critical view of gene therapy with a major focus on the development of regenerative medicine technologies to control the in vivo location and function of administered genes.
Collapse
Affiliation(s)
- Hossein Hosseinkhani
- Innovation Center for Advanced Technology, Matrix, Inc., New York, NY 10019, USA
| | - Abraham J. Domb
- The Center for Nanoscience and Nanotechnology, Alex Grass Center for Drug Design and Synthesis and Cannabinoids Research, School of Pharmacy, Faculty of Medicine, Institute of Drug Research, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Ghorbanali Sharifzadeh
- Department of Polymer Engineering, School of Chemical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Victoria Nahum
- The Center for Nanoscience and Nanotechnology, Alex Grass Center for Drug Design and Synthesis and Cannabinoids Research, School of Pharmacy, Faculty of Medicine, Institute of Drug Research, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| |
Collapse
|
10
|
Lin Y, Li C, Wang W, Li J, Huang C, Zheng X, Liu Z, Song X, Chen Y, Gao J, Wu J, Wu J, Tu Z, Lai L, Li XJ, Li S, Yan S. Intravenous AAV9 administration results in safe and widespread distribution of transgene in the brain of mini-pig. Front Cell Dev Biol 2023; 10:1115348. [PMID: 36762127 PMCID: PMC9902950 DOI: 10.3389/fcell.2022.1115348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 12/13/2022] [Indexed: 01/26/2023] Open
Abstract
Animal models are important for understanding the pathogenesis of human diseases and for developing and testing new drugs. Pigs have been widely used in the research on the cardiovascular, skin barrier, gastrointestinal, and central nervous systems as well as organ transplantation. Recently, pigs also become an attractive large animal model for the study of neurodegenerative diseases because their brains are very similar to human brains in terms of mass, gully pattern, vascularization, and the proportions of the gray and white matters. Although adeno-associated virus type 9 (AAV9) has been widely used to deliver transgenes in the brain, its utilization in large animal models remains to be fully characterized. Here, we report that intravenous injection of AAV9-GFP can lead to widespread expression of transgene in various organs in the pig. Importantly, GFP was highly expressed in various brain regions, especially the striatum, cortex, cerebellum, hippocampus, without detectable inflammatory responses. These results suggest that intravenous AAV9 administration can be used to establish large animal models of neurodegenerative diseases caused by gene mutations and to treat these animal models as well.
Collapse
Affiliation(s)
- Yingqi Lin
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Caijuan Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Wei Wang
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Jiawei Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Chunhui Huang
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Xiao Zheng
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Zhaoming Liu
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell, Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xichen Song
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Yizhi Chen
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Jiale Gao
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Jianhao Wu
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Jiaxi Wu
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Zhuchi Tu
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Liangxue Lai
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell, Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Shihua Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China,*Correspondence: Shihua Li, ; Sen Yan,
| | - Sen Yan
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China,*Correspondence: Shihua Li, ; Sen Yan,
| |
Collapse
|
11
|
Bains S, Zhou W, Dotzler SM, Martinez K, Kim CJ, Tester DJ, Ye D, Ackerman MJ. Suppression and Replacement Gene Therapy for KCNH2-Mediated Arrhythmias. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2022; 15:e003719. [PMID: 36252106 DOI: 10.1161/circgen.122.003719] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND KCNH2-mediated arrhythmia syndromes are caused by loss-of-function (type 2 long QT syndrome [LQT2]) or gain-of-function (type 1 short QT syndrome [SQT1]) pathogenic variants in the KCNH2-encoded Kv11.1 potassium channel, which is essential for the cardiac action potential. METHODS A dual-component "suppression-and-replacement" (SupRep) KCNH2 gene therapy was created by cloning into a single construct a custom-designed KCNH2 short hairpin RNA with ~80% knockdown (suppression) and a "short hairpin RNA-immune" KCNH2 cDNA (replacement). Induced pluripotent stem cell-derived cardiomyocytes and their CRISPR-Cas9 variant-corrected isogenic control (IC) induced pluripotent stem cell-derived cardiomyocytes were made for 2 LQT2- (G604S, N633S) and 1 SQT1- (N588K) causative variants. All variant lines were treated with KCNH2-SupRep or non-targeting control short hairpin RNA (shCT). The action potential duration (APD) at 90% repolarization (APD90) was measured using FluoVolt voltage dye. RESULTS KCNH2-SupRep achieved variant-independent rescue of both pathologic phenotypes. For LQT2-causative variants, treatment with KCNH2-SupRep resulted in shortening of the pathologically prolonged APD90 to near curative (IC-like) APD90 levels (G604S IC, 471±25 ms; N633S IC, 405±55 ms) compared with treatment with shCT (G604S: SupRep-treated, 452±76 ms versus shCT-treated, 550±41 ms; P<0.0001; N633S: SupRep-treated, 399±105 ms versus shCT-treated, 577±39 ms, P<0.0001). Conversely, for the SQT1-causative variant, N588K, treatment with KCNH2-SupRep resulted in therapeutic prolongation of the pathologically shortened APD90 (IC: 429±16 ms; SupRep-treated: 396±61 ms; shCT-treated: 274±12 ms). CONCLUSIONS We provide the first proof-of-principle gene therapy for correction of both LQT2 and SQT1. KCNH2-SupRep gene therapy successfully normalized the pathologic APD90, thereby eliminating the pathognomonic feature of both LQT2 and SQT1.
Collapse
Affiliation(s)
- Sahej Bains
- Medical Scientist Training Program (S.B., S.M.D.), Mayo Clinic, Rochester, MN.,Department of Molecular Pharmacology and Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory) (S.B., W.Z., S.M.D., K.M., C.S.J.K., D.J.T., D.Y., M.J.A.), Mayo Clinic, Rochester, MN
| | - Wei Zhou
- Department of Molecular Pharmacology and Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory) (S.B., W.Z., S.M.D., K.M., C.S.J.K., D.J.T., D.Y., M.J.A.), Mayo Clinic, Rochester, MN
| | - Steven M Dotzler
- Medical Scientist Training Program (S.B., S.M.D.), Mayo Clinic, Rochester, MN.,Department of Molecular Pharmacology and Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory) (S.B., W.Z., S.M.D., K.M., C.S.J.K., D.J.T., D.Y., M.J.A.), Mayo Clinic, Rochester, MN
| | - Katherine Martinez
- Department of Molecular Pharmacology and Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory) (S.B., W.Z., S.M.D., K.M., C.S.J.K., D.J.T., D.Y., M.J.A.), Mayo Clinic, Rochester, MN
| | - Cs John Kim
- Department of Molecular Pharmacology and Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory) (S.B., W.Z., S.M.D., K.M., C.S.J.K., D.J.T., D.Y., M.J.A.), Mayo Clinic, Rochester, MN
| | - David J Tester
- Department of Molecular Pharmacology and Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory) (S.B., W.Z., S.M.D., K.M., C.S.J.K., D.J.T., D.Y., M.J.A.), Mayo Clinic, Rochester, MN.,Department of Pediatric and Adolescent Medicine, Division of Pediatric Cardiology (D.J.T., M.J.A.), Mayo Clinic, Rochester, MN
| | - Dan Ye
- Department of Molecular Pharmacology and Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory) (S.B., W.Z., S.M.D., K.M., C.S.J.K., D.J.T., D.Y., M.J.A.), Mayo Clinic, Rochester, MN.,Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Windland Smith Rice Genetic Heart Rhythm Clinic (D.J.T., M.J.A.), Mayo Clinic, Rochester, MN
| | - Michael J Ackerman
- Department of Molecular Pharmacology and Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory) (S.B., W.Z., S.M.D., K.M., C.S.J.K., D.J.T., D.Y., M.J.A.), Mayo Clinic, Rochester, MN.,Department of Pediatric and Adolescent Medicine, Division of Pediatric Cardiology (D.J.T., M.J.A.), Mayo Clinic, Rochester, MN.,Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Windland Smith Rice Genetic Heart Rhythm Clinic (D.J.T., M.J.A.), Mayo Clinic, Rochester, MN
| |
Collapse
|
12
|
Shi H, Wang Z. Novel pathogenic variant combination in LPL causing familial chylomicronemia syndrome in an Asian family and experimental validation in vitro: a case report. Transl Pediatr 2022; 11:1717-1725. [PMID: 36345447 PMCID: PMC9636460 DOI: 10.21037/tp-22-15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 08/12/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Familial chylomicronemia syndrome (FCS) is a rare autosomal recessive disorder, typically caused by biallelic pathogenic variants in the lipoprotein lipase (LPL) gene. Lipoprotein lipase, encoded by the LPL gene, catalyzes the hydrolysis of triglycerides, and its deficiency or dysfunction can lead to chylomicronemia and potentially fatal recurrent acute pancreatitis. CASE DESCRIPTION Here, we report an Asian child with FCS due to compound heterozygous LPL variants. The 4-year-old patient presented with splenomegaly and severe hypertriglyceridemia, specifically chylomicronemia which resulted in abnormal coagulation measured by a turbidity-based assay. Based on the clinical features and family history, the diagnosis of FCS was suspected, and confirmed by the identification of compound heterozygous variants in the LPL gene (c.461A>G; p.His154Arg and c.788T>A; p.Leu263Gln) in the patient, inheriting one from each parent. According to the clinical and genetic findings, the patient was diagnosed with FCS. In vitro experimental validation found that the LPL p.H154R variant reduced the expression of lipoprotein lipase and decreased its lipolytic activity, while the LPL p.L263Q variant mainly impaired its lipolytic activity. CONCLUSIONS FCS was molecularly diagnosed using whole exome sequencing in the case presented. When interpreting abnormal coagulation profiles measured by turbidity-based assay, the possibility of lipemic blood (or chylomicronemia) should be considered and the presence of this phenomenon might indicate the diagnosis of FCS. In vitro experiments showed that the two LPL variants impaired lipoprotein lipase expression and/or function making them likely to be pathogenic.
Collapse
Affiliation(s)
- Huiping Shi
- MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Zhaoyue Wang
- MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| |
Collapse
|
13
|
Stankov S, Vitali C, Rader DJ. Gain-of-Function Variants in Lipid Genes Enhance Biological Insight and Point Toward Therapeutic Opportunities. Circulation 2022; 146:740-742. [PMID: 36067277 PMCID: PMC10122829 DOI: 10.1161/circulationaha.122.061233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Sylvia Stankov
- Division of Translational Medicine and Therapeutics, Department of Medicine (S.S., C.V., D.J.R.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Cecilia Vitali
- Division of Translational Medicine and Therapeutics, Department of Medicine (S.S., C.V., D.J.R.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Daniel J Rader
- Division of Translational Medicine and Therapeutics, Department of Medicine (S.S., C.V., D.J.R.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
- Department of Genetics (D.J.R.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| |
Collapse
|
14
|
Wang H, Yang S, Liu J, Fu Z, Liu Y, Zhou L, Guo H, Lan K, Chen Y. Human adenoviruses: A suspect behind the outbreak of acute hepatitis in children amid the COVID-19 pandemic. CELL INSIGHT 2022; 1:100043. [PMID: 37192861 PMCID: PMC10120317 DOI: 10.1016/j.cellin.2022.100043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 05/18/2023]
Abstract
As of 10 May 2022, at least 450 cases of pediatric patients with acute hepatitis of unknown cause have been reported worldwide. Human adenoviruses (HAdVs) have been detected in at least 74 cases, including the F type HAdV41 in 18 cases, which indicates that adenoviruses may be associated with this mysterious childhood hepatitis, although other infectious agents or environmental factors cannot be excluded. In this review, we provide a brief introduction of the basic features of HAdVs and describe diseases caused by different HAdVs in humans, aiming to help understand the biology and potential risk of HAdVs and cope with the outbreak of acute child hepatitis.
Collapse
Affiliation(s)
- Hongyun Wang
- State Key Laboratory of Virology, Modern Virology Research Center, Institute for Vaccine Research, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, China
| | - Shimin Yang
- State Key Laboratory of Virology, Modern Virology Research Center, Institute for Vaccine Research, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jiejie Liu
- State Key Laboratory of Virology, Modern Virology Research Center, Institute for Vaccine Research, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhiying Fu
- State Key Laboratory of Virology, Modern Virology Research Center, Institute for Vaccine Research, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yingle Liu
- State Key Laboratory of Virology, Modern Virology Research Center, Institute for Vaccine Research, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, China
| | - Li Zhou
- State Key Laboratory of Virology, Modern Virology Research Center, Institute for Vaccine Research, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, China
| | - Haitao Guo
- Department of Microbiology and Molecular Genetics, Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, USA
| | - Ke Lan
- State Key Laboratory of Virology, Modern Virology Research Center, Institute for Vaccine Research, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, China
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yu Chen
- State Key Laboratory of Virology, Modern Virology Research Center, Institute for Vaccine Research, RNA Institute, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Lipid Lowering Therapy: An Era Beyond Statins. Curr Probl Cardiol 2022; 47:101342. [DOI: 10.1016/j.cpcardiol.2022.101342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 12/19/2022]
|
16
|
Watson-Levings RS, Palmer GD, Levings PP, Dacanay EA, Evans CH, Ghivizzani SC. Gene Therapy in Orthopaedics: Progress and Challenges in Pre-Clinical Development and Translation. Front Bioeng Biotechnol 2022; 10:901317. [PMID: 35837555 PMCID: PMC9274665 DOI: 10.3389/fbioe.2022.901317] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/27/2022] [Indexed: 11/25/2022] Open
Abstract
In orthopaedics, gene-based treatment approaches are being investigated for an array of common -yet medically challenging- pathologic conditions of the skeletal connective tissues and structures (bone, cartilage, ligament, tendon, joints, intervertebral discs etc.). As the skeletal system protects the vital organs and provides weight-bearing structural support, the various tissues are principally composed of dense extracellular matrix (ECM), often with minimal cellularity and vasculature. Due to their functional roles, composition, and distribution throughout the body the skeletal tissues are prone to traumatic injury, and/or structural failure from chronic inflammation and matrix degradation. Due to a mixture of environment and endogenous factors repair processes are often slow and fail to restore the native quality of the ECM and its function. In other cases, large-scale lesions from severe trauma or tumor surgery, exceed the body’s healing and regenerative capacity. Although a wide range of exogenous gene products (proteins and RNAs) have the potential to enhance tissue repair/regeneration and inhibit degenerative disease their clinical use is hindered by the absence of practical methods for safe, effective delivery. Cumulatively, a large body of evidence demonstrates the capacity to transfer coding sequences for biologic agents to cells in the skeletal tissues to achieve prolonged delivery at functional levels to augment local repair or inhibit pathologic processes. With an eye toward clinical translation, we discuss the research progress in the primary injury and disease targets in orthopaedic gene therapy. Technical considerations important to the exploration and pre-clinical development are presented, with an emphasis on vector technologies and delivery strategies whose capacity to generate and sustain functional transgene expression in vivo is well-established.
Collapse
Affiliation(s)
- Rachael S. Watson-Levings
- Department of Orthopaedic Surgery and Sports Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Glyn D. Palmer
- Department of Orthopaedic Surgery and Sports Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Padraic P. Levings
- Department of Orthopaedic Surgery and Sports Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - E. Anthony Dacanay
- Department of Orthopaedic Surgery and Sports Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Christopher H. Evans
- Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MI, United States
| | - Steven C. Ghivizzani
- Department of Orthopaedic Surgery and Sports Medicine, University of Florida College of Medicine, Gainesville, FL, United States
- *Correspondence: Steven C. Ghivizzani,
| |
Collapse
|
17
|
Reshetnikov VV, Chirinskaite AV, Sopova JV, Ivanov RA, Leonova EI. Cas-Based Systems for RNA Editing in Gene Therapy of Monogenic Diseases: In Vitro and in Vivo Application and Translational Potential. Front Cell Dev Biol 2022; 10:903812. [PMID: 35784464 PMCID: PMC9245891 DOI: 10.3389/fcell.2022.903812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/05/2022] [Indexed: 12/12/2022] Open
Abstract
Rare genetic diseases reduce quality of life and can significantly shorten the lifespan. There are few effective treatment options for these diseases, and existing therapeutic strategies often represent only supportive or palliative care. Therefore, designing genetic-engineering technologies for the treatment of genetic diseases is urgently needed. Rapid advances in genetic editing technologies based on programmable nucleases and in the engineering of gene delivery systems have made it possible to conduct several dozen successful clinical trials; however, the risk of numerous side effects caused by off-target double-strand breaks limits the use of these technologies in the clinic. Development of adenine-to-inosine (A-to-I) and cytosine-to-uracil (C-to-U) RNA-editing systems based on dCas13 enables editing at the transcriptional level without double-strand breaks in DNA. In this review, we discuss recent progress in the application of these technologies in in vitro and in vivo experiments. The main strategies for improving RNA-editing tools by increasing their efficiency and specificity are described as well. These data allow us to outline the prospects of base-editing systems for clinical application.
Collapse
Affiliation(s)
- Vasiliy V. Reshetnikov
- Department of Biotechnology, Sirius University of Science and Technology, Sochi, Russia
- Department of Molecular Genetics, Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Angelina V. Chirinskaite
- Center of Transgenesis and Genome Editing, St. Petersburg State University, St. Petersburg, Russia
| | - Julia V. Sopova
- Center of Transgenesis and Genome Editing, St. Petersburg State University, St. Petersburg, Russia
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia
| | - Roman A. Ivanov
- Department of Biotechnology, Sirius University of Science and Technology, Sochi, Russia
| | - Elena I. Leonova
- Center of Transgenesis and Genome Editing, St. Petersburg State University, St. Petersburg, Russia
- Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| |
Collapse
|
18
|
Guerriero T, James CS. A rare case of severe hypertriglyceridemia in a patient with no acute pancreatitis after previous bouts of pancreatitis secondary to hypertriglyceridemia. JOURNAL OF CLINICAL AND TRANSLATIONAL ENDOCRINOLOGY CASE REPORTS 2022. [DOI: 10.1016/j.jecr.2021.100102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
19
|
Managing of Dyslipidaemia Characterized by Accumulation of Triglyceride-Rich Lipoproteins. Curr Atheroscler Rep 2022; 24:1-12. [PMID: 35107764 PMCID: PMC8924084 DOI: 10.1007/s11883-022-00979-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2021] [Indexed: 11/05/2022]
Abstract
Purpose of Review The accumulation of triglyceride-rich lipoproteins (TRLs) in plasma in patients with familial chylomicronaemia syndrome (FCS) or severe hypertriglyceridemia is associated with an increased risk of potentially life-threatening pancreatitis. Elevated TRL levels have also been suggested to contribute to atherosclerotic cardiovascular disease (ASCVD). This review provides the latest progress that has been made in this field of research. Recent Findings Apolipoprotein C-III and angiopoietin-like protein 3 play key roles in the metabolism of TRLs. Targeting their production in the liver or their presence in the circulation effectively reduces triglycerides in patients with FCS or severe hypertriglyceridemia. Attempts to reduce triglyceride synthesis in the small intestine have been halted. Early studies with a fibroblast growth factor 21 agonist have shown to reduce plasma triglycerides and hepatic steatosis and improve glucose homeostasis. Summary New drugs have recently been shown to effectively reduce plasma triglycerides which render hope for treating the risk of pancreatitis. Studies that have just been initiated will learn whether this unmet clinical will be met. It is too early to evaluate the potential of these drugs to reduce the risk of atherosclerosis through the reduction of triglycerides.
Collapse
|
20
|
Zhao Z, Anselmo AC, Mitragotri S. Viral vector-based gene therapies in the clinic. Bioeng Transl Med 2022; 7:e10258. [PMID: 35079633 PMCID: PMC8780015 DOI: 10.1002/btm2.10258] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 02/06/2023] Open
Abstract
Gene therapies are currently one of the most investigated therapeutic modalities in both the preclinical and clinical settings and have shown promise in treating a diverse spectrum of diseases. Gene therapies aim at introducing a gene material in target cells and represent a promising approach to cure diseases that were thought to be incurable by conventional modalities. In many cases, a gene therapy requires a vector to deliver gene therapeutics into target cells; viral vectors are among the most widely studied vectors owing to their distinguished advantages such as outstanding transduction efficiency. With decades of development, viral vector-based gene therapies have achieved promising clinical outcomes with many products approved for treating a range of diseases including cancer, infectious diseases and monogenic diseases. In addition, a number of active clinical trials are underway to further expand their therapeutic potential. In this review, we highlight the diversity of viral vectors, review approved products, and discuss the current clinical landscape of in vivo viral vector-based gene therapies. We have reviewed 13 approved products and their clinical applications. We have also analyzed more than 200 active trials based on various viral vectors and discussed their respective therapeutic applications. Moreover, we provide a critical analysis of the major translational challenges for in vivo viral vector-based gene therapies and discuss possible strategies to address the same.
Collapse
Affiliation(s)
- Zongmin Zhao
- Department of Pharmaceutical Sciences, College of PharmacyUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Aaron C. Anselmo
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMassachusettsUSA
| |
Collapse
|
21
|
Parambi DGT, Alharbi KS, Kumar R, Harilal S, Batiha GES, Cruz-Martins N, Magdy O, Musa A, Panda DS, Mathew B. Gene Therapy Approach with an Emphasis on Growth Factors: Theoretical and Clinical Outcomes in Neurodegenerative Diseases. Mol Neurobiol 2022; 59:191-233. [PMID: 34655056 PMCID: PMC8518903 DOI: 10.1007/s12035-021-02555-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 09/05/2021] [Indexed: 12/11/2022]
Abstract
The etiology of many neurological diseases affecting the central nervous system (CNS) is unknown and still needs more effective and specific therapeutic approaches. Gene therapy has a promising future in treating neurodegenerative disorders by correcting the genetic defects or by therapeutic protein delivery and is now an attraction for neurologists to treat brain disorders, like Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, spinal muscular atrophy, spinocerebellar ataxia, epilepsy, Huntington's disease, stroke, and spinal cord injury. Gene therapy allows the transgene induction, with a unique expression in cells' substrate. This article mainly focuses on the delivering modes of genetic materials in the CNS, which includes viral and non-viral vectors and their application in gene therapy. Despite the many clinical trials conducted so far, data have shown disappointing outcomes. The efforts done to improve outcomes, efficacy, and safety in the identification of targets in various neurological disorders are also discussed here. Adapting gene therapy as a new therapeutic approach for treating neurological disorders seems to be promising, with early detection and delivery of therapy before the neuron is lost, helping a lot the development of new therapeutic options to translate to the clinic.
Collapse
Affiliation(s)
- Della Grace Thomas Parambi
- College of Pharmacy, Department of Pharmaceutical Chemistry, Jouf University, Al Jouf-2014, Sakaka, Saudi Arabia
| | - Khalid Saad Alharbi
- College of Pharmacy, Department of Pharmaceutical Chemistry, Jouf University, Al Jouf-2014, Sakaka, Saudi Arabia
| | - Rajesh Kumar
- Kerala University of Health Sciences, Thrissur, Kerala 680596 India
| | - Seetha Harilal
- Kerala University of Health Sciences, Thrissur, Kerala 680596 India
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511 Al Beheira Egypt
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal
| | - Omnia Magdy
- Department of Clinical Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al Jouf-2014 Kingdom of Saudi Arabia
- Pharmacognosy Department, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341 Kingdom of Saudi Arabia
| | - Arafa Musa
- Pharmacognosy Department, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341 Kingdom of Saudi Arabia
- Pharmacognosy Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11371 Egypt
| | - Dibya Sundar Panda
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Al Jouf, Sakaka, 72341 Kingdom of Saudi Arabia
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041 India
| |
Collapse
|
22
|
Lund Winther AM, Kristensen KK, Kumari A, Ploug M. Expression and one-step purification of active lipoprotein lipase contemplated by biophysical considerations. J Lipid Res 2021; 62:100149. [PMID: 34780727 DOI: 10.1016/j.jlr.2021.100149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 12/17/2022] Open
Abstract
Lipoprotein lipase (LPL) is essential for intravascular lipid metabolism and is of high medical relevance. Since LPL is notoriously unstable, there is an unmet need for a robust expression system producing high quantities of active and pure recombinant human LPL. We showed previously that bovine LPL purified from milk is unstable at body temperature (Tm is 34.8 °C), but in the presence of the endothelial transporter glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPIHBP1) LPL is stabile (Tm increases to 57.6 °C). Building on this information, we now designed an expression system for human LPL using Drosophila S2 cells grown in suspension at high cell density and at an advantageous temperature of 25 °C. We co-transfected S2 cells with human LPL, LMF1 and soluble GPIHBP1 to provide an efficient chaperoning and stabilization of LPL in all compartments during synthesis and after secretion into the conditioned medium. For LPL purification, we used heparin-Sepharose affinity chromatography, which disrupted LPL-GPIHBP1 complexes causing GPIHBP1 to elute with the flow-through of the conditioned media. This one-step purification procedure yielded high quantities of pure and active LPL (4‒28 mg/L). Purification of several human LPL variants (furin-cleavage resistant mutant R297A, active-site mutant S132A, and lipid-binding-deficient mutant W390A-W393A-W394A) as well as murine LPL underscores the versatility and robustness of this protocol. Notably, we were able to produce and purify LPL containing the cognate furin-cleavage site. This method provides an efficient and cost-effective approach to produce large quantities of LPL for biophysical and large-scale drug discovery studies.
Collapse
Affiliation(s)
- Anne-Marie Lund Winther
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark.
| | - Kristian Kølby Kristensen
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Anni Kumari
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
Mietzsch M, Yu JC, Hsi J, Chipman P, Broecker F, Fuming Z, Linhardt RJ, Seeberger PH, Heilbronn R, McKenna R, Agbandje-McKenna M. Structural Study of Aavrh.10 Receptor and Antibody Interactions. J Virol 2021; 95:e0124921. [PMID: 34549984 PMCID: PMC8577363 DOI: 10.1128/jvi.01249-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/13/2021] [Indexed: 11/20/2022] Open
Abstract
Recombinant adeno-associated virus (rAAV) vectors are one of the leading tools for the delivery of therapeutic genes in human gene therapy applications. For a successful transfer of their payload, the AAV vectors have to circumvent potential preexisting neutralizing host antibodies and bind to the receptors of the target cells. Both of these aspects have not been structurally analyzed for AAVrh.10. Here, cryo-electron microscopy and three-dimensional image reconstruction were used to map the binding site of sulfated N-acetyllactosamine (LacNAc; previously shown to bind AAVrh.10) and a series of four monoclonal antibodies (MAbs). LacNAc was found to bind to a pocket located on the side of the 3-fold capsid protrusion that is mostly conserved to AAV9 and equivalent to its galactose-binding site. As a result, AAVrh.10 was also shown to be able to bind to cell surface glycans with terminal galactose. For the antigenic characterization, it was observed that several anti-AAV8 MAbs cross-react with AAVrh.10. The binding sites of these antibodies were mapped to the 3-fold capsid protrusions. Based on these observations, the AAVrh.10 capsid surface was engineered to create variant capsids that escape these antibodies while maintaining infectivity. IMPORTANCE Gene therapy vectors based on adeno-associated virus rhesus isolate 10 (AAVrh.10) have been used in several clinical trials to treat monogenetic diseases. However, compared to other AAV serotypes little is known about receptor binding and antigenicity of the AAVrh.10 capsid. Particularly, preexisting neutralizing antibodies against capsids are an important challenge that can hamper treatment efficiency. This study addresses both topics and identifies critical regions of the AAVrh.10 capsid for receptor and antibody binding. The insights gained were utilized to generate AAVrh.10 variants capable of evading known neutralizing antibodies. The findings of this study could further aid the utilization of AAVrh.10 vectors in clinical trials and help the approval of the subsequent biologics.
Collapse
Affiliation(s)
- Mario Mietzsch
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Jennifer C. Yu
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Jane Hsi
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Paul Chipman
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Felix Broecker
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Zhang Fuming
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Robert J. Linhardt
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Peter H. Seeberger
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Regine Heilbronn
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
24
|
Pinczak W, Trzcińska S, Kamiński M. Characteristics and outcomes of clinical trials on gene therapy in non-congenital cardiovascular diseases: cross-sectional study of three clinical trials registries (Preprint). JMIR Form Res 2021; 6:e33893. [PMID: 35451992 PMCID: PMC9073605 DOI: 10.2196/33893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/09/2022] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Witold Pinczak
- Department of Medicine I, Poznan University of Medical Sciences, Poznań, Poland
| | | | | |
Collapse
|
25
|
Clinical Management of Hypertriglyceridemia in the Prevention of Cardiovascular Disease and Pancreatitis. Curr Atheroscler Rep 2021; 23:72. [PMID: 34515873 PMCID: PMC8436578 DOI: 10.1007/s11883-021-00962-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2021] [Indexed: 02/07/2023]
Abstract
Purpose of Review Hypertriglyceridemia (HTG) is common and is a significant contributor to atherosclerosis and pancreatitis risk. Specific HTG treatments have had variable success in reducing atherosclerosis risk. Novel therapies for severe HTG treatment and pancreatitis risk reduction are likely to be available soon. These novel therapies are expected to have broader applications for more moderate HTG and atherosclerosis risk reduction as well. Recent Findings NHANES 2012 data has confirmed a reduction in average triglyceride (TG) levels in the US population. Dietary modification and weight reduction when needed remain the core treatment elements for all individuals with HTG, while statin therapy is a foundational pharmacologic care for atherosclerotic cardiovascular disease (ASCVD) event risk reduction. In addition, the REDUCE-IT study provides evidence for additional benefit from the use of high-dose icosapent ethyl (IPE) on top of background medical therapy in adults with moderate HTG and ASCVD or type 2 diabetes mellitus (T2D) and additional ASCVD risk factors. However, treatment with eicosapentaenoic acid (EPA) combined with docosahexanoic acid (DHA) did not reduce ASCVD in a similar population studied in the STRENGTH trial. Furthermore, novel therapeutics targeting PPAR-ɑ, as well as ApoC-III and AngPTL3, effectively lower TG levels in individuals with moderate and severe HTG, respectively. These treatments may have applicability for reducing risk from ASCVD among individuals with chylomicronemia; in addition, ApoC-III and AngPTL3 treatments may have a role in treating individuals with the rare monogenic familial chylomicronemia syndrome (FCS) at risk for acute pancreatitis (AP). Summary Residual ASCVD risk in individuals treated with contemporary care may be due in part to non-LDL lipid abnormalities including HTG. The findings from REDUCE-IT, but not STRENGTH, confirm that consumption of high-dose EPA may reduce ASCVD risk, while combination therapy of EPA plus DHA does not reduce ASCVD in a similar population. TG lowering likely reduces ASCVD risk in individuals with HTG, but ASCVD risk is multifactorial; the added benefit of IPE to contemporary preventive therapy is the consequence of differential non-TG biologic properties between the two fatty acids. Acute pancreatitis is more difficult to study prospectively since it is less common; however, TG lowering is likely critical for the care of at-risk individuals. Additional benefit from novel therapy that has an impact on this otherwise refractory condition is anticipated.
Collapse
|
26
|
Mietzsch M, Eddington C, Jose A, Hsi J, Chipman P, Henley T, Choudhry M, McKenna R, Agbandje-McKenna M. Improved Genome Packaging Efficiency of Adeno-associated Virus Vectors Using Rep Hybrids. J Virol 2021; 95:e0077321. [PMID: 34287038 PMCID: PMC8428402 DOI: 10.1128/jvi.00773-21] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/03/2021] [Indexed: 01/11/2023] Open
Abstract
Recombinant adeno-associated viruses (rAAVs) are one of the most commonly used vectors for a variety of gene therapy applications. In the last 2 decades, research focused primarily on the characterization and isolation of new cap, genes resulting in hundreds of natural and engineered AAV capsid variants, while the rep gene, the other major AAV open reading frame, has been less studied. This is due to the fact that the rep gene from AAV serotype 2 (AAV2) enables the single-stranded DNA packaging of recombinant genomes into most AAV serotype and engineered capsids. However, a major by-product of all vector productions is empty AAV capsids, lacking the encapsidated vector genome, especially for non-AAV2 vectors. Despite the packaging process being considered the rate-limiting step for rAAV production, none of the rep genes from the other AAV serotypes have been characterized for their packaging efficiency. Thus, in this study AAV2 rep was replaced with the rep gene of a select number of AAV serotypes. However, this led to a lowering of capsid protein expression, relative to the standard AAV2-rep system. In further experiments the 3' end of the AAV2 rep gene was reintroduced to promote increased capsid expression and a series of chimeras between the different AAV Rep proteins were generated and characterized for their vector genome packaging ability. The utilization of these novel Rep hybrids increased the percentage of genome containing (full) capsids approximately 2- to -4-fold for all of the non-AAV2 serotypes tested. Thus, these Rep chimeras could revolutionize rAAV production. IMPORTANCE A major by-product of all adeno-associated virus (AAV) vector production systems are "empty" capsids, void of the desired therapeutic gene, and thus do not provide any curative benefit for the treatment of the targeted disease. In fact, empty capsids can potentially elicit additional immune responses in vivo gene therapies if not removed by additional purification steps. Thus, there is a need to increase the genome packaging efficiency and reduce the number of empty capsids from AAV biologics. The novel Rep hybrids from different AAV serotypes described in this study are capable of reducing the percentage of empty capsids in all tested AAV serotypes and improve overall yields of genome-containing AAV capsids at the same time. They can likely be integrated easily into existing AAV manufacturing protocols to optimize the production of the generated AAV gene therapy products.
Collapse
Affiliation(s)
- Mario Mietzsch
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Courtnee Eddington
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Ariana Jose
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Jane Hsi
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Paul Chipman
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Tom Henley
- Intima Bioscience, New York, New York, USA
| | | | - Robert McKenna
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
27
|
Gene Therapy for Neuronopathic Mucopolysaccharidoses: State of the Art. Int J Mol Sci 2021; 22:ijms22179200. [PMID: 34502108 PMCID: PMC8430935 DOI: 10.3390/ijms22179200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 12/20/2022] Open
Abstract
The need for long-lasting and transformative therapies for mucopolysaccharidoses (MPS) cannot be understated. Currently, many forms of MPS lack a specific treatment and in other cases available therapies, such as enzyme replacement therapy (ERT), do not reach important areas such as the central nervous system (CNS). The advent of newborn screening procedures represents a major step forward in early identification and treatment of individuals with MPS. However, the treatment of brain disease in neuronopathic MPS has been a major challenge to date, mainly because the blood brain barrier (BBB) prevents penetration of the brain by large molecules, including enzymes. Over the last years several novel experimental therapies for neuronopathic MPS have been investigated. Gene therapy and gene editing constitute potentially curative treatments. However, despite recent progress in the field, several considerations should be taken into account. This review focuses on the state of the art of in vivo and ex vivo gene therapy-based approaches targeting the CNS in neuronopathic MPS, discusses clinical trials conducted to date, and provides a vision for the future implications of these therapies for the medical community. Recent advances in the field, as well as limitations relating to efficacy, potential toxicity, and immunogenicity, are also discussed.
Collapse
|
28
|
Kristensen KK, Leth-Espensen KZ, Kumari A, Grønnemose AL, Lund-Winther AM, Young SG, Ploug M. GPIHBP1 and ANGPTL4 Utilize Protein Disorder to Orchestrate Order in Plasma Triglyceride Metabolism and Regulate Compartmentalization of LPL Activity. Front Cell Dev Biol 2021; 9:702508. [PMID: 34336854 PMCID: PMC8319833 DOI: 10.3389/fcell.2021.702508] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Intravascular processing of triglyceride-rich lipoproteins (TRLs) is crucial for delivery of dietary lipids fueling energy metabolism in heart and skeletal muscle and for storage in white adipose tissue. During the last decade, mechanisms underlying focal lipolytic processing of TRLs along the luminal surface of capillaries have been clarified by fresh insights into the functions of lipoprotein lipase (LPL); LPL's dedicated transporter protein, glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 (GPIHBP1); and its endogenous inhibitors, angiopoietin-like (ANGPTL) proteins 3, 4, and 8. Key discoveries in LPL biology include solving the crystal structure of LPL, showing LPL is catalytically active as a monomer rather than as a homodimer, and that the borderline stability of LPL's hydrolase domain is crucial for the regulation of LPL activity. Another key discovery was understanding how ANGPTL4 regulates LPL activity. The binding of ANGPTL4 to LPL sequences adjacent to the catalytic cavity triggers cooperative and sequential unfolding of LPL's hydrolase domain resulting in irreversible collapse of the catalytic cavity and loss of LPL activity. Recent studies have highlighted the importance of the ANGPTL3-ANGPTL8 complex for endocrine regulation of LPL activity in oxidative organs (e.g., heart, skeletal muscle, brown adipose tissue), but the molecular mechanisms have not been fully defined. New insights have also been gained into LPL-GPIHBP1 interactions and how GPIHBP1 moves LPL to its site of action in the capillary lumen. GPIHBP1 is an atypical member of the LU (Ly6/uPAR) domain protein superfamily, containing an intrinsically disordered and highly acidic N-terminal extension and a disulfide bond-rich three-fingered LU domain. Both the disordered acidic domain and the folded LU domain are crucial for the stability and transport of LPL, and for modulating its susceptibility to ANGPTL4-mediated unfolding. This review focuses on recent advances in the biology and biochemistry of crucial proteins for intravascular lipolysis.
Collapse
Affiliation(s)
- Kristian Kølby Kristensen
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Katrine Zinck Leth-Espensen
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Anni Kumari
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Anne Louise Grønnemose
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Anne-Marie Lund-Winther
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Stephen G Young
- Departments of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
29
|
AAV9 Structural Rearrangements Induced by Endosomal Trafficking pH and Glycan Attachment. J Virol 2021; 95:e0084321. [PMID: 34260280 DOI: 10.1128/jvi.00843-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adeno-associated viruses (AAVs) are small non-enveloped ssDNA viruses, that are currently being developed as gene therapy biologics. After cell entry, AAVs traffic to the nucleus using the endo-lysosomal pathway. The subsequent decrease in pH triggers conformational changes to the capsid that enables the externalization of the capsid protein (VP) N-termini, including the unique domain of the minor capsid protein VP1 (VP1u), which permits phospholipase activity required for the capsid lysosomal egress. Here, we report the AAV9 capsid structure, determined at the endosomal pHs (7.4, 6.0, 5.5, and 4.0) and terminal galactose-bound AAV9 capsids at pHs 7.4 and 5.5 using cryo-electron microscopy and three-dimensional image reconstruction. Taken together these studies provide insight into AAV9 capsid conformational changes at the 5-fold pore during endosomal trafficking, both in the presence and absence of its cellular glycan receptor. We visualized, for the first time, that acidification induces the externalization of the VP3 and possibly VP2 N-termini, presumably in prelude to the externalization of VP1u at pH 4.0, that is essential for lysosomal membrane disruption. In addition, the structural study of AAV9-galactose interactions demonstrates AAV9 remains attached to its glycan receptor at the late endosome pH 5.5. This interaction significantly alters the conformational stability of the variable region I of the VPs, as well as the dynamics associated with VP N-terminus externalization. Importance There are 13 distinct Adeno-associated virus (AAV) serotypes that are structurally homologous and whose capsid proteins (VP1-3) are similar in amino acid sequence. However, AAV9 is one of the most commonly studied and used as gene therapy vector. This is part because, AAV9 is capable of crossing the blood brain barrier as well as readily transduces a wide array of tissues, including the central nervous system. In this study we provide AAV9 capsid structural insight during intracellular trafficking. Although the AAV capsid has been shown to externalize the N-termini of its VPs, to enzymatically disrupt the lysosome membrane at low pH, there was no structural evidence to confirm this. By utilizing AAV9 as our model, we provide the first structural evidence that the externalization process occurs at the protein interface at the icosahedral 5-fold symmetry axis and can be triggered by lowering pH.
Collapse
|
30
|
He X, Urip BA, Zhang Z, Ngan CC, Feng B. Evolving AAV-delivered therapeutics towards ultimate cures. J Mol Med (Berl) 2021; 99:593-617. [PMID: 33594520 PMCID: PMC7885987 DOI: 10.1007/s00109-020-02034-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 12/17/2022]
Abstract
Gene therapy has entered a new era after decades-long efforts, where the recombinant adeno-associated virus (AAV) has stood out as the most potent vector for in vivo gene transfer and demonstrated excellent efficacy and safety profiles in numerous preclinical and clinical studies. Since the first AAV-derived therapeutics Glybera was approved by the European Medicines Agency (EMA) in 2012, there is an increasing number of AAV-based gene augmentation therapies that have been developed and tested for treating incurable genetic diseases. In the subsequent years, the United States Food and Drug Administration (FDA) approved two additional AAV gene therapy products, Luxturna and Zolgensma, to be launched into the market. Recent breakthroughs in genome editing tools and the combined use with AAV vectors have introduced new therapeutic modalities using somatic gene editing strategies. The promising outcomes from preclinical studies have prompted the continuous evolution of AAV-delivered therapeutics and broadened the scope of treatment options for untreatable diseases. Here, we describe the clinical updates of AAV gene therapies and the latest development using AAV to deliver the CRISPR components as gene editing therapeutics. We also discuss the major challenges and safety concerns associated with AAV delivery and CRISPR therapeutics, and highlight the recent achievement and toxicity issues reported from clinical applications.
Collapse
Affiliation(s)
- Xiangjun He
- School of Biomedical Sciences, Faculty of Medicine; Institute for Tissue Engineering and Regenerative Medicine (iTERM), The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Brian Anugerah Urip
- School of Biomedical Sciences, Faculty of Medicine; Institute for Tissue Engineering and Regenerative Medicine (iTERM), The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Zhenjie Zhang
- School of Biomedical Sciences, Faculty of Medicine; Institute for Tissue Engineering and Regenerative Medicine (iTERM), The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Chun Christopher Ngan
- School of Biomedical Sciences, Faculty of Medicine; Institute for Tissue Engineering and Regenerative Medicine (iTERM), The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Shatin N.T., Hong Kong SAR, China
| | - Bo Feng
- School of Biomedical Sciences, Faculty of Medicine; Institute for Tissue Engineering and Regenerative Medicine (iTERM), The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Shatin N.T., Hong Kong SAR, China.
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510320, China.
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| |
Collapse
|
31
|
Srivastava A, Mallela KMG, Deorkar N, Brophy G. Manufacturing Challenges and Rational Formulation Development for AAV Viral Vectors. J Pharm Sci 2021; 110:2609-2624. [PMID: 33812887 DOI: 10.1016/j.xphs.2021.03.024] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/19/2021] [Accepted: 03/30/2021] [Indexed: 12/19/2022]
Abstract
Adeno-associated virus (AAV) has emerged as a leading platform for gene delivery for treating various diseases due to its excellent safety profile and efficient transduction to various target tissues. However, the large-scale production and long-term storage of viral vectors is not efficient resulting in lower yields, moderate purity, and shorter shelf-life compared to recombinant protein therapeutics. This review provides a comprehensive analysis of upstream, downstream and formulation unit operation challenges encountered during AAV vector manufacturing, and discusses how desired product quality attributes can be maintained throughout product shelf-life by understanding the degradation mechanisms and formulation strategies. The mechanisms of various physical and chemical instabilities that the viral vector may encounter during its production and shelf-life because of various stressed conditions such as thermal, shear, freeze-thaw, and light exposure are highlighted. The role of buffer, pH, excipients, and impurities on the stability of viral vectors is also discussed. As such, the aim of this review is to outline the tools and a potential roadmap for improving the quality of AAV-based drug products by stressing the need for a mechanistic understanding of the involved processes.
Collapse
Affiliation(s)
- Arvind Srivastava
- Biopharma Production, Avantor, Inc., 1013 US Highway, 202/206, Bridgewater, NJ, United States.
| | - Krishna M G Mallela
- Center for Pharmaceutical Biotechnology, Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 East Montview Boulevard, MS C238-V20, Aurora, CO 80045, United States.
| | - Nandkumar Deorkar
- Biopharma Production, Avantor, Inc., 1013 US Highway, 202/206, Bridgewater, NJ, United States
| | - Ger Brophy
- Biopharma Production, Avantor, Inc., 1013 US Highway, 202/206, Bridgewater, NJ, United States
| |
Collapse
|
32
|
Tarach P, Janaszewska A. Recent Advances in Preclinical Research Using PAMAM Dendrimers for Cancer Gene Therapy. Int J Mol Sci 2021; 22:2912. [PMID: 33805602 PMCID: PMC7999260 DOI: 10.3390/ijms22062912] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 12/16/2022] Open
Abstract
Carriers of genetic material are divided into vectors of viral and non-viral origin. Viral carriers are already successfully used in experimental gene therapies, but despite advantages such as their high transfection efficiency and the wide knowledge of their practical potential, the remaining disadvantages, namely, their low capacity and complex manufacturing process, based on biological systems, are major limitations prior to their broad implementation in the clinical setting. The application of non-viral carriers in gene therapy is one of the available approaches. Poly(amidoamine) (PAMAM) dendrimers are repetitively branched, three-dimensional molecules, made of amide and amine subunits, possessing unique physiochemical properties. Surface and internal modifications improve their physicochemical properties, enabling the increase in cellular specificity and transfection efficiency and a reduction in cytotoxicity toward healthy cells. During the last 10 years of research on PAMAM dendrimers, three modification strategies have commonly been used: (1) surface modification with functional groups; (2) hybrid vector formation; (3) creation of supramolecular self-assemblies. This review describes and summarizes recent studies exploring the development of PAMAM dendrimers in anticancer gene therapies, evaluating the advantages and disadvantages of the modification approaches and the nanomedicine regulatory issues preventing their translation into the clinical setting, and highlighting important areas for further development and possible steps that seem promising in terms of development of PAMAM as a carrier of genetic material.
Collapse
MESH Headings
- Biocompatible Materials/administration & dosage
- Biocompatible Materials/chemical synthesis
- Dendrimers/administration & dosage
- Dendrimers/chemical synthesis
- Gene Expression Regulation, Neoplastic
- Gene Transfer Techniques
- Genetic Therapy/methods
- Government Regulation
- Humans
- MicroRNAs/administration & dosage
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Nanomedicine/legislation & jurisprudence
- Nanomedicine/methods
- Nanoparticles/administration & dosage
- Nanoparticles/chemistry
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Neoplasms/genetics
- Neoplasms/metabolism
- Neoplasms/pathology
- Neoplasms/therapy
- Oligonucleotides, Antisense/administration & dosage
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/metabolism
- Plasmids/administration & dosage
- Plasmids/chemistry
- Plasmids/metabolism
- RNA, Messenger/administration & dosage
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/administration & dosage
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Surface Properties
Collapse
Affiliation(s)
- Piotr Tarach
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland;
| | | |
Collapse
|
33
|
Xie M, Viviani M, Fussenegger M. Engineering precision therapies: lessons and motivations from the clinic. Synth Biol (Oxf) 2020; 6:ysaa024. [PMID: 33817342 PMCID: PMC7998714 DOI: 10.1093/synbio/ysaa024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/18/2022] Open
Abstract
In the past decade, gene- and cell-based therapies have been at the forefront of the biomedical revolution. Synthetic biology, the engineering discipline of building sophisticated 'genetic software' to enable precise regulation of gene activities in living cells, has been a decisive success factor of these new therapies. Here, we discuss the core technologies and treatment strategies that have already gained approval for therapeutic applications in humans. We also review promising preclinical work that could either enhance the efficacy of existing treatment strategies or pave the way for new precision medicines to treat currently intractable human conditions.
Collapse
Affiliation(s)
- Mingqi Xie
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zheijang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zheijang, China
| | - Mirta Viviani
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zheijang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zheijang, China
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Faculty of Science, University of Basel, Basel, Switzerland
| |
Collapse
|
34
|
Mietzsch M, Smith JK, Yu JC, Banala V, Emmanuel SN, Jose A, Chipman P, Bhattacharya N, McKenna R, Agbandje-McKenna M. Characterization of AAV-Specific Affinity Ligands: Consequences for Vector Purification and Development Strategies. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 19:362-373. [PMID: 33145372 PMCID: PMC7591348 DOI: 10.1016/j.omtm.2020.10.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023]
Abstract
Affinity-based purification of adeno-associated virus (AAV) vectors has replaced density-based methods for vectors used in clinical settings. This method utilizes camelid single-domain antibodies recognizing AAV capsids. These include AVB Sepharose (AVB) and POROS CaptureSelect affinity ligand for AAV8 (CSAL8) and AAV9 (CSAL9). In this study, we utilized cryo-electron microscopy and 3D image reconstruction to map the binding sites of these affinity ligands on the capsids of several AAV serotypes, including AAV1, AAV2, AAV5, AAV8, and AAV9, representing the range of sequence and structure diversity among AAVs. The AAV-ligand complex structures showed that AVB and CSAL9 bound to the 5-fold capsid region, although in different orientations, and CSAL8 bound to the side of the 3-fold protrusion. The AAV contact residues required for ligand binding, and thus AAV purification, and the ability of the ligands to neutralize infection were analyzed. The data show that only a few residues within the epitopes served to block affinity ligand binding. Neutralization was observed for AAV1 and AAV5 with AVB, for AAV1 with CSAL8, and for AAV9 with CSAL9, associated with regions that overlap with epitopes for neutralizing monoclonal antibodies against these capsids. This information is critical and could be generally applicable in the development of novel AAV vectors amenable to affinity column purification.
Collapse
Affiliation(s)
- Mario Mietzsch
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - J Kennon Smith
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jennifer C Yu
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Vibhu Banala
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Shanan N Emmanuel
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Ariana Jose
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Paul Chipman
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Nilakshee Bhattacharya
- Biological Science Imaging Resource, Department of Biological Sciences, Florida State University, Tallahassee, FL, USA
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
35
|
Gallo A, Béliard S, D'Erasmo L, Bruckert E. Familial Chylomicronemia Syndrome (FCS): Recent Data on Diagnosis and Treatment. Curr Atheroscler Rep 2020; 22:63. [PMID: 32852651 DOI: 10.1007/s11883-020-00885-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Familial chylomicronemia syndrome (FCS) is a rare recessive genetic disorder often underdiagnosed with potentially severe clinical consequences. In this review, we describe the clinical and biological characteristics of the disease together with its main complication, i.e., acute pancreatitis. We focused the paper on new diagnostic tools, progress in understanding the role of two key proteins (apolipoprotein CIII (apo CIII) and angiopoietin-like3 (ANGPTL-3)), and new therapeutic options. RECENT FINDINGS Recently, a new diagnostic tool has been proposed by European experts to help identify these patients. This tool with two recently identified parameters (low LDL and low body mass index) can help identify patients who should be genetically tested or who may have the disease when genetic testing is not available. FCS is caused by homozygous or compound heterozygous mutations of lipoprotein lipase, apolipoprotein C-II, apolipoprotein A-V, glycosylphosphatidylinositol anchored high-density lipoprotein-binding protein 1, and lipase maturation factor. Two proteins have been identified as important player in the metabolism of triglyceride-rich lipoprotein and its regulation. These two proteins are therapeutic target. Antisense oligonucleotide targeting apo CIII has been shown to significantly decrease triglyceride levels even in FCS and is the first available treatment for these patients. Further development might identify new compounds with reduced risk to develop severe thrombocytopenia. ANGPTL-3 inhibitors have not yet been tested in FCS patients but exert significant hypotriglyceridemic effect in the more frequent and less severe polygenic forms. Beyond these two new targets, microsomal triglyceride transfer protein (MTTP) inhibitors could also be part of the armamentarium, if on-going trials confirm their efficacy. New clinical tools and simple criteria can help select patients with possible FCS and identify patients who should have a genetic testing. Identifying patients with FCS is a major issue since these patients have a high risk to suffer severe episodes of acute pancreatitis and may now benefit from new therapeutic options including antisense oligonucleotide targeting apo CIII.
Collapse
Affiliation(s)
- Antonio Gallo
- Department of Endocrinology and Cardiovascular Disease Prevention, Assistance Publique-Hôpitaux de Paris, La Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | - Sophie Béliard
- Department of Nutrition, Maladies Métaboliques et Endocrinologie, Hôpital Conception, Marseille, France
| | - Laura D'Erasmo
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Eric Bruckert
- Department of Endocrinology and Cardiovascular Disease Prevention, Assistance Publique-Hôpitaux de Paris, La Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France.
| |
Collapse
|
36
|
Abstract
BACKGROUND Despite advances in the development of lipid-lowering therapies, clinical trials have shown that a significant residual risk of cardiovascular disease persists. Specifically, new drugs are needed for non-responding or statin-intolerant subjects or patients considered at very high risk for cardiovascular events even though are already on treatment with the best standard of care. RESULTS AND CONCLUSIONS Besides, genetic and epidemiological studies and Mendelian randomization analyses have strengthened the linear correlation between the concentration of low-density lipoprotein cholesterol (LDL-C) and the incidence of cardiovascular events and highlighted various novel therapeutic targets. This review describes the novel strategies to reduce the levels of LDL-C, non-HDL-C, triglyceride, apolipoprotein B, and Lp(a), focusing on those developed using biotechnology-based strategies.
Collapse
|
37
|
The approved gene therapy drugs worldwide: from 1998 to 2019. Biotechnol Adv 2020; 40:107502. [PMID: 31887345 DOI: 10.1016/j.biotechadv.2019.107502] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 12/26/2019] [Accepted: 12/27/2019] [Indexed: 02/06/2023]
|
38
|
Novel therapeutics in hypertriglyceridaemia and chylomicronaemia. Med Clin (Barc) 2020; 154:308-314. [PMID: 31932043 DOI: 10.1016/j.medcli.2019.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/05/2019] [Accepted: 11/10/2019] [Indexed: 12/12/2022]
Abstract
Currently there is evidence on hypertriglyceridaemia as an independent risk factor of atherosclerosis. Chylomicronaemia associated with very high concentration of triglycerides may cause severe and recurrent acute pancreatitis. The cause of most cases is a combination of a polygenetic basis with some lifestyles and pathological conditions. Some rare and familial chylomicronaemias are mendelian diseases with an autosomal recessive pattern. On the other hand, plasma triglycerides have considerable biological variability and usually descend with non-pharmacological interventions alone. In some cases, drugs are also required for their control, but their impact on vascular risk reduction or pancreatitis prevention is more controversial. The recent advances in knowledge of molecular lipid metabolism and pharmacological technologies are resulting in the development of new therapeutic strategies, which can be applied to patients with refractory hypertrigliceridaemia. The challenge may be how the health systems can cover its high costs.
Collapse
|
39
|
Emmanuel SN, Mietzsch M, Tseng YS, Smith JK, Agbandje-McKenna M. Parvovirus Capsid-Antibody Complex Structures Reveal Conservation of Antigenic Epitopes Across the Family. Viral Immunol 2020; 34:3-17. [PMID: 32315582 DOI: 10.1089/vim.2020.0022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The parvoviruses are small nonenveloped single stranded DNA viruses that constitute members that range from apathogenic to pathogenic in humans and animals. The infection with a parvovirus results in the generation of antibodies against the viral capsid by the host immune system to eliminate the virus and to prevent re-infection. For members currently either being developed as delivery vectors for gene therapy applications or as oncolytic biologics for tumor therapy, efforts are aimed at combating the detrimental effects of pre-existing or post-treatment antibodies that can eliminate therapeutic benefits. Therefore, understanding antigenic epitopes of parvoviruses can provide crucial information for the development of vaccination applications and engineering novel capsids able to escape antibody recognition. This review aims to capture the information for the binding regions of ∼30 capsid-antibody complex structures of different parvovirus capsids determined to date by cryo-electron microscopy and three-dimensional image reconstruction. The comparison of all complex structures revealed the conservation of antigenic regions among parvoviruses from different genera despite low sequence identity and indicates that the available data can be used across the family for vaccine development and capsid engineering.
Collapse
Affiliation(s)
- Shanan N Emmanuel
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Mario Mietzsch
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Yu Shan Tseng
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - James Kennon Smith
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
40
|
Tomlinson B, Chan P, Zhang Y, Liu Z, Lam CWK. Pharmacokinetics of current and emerging treatments for hypercholesterolemia. Expert Opin Drug Metab Toxicol 2020; 16:371-385. [PMID: 32223657 DOI: 10.1080/17425255.2020.1749261] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Reduction of low-density-lipoprotein cholesterol (LDL-C) and other apolipoprotein B (apoB)-containing lipoproteins reduces cardiovascular (CV) events and greater reductions have greater benefits. Current lipid treatments cannot always achieve desirable LDL-C targets and additional or alternative treatments are often needed.Areas covered: In this article, we review the pharmacokinetics of the available and emerging treatments for hypercholesterolemia and focus on recently approved drugs and those at a late stage of development.Expert opinion: Statin pharmacokinetics are well known and appropriate drugs and doses can usually be chosen for individual patients to achieve LDL-C targets and avoid adverse effects and drug-drug interactions. Ezetimibe, icosapent ethyl and the monoclonal antibodies evolocumab and alirocumab have established efficacy and safety. Newer oral agents including pemafibrate and bempedoic acid have generally favorable pharmacokinetics supporting use in a wide range of patients. RNA-based therapies with antisense oligonucleotides are highly specific for their targets and those inhibiting apoB, apoCIII, angiopoietin-like protein 3 and lipoprotein(a) have shown promising results. The small-interfering RNA inclisiran has the notable advantage that a single subcutaneous administration may be effective for up to 6 months. The CV outcome trial results and long term safety data are eagerly awaited for these new agents.
Collapse
Affiliation(s)
- Brian Tomlinson
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Paul Chan
- Division of Cardiology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan.,Research Center for Translational Medicine, Shanghai East Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Yuzhen Zhang
- Research Center for Translational Medicine, Shanghai East Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Zhongmin Liu
- Research Center for Translational Medicine, Shanghai East Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | | |
Collapse
|
41
|
Kim AS, Hakeem R, Abdullah A, Hooper AJ, Tchan MC, Alahakoon TI, Girgis CM. Therapeutic plasma exchange for the management of severe gestational hypertriglyceridaemic pancreatitis due to lipoprotein lipase mutation. Endocrinol Diabetes Metab Case Rep 2020; 2020:EDM190165. [PMID: 32168469 PMCID: PMC7077517 DOI: 10.1530/edm-19-0165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 02/21/2020] [Indexed: 12/15/2022] Open
Abstract
SUMMARY A 19-year-old female presented at 25-weeks gestation with pancreatitis. She was found to have significant hypertriglyceridaemia in context of an unconfirmed history of familial hypertriglyceridaemia. This was initially managed with fasting and insulin infusion and she was commenced on conventional interventions to lower triglycerides, including a fat-restricted diet, heparin, marine oil and gemfibrozil. Despite these measures, the triglyceride levels continued to increase as she progressed through the pregnancy, and it was postulated that she had an underlying lipoprotein lipase defect. Therefore, a multidisciplinary decision was made to commence therapeutic plasma exchange to prevent further episodes of pancreatitis. She underwent a total of 13 sessions of plasma exchange, and labour was induced at 37-weeks gestation in which a healthy female infant was delivered. There was a rapid and significant reduction in triglycerides in the 48 h post-delivery. Subsequent genetic testing of hypertriglyceridaemia genes revealed a missense mutation of the LPL gene. Fenofibrate and rosuvastatin was commenced to manage her hypertriglyceridaemia postpartum and the importance of preconception counselling for future pregnancies was discussed. Hormonal changes in pregnancy lead to an overall increase in plasma lipids to ensure adequate nutrient delivery to the fetus. These physiological changes become problematic, where a genetic abnormality in lipid metabolism exists and severe complications such as pancreatitis can arise. Available therapies for gestational hypertriglyceridaemia rely on augmentation of LPL activity. Where there is an underlying LPL defect, these therapies are ineffective and removal of triglyceride-rich lipoproteins via plasma exchange should be considered. LEARNING POINTS Hormonal changes in pregnancy, mediated by progesterone,oestrogen and human placental lactogen, lead to a two- to three-fold increase in serum triglyceride levels. Pharmacological intervention for management of gestational hypertriglyceridaemia rely on the augmentation of lipoprotein lipase (LPL) activity to enhance catabolism of triglyceride-rich lipoproteins. Genetic mutations affecting the LPL gene can lead to severe hypertriglyceridaemia. Therapeutic plasma exchange (TPE) is an effective intervention for the management of severe gestational hypertriglyceridaemia and should be considered in cases where there is an underlying LPL defect. Preconception counselling and discussion regarding contraception is of paramount importance in women with familial hypertriglyceridaemia.
Collapse
Affiliation(s)
- Albert S Kim
- Department of Diabetes and Endocrinology, Westmead Hospital, Westmead, New South Wales, Australia
- The University of Sydney, Faculty of Medicine and Health, Sydney, New South Wales, Australia
| | - Rashida Hakeem
- Department of Maternal-Fetal Medicine, Westmead Institute for Maternal-Fetal Medicine, Westmead Hospital, Westmead, New South Wales, Australia
| | - Azaliya Abdullah
- Department of Maternal-Fetal Medicine, Westmead Institute for Maternal-Fetal Medicine, Westmead Hospital, Westmead, New South Wales, Australia
| | - Amanda J Hooper
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Western Australia, Australia
- Department of Clinical Biochemistry, PathWest Laboratory Medicine WA, Royal Perth Hospital and Fiona Stanley Hospital Network, Perth, Western Australia, Australia
| | - Michel C Tchan
- The University of Sydney, Faculty of Medicine and Health, Sydney, New South Wales, Australia
- Department of Genetic Medicine, Westmead Hospital, Westmead, New South Wales, Australia
| | - Thushari I Alahakoon
- The University of Sydney, Faculty of Medicine and Health, Sydney, New South Wales, Australia
- Department of Maternal-Fetal Medicine, Westmead Institute for Maternal-Fetal Medicine, Westmead Hospital, Westmead, New South Wales, Australia
| | - Christian M Girgis
- Department of Diabetes and Endocrinology, Westmead Hospital, Westmead, New South Wales, Australia
- The University of Sydney, Faculty of Medicine and Health, Sydney, New South Wales, Australia
- Department of Diabetes and Endocrinology, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| |
Collapse
|
42
|
Comparative Analysis of the Capsid Structures of AAVrh.10, AAVrh.39, and AAV8. J Virol 2020; 94:JVI.01769-19. [PMID: 31826994 DOI: 10.1128/jvi.01769-19] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 11/27/2019] [Indexed: 12/17/2022] Open
Abstract
Adeno-associated viruses (AAVs) from clade E are often used as vectors in gene delivery applications. This clade includes rhesus isolate 10 (AAVrh.10) and 39 (AAVrh.39) which, unlike representative AAV8, are capable of crossing the blood-brain barrier (BBB), thereby enabling the delivery of therapeutic genes to the central nervous system. Here, the capsid structures of AAV8, AAVrh.10 and AAVrh.39 have been determined by cryo-electron microscopy and three-dimensional image reconstruction to 3.08-, 2.75-, and 3.39-Å resolution, respectively, to enable a direct structural comparison. AAVrh.10 and AAVrh.39 are 98% identical in amino acid sequence but only ∼93.5% identical to AAV8. However, the capsid structures of all three viruses are similar, with only minor differences observed in the previously described surface variable regions, suggesting that specific residues S269 and N472, absent in AAV8, may confer the ability to cross the BBB in AAVrh.10 and AAVrh.39. Head-to-head comparison of empty and genome-containing particles showed DNA ordered in the previously described nucleotide-binding pocket, supporting the suggested role of this pocket in DNA packaging for the Dependoparvovirus The structural characterization of these viruses provides a platform for future vector engineering efforts toward improved gene delivery success with respect to specific tissue targeting, transduction efficiency, antigenicity, or receptor retargeting.IMPORTANCE Recombinant adeno-associated virus vectors (rAAVs), based on AAV8 and AAVrh.10, have been utilized in multiple clinical trials to treat different monogenetic diseases. The closely related AAVrh.39 has also shown promise in vivo As recently attained for other AAV biologics, e.g., Luxturna and Zolgensma, based on AAV2 and AAV9, respectively, the vectors in this study will likely gain U.S. Food and Drug Administration approval for commercialization in the near future. This study characterized the capsid structures of these clinical vectors at atomic resolution using cryo-electron microscopy and image reconstruction for comparative analysis. The analysis suggested two key residues, S269 and N472, as determinants of BBB crossing for AAVrh.10 and AAVrh.39, a feature utilized for central nervous system delivery of therapeutic genes. The structure information thus provides a platform for engineering to improve receptor retargeting or tissue specificity. These are important challenges in the field that need attention. Capsid structure information also provides knowledge potentially applicable for regulatory product approval.
Collapse
|
43
|
Kim YJ, Kim J. Therapeutic perspectives for structural and functional abnormalities of cilia. Cell Mol Life Sci 2019; 76:3695-3709. [PMID: 31147753 PMCID: PMC11105626 DOI: 10.1007/s00018-019-03158-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/17/2019] [Accepted: 05/22/2019] [Indexed: 12/15/2022]
Abstract
Ciliopathies are a group of hereditary disorders that result from structural or functional abnormalities of cilia. Recent intense research efforts have uncovered the genetic bases of ciliopathies, and our understanding of the assembly and functions of cilia has been improved significantly. Although mechanism-specific therapies for ciliopathies have not yet received regulatory approval, the use of innovative therapeutic modalities such as oligonucleotide therapy, gene replacement therapy, and gene editing in addition to symptomatic treatments are expected to provide valid treatment options in the near future. Moreover, candidate chemical compounds for developing small molecule drugs to treat ciliopathies have been identified. This review introduces the key features of cilia and ciliopathies, and summarizes the advances as well as the challenges that remain with the development of therapies for treating ciliopathies.
Collapse
Affiliation(s)
- Yong Joon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea
| | - Joon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
44
|
Chen CY, Choong OK, Liu LW, Cheng YC, Li SC, Yen CYT, Wu MR, Chiang MH, Tsang TJ, Wu YW, Lin LC, Chen YL, Lin WC, Hacker TA, Kamp TJ, Hsieh PCH. MicroRNA let-7-TGFBR3 signalling regulates cardiomyocyte apoptosis after infarction. EBioMedicine 2019; 46:236-247. [PMID: 31401194 PMCID: PMC6712055 DOI: 10.1016/j.ebiom.2019.08.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/24/2019] [Accepted: 08/01/2019] [Indexed: 12/18/2022] Open
Abstract
Background Myocardial infarction (MI) is a life-threatening disease, often leading to heart failure. Defining therapeutic targets at an early time point is important to prevent heart failure. Methods MicroRNA screening was performed at early time points after MI using paired samples isolated from the infarcted and remote myocardium of pigs. We also examined the microRNA expression in plasma of MI patients and pigs. For mechanistic studies, AAV9-mediated microRNA knockdown and overexpression were administrated in mice undergoing MI. Findings MicroRNAs let-7a and let-7f were significantly downregulated in the infarct area within 24 h post-MI in pigs. We also observed a reduction of let-7a and let-7f in plasma of MI patients and pigs. Inhibition of let-7 exacerbated cardiomyocyte apoptosis, induced a cardiac hypertrophic phenotype, and resulted in worsened left ventricular ejection fraction. In contrast, ectopic let-7 overexpression significantly reduced those phenotypes and improved heart function. We then identified TGFBR3 as a target of let-7, and found that induction of Tgfbr3 in cardiomyocytes caused apoptosis, likely through p38 MAPK activation. Finally, we showed that the plasma TGFBR3 level was elevated after MI in plasma of MI patients and pigs. Interpretation Together, we conclude that the let-7-Tgfbr3-p38 MAPK signalling plays an important role in cardiomyocyte apoptosis after MI. Furthermore, microRNA let-7 and Tgfbr3 may serve as therapeutic targets and biomarkers for myocardial damage. Fund Ministry of Science and Technology, National Health Research Institutes, Academia Sinica Program for Translational Innovation of Biopharmaceutical Development-Technology Supporting Platform Axis, Thematic Research Program and the Summit Research Program, Taiwan.
Collapse
Affiliation(s)
- Chen-Yun Chen
- Institute of Biomedical Science, Academia Sinica, Taipei, Taiwan
| | - Oi Kuan Choong
- Institute of Biomedical Science, Academia Sinica, Taipei, Taiwan
| | - Li-Wei Liu
- Institute of Biomedical Science, Academia Sinica, Taipei, Taiwan
| | - Yu-Che Cheng
- Institute of Biomedical Science, Academia Sinica, Taipei, Taiwan
| | - Sung-Chou Li
- Genomics and Proteomics Core Laboratory, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | | | - Menq-Rong Wu
- Institute of Biomedical Science, Academia Sinica, Taipei, Taiwan
| | - Ming-Hsien Chiang
- Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tien-Jui Tsang
- Institute of Biomedical Science, Academia Sinica, Taipei, Taiwan
| | - Yen-Wen Wu
- Cardiology Division of Cardiovascular Medical Center and Department of Nuclear Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Lung-Chun Lin
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yuh-Lien Chen
- Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Chang Lin
- Institute of Biomedical Science, Academia Sinica, Taipei, Taiwan
| | - Timothy A Hacker
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Timothy J Kamp
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States; Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, United States
| | - Patrick C H Hsieh
- Institute of Biomedical Science, Academia Sinica, Taipei, Taiwan; Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States; Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, United States; Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan; Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan; Division of Cardiovascular Surgery, Department of Surgery, National Taiwan University Hospital, Taipei 100, Taiwan.
| |
Collapse
|
45
|
Kolovou GD, Watts GF, Mikhailidis DP, Pérez-Martínez P, Mora S, Bilianou H, Panotopoulos G, Katsiki N, Ooi TC, Lopez-Miranda J, Tybjærg-Hansen A, Tentolouris N, Nordestgaard BG. Postprandial Hypertriglyceridaemia Revisited in the Era of Non-Fasting Lipid Profile Testing: A 2019 Expert Panel Statement, Narrative Review. Curr Vasc Pharmacol 2019; 17:515-537. [DOI: 10.2174/1570161117666190503123911] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/01/2019] [Accepted: 04/11/2019] [Indexed: 12/17/2022]
Abstract
Postprandial hypertriglyceridaemia, defined as an increase in plasma triglyceride-containing
lipoproteins following a fat meal, is a potential risk predictor of atherosclerotic cardiovascular disease
and other chronic diseases. Several non-modifiable factors (genetics, age, sex and menopausal status)
and lifestyle factors (diet, physical activity, smoking status, obesity, alcohol and medication use) may
influence postprandial hypertriglyceridaemia. This narrative review considers the studies published over
the last decade that evaluated postprandial hypertriglyceridaemia. Additionally, the genetic determinants
of postprandial plasma triglyceride levels, the types of meals for studying postprandial triglyceride response,
and underlying conditions (e.g. familial dyslipidaemias, diabetes mellitus, metabolic syndrome,
non-alcoholic fatty liver and chronic kidney disease) that are associated with postprandial hypertriglyceridaemia
are reviewed; therapeutic aspects are also considered.
Collapse
Affiliation(s)
- Genovefa D. Kolovou
- Cardiology Department and LDL-Apheresis Unit, Onassis Cardiac Surgery Center, Athens, Greece
| | - Gerald F. Watts
- Lipid Disorders Clinic, Department of Cardiology, Royal Perth Hospital, School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Crawley, Australia
| | - Dimitri P. Mikhailidis
- Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom
| | - Pablo Pérez-Martínez
- Lipid and Atherosclerosis Unit, IMIBIC/Reina Sofia University Hospital/University of Cordoba, and CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Samia Mora
- Center for Lipid Metabolomics, Divisions of Preventive and Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Helen Bilianou
- Department of Cardiology, Tzanio Hospital, Piraeus, Greece
| | | | - Niki Katsiki
- First Department of Internal Medicine, Division of Endocrinology-Metabolism, Diabetes Center, AHEPA University Hospital, Thessaloniki, Greece
| | - Teik C. Ooi
- Department of Medicine, Division of Endocrinology and Metabolism, University of Ottawa, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - José Lopez-Miranda
- Lipid and Atherosclerosis Unit, IMIBIC/Reina Sofia University Hospital/University of Cordoba, and CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Anne Tybjærg-Hansen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicholas Tentolouris
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Børge G. Nordestgaard
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
46
|
Muhammad T, Sakhawat A, Khan AA, Ma L, Gjerset RA, Huang Y. Mesenchymal stem cell-mediated delivery of therapeutic adenoviral vectors to prostate cancer. Stem Cell Res Ther 2019; 10:190. [PMID: 31238944 PMCID: PMC6593580 DOI: 10.1186/s13287-019-1268-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/29/2019] [Accepted: 05/15/2019] [Indexed: 01/04/2023] Open
Abstract
Background There is an urgent need for targeted biological therapies for prostate cancer with greater efficacy and less toxicity, particularly for metastatic disease, where current therapies are not curative. Therapeutic adenoviral vectors or oncolytic adenoviruses offer the possibility of a competent, nontoxic therapeutic alternative for prostate cancer. However, free viral particles must be delivered locally, an approach that does not address metastatic disease, and they display poor tumor penetration. To fully exploit the potential of these vectors, we must develop methods that improve intratumoral dissemination and allow for systemic delivery. This study establishes a proof-of-principle rationale for a novel human mesenchymal stem (stromal) cell-based approach to improving vector delivery to tumors. Methods/results We have generated mesenchymal stem cell-derived packaging cells for adenoviruses (E1-modified mesenchymal stem cells) by modifying human mesenchymal stem cells with the adenovirus (type C) E1A/B genes needed for viral replication. Using cell-based assays, we have demonstrated that two adenoviral vectors, replication-defective adenovirus expressing p14 and p53 or conditionally replicating oncolytic adenovirus, packaged by E1A/B-modified mesenchymal stem cells, suppress the growth of prostate cancer cells in culture. Using subcutaneous xenograft models for human prostate cancer in mice, we have shown that E1A/B-modified mesenchymal stem cells display tumor tropism in tumor-bearing nude mice, that E1A/B-modified mesenchymal stem cells disseminate well within tumors, and that replication-defective adenovirus expressing p14 and p53 or conditionally replicating oncolytic adenovirus-loaded E1-modified mesenchymal stem cells suppresses tumor growth in mice. Conclusion The results show that this approach, if optimized, could circumvent the obstacles to efficient gene delivery encountered with current gene delivery approaches and provide an effective, nontoxic therapeutic alternative for metastatic disease.
Collapse
Affiliation(s)
- Tahir Muhammad
- College of life sciences and Bio-engineering, Beijing University of Technology, Beijing, China
| | - Ali Sakhawat
- College of life sciences and Bio-engineering, Beijing University of Technology, Beijing, China
| | - Aamir Ali Khan
- College of life sciences and Bio-engineering, Beijing University of Technology, Beijing, China
| | - Ling Ma
- College of life sciences and Bio-engineering, Beijing University of Technology, Beijing, China
| | - Ruth A Gjerset
- Torrey Pines Institute for Molecular Studies, San Diego, CA, USA
| | - Yinghui Huang
- College of life sciences and Bio-engineering, Beijing University of Technology, Beijing, China.
| |
Collapse
|
47
|
Filippatos TD, Liontos A, Christopoulou EC, Elisaf MS. Novel Hypolipidaemic Drugs: Mechanisms of Action and Main Metabolic Effects. Curr Vasc Pharmacol 2019; 17:332-340. [DOI: 10.2174/1570161116666180209112351] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 06/14/2018] [Accepted: 06/14/2018] [Indexed: 02/07/2023]
Abstract
Over the last 3 decades, hypolipidaemic treatment has significantly reduced both Cardiovascular
(CV) risk and events, with statins being the cornerstone of this achievement. Nevertheless, residual
CV risk and unmet goals in hypolipidaemic treatment make novel options necessary. Recently marketed
monoclonal antibodies against proprotein convertase subtilisin/kexin type 9 (PCSK9) have shown
the way towards innovation, while other ways of PCSK9 inhibition like small interfering RNA (Inclisiran)
are already being tested. Other effective and well tolerated drugs affect known paths of lipid
synthesis and metabolism, such as bempedoic acid blocking acetyl-coenzyme A synthesis at a different
level than statins, pemafibrate selectively acting on peroxisome proliferator-activated receptor (PPAR)-
alpha receptors and oligonucleotides against apolipoprotein (a). Additionally, other novel hypolipidaemic
drugs are in early phase clinical trials, such as the inhibitors of apolipoprotein C-III, which is located
on triglyceride (TG)-rich lipoproteins, or the inhibitors of angiopoietin-like 3 (ANGPTL3), which
plays a key role in lipid metabolism, aiming to beneficial effects on TG levels and glucose metabolism.
Among others, gene therapy substituting the loss of essential enzymes is already used for Lipoprotein
Lipase (LPL) deficiency in autosomal chylomicronaemia and is expected to eliminate the lack of Low-
Density Lipoprotein (LDL) receptors in patients with homozygous familial hypercholesterolaemia. Experimental
data of High-Density Lipoprotein (HDL) mimetics infusion therapy have shown a beneficial
effect on atherosclerotic plaques. Thus, many novel hypolipidaemic drugs targeting different aspects of
lipid metabolism are being investigated, although they need to be assessed in large trials to prove their
CV benefit and safety.
Collapse
Affiliation(s)
| | - Angelos Liontos
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Eliza C. Christopoulou
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Moses S. Elisaf
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina, Greece
| |
Collapse
|
48
|
Kassner U, Hollstein T, Grenkowitz T, Wühle-Demuth M, Salewsky B, Demuth I, Dippel M, Steinhagen-Thiessen E. Gene Therapy in Lipoprotein Lipase Deficiency: Case Report on the First Patient Treated with Alipogene Tiparvovec Under Daily Practice Conditions. Hum Gene Ther 2019; 29:520-527. [PMID: 29641318 DOI: 10.1089/hum.2018.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
One-year results are reported of the first lipoprotein lipase deficiency (LPLD) patient treated with alipogene tiparvovec, which is indicated for the treatment of patients with genetically confirmed LPLD suffering from acute and recurrent pancreatitis attacks (PAs) despite dietary restrictions and expressing >5% of lipoprotein lipase (LPL) mass compared to a healthy control. During clinical development, alipogene tiparvovec has shown improvement of chylomicron metabolism and reduction of pancreatitis incidence up to 5.8 years post treatment. A 43-year-old female presented with severe hypertriglyceridemia (median triglyceride [TG] value of 3,465 mg/dL) and a history of 37 PAs within the last 25 years, despite treatment with fibrates, omega 3 fatty acids, and-since 2012-twice-weekly lipid apheresis. LPLD was confirmed by identification of two different pathogenic variants in the LPL gene located on separate alleles and therefore constituting a compound heterozygous state. With a detectable LPL mass level of 55.1 ng/mL, the patient was eligible for alipogene tiparvovec treatment, and in September 2015, she receved 40 injections (1 × 1012 genome copies/kg) in the muscles of her upper legs under epidural anesthesia and immunosuppressive therapy. Alipogene tiparvovec was well tolerated: no injection site or systemic reactions were observed. Median TG values decreased by 52%, dropping to 997 mg/dL at month 3 and increasing thereafter. Within the first 18 months post treatment, the patient discontinued plasmapheresis and had no abdominal pain or PAs. In March 2017, the patient suffered from a PA due to diet violation. Within the first 12 months post treatment, overall quality of life improved, and no change in humoral or cellular immune response against LPL or AAV-1 was observed. In conclusion, alipogene tiparvovec was well tolerated, with a satisfactory response to treatment. Long-term effects on the recurrence of pancreatitis continue to be monitored.
Collapse
Affiliation(s)
- Ursula Kassner
- 1 Lipid Clinic at the Interdisciplinary Metabolism Center, Charité-Universitätsmedizin Berlin , Berlin, Germany
| | - Tim Hollstein
- 1 Lipid Clinic at the Interdisciplinary Metabolism Center, Charité-Universitätsmedizin Berlin , Berlin, Germany
| | - Thomas Grenkowitz
- 1 Lipid Clinic at the Interdisciplinary Metabolism Center, Charité-Universitätsmedizin Berlin , Berlin, Germany
| | - Marion Wühle-Demuth
- 1 Lipid Clinic at the Interdisciplinary Metabolism Center, Charité-Universitätsmedizin Berlin , Berlin, Germany
| | - Bastian Salewsky
- 1 Lipid Clinic at the Interdisciplinary Metabolism Center, Charité-Universitätsmedizin Berlin , Berlin, Germany
| | - Ilja Demuth
- 1 Lipid Clinic at the Interdisciplinary Metabolism Center, Charité-Universitätsmedizin Berlin , Berlin, Germany
| | | | | |
Collapse
|
49
|
Abstract
Polymeric matrices inherently protect viral vectors from pre-existing immune conditions, limit dissemination to off-target sites, and can sustain vector release. Advancing methodologies in development of particulate based vehicles have led to improved encapsulation of viral vectors. Polymeric delivery systems have contributed to increasing cellular transduction, responsive release mechanisms, cellular infiltration, and cellular signaling. Synthetic polymers are easily customizable, and are capable of balancing matrix retention with cellular infiltration. Natural polymers contain inherent biorecognizable motifs adding therapeutic efficacy to the incorporated viral vector. Recombinant polymers use highly conserved motifs to carefully engineer matrices, allowing for precise design including elements of vector retention and responsive release mechanisms. Composite polymer systems provide opportunities to create matrices with unique properties. Carefully designed matrices can control spatiotemporal release patterns that synergize with approaches in regenerative medicine and antitumor therapies.
Collapse
Affiliation(s)
- Douglas Steinhauff
- Utah Center for Nanomedicine , Nano Institute of Utah , 36 South Wasatch Drive , Salt Lake City , Utah 84112 , United States
| | - Hamidreza Ghandehari
- Utah Center for Nanomedicine , Nano Institute of Utah , 36 South Wasatch Drive , Salt Lake City , Utah 84112 , United States
| |
Collapse
|
50
|
Naso MF, Tomkowicz B, Perry WL, Strohl WR. Adeno-Associated Virus (AAV) as a Vector for Gene Therapy. BioDrugs 2018; 31:317-334. [PMID: 28669112 PMCID: PMC5548848 DOI: 10.1007/s40259-017-0234-5] [Citation(s) in RCA: 839] [Impact Index Per Article: 119.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There has been a resurgence in gene therapy efforts that is partly fueled by the identification and understanding of new gene delivery vectors. Adeno-associated virus (AAV) is a non-enveloped virus that can be engineered to deliver DNA to target cells, and has attracted a significant amount of attention in the field, especially in clinical-stage experimental therapeutic strategies. The ability to generate recombinant AAV particles lacking any viral genes and containing DNA sequences of interest for various therapeutic applications has thus far proven to be one of the safest strategies for gene therapies. This review will provide an overview of some important factors to consider in the use of AAV as a vector for gene therapy.
Collapse
Affiliation(s)
- Michael F Naso
- Janssen Research and Development, 200 McKean Road, Spring House, PA, 19477, USA.
| | - Brian Tomkowicz
- Janssen Research and Development, 200 McKean Road, Spring House, PA, 19477, USA
| | - William L Perry
- Janssen Research and Development, 200 McKean Road, Spring House, PA, 19477, USA
| | | |
Collapse
|