1
|
Zheng M, Zhang S, Wang Y, Xie N, Wang X, Lv J, Pang X, Li X. Utilization of Native CRISPR-Cas9 System for Expression of Glucagon-like Peptide-1 in Lacticaseibacillus paracasei. Foods 2025; 14:1785. [PMID: 40428564 PMCID: PMC12111759 DOI: 10.3390/foods14101785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2025] [Revised: 05/03/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
Type 2 diabetes is one of the main causes of cardiovascular diseases, kidney diseases, and visual impairments, posing a global healthcare challenge. The current treatment of this disease, involving glucagon-like peptide-1 (GLP-1), is faced with problems such as frequent injections and plasmid instability. In this study, we used the native clustered regularly interspaced short palindromic repeats-CRISPR-associated protein 9 (CRISPR-Cas9) system of Lacticaseibacillus paracasei to develop a novel, genetically stable, and orally administrable strain expressing human GLP-1. Integration and subsequent expression of glp-1 gene were confirmed by genomic sequencing, qPCR, and Nano LC-MS. The engineered strain demonstrated stable genomic integration and sustained high-level expression of GLP-1 over multiple generations. This innovative approach provides a promising strategy for the oral delivery of therapeutic peptides, potentially enhancing patient compliance and improving the treatment of diabetes and other chronic diseases requiring peptide-based therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaoyang Pang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.Z.); (S.Z.); (Y.W.); (N.X.); (X.W.); (J.L.)
| | - Xu Li
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (M.Z.); (S.Z.); (Y.W.); (N.X.); (X.W.); (J.L.)
| |
Collapse
|
2
|
Chen M, Zhao N, Shi W, Xing Y, Liu S, Meng X, Li L, Zhang H, Meng Y, Xie S, Deng W. Glucose-dependent insulinotropic polypeptide/glucagon-like peptide 1 receptor agonist tirzepatide promotes branched chain amino acid catabolism to prevent myocardial infarction in non-diabetic mice. Cardiovasc Res 2025; 121:454-467. [PMID: 39928435 DOI: 10.1093/cvr/cvaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/18/2024] [Accepted: 11/03/2024] [Indexed: 02/12/2025] Open
Abstract
AIMS A novel dual glucose-dependent insulinotropic polypeptide and glucagon-like peptide 1 receptor agonist, tirzepatide (LY3298176, TZP), has been developed to treat Type 2 diabetes mellitus (T2DM). In ischaemic heart diseases, TZP is involved in cardiac metabolic processes. However, its efficacy and safety in treating heart failure (HF) following myocardial infarction (MI) remain uncertain. METHODS AND RESULTS Herein, 12 week C57BL/6J mice were subjected to MI surgery, followed by administration of TZP. The effects of TZP on cardiac function and metabolism were thoroughly assessed by physiological, histological, and cellular analyses. Downstream effectors of TZP were screened through untargeted metabolomics analysis and molecular docking. Construct a lower branched chain amino acid (BCAA) diet model to determine whether TZP's cardioprotective effect is associated with reducing BCAA levels. Our results demonstrated that TZP reduced mortality following MI, decreased the infarct area, and attenuated cardiomyocyte necrosis. Pathological evaluation of cardiac tissues demonstrated increased fibrosis repair and decreased inflammatory infiltration. Mechanistically, untargeted metabolomics analysis uncovered a positive correlation between TZP and the BCAA catabolism pathway. The molecular docking verified that TZP could bind with branched-chain keto acid dehydrogenase E1 subunit α (BCKDHA). TZP reduced BCKDHA phosphorylation at S293, enhanced BCAA catabolism, and inhibited the activation of metabolism by activating rapamycin (mTOR) signalling pathway. Furthermore, mice fed a low-BCAA diet post-MI demonstrated reduced cardiomyocyte necrosis, increased fibrosis repair, and decreased inflammatory infiltration. These cardioprotective effects were further enhanced when used synergistically with TZP. CONCLUSION Taken together, our findings provide new perspectives on the unrecognized role of TZP in cardiac protection. TZP enhanced BCAA catabolism and attenuated BCAA/mTOR signalling pathway in MI mice. Consequently, this study may present novel therapeutic options for patients with HF.
Collapse
Affiliation(s)
- Mengya Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Nan Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Wenke Shi
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Yun Xing
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Shiqiang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Xianxian Meng
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Lanlan Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Heng Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Yanyan Meng
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Saiyang Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan 430060, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China
| |
Collapse
|
3
|
Alluri AA, Guntupalli Y, Suvarna SS, Prystupa Y, Khetan SP, Vejandla B, Babu Swathi NL. Incretin-based therapies: advancements, challenges, and future directions in type 2 diabetes management. J Basic Clin Physiol Pharmacol 2025:jbcpp-2025-0031. [PMID: 40150960 DOI: 10.1515/jbcpp-2025-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025]
Abstract
Incretin-based medicines have considerably impacted the treatment of type 2 diabetes mellitus (T2DM), providing considerable advantages in glycemic regulation, weight control, and cardiovascular results. This narrative review examines progress in incretin medicines, encompassing glucagon-like peptide-1 (GLP-1) receptor agonists, dual-receptor, and triple-receptor agonists, while emphasizing their therapeutic advantages, obstacles, and prospective developments. The examined articles were sourced from databases including PubMed and Google Scholar, concentrating on publications predominantly from 2010 to 2024. Selective foundational papers released before this timeline were incorporated to furnish critical historical context about incretin processes and their discovery. Incretin-based medicines, despite their therapeutic efficacy, encounter hurdles including elevated treatment costs, patient compliance difficulties, and variability in response attributable to genetic and physiological variables. Moreover, there are still deficiencies in comprehending the long-term cardiovascular safety and cancer risks linked to these medicines. Emerging dual- and triple-receptor agonists demonstrate potential in overcoming the shortcomings of conventional GLP-1 receptor agonists, providing enhanced metabolic results and broader uses in intricate disease profiles. Future research must concentrate on economic obstacles, streamlined regimens, customized medicine, the integration of artificial intelligence, patient stratification, as well as the safety and efficacy of incretin-based medicines for holistic management of T2DM.
Collapse
Affiliation(s)
- Amruth A Alluri
- Internal Medicine, American University of the Caribbean School of Medicine, Cupecoy, Netherlands
| | - Yashaswi Guntupalli
- Internal Medicine, 28660 Sri Venkateswara Institute of Medical Sciences , Tirupati, Andhra Pradesh, India
| | | | | | | | - Bharath Vejandla
- Internal Medicine, All American Institute of Medical Science, Black River, Jamaica
| | | |
Collapse
|
4
|
Chen H, Ding Y, Shan Y. Post-marketing safety monitoring of tirzepatide: a pharmacovigilance study based on the FAERS database. Expert Opin Drug Saf 2025:1-9. [PMID: 40037695 DOI: 10.1080/14740338.2025.2468860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/23/2024] [Accepted: 11/08/2024] [Indexed: 03/06/2025]
Abstract
OBJECTIVE To explore adverse drug events (ADEs) associated with tirzepatide using real-world data from the U.S. Food and Drug Administration's Adverse Event Reporting System (FAERS) database to guide its safe management. METHODS ADE reports from the second quarter of 2022 to the fourth quarter of 2023 were analyzed using the Reporting Odds Ratio (ROR) and Bayesian Confidence Propagation Neural Network (BCPNN) methods. Gender-specific differences and reporting biases were also assessed. RESULTS Among 25,212 tirzepatide-related ADE reports, 101 significant ADE signals across 15 system organ classifications were identified. Common ADEs included nausea (n = 3030, ROR 5.38) and vomiting (n = 1147, ROR 3.44). Previously unreported ADEs included eructation (n = 500, ROR 46.56), gastroesophageal reflux disease (n = 191, ROR 3.24), injection site hemorrhage (n = 1610, ROR 27.8), and increased blood glucose (n = 641, ROR 6.22). Women reported more injection-site reactions, while men experienced more gastrointestinal issues. Weibull analysis indicated a median ADE onset time of 23 days (IQR: 6-90 days). CONCLUSION This pharmacovigilance study identified both known and novel ADEs of tirzepatide, highlighting gender differences and reporting biases. Close monitoring and further research are needed to ensure its safe use.
Collapse
Affiliation(s)
- Han Chen
- Department of Pharmacy, General Hospital of Northern Theater Command (General Hospital of Shenyang Military Command), Shenyang, Liaoning, China
| | - Yuhang Ding
- School of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Yongqi Shan
- Department of General Surgery, General Hospital of Northern Theater Command (General Hospital of Shenyang Military Command), Shenyang, Liaoning, China
| |
Collapse
|
5
|
See XY, Xanthavanij N, Lee YC, Ong TE, Wang TH, Ahmed O, Chang YC, Peng CY, Chi KY, Chang Y, Chang KY, Chiang CH. Pulmonary outcomes of incretin-based therapies in COPD patients receiving single-inhaler triple therapy. ERJ Open Res 2025; 11:00803-2024. [PMID: 40230429 PMCID: PMC11995278 DOI: 10.1183/23120541.00803-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/29/2024] [Indexed: 04/16/2025] Open
Abstract
Background Patients with COPD on triple therapy often face exacerbations and comorbidities. Emerging evidence suggests that glucagon-like peptide-1 (GLP-1) analogues may reduce the risk of exacerbation in patients with COPD and type 2 diabetes mellitus (T2DM). This study investigates the impact of GLP-1 analogues on pulmonary outcomes in patients with COPD on single-inhaler triple therapy (SITT) and T2DM. Methods We conducted a retrospective cohort study using the TriNetX database and analysed adult patients with COPD and T2DM who received SITT between April 2005 and July 2023. Patients were categorised into GLP-1 analogue and dipeptidyl peptidase-4 inhibitor (DPP4i) cohorts. The primary efficacy outcome was COPD exacerbation, and the secondary efficacy outcomes were pneumonia, acute respiratory distress syndrome, intubation, oxygen dependence and all-cause mortality. The secondary outcomes were serious gastrointestinal adverse events. Results We included 6898 patients, with 4184 receiving GLP-1 analogues and 2714 receiving DPP4i. After matching, 1751 GLP-1 analogue users were matched with 1751 DPP4i users. GLP-1 analogue users had an 18% lower risk of COPD exacerbation (hazard ratio (HR) 0.82 (95% CI 0.71-0.94)), a 28% reduced risk of pneumonia (HR 0.72 (95% CI 0.61-0.85)), a 34% reduced risk of oxygen dependence (HR 0.66 (95% CI 0.47-0.91)) and a 40% decreased risk of all-cause mortality (HR 0.60 (95% CI 0.47-0.77)). No significant serious gastrointestinal adverse events were observed. Conclusion GLP-1 analogues may be associated with reduced COPD exacerbations, pulmonary comorbidities and mortality in patients with COPD receiving SITT and T2DM, with no significant serious gastrointestinal safety concerns.
Collapse
Affiliation(s)
- Xin Ya See
- Department of Medicine, Unity Hospital, Rochester Regional Health, Rochester, NY, USA
| | - Nutchapon Xanthavanij
- Department of Medicine, Mount Auburn Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Yu-Che Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Tze Ern Ong
- Department of Medicine, University Malaya Medical Centre, Selangor, Malaysia
| | - Tsu Hsien Wang
- Department of Medicine, University at Buffalo-Catholic Health System, Buffalo, NY, USA
| | - Omer Ahmed
- Department of Medicine, Unity Hospital, Rochester Regional Health, Rochester, NY, USA
| | - Yu-Cheng Chang
- Department of Medicine, Danbury Hospital, Danbury, CT, USA
| | - Chun-Yu Peng
- Department of Medicine, Danbury Hospital, Danbury, CT, USA
| | - Kuan-Yu Chi
- Department of Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yu Chang
- Section of Neurosurgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ko-Yun Chang
- Division of Chest Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Cho-Han Chiang
- Department of Medicine, Mount Auburn Hospital, Harvard Medical School, Cambridge, MA, USA
| |
Collapse
|
6
|
Afridi Z, Farhan K, Fahad F, Khan MWZ, Salomon I. Tirzepatide: a dual-action solution for obstructive sleep apnea and obesity. Ann Med Surg (Lond) 2025; 87:436-437. [PMID: 40110282 PMCID: PMC11918728 DOI: 10.1097/ms9.0000000000002975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/13/2025] [Indexed: 03/22/2025] Open
Affiliation(s)
| | - Kanza Farhan
- Jinnah Sindh Medical University, Karachi, Pakistan
| | - Fnu Fahad
- Khyber Medical College, Peshawar, Pakistan
| | | | - Izere Salomon
- University of Rwanda College of Medicine and Health Sciences, Kigali, Rwanda
| |
Collapse
|
7
|
Misra S, Rajput P, Kaur A. Tirzepatide mitigates cognitive decline in zebrafish model of type 2 diabetes mellitus induced by high-fat diet. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03827-3. [PMID: 39873719 DOI: 10.1007/s00210-025-03827-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/17/2025] [Indexed: 01/30/2025]
Abstract
In examining the enduring consequences of diabetes, recent research has focused on the anticipated outcomes of the condition. Specifically, cognitive impairment has been linked to diabetes mellitus dating back to the discovery of insulin. This study delves into the neuroprotective effects of TZP, i.e. tirzepatide a dual GIP and GLP-1 receptor agonist that works by mimicking these two gut hormones, against cognitive impairment associated with type 2 diabetes mellitus (T2DM). T2DM-like zebrafish model of varying age groups was created through a 6-week administration of a high-fat diet (HFD). Parameters such as body weight, body mass index, and blood glucose levels were monitored, and behavioural assessments (T-maze, novel tank diving test, and inhibitory avoidance test) were conducted at the conclusion of the protocol to assess learning and memory. Additionally, lipid profile biochemical parameters (MDA, AChEs, and GSH), molecular markers (IL-1β, IL-10, TNF-α, Bcl-2, Bax, GSK-3β, and AMPK), and histopathological examinations were performed. Treatment with the novel GLP-1 and GIP dual agonist TZP (10 nM/kg, i.p.) significantly ameliorated cognitive impairment, as evidenced by behavioural parameters, and restored antioxidant like GSH (p < 0.05) and catalase (p < 0.05) and anti-inflammatory marker levels, i.e. IL-10 (p < 0.05) compared to the HFD group. TZP also mitigated abnormal glucose (73.2 ± 5.889) and lipid profiles (TG 0.159 ± 0.0075 and TC 0.100 ± 0.0020) in hyperglycaemic zebrafish. This study suggests that the positive effects of TZP on cognition and memory may stem from its neuroprotective capabilities, potentially attributed to its antioxidant, anti-inflammatory, and anti-apoptotic properties, as well as its ability to enhance AMPK levels as GLP-1 agonist has the potential to increase the level of AMPK.
Collapse
Affiliation(s)
- Sakshi Misra
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, GT Road, Moga, 142001, Punjab, India
| | - Prabha Rajput
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, GT Road, Moga, 142001, Punjab, India.
- Department of Pharmacology, School of Pharmacy & Technology Management, SVKM's NMIMS University, Shirpur Campus, Shirpur, India.
| | - Amandeep Kaur
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, GT Road, Moga, 142001, Punjab, India
| |
Collapse
|
8
|
Młynarska E, Czarnik W, Dzieża N, Jędraszak W, Majchrowicz G, Prusinowski F, Stabrawa M, Rysz J, Franczyk B. Type 2 Diabetes Mellitus: New Pathogenetic Mechanisms, Treatment and the Most Important Complications. Int J Mol Sci 2025; 26:1094. [PMID: 39940862 PMCID: PMC11817707 DOI: 10.3390/ijms26031094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/19/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM), a prevalent chronic disease affecting over 400 million people globally, is driven by genetic and environmental factors. The pathogenesis involves insulin resistance and β-cell dysfunction, mediated by mechanisms such as the dedifferentiation of β-cells, mitochondrial dysfunction, and oxidative stress. Treatment should be based on non-pharmacological therapy. Strategies such as increased physical activity, dietary modifications, cognitive-behavioral therapy are important in maintaining normal glycemia. Advanced therapies, including SGLT2 inhibitors and GLP-1 receptor agonists, complement these treatments and offer solid glycemic control, weight control, and reduced cardiovascular risk. Complications of T2DM, such as diabetic kidney disease, retinopathy, and neuropathy, underscore the need for early diagnosis and comprehensive management to improve patient outcomes and quality of life.
Collapse
Affiliation(s)
- Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Witold Czarnik
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Natasza Dzieża
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Weronika Jędraszak
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Gabriela Majchrowicz
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Filip Prusinowski
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Magdalena Stabrawa
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| |
Collapse
|
9
|
Tiwari RK, Ahmad A, Chadha M, Saha K, Verma H, Borgohain K, Shukla R. Modern-Day Therapeutics and Ongoing Clinical Trials against Type 2 Diabetes Mellitus: A Narrative Review. Curr Diabetes Rev 2025; 21:59-74. [PMID: 38766831 DOI: 10.2174/0115733998294919240506044544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 05/22/2024]
Abstract
OBJECTIVES Diabetes Mellitus (DM) is a global health concern that affects millions of people globally. The present review aims to narrate the clinical guidelines and therapeutic interventions for Type 2 Diabetes Mellitus (T2DM) patients. Furthermore, the present work summarizes the ongoing phase 1/2/3 and clinical trials against T2DM. METHODS A meticulous and comprehensive literature review was performed using various databases, such as PubMed, MEDLINE, Clinical trials database (https://clinicaltrials.gov/), and Google Scholar, to include various clinical trials and therapeutic interventions against T2DM. RESULTS Based on our findings, we concluded that most T2DM-associated clinical trials are interventional. Anti-diabetic therapeutics, including insulin, metformin, Dipeptidyl Peptidase-4 (DPP-4) inhibitors, Glucagon-Like Peptide-1 Receptor Agonists (GLP-1RAs), and Sodium- Glucose cotransporter-2 (SGLT-2) inhibitors are frontline therapeutics being clinically investigated. Currently, the therapeutics in phase IV clinical trials are mostly SGLT-2 inhibitors, implicating their critical contribution to the clinical management of T2DM. CONCLUSION Despite the success of T2DM treatments, a surge in innovative treatment options to reduce diabetic consequences and improve glycemic control is currently ongoing. More emphasis needs to be on exploring novel targeted drug candidates that can offer more sustained glycemic control.
Collapse
Affiliation(s)
- Rohit Kumar Tiwari
- Department of Clinical Research, Sharda School of Allied Health Sciences, Sharda University, Gautam Buddh Nagar, Uttar Pradesh, 201310, India
| | - Afza Ahmad
- Department of Public Health, Dr. Giri Lal Gupta Institute of Public Health and Public Affairs, University of Lucknow, Lucknow, Uttar Pradesh, 226007, India
| | - Muskan Chadha
- Department of Nutrition & Dietetics, Sharda School of Allied Health Sciences, Sharda University, Gautam Buddh Nagar, Uttar Pradesh, 201310, India
| | - Kingshuk Saha
- Department of Clinical Research, Sharda School of Allied Health Sciences, Sharda University, Gautam Buddh Nagar, Uttar Pradesh, 201310, India
| | - Harshitha Verma
- Department of Science in Biochemistry, Manasagangothri, University of Mysuru, Mysuru, 570006, Karnataka, India
| | - Kalpojit Borgohain
- Department of Clinical Research, Sharda School of Allied Health Sciences, Sharda University, Gautam Buddh Nagar, Uttar Pradesh, 201310, India
| | - Ratnakar Shukla
- Department of Clinical Research, Sharda School of Allied Health Sciences, Sharda University, Gautam Buddh Nagar, Uttar Pradesh, 201310, India
| |
Collapse
|
10
|
Russo GT, Nicolucci A, Lucisano G, Rossi MC, Ceriello A, Prattichizzo F, Manicardi V, Rocca A, Di Bartolo P, De Cosmo S, Di Cianni G, Candido R. When Does Metabolic Memory Start? Insights From the Association of Medical Diabetologists Annals Initiative on Stringent HbA1c Targets. Diabetes 2025; 74:75-81. [PMID: 39418322 DOI: 10.2337/db24-0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
Early, intensive glycemic control in patients with type 2 diabetes (T2D) is associated with long-term benefits in cardiovascular disease (CVD) development. Evidence on benefits of achieving HbA1c targets close to normal values is scant. Individuals with newly diagnosed T2D, without CVD at baseline, were identified in an Italian clinical registry (n = 251,339). We adopted three definitions of early exposure periods (0-1, 0-2, and 0-3 years). Mean HbA1c was categorized into HbA1c <5.7%, 5.7-6.4%, 6.5-7.0%, 7.1-8.0%, and >8.0%. The outcome was the incidence of major cardiovascular events. After a mean follow-up of 4.6 ± 2.9 years, at multivariate Cox regression analysis, compared with mean HbA1c <5.7% during the first year after diagnosis, the increase in the risk of CVD was 24%, 42%, 49%, and 56% for patients with HbA1c of 5.7-6.4%, 6.5-7.0%, 7.1-8.0%, and >8.0%, respectively. The same trend was documented in all exposure periods. In conclusion, our data support that an early achievement of stringent targets of HbA1c <5.7% is worthy for CVD prevention. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Giuseppina T Russo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Antonio Nicolucci
- CORESEARCH - Center for Outcomes Research and Clinical Epidemiology, Pescara, Italy
| | - Giuseppe Lucisano
- CORESEARCH - Center for Outcomes Research and Clinical Epidemiology, Pescara, Italy
| | - Maria Chiara Rossi
- CORESEARCH - Center for Outcomes Research and Clinical Epidemiology, Pescara, Italy
| | | | | | | | - Alberto Rocca
- G. Segalini H. Bassini Cinisello Balsamo ASST Nord, Milan, Italy
| | - Paolo Di Bartolo
- Ravenna Diabetes Center, Department of Specialist Medicine, Romagna Local Health Authority, Ravenna, Italy
| | - Salvatore De Cosmo
- Department of Medical Sciences, Scientific Institute "Casa Sollievo della Sofferenza," San Giovanni Rotondo, Italy
| | | | - Riccardo Candido
- Department of Medical Surgical and Health Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
11
|
Gries JJ, Lazarus JV, Brennan PN, Siddiqui MS, Targher G, Lang CC, Virani SS, Lavie CJ, Isaacs S, Arab JP, Cusi K, Krittanawong C. Interdisciplinary perspectives on the co-management of metabolic dysfunction-associated steatotic liver disease and coronary artery disease. Lancet Gastroenterol Hepatol 2025; 10:82-94. [PMID: 39674228 DOI: 10.1016/s2468-1253(24)00310-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 12/16/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has emerged as a public health threat as it affects approximately 38% of the adult population worldwide, with its prevalence rising in step with that of obesity and type 2 diabetes. Beyond the implications of MASLD for liver health, it is also associated with cardiovascular and vascular dysfunction. Although the many shared risk factors and common metabolic milieu might indicate that cardiovascular disease and MASLD are discrete outcomes from common systemic pathogeneses, a growing body of evidence has identified a potential causal relationship between MASLD and coronary artery disease, which is the leading cause of morbidity and mortality in people with MASLD and all-cause mortality worldwide. This Review takes an interdisciplinary approach, drawing on hepatology, cardiology, endocrinology, and metabolic and internal medicine specialists to help to delineate the intricate interplay between MASLD and coronary artery disease. It sheds light on novel opportunities for targeted interventions and personalised management strategies.
Collapse
Affiliation(s)
- Jacob J Gries
- Department of Internal Medicine, Geisinger Medical Center, Danville, PA, USA
| | - Jeffrey V Lazarus
- CUNY Graduate School of Public Health and Health Policy, New York, NY, USA; Barcelona Institute for Global Health, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Paul N Brennan
- Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee, UK
| | - Mohammad S Siddiqui
- Division of Gastroenterology, Hepatology, and Nutrition, Virginia Commonwealth University, Richmond, VA, USA
| | - Giovanni Targher
- Metabolic Diseases Research Unit, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella (VR), Italy
| | - Chim C Lang
- Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital & Medical School, University of Dundee, Dundee, UK; Faculty of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia
| | - Salim S Virani
- The Aga Khan University, Karachi, Pakistan; Section of Cardiology and Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Carl J Lavie
- John Ochsner Heart and Vascular Institute, Ochsner Clinical School, New Orleans, LA, USA
| | - Scott Isaacs
- Division of Endocrinology, Metabolism, and Lipids, Emory University School of Medicine, Atlanta, GA, USA
| | - Juan Pablo Arab
- Division of Gastroenterology, Hepatology, and Nutrition, Virginia Commonwealth University, Richmond, VA, USA; Department of Gastroenterology, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Kenneth Cusi
- Division of Endocrinology, Diabetes and Metabolism, The University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
12
|
Psaltis JP, Marathe JA, Nguyen MT, Le R, Bursill CA, Marathe CS, Nelson AJ, Psaltis PJ. Incretin-based therapies for the management of cardiometabolic disease in the clinic: Past, present, and future. Med Res Rev 2025; 45:29-65. [PMID: 39139038 PMCID: PMC11638809 DOI: 10.1002/med.22070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/30/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024]
Abstract
Among newer classes of drugs for type 2 diabetes mellitus (T2DM), glucagon-like peptide 1 receptor agonists (GLP-1 RAs) are incretin-based agents that lower both blood sugar levels and promote weight loss. They do so by activating pancreatic GLP-1 receptors (GLP-1R) to promote glucose-dependent insulin release and inhibit glucagon secretion. They also act on receptors in the brain and gastrointestinal tract to suppress appetite, slow gastric emptying, and delay glucose absorption. Phase 3 clinical trials have shown that GLP-1 RAs improve cardiovascular outcomes in the setting of T2DM or overweight/obesity in people who have, or are at high risk of having atherosclerotic cardiovascular disease. This is largely driven by reductions in ischemic events, although emerging evidence also supports benefits in other cardiovascular conditions, such as heart failure with preserved ejection fraction. The success of GLP-1 RAs has also seen the evolution of other incretin therapies. Tirzepatide has emerged as a dual glucose-dependent insulinotropic polypeptide (GIP)/GLP-1 RA, with more striking effects on glycemic control and weight reduction than those achieved by isolated GLP-1R agonism alone. This consists of lowering glycated hemoglobin levels by more than 2% and weight loss exceeding 15% from baseline. Here, we review the pharmacological properties of GLP-1 RAs and tirzepatide and discuss their clinical effectiveness for T2DM and overweight/obesity, including their ability to reduce adverse cardiovascular outcomes. We also delve into the mechanistic basis for these cardioprotective effects and consider the next steps in implementing existing and future incretin-based therapies for the broader management of cardiometabolic disease.
Collapse
Affiliation(s)
- James P. Psaltis
- Adelaide Medical SchoolThe University of AdelaideAdelaideAustralia
| | - Jessica A. Marathe
- Adelaide Medical SchoolThe University of AdelaideAdelaideAustralia
- Heart and Vascular Health ProgramLifelong Health Theme, South Australian Health and Medical Research InstituteAdelaideAustralia
- Department of CardiologyCentral Adelaide Local Health NetworkAdelaideAustralia
| | - Mau T. Nguyen
- Adelaide Medical SchoolThe University of AdelaideAdelaideAustralia
- Heart and Vascular Health ProgramLifelong Health Theme, South Australian Health and Medical Research InstituteAdelaideAustralia
- Department of CardiologyCentral Adelaide Local Health NetworkAdelaideAustralia
| | - Richard Le
- Heart and Vascular Health ProgramLifelong Health Theme, South Australian Health and Medical Research InstituteAdelaideAustralia
- College of Medicine and Public HealthFlinders UniversityAdelaideAustralia
| | - Christina A. Bursill
- Adelaide Medical SchoolThe University of AdelaideAdelaideAustralia
- Heart and Vascular Health ProgramLifelong Health Theme, South Australian Health and Medical Research InstituteAdelaideAustralia
| | - Chinmay S. Marathe
- Adelaide Medical SchoolThe University of AdelaideAdelaideAustralia
- Department of EndocrinologyCentral Adelaide Local Health NetworkAdelaideAustralia
| | - Adam J. Nelson
- Adelaide Medical SchoolThe University of AdelaideAdelaideAustralia
- Heart and Vascular Health ProgramLifelong Health Theme, South Australian Health and Medical Research InstituteAdelaideAustralia
- Department of CardiologyCentral Adelaide Local Health NetworkAdelaideAustralia
| | - Peter J. Psaltis
- Adelaide Medical SchoolThe University of AdelaideAdelaideAustralia
- Heart and Vascular Health ProgramLifelong Health Theme, South Australian Health and Medical Research InstituteAdelaideAustralia
- Department of CardiologyCentral Adelaide Local Health NetworkAdelaideAustralia
| |
Collapse
|
13
|
Hegab II, El-Horany HES, Abd-Ellatif RN, Nasef NA, Okasha AH, Emam MN, Hassan S, Elseady WS, Radwan DA, ElEsawy RO, Hafez YM, Hassan ME, Mansour NM, Abdelkader GE, Fouda MH, Abd El Maged AM, Abdallah HM. Adropin/Tirzepatide Combination Mitigates Cardiac Metabolic Aberrations in a Rat Model of Polycystic Ovarian Syndrome, Implicating the Role of the AKT/GSK3β/NF-κB/NLRP3 Pathway. Int J Mol Sci 2024; 26:1. [PMID: 39795860 PMCID: PMC11720588 DOI: 10.3390/ijms26010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/30/2025] Open
Abstract
Polycystic ovarian syndrome (PCOS) is a multifaceted metabolic and hormonal disorder in females of reproductive age, frequently associated with cardiac disturbances. This research aimed to explore the protective potential of adropin and/or tirzepatide (Tirze) on cardiometabolic aberrations in the letrozole-induced PCOS model. Female Wistar non-pregnant rats were allotted into five groups: CON; PCOS; PCOS + adropin; PCOS + Tirze; and PCOS + adropin+ Tirze. The serum sex hormones, glucose, and lipid profiles were securitized. Cardiac phosphorylated levels of AKT(pAKT), glycogen synthase kinase-3 beta (pGSK-3β), NOD-like receptor family pyrin domain containing 3 (NLPR3), IL-1β and IL-18 were assayed. The cardiac redox status and endoplasmic reticulum stress (ER) parameters including relative glucose-regulated protein 78 (GRP78) and C/EBP homologous protein (CHOP) gene expressions were detected. Finally, the immunoreactivity of cardiac NF-κB, Bcl2, and BAX were assessed. Our results displayed that adropin and/or Tirze intervention successfully alleviated the PCOS-provoked cardiometabolic derangements with better results recorded for the combination treatment. The synergistic effect of adropin and Tirze is mostly mediated via activating the cardiac Akt, which dampens the GSK3β/NF-κB/NLRP3 signaling pathway, with a sequel of alleviating oxidative damage, inflammatory response, ER stress, and related apoptosis, making them alluring desirable therapeutic targets in PCOS-associated cardiac complications.
Collapse
Affiliation(s)
- Islam Ibrahim Hegab
- Physiology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt; (I.I.H.); (M.N.E.); (S.H.)
- Bio-Physiology Department, Ibn Sina National College for Medical Studies, Jeddah 21442, Saudi Arabia
| | - Hemat El-sayed El-Horany
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt; (H.E.-s.E.-H.); (R.N.A.-E.); (A.H.O.)
- Department of Biochemistry, College of Medicine, Ha’il University, Hail 81158, Saudi Arabia
| | - Rania Nagi Abd-Ellatif
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt; (H.E.-s.E.-H.); (R.N.A.-E.); (A.H.O.)
| | - Nahla Anas Nasef
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt; (H.E.-s.E.-H.); (R.N.A.-E.); (A.H.O.)
| | - Asmaa H. Okasha
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt; (H.E.-s.E.-H.); (R.N.A.-E.); (A.H.O.)
| | - Marwa Nagy Emam
- Physiology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt; (I.I.H.); (M.N.E.); (S.H.)
- Bio-Physiology Department, Ibn Sina National College for Medical Studies, Jeddah 21442, Saudi Arabia
| | - Shereen Hassan
- Physiology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt; (I.I.H.); (M.N.E.); (S.H.)
| | - Walaa S. Elseady
- Anatomy and Embryology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt; (W.S.E.); (D.A.R.)
| | - Doaa A. Radwan
- Anatomy and Embryology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt; (W.S.E.); (D.A.R.)
| | - Rasha Osama ElEsawy
- Pharmacology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt;
| | - Yasser Mostafa Hafez
- Internal Medicine Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt; (Y.M.H.); (M.E.H.)
| | - Maha Elsayed Hassan
- Internal Medicine Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt; (Y.M.H.); (M.E.H.)
| | | | - Gamaleldien Elsayed Abdelkader
- Department of Restorative Dentistry and Basic Medical Sciences, Faculty of Dentistry, University of Petra, Amman 11196, Jordan;
| | - Mohamed H. Fouda
- Clinical Pathology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt;
| | - Amira M. Abd El Maged
- Pathology Department, Faculty of Medicine, Menoufia University, Shebin El Kom 32511, Egypt;
| | - Hanan M. Abdallah
- Physiology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt; (I.I.H.); (M.N.E.); (S.H.)
| |
Collapse
|
14
|
Mozaffari N, Bideshki MV, Mohammadi Sartang M, Behzadi M. Efficacy and safety of liraglutide on C-reactive protein (CRP) in adults with type 2 diabetes: A GRADE-assessed systematic review and dose-response meta-analysis of controlled trials. PHARMANUTRITION 2024; 30:100409. [DOI: 10.1016/j.phanu.2024.100409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
|
15
|
Zarei M, Sahebi Vaighan N, Farjoo MH, Talebi S, Zarei M. Incretin-based therapy: a new horizon in diabetes management. J Diabetes Metab Disord 2024; 23:1665-1686. [PMID: 39610543 PMCID: PMC11599551 DOI: 10.1007/s40200-024-01479-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/22/2024] [Indexed: 11/30/2024]
Abstract
Diabetes mellitus, a metabolic syndrome characterized by hyperglycemia and insulin dysfunction, often leads to serious complications such as neuropathy, nephropathy, retinopathy, and cardiovascular disease. Incretins, gut peptide hormones released post-nutrient intake, have shown promising therapeutic effects on these complications due to their wide-ranging biological impacts on various body systems. This review focuses on the role of incretin-based therapies, particularly Glucagon-like peptide-1 (GLP-1) agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors, in managing diabetes and its complications. We also discuss the potential of novel agents like semaglutide, a recently approved oral compound, and dual/triple agonists targeting GLP-1/GIP, GLP-1/glucagon, and GLP-1/GIP/glucagon receptors, which are currently under investigation. The review aims to provide a comprehensive understanding of the beneficial impacts of natural incretins and the therapeutic potential of incretin-based therapies in diabetes management.
Collapse
Affiliation(s)
- Malek Zarei
- Department of Pharmacology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Navideh Sahebi Vaighan
- Department of Pharmacology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Farjoo
- Department of Pharmacology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soosan Talebi
- Department of Pharmacology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Zarei
- Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
- John B. Little Center for Radiation Sciences, Harvard T.H Chan School of Public Health, Boston, MA USA
| |
Collapse
|
16
|
Žižka O, Haluzík M, Jude EB. Pharmacological Treatment of Obesity in Older Adults. Drugs Aging 2024; 41:881-896. [PMID: 39514148 PMCID: PMC11554829 DOI: 10.1007/s40266-024-01150-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2024] [Indexed: 11/16/2024]
Abstract
Obesity is a complex health issue with growing prevalence worldwide. It is also becoming more prevalent in the population of older adults (i.e., 65 years of age and older), affecting frequency and severity as well as other comorbidities, quality of life and consequently, life expectancy. In this article we review currently available data on pharmacotherapy of obesity in the population of older adults and its role in obesity management. Even though there is growing evidence, in particular in the general population, of favourable efficacy and safety profiles of glucagon-like peptide-1 (GLP-1) receptor agonists liraglutide and semaglutide, and recently dual GLP-1 and glucose-dependent insulinotropic polypeptide (GIP) agonist tirzepatide, concise guidelines for older adults are not available to this day. We further discuss specific approaches to frequently represented phenotype of obesity in older adults, in particular sarcopenic obesity and rationale when to treat and how. In older adults with obesity there is a need for more drug trials focusing not only on weight loss, but also on geriatric endpoints including muscle mass preservation, bone quality and favourable fat distribution changes to get enough data for evidence-based recommendation on obesity treatment in this growing sub-population.
Collapse
Affiliation(s)
- Ondřej Žižka
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czechia
- First Faculty of Medicine, Charles University, Prague, Czechia
| | - Martin Haluzík
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czechia.
- First Faculty of Medicine, Charles University, Prague, Czechia.
| | - Edward B Jude
- Department of Diabetes and Endocrinology, Tameside and Glossop Integrated Care NHS Foundation Trust and University of Manchester, Ashton under Lyne, UK.
| |
Collapse
|
17
|
Tian T, Aaron RE, DuNova AY, Jendle JH, Kerr D, Cengiz E, Drincic A, Pickup JC, Chen KY, Schwartz N, Muchmore DB, Akturk HK, Levy CJ, Schmidt S, Bellazzi R, Wu AHB, Spanakis EK, Najafi B, Chase JG, Seley JJ, Klonoff DC. Diabetes Technology Meeting 2023. J Diabetes Sci Technol 2024; 18:1208-1244. [PMID: 38528741 PMCID: PMC11418435 DOI: 10.1177/19322968241235205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Diabetes Technology Society hosted its annual Diabetes Technology Meeting from November 1 to November 4, 2023. Meeting topics included digital health; metrics of glycemia; the integration of glucose and insulin data into the electronic health record; technologies for insulin pumps, blood glucose monitors, and continuous glucose monitors; diabetes drugs and analytes; skin physiology; regulation of diabetes devices and drugs; and data science, artificial intelligence, and machine learning. A live demonstration of a personalized carbohydrate dispenser for people with diabetes was presented.
Collapse
Affiliation(s)
- Tiffany Tian
- Diabetes Technology Society, Burlingame, CA, USA
| | | | | | - Johan H. Jendle
- School of Medicine and Health, Institute of Medical Sciences, Örebro University, Örebro, Sweden
| | | | - Eda Cengiz
- School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | | | | | - Kong Y. Chen
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | | | | | - Halis K. Akturk
- Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO, USA
| | - Carol J. Levy
- Division of Endocrinology, Diabetes, and Metabolism, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | | | | | - Alan H. B. Wu
- University of California, San Francisco, San Francisco, CA, USA
| | - Elias K. Spanakis
- Baltimore VA Medical Center and School of Medicine, University of Maryland, Baltimore, MD, USA
| | | | | | - Jane Jeffrie Seley
- Division of Endocrinology, Diabetes & Metabolism, Weill Cornell Medicine, New York City, NY, USA
| | - David C. Klonoff
- Diabetes Research Institute, Mills-Peninsula Medical Center, San Mateo, CA, USA
| |
Collapse
|
18
|
Hayat J, Shah NP, Agarwala A, Khan MS, Butler J. GLP-1 Receptor Agonists and Cardiovascular Disease: What Do Clinicians Need to Know? Curr Atheroscler Rep 2024; 26:341-351. [PMID: 38809399 DOI: 10.1007/s11883-024-01214-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 05/30/2024]
Abstract
PURPOSE OF REVIEW Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are gaining importance due to their effects on cardiovascular parameters. This review discusses the findings of dedicated cardiovascular outcome trials of GLP-1RAs and summarizes their utility to help clinicians understand their role in cardiovascular disease. RECENT FINDINGS Patients with diabetes mellitus are at an increased risk of cardiovascular disease. Cardiovascular outcome trials have shown GLP-1RAs decrease the primary composite outcome of the first occurrence of major adverse cardiovascular events (MACE) in patients with diabetes. Additionally, select GLP-1RAs have also shown improved cardiovascular outcomes in patients without diabetes who are either overweight (BMI ≥ 27), or obese (BMI ≥ 30). There have also been encouraging results in patients with heart failure with preserved ejection fraction. There is increasing evidence showing GLP-1RAs are beneficial across the cardiometabolic spectrum of disease. Implementation of these therapeutics into clinical practice is important to improve cardiovascular risk.
Collapse
Affiliation(s)
- Javeria Hayat
- Department of Internal Medicine, Corewell Health/Michigan State University, 100 Michigan St NE, Grand Rapids, MI, 49503, USA
| | - Nishant P Shah
- Division of Cardiology, Department of Medicine, Duke University School of Medicine, 2301 Erwin Road, Durham, NC, 27710, USA
| | - Anandita Agarwala
- Center for Cardiovascular Disease Prevention, Division of Cardiovascular Medicine, Baylor Scott and White the Heart Hospital, 1100 Allied Drive, Plano, TX, 75093, USA
| | - Muhammad Shahzeb Khan
- Division of Cardiology, Department of Medicine, Duke University School of Medicine, 2301 Erwin Road, Durham, NC, 27710, USA
| | - Javed Butler
- Baylor Scott and White Research Institute, 3434 Live Oak St Ste 501, Dallas, TX, 75204, USA.
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, 39213, USA.
| |
Collapse
|
19
|
Xiong W, Liu H, Xiang B, Shang G. Liraglutide combined with routine therapy improves renal function, renal fibrosis, immune status, and prognosis of type 2 diabetes patients. Am J Transl Res 2024; 16:3405-3412. [PMID: 39114730 PMCID: PMC11301491 DOI: 10.62347/vysw5854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/22/2024] [Indexed: 08/10/2024]
Abstract
OBJECTIVE To investigate the effect of Liraglutide in conjunction with routine therapy on renal function, renal fibrosis, immune status, and prognosis in patients with diabetes mellitus. METHODS The clinical data of patients with Type 2 diabetes mellitus (T2DM) treated at the First Affiliated Hospital of Jishou University from March 2021 to March 2022 were retrospectively analyzed. Patients were assigned into a control group (n=42) and a study group (n=42) according to their treatment regimen. The control group received routine treatment, and the study group received Liraglutide in addition to routine treatment. The therapeutic effects, blood glucose levels, renal function, renal fibrosis, and Immunoglobulin (Ig) levels as well as the incidence of adverse reactions, were compared between the two groups. RESULTS The effective rate was higher in study group (97.62%) than that of the control group (78.57%) (P<0.05). After treatment, the fasting blood-glucose (FBG), 2-hour postprandial plasma glucose (2hPG), and glycosylated hemoglobin (HbA1c) levels were decreased; and the study group displayed a significantly lower blood glucose level than the control group (all P<0.05). Also, the serum creatinine (Scr), blood urea nitrogen (BUN), and 24-hour urinary protein quantification (24h-UPor) were decreased after treatment; and the study group showed more pronounced improvement in renal function index than did the control group (all P<0.05). The levels of IgA, IgM, and IgG were increased after treatment compared to pre-treatment; and the study group exhibited significantly better improvement than the control group (all P<0.05). However, the study group reported a notably higher incidence of adverse reactions than the control group (19.05% vs 2.38%; P<0.05). CONCLUSION Liraglutide combined with routine therapy is effective in treating patients with diabetes, which can effectively reduce the levels of blood glucose andurinary protein, and the degree of renal fibrosis, while improving renal and immune functions and the clinical prognosis of diabetic patients.
Collapse
Affiliation(s)
- Wen Xiong
- Department of Nephrology, First Affiliated Hospital of Jishou University Jishou 416000, Hunan, China
| | - Hongxia Liu
- Department of Nephrology, First Affiliated Hospital of Jishou University Jishou 416000, Hunan, China
| | - Bo Xiang
- Department of Nephrology, First Affiliated Hospital of Jishou University Jishou 416000, Hunan, China
| | - Guangyu Shang
- Department of Nephrology, First Affiliated Hospital of Jishou University Jishou 416000, Hunan, China
| |
Collapse
|
20
|
Taktaz F, Fontanella RA, Scisciola L, Pesapane A, Basilicata MG, Ghosh P, Franzese M, Tortorella G, Puocci A, Vietri MT, Capuano A, Paolisso G, Barbieri M. Bridging the gap between GLP1-receptor agonists and cardiovascular outcomes: evidence for the role of tirzepatide. Cardiovasc Diabetol 2024; 23:242. [PMID: 38987789 PMCID: PMC11238498 DOI: 10.1186/s12933-024-02319-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/16/2024] [Indexed: 07/12/2024] Open
Abstract
Tirzepatide is a new drug targeting glucagon-like peptide 1(GLP1) and gastric inhibitory polypeptide (GIP) receptors. This drug has demonstrated great potential in improving the clinical outcomes of patients with type 2 diabetes. It can lead to weight loss, better glycemic control, and reduced cardiometabolic risk factors. GLP1 receptor agonists have been proven effective antidiabetic medications with possible cardiovascular benefits. Even though they have been proven to reduce the risk of major adverse cardiovascular events, their effectiveness in treating heart failure is unknown. Unlike traditional GLP1 receptor agonists, tirzepatide is more selective for the GIP receptor, resulting in a more balanced activation of these receptors. This review article discusses the possible mechanisms tirzepatide may use to improve cardiovascular health. That includes the anti-inflammatory effect, the ability to reduce cell death and promote autophagy, and also its indirect effects through blood pressure, obesity, and glucose/lipid metabolism. Additionally, tirzepatide may benefit atherosclerosis and lower the risk of major adverse cardiac events. Currently, clinical trials are underway to evaluate the safety and efficacy of tirzepatide in patients with heart failure. Overall, tirzepatide's dual agonism of GLP1 and GIP receptors appears to provide encouraging cardiovascular benefits beyond glycemic control, offering a potential new therapeutic option for treating cardiovascular diseases and heart failure.
Collapse
Affiliation(s)
- Fatemeh Taktaz
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosaria Anna Fontanella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Lucia Scisciola
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Ada Pesapane
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Manuela Giovanna Basilicata
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Puja Ghosh
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Martina Franzese
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovanni Tortorella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Armando Puocci
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Teresa Vietri
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
- Clinical and Molecular Pathology, A.O.U. University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Annalisa Capuano
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
- UniCamillus, International Medical University, Rome, Italy
| | - Michelangela Barbieri
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
21
|
Moll H, Frey E, Gerber P, Geidl B, Kaufmann M, Braun J, Beuschlein F, Puhan MA, Yebyo HG. GLP-1 receptor agonists for weight reduction in people living with obesity but without diabetes: a living benefit-harm modelling study. EClinicalMedicine 2024; 73:102661. [PMID: 38846069 PMCID: PMC11154119 DOI: 10.1016/j.eclinm.2024.102661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 06/09/2024] Open
Abstract
Background The benefit of Glucagon-like Peptide-1 (GLP-1) receptor agonists (RAs) in weight reduction against potential harms remains unclear. This study aimed at evaluating the benefit-harm balance of initiating GLP-1 RAs versus placebo for weight loss in people living with overweight and obesity but without diabetes. Methods We performed benefit-harm balance modelling, which will be updated as new evidence emerges. We searched for randomised controlled trials (RCTs) in PubMed, controlled trials registry, drug approval and regulatory documents, and outcome preference weights as of April 10, 2024. We synthesize data using pairwise meta-analysis to estimate the effect of GLP-1 RAs to inform the benefit-harm balance modelling. We predicted the absolute effects of the positive and negative outcomes over 1 and 2 years of treatment using exponential models. We applied preference weights to the outcomes, ranging from 0 for least concerning to 1.0 for most concerning. We then calculated whether the benefit of achieving 5% and 10% weight loss outweighed the harms on a common scale. The analyses accounted for the statistical uncertainties of treatment effects, preference weights, and outcome risks. Findings We included 8 RCTs involving 8847 participants. The pooled average age was 46.7 years, with the majority being women (74%) and people living with obesity (96%). Of 1000 persons treated with GLP-1 RAs for 2 years, 375 (95% confidence interval 352 to 399) achieved a 10% weight loss, and 318 (296 to 339) achieved a 5% weight loss compared to those treated with placebo. Several harm outcomes were more frequent in the GLP-1 RA group, including 41 abdominal pain events per 1000 persons over 2 years (19 to 69), cholelithiasis (8, 1 to 21), constipation (118, 78 to 164), diarrhoea (100, 42 to 173), alopecia (57, 10 to 176), hypoglycaemia (17, 1 to 68), injection site reactions (4, -3 to 19), and vomiting (110, 80 to 145) among others. Achieving a 10% weight loss with GLP-1 RA therapy outweighed the cumulative harms, with a net benefit probability of 0.97 at year 1 and 0.91 at year 2. The absolute net benefit was equivalent to 104 (100 to 112) per 1000 persons achieving a 10% weight loss over 2 years without experiencing any worrisome harm. A 5% weight loss did not show a net benefit, with probabilities of 0.13 and 0.01 at year 1 and year 2, respectively. However, these benefits were sensitive to preference weights, suggesting that even a 5% weight loss could be net beneficial for individuals with less concern about harm outcomes. The net benefit for a 10% weight loss was highest for semaglutide, followed by liraglutide and tirzepatide, with 2-year probabilities of 0.96, 0.72, and 0.60, respectively. Interpretation The benefit of GLP-1 RAs exceeded the harms for weight loss in the first 2 years of treatment, yet the net benefit was dependent on individual' treatment goals (10% or 5% weight loss) and willingness to accept harms in pursuit of weight loss. This implies that treatment decisions have to be personalized to individuals to optimize benefits and reduce harms and overuse of treatments. Due to varying evidence, especially regarding harm outcomes across studies, it is necessary to continuously update and monitor the benefit-harm balance of GLP-1 RAs. Funding SNSF and LOOP Zurich.
Collapse
Affiliation(s)
- Hannah Moll
- Department of Epidemiology, Epidemiology, Biostatistics, and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Eliane Frey
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH, Zurich, Switzerland
| | - Philipp Gerber
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital of Zurich and University of Zurich, Zurich, Switzerland
| | - Bettina Geidl
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital of Zurich and University of Zurich, Zurich, Switzerland
| | - Marco Kaufmann
- Department of Epidemiology, Epidemiology, Biostatistics, and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Julia Braun
- Department of Epidemiology, Epidemiology, Biostatistics, and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Felix Beuschlein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital of Zurich and University of Zurich, Zurich, Switzerland
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität, Munich, Germany
- The LOOP Zurich - Medical Research Center, Zurich, Switzerland
| | - Milo A. Puhan
- Department of Epidemiology, Epidemiology, Biostatistics, and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Henock G. Yebyo
- Department of Epidemiology, Epidemiology, Biostatistics, and Prevention Institute, University of Zurich, Zurich, Switzerland
| |
Collapse
|
22
|
Das S, Ravi H, Babu A, Banerjee M, Kanagavalli R, Dhanasekaran S, Devi Rajeswari V, Venkatraman G, Ramanathan G. Therapeutic potentials of glucose-dependent insulinotropic polypeptide (GIP) in T2DM: Past, present, and future. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 142:293-328. [PMID: 39059989 DOI: 10.1016/bs.apcsb.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a worldwide health problem that has raised major concerns to the public health community. This chronic condition typically results from the cell's inability to respond to normal insulin levels. Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are the primary incretin hormones secreted from the intestinal tract. While clinical research has extensively explored the therapeutic potential of GLP-1R in addressing various T2DM-related abnormalities, the possibility of GIPR playing an important role in T2DM treatment is still under investigation. Evidence suggests that GIP is involved in the pathophysiology of T2DM. This chapter focuses on examining the role of GIP as a therapeutic molecule in combating T2DM, comparing the past, present, and future scenarios. Our goal is to delve into how GIP may impact pancreatic β-cell function, adipose tissue uptake, and lipid metabolism. Furthermore, we will elucidate the mechanistic functions of GIP and its receptors in relation to other clinical conditions like cardiovascular diseases, non-alcoholic fatty liver diseases, neurodegenerative diseases, and renal disorders. Additionally, this chapter will shed light on the latest advancements in pharmacological management for T2DM, highlighting potential structural modifications of GIP and the repurposing of drugs, while also addressing the challenges involved in bringing GIP-based treatments into clinical practice.
Collapse
Affiliation(s)
- Soumik Das
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Harini Ravi
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Achsha Babu
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Manosi Banerjee
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - R Kanagavalli
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Sivaraman Dhanasekaran
- School of Energy Technology, Pandit Deendayal Energy University, Knowledge Corridor, Gandhinagar, Gujarat, India
| | - V Devi Rajeswari
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Ganesh Venkatraman
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Gnanasambandan Ramanathan
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India.
| |
Collapse
|
23
|
Rangwala HS, Fatima H, Ali M, Mustafa MS, Shafique MA, Rangwala BS, Abbas SR. Evaluating the effectiveness and safety of various Tirzepatide dosages in the management of Type 2 diabetes mellitus: a network meta-analysis of randomized controlled trials. J Diabetes Metab Disord 2024; 23:1199-1222. [PMID: 38932909 PMCID: PMC11196572 DOI: 10.1007/s40200-024-01412-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/22/2024] [Indexed: 06/28/2024]
Abstract
Purpose Excess body fat, insulin resistance, and abnormal lipid levels signal type 2 diabetes mellitus (DM2). Globally, 536.6 million people suffer from DM2, projected to rise to 783.2 million by 2045. Obesity fuels insulin resistance and DM2 development, with weight loss significantly improving glycemic control. Titrzepatide (TZP), a dual GIP and GLP-1 receptor agonist, proves highly effective in controlling hyperglycemia, stimulating insulin secretion, and promoting weight loss. TZP, holds promise as a treatment for DM2, surpassing insulin and GLP-1. The study aimed to meticulously assess the safety and efficacy of various doses, offering insights into optimal therapeutic strategies for managing DM2. Methods This study aimed to comprehensively evaluate the safety and efficacy of TZP in treating DM2. The primary focus of the inclusion criteria was on trials comparing TZP with a placebo until November 23, 2023, excluding patients with certain comorbidities. Data extraction included key parameters, and outcomes were assessed for HbA1c levels, weight changes, fasting serum glucose levels, and various adverse events. Quality assessment utilized the Cochrane Collaboration's risk-of-bias tool, and a network meta-analysis explored outcomes across different TZP dosages. Results This meta-analysis systematically reviewed ten studies on TZP for DM2. Results revealed significant reductions in HbA1c with TZP 10 mg (19%) and TZP 15 mg (31%) compared to TZP 5 mg (MD: -0.19 and MD: -0.32, respectively). Additionally, weight reduction was notable for TZP 10 mg (MD: -1.96) and TZP 15 mg (MD: -3.31). Fasting serum glucose showed improvement with TZP 15 mg (MD:-6.71). Gastrointestinal events increased with higher doses, yet without statistical significance. Death, nausea, diarrhea, vomiting, dyspepsia, decreased appetite, injection site reaction, hypoglycemia, treatment discontinuation, and serious adverse events showed no significant differences across doses. Conclusion TZP effectively lowers HbA1c and induces weight loss across its three doses for type 2 diabetes management. The higher dose (15 mg) significantly reduces fasting serum glucose, with increased adverse events observed at higher doses. Dose-specific patterns for adverse effects emphasize the need to balance therapeutic benefits and risks. Further research is crucial for refining clinical applications and understanding TZP's role in DM2 management across doses. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-024-01412-8.
Collapse
Affiliation(s)
- Hussain Sohail Rangwala
- Department of Medicine, Jinnah Sindh Medical University, Iqbal Shaheed Rd, Karachi, Pakistan
| | - Hareer Fatima
- Department of Medicine, Jinnah Sindh Medical University, Iqbal Shaheed Rd, Karachi, Pakistan
| | - Mirha Ali
- Department of Medicine, Jinnah Sindh Medical University, Iqbal Shaheed Rd, Karachi, Pakistan
| | | | - Muhammad Ashir Shafique
- Department of Medicine, Jinnah Sindh Medical University, Iqbal Shaheed Rd, Karachi, Pakistan
| | | | - Syed Raza Abbas
- Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
24
|
Bu T, Sun Z, Pan Y, Deng X, Yuan G. Glucagon-Like Peptide-1: New Regulator in Lipid Metabolism. Diabetes Metab J 2024; 48:354-372. [PMID: 38650100 PMCID: PMC11140404 DOI: 10.4093/dmj.2023.0277] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/01/2024] [Indexed: 04/25/2024] Open
Abstract
Glucagon-like peptide-1 (GLP-1) is a 30-amino acid peptide hormone that is mainly expressed in the intestine and hypothalamus. In recent years, basic and clinical studies have shown that GLP-1 is closely related to lipid metabolism, and it can participate in lipid metabolism by inhibiting fat synthesis, promoting fat differentiation, enhancing cholesterol metabolism, and promoting adipose browning. GLP-1 plays a key role in the occurrence and development of metabolic diseases such as obesity, nonalcoholic fatty liver disease, and atherosclerosis by regulating lipid metabolism. It is expected to become a new target for the treatment of metabolic disorders. The effects of GLP-1 and dual agonists on lipid metabolism also provide a more complete treatment plan for metabolic diseases. This article reviews the recent research progress of GLP-1 in lipid metabolism.
Collapse
Affiliation(s)
- Tong Bu
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Ziyan Sun
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yi Pan
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xia Deng
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Guoyue Yuan
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
25
|
Kantowski T, Schulze Zur Wiesch C, Aberle J, Lautenbach A. Obesity management: sex-specific considerations. Arch Gynecol Obstet 2024; 309:1745-1752. [PMID: 38329549 PMCID: PMC11018683 DOI: 10.1007/s00404-023-07367-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/29/2023] [Indexed: 02/09/2024]
Abstract
Obesity is a global health issue that has grown to epidemic proportions. According to World Health Organisation (WHO), overweight and obesity are responsible for more than 1.2 million deaths in Europe each year, representing > 13% of the region's total mortality. Highly processed, calorie-dense foods and reduced physical activity are considered as primary drivers of obesity, but genetic predisposition also plays a significant role. Notably, obesity is more prevalent in women than in men in most countries, and several obesity-related comorbidities exhibit sex-specific pathways. Treatment indication depends on BMI (body mass index), as well as existing comorbidities and risk factors. To reduce obesity-associated comorbidities, a permanent reduction in body weight of (at least) 5-10% is recommended. Treatment guidelines suggest an escalating stepwise approach including lifestyle intervention, pharmacotherapy, and bariatric-metabolic surgery. As cumulative evidence suggests differences in weight loss outcomes, there is growing interest in sex-specific considerations in obesity management. However, most trials do not report weight loss or changes in body composition separately for women and men. Here, we discuss state-of-the-art obesity management and focus on current data about the impact of sex on weight loss outcomes.
Collapse
Affiliation(s)
- Tobias Kantowski
- The University Obesity Center, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246, Hamburg, Germany.
| | - Clarissa Schulze Zur Wiesch
- The University Obesity Center, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246, Hamburg, Germany
| | - Jens Aberle
- The University Obesity Center, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246, Hamburg, Germany
| | - Anne Lautenbach
- The University Obesity Center, University Medical Center Hamburg-Eppendorf, Martinistr 52, 20246, Hamburg, Germany
| |
Collapse
|
26
|
Ma J, Liu M, Wang R, Du L, Ji L. Efficacy and safety of tirzepatide in people with type 2 diabetes by baseline body mass index: An exploratory subgroup analysis of SURPASS-AP-Combo. Diabetes Obes Metab 2024; 26:1454-1463. [PMID: 38302718 DOI: 10.1111/dom.15446] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 02/03/2024]
Abstract
AIMS To assess the efficacy and safety of tirzepatide versus insulin glargine in people with type 2 diabetes (T2D) by baseline body mass index (BMI). MATERIALS AND METHODS Participants with T2D from the Phase 3 SURPASS-AP-Combo trial (NCT04093752) were categorized into three BMI subgroups (normal weight [<25 kg/m2 ], overweight [≥25 and <30 kg/m2 ], and obese [≥30 kg/m2 ]) according to World Health Organization criteria. Exploratory outcomes including glycaemic control, body weight, cardiometabolic risk, and safety were compared among three tirzepatide doses (5, 10 or 15 mg) and insulin glargine. RESULTS Of 907 participants, 235 (25.9%) had a BMI <25 kg/m2 , 458 (50.5%) a BMI ≥25 to <30 kg/m2 , and 214 (23.6%) a BMI ≥30 kg/m2 at baseline. At Week 40, all tirzepatide doses led to a greater reduction in mean glycated haemoglobin (HbA1c; -2.0% to -2.8% vs. -0.8% to -1.0%, respectively) and percent change in body weight (-5.5% to -10.8% vs. 1.0% to 2.5%, respectively) versus insulin glargine, across the BMI subgroups. Compared with insulin glargine, a higher proportion of tirzepatide-treated participants achieved treatment goals for HbA1c and body weight reduction. Improvements in other cardiometabolic indicators were also observed with tirzepatide across all the BMI subgroups. The safety profile of tirzepatide was similar across all subgroups by BMI. The most frequent adverse events with tirzepatide were gastrointestinal-related events and decreased appetite, with relatively few events leading to treatment discontinuation. CONCLUSIONS In participants with T2D, regardless of baseline BMI, treatment with tirzepatide resulted in statistically significant and clinically meaningful glycaemic reductions and body weight reductions compared with insulin glargine, with a safety profile consistent with previous reports.
Collapse
Affiliation(s)
- Jianhua Ma
- Nanjing First Hospital Nanjing Medical University, Nanjing, China
| | - Ming Liu
- Tianjin Medical University General Hospital, Tianjin, China
| | - Rui Wang
- Eli Lilly Suzhou Pharmaceuticals Co. Ltd., Shanghai, China
| | - Liying Du
- Eli Lilly Suzhou Pharmaceuticals Co. Ltd., Shanghai, China
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing, China
| |
Collapse
|
27
|
Cui Y, Yao J, Qiu X, Guo C, Kong D, Dong J, Liao L. Comparative Efficacy and Safety of Tirzepatide in Asians and Non-Asians with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Diabetes Ther 2024; 15:781-799. [PMID: 38402331 PMCID: PMC10951192 DOI: 10.1007/s13300-024-01540-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/29/2024] [Indexed: 02/26/2024] Open
Abstract
INTRODUCTION Tirzepatide is a novel hypoglycemic agent for type 2 diabetes mellitus (T2DM). However, the pathophysiology of T2DM in Asians is different from that in non-Asians, and there is no evidence to explain the differences in the efficacy and safety of tirzepatide between different races. METHODS A literature search was conducted in China National Knowledge Infrastructure (CNKI), PubMed, Cochrane Library, Clinical Trials.gov, and Embase databases for clinical studies of tirzepatide for T2DM. The data extraction process was done independently by two authors. All analyses were performed using STATA 14.0 software and Review Manager 5.3 software. RESULTS A total of 2118 patients with T2DM from 6 studies were involved, with doses of tirzepatide ranging from 5 to 15 mg administered subcutaneously once weekly. The results showed that compared with control/placebo, tirzepatide was more effective in decreasing fasting blood glucose (FBG) in non-Asians than in Asians, and 10 mg rather than 15 mg was the optimal dose to decrease FBG. Similarly, non-Asians were more effective than Asians in improving glycated hemoglobin (HbA1c). Asians were significantly more effective than non-Asians in reducing body weight and ≥ 5% weight loss. In terms of adverse events, the incidence of gastrointestinal adverse events was higher in Asians than in non-Asians at the same dose, while the incidence of metabolic and nutrition disorders was higher in non-Asians than in Asians. CONCLUSION Tirzepatide is a novel agent for the treatment of diabetes and has different efficacy in Asians and non-Asians. Asians were more likely to experience weight loss and gastrointestinal adverse events, whereas non-Asians were more likely to have better glycemic control and more metabolic and nutritional disorders. TRIAL REGISTRATION PROSPERO registration no. CRD42023489588.
Collapse
Affiliation(s)
- Yuying Cui
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational medicine, Shandong Institute of Nephrology, Jinan, China
- Department of Endocrinology and Metabology, The First affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational medicine, Shandong Institute of Nephrology, Jinan, China
| | - Jinming Yao
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational medicine, Shandong Institute of Nephrology, Jinan, China
- Department of Endocrinology and Metabology, The First affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational medicine, Shandong Institute of Nephrology, Jinan, China
| | - Xiaodong Qiu
- Jinan Central Hospital, Affiliated to Shandong First Medical University, Jinan, China
| | - Congcong Guo
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational medicine, Shandong Institute of Nephrology, Jinan, China
- Department of Endocrinology and Metabology, The First affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational medicine, Shandong Institute of Nephrology, Jinan, China
| | - Degang Kong
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jianjun Dong
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Lin Liao
- Department of Endocrinology and Metabology, The First affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational medicine, Shandong Institute of Nephrology, Jinan, China.
| |
Collapse
|
28
|
Borner T, De Jonghe BC, Hayes MR. The antiemetic actions of GIP receptor agonism. Am J Physiol Endocrinol Metab 2024; 326:E528-E536. [PMID: 38477667 PMCID: PMC11194054 DOI: 10.1152/ajpendo.00330.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/08/2024] [Accepted: 03/10/2024] [Indexed: 03/14/2024]
Abstract
Nausea and vomiting are primitive aspects of mammalian physiology and behavior that ensure survival. Unfortunately, both are ubiquitously present side effects of drug treatments for many chronic diseases with negative consequences on pharmacotherapy tolerance, quality of life, and prognosis. One of the most critical clinical examples is the profound emesis and nausea that occur in patients undergoing chemotherapy, which continue to be among the most distressing side effects, even with the use of modern antiemetic medications. Similarly, antiobesity/diabetes medications that target the glucagon-like peptide-1 system, despite their remarkable metabolic success, also cause nausea and vomiting in a significant number of patients. These side effects hinder the ability to administer higher dosages for optimal glycemic and weight management and represent the major reasons for treatment discontinuation. Our inability to effectively control these side effects highlights the need to anatomically, molecularly, and functionally characterize novel neural substrates that drive and inhibit nausea and emesis. Here, we discuss clinical and preclinical evidence that highlights the glucose-dependent insulinotropic peptide receptor system as a novel therapeutic central target for the management of nausea and emesis.
Collapse
Affiliation(s)
- Tito Borner
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, California, United States
| | - Bart C De Jonghe
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Matthew R Hayes
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
29
|
Pan Y, Bu T, Deng X, Jia J, Yuan G. Gut microbiota and type 2 diabetes mellitus: a focus on the gut-brain axis. Endocrine 2024; 84:1-15. [PMID: 38227168 DOI: 10.1007/s12020-023-03640-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/30/2023] [Indexed: 01/17/2024]
Abstract
Type 2 diabetes mellitus (T2DM) has become one of the most serious public healthcare challenges, contributing to increased mortality and disability. In the past decades, significant progress has been made in understanding the pathogenesis of T2DM. Mounting evidence suggested that gut microbiota (GM) plays a significant role in the development of T2DM. Communication between the GM and the brain is a complex bidirectional connection, known as the "gut-brain axis," via the nervous, neuroendocrine, and immune systems. Gut-brain axis has an essential impact on various physiological processes, including glucose metabolism, food intake, gut motility, etc. In this review, we provide an outline of the gut-brain axis. We also highlight how the dysbiosis of the gut-brain axis affects glucose homeostasis and even results in T2DM.
Collapse
Affiliation(s)
- Yi Pan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Tong Bu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xia Deng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jue Jia
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Guoyue Yuan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Jiangsu University, Institute of Endocrine and Metabolic Diseases, Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
30
|
Radzioch E, Dąbek B, Balcerczyk-Lis M, Frąk W, Fularski P, Młynarska E, Rysz J, Franczyk B. Diabetic Cardiomyopathy-From Basics through Diagnosis to Treatment. Biomedicines 2024; 12:765. [PMID: 38672121 PMCID: PMC11048005 DOI: 10.3390/biomedicines12040765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is the development of myocardial dysfunction in patients with diabetes despite the absence of comorbidities such as hypertension, atherosclerosis or valvular defect. The cardiovascular complications of poorly controlled diabetes are very well illustrated by the U.K. Prospective Diabetes Study (UKPDS), which showed a clear association between increasing levels of glycated hemoglobin and the development of heart failure (HF). The incidence of HF in patients with diabetes is projected to increase significantly, which is why its proper diagnosis and treatment is so important. Providing appropriate therapy focusing on antidiabetic and hypolipemic treatment with the consideration of pharmacotherapy for heart failure reduces the risk of CMD and reduces the incidence of cardiovascular complications. Health-promoting changes made by patients such as a low-carbohydrate diet, regular exercise and weight reduction also appear to be important in achieving appropriate outcomes. New hope for the development of therapies for DCM is offered by novel methods using stem cells and miRNA, which, however, require more thorough research to confirm their efficacy.
Collapse
Affiliation(s)
- Ewa Radzioch
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Bartłomiej Dąbek
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Marta Balcerczyk-Lis
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Weronika Frąk
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Piotr Fularski
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Ewelina Młynarska
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| |
Collapse
|
31
|
Pinto SFT, Santos HA, Sarmento BFCC. New insights into nanomedicines for oral delivery of glucagon-like peptide-1 analogs. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1952. [PMID: 38500351 DOI: 10.1002/wnan.1952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/23/2024] [Accepted: 02/21/2024] [Indexed: 03/20/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder that arises when the body cannot respond fully to insulin, leading to impaired glucose tolerance. Currently, the treatment embraces non-pharmacological actions (e.g., diet and exercise) co-associated with the administration of antidiabetic drugs. Metformin is the first-line treatment for T2DM; nevertheless, alternative therapeutic strategies involving glucagon-like peptide-1 (GLP-1) analogs have been explored for managing the disease. GLP-1 analogs trigger insulin secretion and suppress glucagon release in a glucose-dependent manner thereby, reducing the risk of hyperglycemia. Additionally, GLP-1 analogs have an extended plasma half-life compared to the endogenous peptide due to their high resistance to degradation by dipeptidyl peptidase-4. However, GLP-1 analogs are mainly administered via subcutaneous route, which can be inconvenient for the patients. Even considering an oral delivery approach, GLP-1 analogs are exposed to the harsh conditions of the gastrointestinal tract (GIT) and the intestinal barriers (mucus and epithelium). Hereupon, there is an unmet need to develop non-invasive oral transmucosal drug delivery strategies, such as the incorporation of GLP-1 analogs into nanoplatforms, to overcome the GIT barriers. Nanotechnology has the potential to shield antidiabetic peptides against the acidic pH and enzymatic activity of the stomach. In addition, the nanoparticles can be coated and/or surface-conjugated with mucodiffusive polymers and target intestinal ligands to improve their transport through the intestinal mucus and epithelium. This review focuses on the main hurdles associated with the oral administration of GLP-1 and GLP-1 analogs, and the nanosystems developed to improve the oral bioavailability of the antidiabetic peptides. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Soraia Filipa Tavares Pinto
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Hélder Almeida Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bruno Filipe Carmelino Cardoso Sarmento
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Instituto Universitário de Ciências da Saúde (IUCS-CESPU), Gandra, Portugal
| |
Collapse
|
32
|
Kaore S, B B, Khasbage S, Atal S. Evaluating the Efficacy and Safety of Tirzepatide on Glycaemic and Non-glycaemic Outcomes in Diabetes: A Systematic Review of Meta-Analyses. Cureus 2024; 16:e56939. [PMID: 38665722 PMCID: PMC11044191 DOI: 10.7759/cureus.56939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Tirzepatide is a novel once-a-week dual glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) receptor agonist, recently approved for type 2 diabetes mellitus (T2DM) and obesity. A systematic review of the literature published in multiple meta-analyses on Tirzepatide with emphasis on its effect on glycaemic and non-glycaemic parameters was conducted. We systematically searched the electronic databases PubMed and Google Scholar up to August 2023 for meta-analyses that compared Tirzepatide with placebo or active antihyperglycaemic drugs in subjects with T2DM. Various parameters for efficacy and safety, with their point estimates and confidence intervals, such as glycated haemoglobin (HbA1c), fasting serum glucose (FSG), body weight, lipid, and cardiovascular outcomes were assessed. Six meta-analyses fulfilled the pre-specified criteria and were included in the study. In all the studies, Tirzepatide treatment at different doses resulted in a significant reduction in HbA1c and FSG levels along with a significant reduction in weight compared with active control and placebo groups. Tirzepatide significantly reduced levels of triglycerides and increased high-density lipoprotein (HDL) cholesterol, whether used as monotherapy or add-on therapy. The studies suggested the cardiovascular safety of Tirzepatide as there was no increase in major adverse cardiovascular events (MACE). The drug shows lesser hypoglycemia but predominant gastrointestinal adverse effects such as nausea, vomiting, and diarrhoea. In conclusion, Tirzepatide shows superior glycaemic control and weight loss in patients with T2DM with beneficial effects on lipids, without an increased risk of hypoglycemia and cardiovascular events.
Collapse
Affiliation(s)
- Shilpa Kaore
- Pharmacology, All India Institute of Medical Sciences, Bhopal, Bhopal, IND
| | - Bhavya B
- Pharmacology, All India Institute of Medical Sciences, Bhopal, Bhopal, IND
| | - Sameer Khasbage
- Pharmacology and Therapeutics, All India Institute of Medical Sciences, Bhopal, Bhopal, IND
| | - Shubham Atal
- Pharmacology, All India Institute of Medical Sciences, Bhopal, Bhopal, IND
| |
Collapse
|
33
|
Ntentakis DP, Correa VSMC, Ntentaki AM, Delavogia E, Narimatsu T, Efstathiou NE, Vavvas DG. Effects of newer-generation anti-diabetics on diabetic retinopathy: a critical review. Graefes Arch Clin Exp Ophthalmol 2024; 262:717-752. [PMID: 37728754 DOI: 10.1007/s00417-023-06236-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/30/2023] [Accepted: 09/07/2023] [Indexed: 09/21/2023] Open
Abstract
Diabetic retinopathy (DR) is the leading etiology of blindness in the working population of the USA. Its long-term management relies on effective glycemic control. Seven anti-diabetic classes have been introduced for patients with type 2 diabetes (T2D) in the past two decades, with different glucose-lowering and cardiovascular benefits. Yet, their effects specifically on DR have not been studied in detail. A systematic review of the literature was conducted to investigate this topic, focusing on the available clinical data for T2D. Published studies were evaluated based on their level of statistical evidence, as long as they incorporated at least one endpoint or adverse event pertaining to retinal health. Fifty nine articles met our inclusion criteria and were grouped per anti-diabetic class as follows: alpha-glucosidase inhibitors (1), peroxisome proliferator-activated receptor gamma (PPAR-γ) agonists (8), amylin analogs (1), glucagon-like peptide-1 (GLP-1) receptor agonists (28), dipeptidyl peptidase 4 (DPP-4) inhibitors (9), and sodium glucose co-transporter-2 (SGLT-2) inhibitors (9), plus one retrospective study and two meta-analyses evaluating more than one of the aforementioned anti-diabetic categories. We also reviewed publicly-announced results of trials for the recently-introduced class of twincretins. The available data indicates that most drugs in the newer anti-diabetic classes are neutral to DR progression; however, there are subclasses differences in specific drugs and T2D populations. In particular, there is evidence suggesting there may be worse diabetic macular edema with PPAR-gamma agonists, potential slight DR worsening with semaglutide (GLP-1 receptor agonist), and potential slight increase in the incidence of retinal vein occlusion in elderly and patients with advanced kidney disease receiving SGLT-2 inhibitors. All these warrant further investigation. Longer follow-up and systematic assessment of at least one DR-related endpoint are highly recommended for all future trials in the T2D field, to ultimately address this topic.
Collapse
Affiliation(s)
- Dimitrios P Ntentakis
- Ines and Fredrick Yeatts Retina Research Laboratory, Angiogenesis Laboratory, Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear Main Campus, 243 Charles Street, Harvard Medical School, Boston, MA, 02114, USA
| | - Victor San Martin Carvalho Correa
- Ines and Fredrick Yeatts Retina Research Laboratory, Angiogenesis Laboratory, Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear Main Campus, 243 Charles Street, Harvard Medical School, Boston, MA, 02114, USA
| | - Anastasia Maria Ntentaki
- Ines and Fredrick Yeatts Retina Research Laboratory, Angiogenesis Laboratory, Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear Main Campus, 243 Charles Street, Harvard Medical School, Boston, MA, 02114, USA
| | - Eleni Delavogia
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Toshio Narimatsu
- Ines and Fredrick Yeatts Retina Research Laboratory, Angiogenesis Laboratory, Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear Main Campus, 243 Charles Street, Harvard Medical School, Boston, MA, 02114, USA
| | - Nikolaos E Efstathiou
- Ines and Fredrick Yeatts Retina Research Laboratory, Angiogenesis Laboratory, Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear Main Campus, 243 Charles Street, Harvard Medical School, Boston, MA, 02114, USA
| | - Demetrios G Vavvas
- Ines and Fredrick Yeatts Retina Research Laboratory, Angiogenesis Laboratory, Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear Main Campus, 243 Charles Street, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
34
|
Chong K, Chang JKJ, Chuang LM. Recent advances in the treatment of type 2 diabetes mellitus using new drug therapies. Kaohsiung J Med Sci 2024; 40:212-220. [PMID: 38183334 DOI: 10.1002/kjm2.12800] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/08/2024] Open
Abstract
Several recent advances provide multiple health benefits to individuals with type 2 diabetes mellitus (T2DM). Pharmacological therapy is governed by person-centered factors, including comorbidities and treatment goals. Adults with T2DM who have an established/high risk of atherosclerotic cardiovascular disease, heart failure, and/or chronic kidney disease, require a treatment regimen that includes agents that are proven to reduce cardiorenal risk. Weight management plays a key role in reducing glucose for patients with T2DM. A glucose-reduction treatment regimen must consider weight management. Sodium glucose co-transporter 2 (SGLT2) inhibitors reduce the risk of heart failure, cardiovascular and renal events. Glucagon-like peptide-1 (GLP-1) receptor agonists allow better control of glycemia, promote weight loss and reduce the risk of cardiovascular events. Newer Glucose-dependent insulinotropic polypeptide (GIP) and GLP-1 dual agonist, which activate GIP and GLP-1 receptors improve glycemic control and promote greater weight loss than GLP-1 receptor agonists. Several novel drugs are in the clinical development phase. This review pertains to recent advances in pharmacological management of type 2 diabetes.
Collapse
Affiliation(s)
- Keong Chong
- Department of Internal Medicine, Min-Sheng General Hospital, Taoyuan, Taiwan
- Department of Nursing, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| | | | - Lee-Ming Chuang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
35
|
Dong Y, Zhang J, Xu H, Shen H, Lu Q, Feng J, Cai Z. Design of a novel long-acting dual GLP-1/GIP receptor agonist. Bioorg Med Chem 2024; 100:117630. [PMID: 38330849 DOI: 10.1016/j.bmc.2024.117630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/21/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
Tirzepatide, the first approved dual GLP-1/GIP receptor agonist (RA), has achieved better clinical outcomes than other GLP-1RAs. However, it is an imbalanced dual GIP/GLP-1 RA, and it remains unclear whether the degree of imbalance is optimal. Here, we present a novel long-acting dual GLP-1/GIP RA that exhibits better activity than tirzepatide toward GLP-1R. A candidate conjugate, D314, identified via peptide design, synthesis, conjugation, and experimentation, was evaluated using chronic studies in db/db and diet induced obese (DIO) mice. D314 achieved favorable blood glucose and body weight-lowering effects, equal to those of tirzepatide. Its half-life in dogs (T1/2: 78.3 ± 14.01 h) reveals its suitability for once-weekly administration in humans. This preclinical study suggests the potential role of D314 as an effective agent for treating T2DM and obesity.
Collapse
Affiliation(s)
- Yuanzhen Dong
- China State Institute of Pharmaceutical Industry, 201203 Shanghai, China; Shanghai Duomirui Biotechnology Ltd, 201203 Shanghai, China
| | - Jinhua Zhang
- China State Institute of Pharmaceutical Industry, 201203 Shanghai, China
| | - Hongjiang Xu
- Nanjing Chia Tai Tianqing Pharmaceutical Co., Ltd, Nanjing, China
| | - Hengqiao Shen
- Nanjing Chia Tai Tianqing Pharmaceutical Co., Ltd, Nanjing, China
| | - Qin Lu
- Nanjing Chia Tai Tianqing Pharmaceutical Co., Ltd, Nanjing, China
| | - Jun Feng
- China State Institute of Pharmaceutical Industry, 201203 Shanghai, China; Shanghai Duomirui Biotechnology Ltd, 201203 Shanghai, China.
| | - Zhengyan Cai
- China State Institute of Pharmaceutical Industry, 201203 Shanghai, China.
| |
Collapse
|
36
|
Abstract
Tirzepatide (Mounjaro®), a first-in-class dual incretin agonist of the glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) receptors, is approved for use as an adjunct to diet and exercise to improve glycaemic control in adults with type 2 diabetes mellitus (T2DM) in the USA, EU, Japan and other countries. It comes as single-dose prefilled pens and single-dose vials. In phase III SURPASS trials, once-weekly subcutaneous tirzepatide, as monotherapy or add-on-therapy to oral glucose-lowering medications and insulin, was superior to the GLP-1 receptor agonists (RAs) dulaglutide 0.75 mg and semaglutide 1 mg as well as basal and prandial insulin for glycaemic control and weight loss in adults with inadequately controlled T2DM. Tirzepatide was generally well tolerated, with a safety profile consistent with that of GLP-1 RAs. Tirzepatide was associated with a low risk of clinically significant or severe hypoglycaemia and no increased risk of major adverse cardiovascular events. Adverse events were mostly mild to moderate in severity, with the most common being gastrointestinal events including nausea, diarrhoea, decreased appetite and vomiting. In conclusion, tirzepatide is a valuable addition to the treatment options for T2DM.
Collapse
Affiliation(s)
- Nicole L France
- Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| | - Yahiya Y Syed
- Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand
| |
Collapse
|
37
|
Domingo E, Marques P, Francisco V, Piqueras L, Sanz MJ. Targeting systemic inflammation in metabolic disorders. A therapeutic candidate for the prevention of cardiovascular diseases? Pharmacol Res 2024; 200:107058. [PMID: 38218355 DOI: 10.1016/j.phrs.2024.107058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/11/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
Cardiovascular disease (CVD) remains the leading cause of death and disability worldwide. While many factors can contribute to CVD, atherosclerosis is the cardinal underlying pathology, and its development is associated with several metabolic risk factors including dyslipidemia and obesity. Recent studies have definitively demonstrated a link between low-grade systemic inflammation and two relevant metabolic abnormalities: hypercholesterolemia and obesity. Interestingly, both metabolic disorders are also associated with endothelial dysfunction/activation, a proinflammatory and prothrombotic phenotype of the endothelium that involves leukocyte infiltration into the arterial wall, one of the earliest stages of atherogenesis. This article reviews the current literature on the intricate relationship between hypercholesterolemia and obesity and the associated systemic inflammation and endothelial dysfunction, and discusses the effectiveness of present, emerging and in-development pharmacological therapies used to treat these metabolic disorders with a focus on their effects on the associated systemic inflammatory state and cardiovascular risk.
Collapse
Affiliation(s)
- Elena Domingo
- Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain; Department of Pharmacology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain
| | - Patrice Marques
- Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain; Department of Pharmacology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain
| | - Vera Francisco
- Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain; Endocrinology and Nutrition Service, University Clinic Hospital of Valencia, Valencia, Spain
| | - Laura Piqueras
- Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain; Department of Pharmacology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain; CIBERDEM, Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders, Carlos III Health Institute (ISCIII), Spain.
| | - Maria-Jesus Sanz
- Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain; Department of Pharmacology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain; CIBERDEM, Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders, Carlos III Health Institute (ISCIII), Spain.
| |
Collapse
|
38
|
Yang Y, He L, Liu P, Wang J, Yang N, Li Z, Ping F, Xu L, Li W, Zhang H, Li Y. Impact of a dual glucose-dependent insulinotropic peptide/glucagon-like peptide-1 receptor agonist tirzepatide on heart rate among patients with type 2 diabetes: A systematic review and pairwise and network meta-analysis. Diabetes Obes Metab 2024; 26:548-556. [PMID: 37860884 DOI: 10.1111/dom.15342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/07/2023] [Accepted: 10/07/2023] [Indexed: 10/21/2023]
Abstract
AIMS To evaluate the impact of a dual glucose-dependent insulinotropic peptide (GIP) and glucagon-like peptide-1 (GLP-1) receptor agonist tirzepatide (TZP), and its potential dose-response effect, on heart rate. METHODS Articles were searched from PubMed, Web of Science, Embase, Cochrane Library, and clinical trials registries (ClinicalTrials.gov) databases. Randomized controlled trials (RCTs) comparing TZP at doses of 5, 10 and 15 mg in adults with type 2 diabetes were included. Six study arms were summarized from original research (TZP 5, 10 and 15 mg, GLP-1 receptor agonists [GLP-1RAs], insulin, placebo). The GLP-1RA and non-GLP-1RA groups were combined to form a control group. Two reviewers independently extracted data and assessed the quality of each study. Mean differences (MDs) were calculated as effect estimates for continuous outcomes. Pairwise meta-analyses and network meta-analyses were conducted. The study protocol was prospectively registered (PROSPERO ID: CRD42023418551). RESULTS Eight articles were included in this systematic review and meta-analysis. The mean baseline heart rate ranged from 65.2 to 75.7 beats per minute. Pairwise meta-analysis showed that, compared with combined the control group, there were significantly greater increases in heart rates in the TZP group (MD 1.82, 95% confidence interval [CI] 0.75, 2.89). Similar significant rises were identified when comparing TZP with GLP-1RAs and non-GLP-1RAs (GLP-1 RAs: MD 2.29, 95% CI 1.00, 3.59; non-GLP-1RAs: MD 1.58, 95% CI 0.26, 2.91). TZP 5 mg was associated with smaller increases in heart rates compared to TZP 10 mg and TZP 15 mg (TZP 10 mg: MD -0.97, 95% CI -1.79, -0.14; TZP 15 mg: MD -2.57, 95% CI -3.79, -1.35). TZP 10 mg increased heart rate less than TZP 15 mg (MD -1.5, 95% CI -2.38, -0.82). Network meta-analysis indicated that TZP 15 mg was associated with significant increases in heart rate compared with TZP 5 mg (MD 2.53, 95% CI 1.43, 3.62), TZP 10 mg (MD 1.44, 95% CI 0.35, 2.53), GLP-1RAs (MD 3.46, 95% CI 1.67, 5.25), insulin (MD 2.86, 95% CI 1.32, 4.41) and placebo (MD 2.96, 95% CI 1.36, 4.57). CONCLUSIONS Our study showed not only that there was a greater increase in heart rate in the TZP group than in the control, GLP-1RA and non-GLP-1RA groups, but also that the 15-mg dose of TZP had the strongest impact on increasing heart rates compared with the other five inventions, with a TZP dose-response impact on heart rate. Further research on the effects of TZP treatment-related increases in heart rate is required.
Collapse
Affiliation(s)
- Yucheng Yang
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Translation Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, China
| | - Liyun He
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Translation Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, China
| | - Peng Liu
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Translation Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Jialu Wang
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Translation Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, China
| | - Na Yang
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Translation Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, China
| | - Ziyi Li
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Translation Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, China
| | - Fan Ping
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Translation Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, China
| | - Lingling Xu
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Translation Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Li
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Translation Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, China
| | - Huabing Zhang
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Translation Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, China
| | - Yuxiu Li
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Translation Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
39
|
Cai W, Zhang R, Yao Y, Wu Q, Zhang J. Tirzepatide as a novel effective and safe strategy for treating obesity: a systematic review and meta-analysis of randomized controlled trials. Front Public Health 2024; 12:1277113. [PMID: 38356942 PMCID: PMC10864442 DOI: 10.3389/fpubh.2024.1277113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/17/2024] [Indexed: 02/16/2024] Open
Abstract
Objective To systematically evaluate the efficacy and safety of a new hypoglycemic drug, tirzepatide, for treating obesity based on indicators such as BMI, waist circumference, and body weight. Methods A search formula was written using search terms such as "tirzepatide," "overweight," and "obesity." A comprehensive search was conducted on databases such as PubMed, Cochrane Library, Embase, and Web of Science using a computer. Random controlled trial (RCT) literature was selected based on inclusion and exclusion criteria. After extracting the data, literature bias risk assessment and meta-analysis were conducted using RevMan 5.4 software. The search deadline is from the establishment of each database to May 2023. Results A total of 12 randomized controlled trials were included, with a total of 11,758 patients. Meta analysis results showed that compared with the glucagon like peptide-1 receptor agonist (GLP-1 RAs), placebo and insulin groups, tirzepatide could significantly reduce the BMI (body mass index) of patients [MD = -1.71, 95% CI (-2.46, -0.95), p < 0.00001], [MD = -3.99, 95% CI (-3.69, -2.45), p < 0.00001], [MD = -4.02, 95% CI (-4.72, -3.31), p < 00.00001]. In terms of decreasing waist circumference, tirzepatide has a more significant advantage [MD = -4.08, 95% CI (-5.77, -2.39), p < 0.00001], [MD = -7.71, 95% CI (-10.17, -5.25), p < 0.00001], [MD = -9.15, 95% CI (-10.02, -8.29), p < 0.00001]. In the analysis of body weight, tirzepatide showed a more significant reduction effect compared to the control group [MD = -5.65, 95% CI (-7.47, -3.82), p < 0.001], [MD = -10.06, 95% CI (-12.86, -7.25), p < 0.001], [MD = -10.63, 95% CI (-12.42, -8.84), p < 0.001]. In comparison with placebo, tirzepatide had a prominent advantage in weight loss ≥20% and ≥25% [RR = 30.43, 95% CI (19.56, 47.33), p < 0.00001], [RR = 37.25, 95% CI (26.03, 53.30), p < 0.00001]. Subgroup analysis showed a dose-dependent therapeutic effect. In terms of safety, compared with the placebo and insulin groups, the incidence of gastrointestinal adverse reactions was markedly higher in the tirzepatide group, slightly higher to the GLP-1 RAs group. The hypoglycemic (<70 mg/dL) risk of tirzepatide was slightly higher to that of placebo and GLP-1 RAs, but significantly lower than that of the insulin group [RR = 0.46, 95% CI (0.36, 0.58), p < 0.001]. The incidence of other adverse events, including pancreatitis, cholecystitis, major adverse cardiovascular events-4, hypersensitivity reactions, and neoplasms did not show significant statistical differences compared to the control group (p > 0.05). Conclusion Tirzepatide, as a weight loss drug, significantly reduces BMI, waist circumference and body weight while gastrointestinal adverse reactions need to be vigilant. Overall, its efficacy is significant and its safety is high.
Collapse
Affiliation(s)
- Wenting Cai
- Department of Pharmacy, Nanjing Drum Tower Hospital, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Ruobin Zhang
- Department of Pharmacy, Nanjing Drum Tower Hospital, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yao Yao
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qiuhui Wu
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jinping Zhang
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
40
|
Fontanella RA, Ghosh P, Pesapane A, Taktaz F, Puocci A, Franzese M, Feliciano MF, Tortorella G, Scisciola L, Sommella E, Ambrosino C, Paolisso G, Barbieri M. Tirzepatide prevents neurodegeneration through multiple molecular pathways. J Transl Med 2024; 22:114. [PMID: 38287296 PMCID: PMC10823712 DOI: 10.1186/s12967-024-04927-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/23/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Several evidence demonstrated that glucagon-like peptide 1 receptor agonists (GLP1-RAs) reduce the risk of dementia in type 2 diabetes patients by improving memory, learning, and overcoming cognitive impairment. In this study, we elucidated the molecular processes underlying the protective effect of Tirzepatide (TIR), a dual glucose-dependent insulinotropic polypeptide receptor agonist (GIP-RA)/ GLP-1RA, against learning and memory disorders. METHODS We investigated the effects of TIR on markers of neuronal growth (CREB and BDNF), apoptosis (BAX/Bcl2 ratio) differentiation (pAkt, MAP2, GAP43, and AGBL4), and insulin resistance (GLUT1, GLUT4, GLUT3 and SORBS1) in a neuroblastoma cell line (SHSY5Y) exposed to normal and high glucose concentration. The potential role on DNA methylation of genes involved in neuroprotection and epigenetic modulators of neuronal growth (miRNA 34a), apoptosis (miRNA 212), and differentiation (miRNA 29c) was also investigated. The cell proliferation was detected by measuring Ki-67 through flow cytometry. The data were analysed by SPSS IBM Version 23 or GraphPad Prism 7.0 software and expressed as the means ± SEM. Differences between the mean values were considered significant at a p-value of < 0.05. GraphPad Prism software was used for drawing figures. RESULTS For the first time, it was highlighted: (a) the role of TIR in the activation of the pAkt/CREB/BDNF pathway and the downstream signaling cascade; (b) TIR efficacy in neuroprotection; (c) TIR counteracting of hyperglycemia and insulin resistance-related effects at the neuronal level. CONCLUSIONS We demonstrated that TIR can ameliorate high glucose-induced neurodegeneration and overcome neuronal insulin resistance. Thus, this study provides new insight into the potential role of TIR in improving diabetes-related neuropathy.
Collapse
Affiliation(s)
- Rosaria Anna Fontanella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Puja Ghosh
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Ada Pesapane
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Fatemeh Taktaz
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Armando Puocci
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Martina Franzese
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Federica Feliciano
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovanni Tortorella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Lucia Scisciola
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Eduardo Sommella
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy
| | - Concetta Ambrosino
- Biogem Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
- UniCamillus, International Medical University, Rome, Italy
| | - Michelangela Barbieri
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
41
|
Mullins GR, Hodsdon ME, Li YG, Anglin G, Urva S, Schneck K, Bardos JN, Martins RF, Brown K, Calderon B. Tirzepatide Immunogenicity on Pharmacokinetics, Efficacy, and Safety: Analysis of Data From Phase 3 Studies. J Clin Endocrinol Metab 2024; 109:361-369. [PMID: 37700637 PMCID: PMC10795913 DOI: 10.1210/clinem/dgad532] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023]
Abstract
CONTEXT Antidrug antibodies (ADA) can potentially affect drug pharmacokinetics, safety, and efficacy. OBJECTIVE This work aimed to evaluate treatment-emergent (TE) ADA in tirzepatide (TZP)-treated participants across 7 phase 3 trials and their potential effect on pharmacokinetics, efficacy, and safety. METHODS ADA were assessed at baseline and throughout the study until end point, defined as week 40 (SURPASS-1, -2, and -5) or week 52 (SURPASS-3, -4, Japan-Mono, and Japan-Combo). Samples for ADA characterization were collected at SURPASS trial sites. Participants included ADA-evaluable TZP-treated patients with type 2 diabetes (N = 5025). Interventions included TZP 5, 10, or 15 mg. ADA were detected and characterized for their ability to cross-react with native glucose-dependent insulinotropic polypeptide (nGIP) and glucagon-like peptide-1 (nGLP-1), neutralize tirzepatide activity on GIP and GLP-1 receptors, and neutralize nGIP and nGLP-1. RESULTS TE ADA developed in 51.1% of tirzepatide-treated patients. Proportions were similar across dose groups. Maximum ADA titers ranged from 1:20 to 1: 81 920 among TE ADA+ patients. Neutralizing antibodies (NAb) against TZP activity on GIP and GLP-1 receptors were observed in 1.9% and 2.1% of patients, respectively. Less than 1.0% of patients had cross-reactive NAb against nGIP or nGLP-1. TE ADA status, ADA titer, and NAb status had no effect on the pharmacokinetics or efficacy of TZP. More TE ADA+ patients experienced hypersensitivity reactions or injection site reactions than TE ADA- patients. The majority of hypersensitivity and injection site reactions were nonserious and nonsevere, and most events occurred and/or resolved irrespective of TE ADA status or titer. CONCLUSION Immunogenicity did not affect TZP pharmacokinetics or efficacy. The majority of hypersensitivity or injection site reactions experienced by TE ADA+ patients were mild to moderate in severity.
Collapse
Affiliation(s)
- Garrett R Mullins
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Michael E Hodsdon
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Ying Grace Li
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Greg Anglin
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Shweta Urva
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Karen Schneck
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Jennifer N Bardos
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | | | - Katelyn Brown
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| | - Boris Calderon
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| |
Collapse
|
42
|
Wirth PJ, Shaffrey EC, Bay C, Rao VK. Current Weight Loss Medications: What Plastic Surgeons Should Know. Aesthet Surg J 2024; 44:NP177-NP183. [PMID: 37706359 DOI: 10.1093/asj/sjad304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/15/2023] Open
Abstract
The World Health Organization (WHO) estimates that over 650 million adults are obese worldwide. Recently, antidiabetic medications have rapidly become popular as weight loss medications. With the rising prevalence of obesity and the increasing demand for aesthetic procedures, it is anticipated that a growing number of patients presenting for consultation will be prescribed these medications. Therefore, it is critical for practicing plastic surgeons to understand their potential synergistic effects and safety considerations. This manuscript explores the potential benefits and considerations of antidiabetic medications in plastic surgery patients for weight loss therapy. The authors discuss the mechanisms of action, clinical efficacy, potential side effects, and relevant considerations for incorporating these medications into plastic surgery practices and medical spas.
Collapse
|
43
|
Ravender R, Roumelioti ME, Schmidt DW, Unruh ML, Argyropoulos C. Chronic Kidney Disease in the Older Adult Patient with Diabetes. J Clin Med 2024; 13:348. [PMID: 38256482 PMCID: PMC10816477 DOI: 10.3390/jcm13020348] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/27/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Diabetes mellitus (DM) and chronic kidney disease (CKD) are common in middle aged and older adult individuals. DM may accelerate the aging process, and the age-related declines in the estimated glomerular filtration rate (eGFR) can pose a challenge to diagnosing diabetic kidney disease (DKD) using standard diagnostic criteria especially with the absence of severe albuminuria among older adults. In the presence of CKD and DM, older adult patients may need multidisciplinary care due to susceptibility to various health issues, e.g., cognitive decline, auditory or visual impairment, various comorbidities, complex medical regimens, and increased sensitivity to medication adverse effects. As a result, it can be challenging to apply recent therapeutic advancements for the general population to older adults. We review the evidence that the benefits from these newer therapies apply equally to older and younger patients with CKD and diabetes type 2 and propose a comprehensive management. This framework will address nonpharmacological measures and pharmacological management with renin angiotensin system inhibitors (RASi), sodium glucose co-transporter 2 inhibitors (SGLT2i), non-steroidal mineralocorticoids receptor antagonists (MRAs), and glucagon like peptide 1 receptor agonists (GLP1-RAs).
Collapse
Affiliation(s)
| | | | | | | | - Christos Argyropoulos
- Division of Nephrology, Department of Internal Medicine, University of New Mexico School of Medicine, MSC 04-2785, Albuquerque, NM 87131, USA; (R.R.); (M.-E.R.); (D.W.S.); (M.L.U.)
| |
Collapse
|
44
|
Dissanayake HA, Somasundaram NP. Polyagonists in Type 2 Diabetes Management. Curr Diab Rep 2024; 24:1-12. [PMID: 38150106 DOI: 10.1007/s11892-023-01530-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/19/2023] [Indexed: 12/28/2023]
Abstract
PURPOSE OF THE REVIEW This review summarizes the new developments in polyagonist pharmacotherapy for type 2 diabetes. RECENT FINDINGS Several dual- and triple-agonists targeting different pathogenic pathways of type 2 diabetes have entered clinical trials and have led to significant improvements in glycaemia, body weight, fatty liver, and cardio-renal risk factors, with variable adverse event profiles but no new serious safety concerns. Combining agents with complementary and synergistic mechanisms of action have enhanced efficacy and safety. Targeting multiple pathogenic pathways simultaneously has led to enhanced benefits which potentially match those of bariatric surgery. Tirzepatide, cotadutide, BI456906, ritatrutide, and CagriSema have entered phase 3 clinical trials. Outcomes from published clinical studies are reviewed. Efficacy-safety profiles are heterogeneous between agents, suggesting the potential application of precision medicine and need for personalized approach in pharmacological management of type 2 diabetes and obesity. Polyagonism has become a key strategy to address the complex pathogenesis of type 2 diabetes and co-morbidities and increasing number of agents are moving through clinical trials. Heterogeneity in efficacy-safety profiles calls for application of precision medicine and need for judicious personalization of care.
Collapse
Affiliation(s)
- H A Dissanayake
- Department of Clinical Medicine, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | | |
Collapse
|
45
|
Shah V, Colletti T, Reau N. Could the answer to NAFLD be hidden in diabetic therapy? The impact of T2DM treatment on NAFLD. Clin Liver Dis (Hoboken) 2024; 23:e0100. [PMID: 38343636 PMCID: PMC10857655 DOI: 10.1097/cld.0000000000000100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/28/2023] [Indexed: 01/04/2025] Open
Abstract
1_y9j1w5u5Kaltura.
Collapse
Affiliation(s)
- Vicki Shah
- Department of Hepatology, Rush University, Chicago, Illinois, USA
| | - Thomas Colletti
- College of Medical Sciences, Lynchburg University, Lynchburg, Virginia, USA
| | - Nancy Reau
- Section-Chief of Hepatology, Rush University, Chicago, Illinois, USA
| |
Collapse
|
46
|
Pal B, Chattopadhyay M. Recent clinical and pharmacological advancements of incretin-based therapy and the effects of incretin on physiology. JOURNAL OF DIABETOLOGY 2024; 15:24-37. [DOI: 10.4103/jod.jod_117_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/03/2024] [Indexed: 12/11/2024] Open
Abstract
Abstract
A novel therapeutic target for diabetes mellitus is incretin-based therapies, glucagon-like peptide-1, and glucose-dependent insulinotropic polypeptides are released from the gastrointestinal (GI) tract and act on beta cells of pancreatic islets by increasing the secretion of insulin. The management and prevention of diabetes require habitual and pharmacological therapies along with quality and healthy lifestyle. This includes maintaining the body weight, blood glucose level, cardiovascular risk, complexity, and co-morbidities. The utilization of glucagon-like peptide-1 (GLP-1) agonists is an object of research with favorable hemoglobin A1C levels and weight loss in type 1 diabetic patients. However, cost-effectiveness and tolerability, remain significant barriers for patients to using these medications. The risk of suicidal tendencies and thoughts of self-harm have been increased in patients receiving GLP-1 receptor agonists. Tirzepatide treatment showed a potent glucose-lowering effect and promoted weight loss with minimum GI adverse effects in animal studies as well as phase I and II human trials, in comparison with established GLP-1 receptor agonists. The glucose-dependent insulinotropic polypeptide receptor (GIPR) peptide-antagonist effectively blocks the action of gastric-inhibitory-polypeptide (GIP) in vitro and ex vivo in human pancreas and in vivo in rodent models. However, incretin-based therapies have received enormous attention in the last few decades for the treatment of diabetes, obesity, and other repurposing including central nervous system disorders. Therefore, in this article, we demonstrate the overview, physiological, and pharmacological advances of incretin-based pharmacotherapies and their physiological roles. Furthermore, the recent updates of glucagon-like peptide-1 receptor agonist, Glucagon-like peptide-2 receptor agonist, GLP-1/GIP co-agonists, GIP/GLP-1/glucagon triple agonist and GIP-antagonist are also discussed.
Collapse
Affiliation(s)
- Bhaskar Pal
- Department of Pharmacology, Charaktala College of Pharmacy, Charaktala, Debipur, West Bengal, India
| | - Moitreyee Chattopadhyay
- Department of Pharmaceutical Technology, Maulana Abul Kalam Azad University of Technology, Nadia, West Bengal, India
| |
Collapse
|
47
|
Seksaria S, Dutta BJ, Kaur M, Gupta GD, Bodakhe SH, Singh A. Role of GLP-1 Receptor Agonist in Diabetic Cardio-renal Disorder: Recent Updates of Clinical and Pre-clinical Evidence. Curr Diabetes Rev 2024; 20:e090823219597. [PMID: 37559236 DOI: 10.2174/1573399820666230809152148] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/08/2023] [Accepted: 06/30/2023] [Indexed: 08/11/2023]
Abstract
Cardiovascular complications and renal disease is the growing cause of mortality in patients with diabetes. The subversive complications of diabetes such as hyperglycemia, hyperlipidemia and insulin resistance lead to an increase in the risk of myocardial infarction (MI), stroke, heart failure (HF) as well as chronic kidney disease (CKD). Among the commercially available anti-hyperglycemic agents, incretin-based medications appear to be safe and effective in the treatment of type 2 diabetes mellitus (T2DM) and associated cardiovascular and renal disease. Glucagon-like peptide 1 receptor agonists (GLP-1RAs) have been shown to be fruitful in reducing HbA1c, blood glucose, lipid profile, and body weight in diabetic patients. Several preclinical and clinical studies revealed the safety, efficacy, and preventive advantages of GLP-1RAs against diabetes- induced cardiovascular and kidney disease. Data from cardio-renal outcome trials had highlighted that GLP-1RAs protected people with established CKD from significant cardiovascular disease, lowered the likelihood of hospitalization for heart failure (HHF), and lowered all-cause mortality. They also had a positive effect on people with end-stage renal disease (ESRD) and CKD. Beside clinical outcomes, GLP-1RAs reduced oxidative stress, inflammation, fibrosis, and improved lipid profile pre-clinically in diabetic models of cardiomyopathy and nephropathy that demonstrated the cardio-protective and reno-protective effect of GLP-1RAs. In this review, we have focused on the recent clinical and preclinical outcomes of GLP-1RAs as cardio-protective and reno-protective agents as GLP-1RAs medications have been demonstrated to be more effective in treating T2DM and diabetes-induced cardiovascular and renal disease than currently available treatments in clinics, without inducing hypoglycemia or weight gain.
Collapse
Affiliation(s)
- Sanket Seksaria
- Department of Pharmacology, ISF College of Pharmacy, GT Road, GhalKalan, Moga 142001, Punjab, India
- Department of Pharmacy, Sanaka Educational Trust's Group of Institutions, Malandighi, Durgapur 713212, India
| | - Bhaskar Jyoti Dutta
- Department of Pharmacology, ISF College of Pharmacy, GT Road, GhalKalan, Moga 142001, Punjab, India
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, Bihar, India
| | - Mandeep Kaur
- Department of Pharmacology, ISF College of Pharmacy, GT Road, GhalKalan, Moga 142001, Punjab, India
| | - Ghanshyam Das Gupta
- Department of Pharmacology, ISF College of Pharmacy, GT Road, GhalKalan, Moga 142001, Punjab, India
| | - Surendra H Bodakhe
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India
| | - Amrita Singh
- Department of Pharmacology, ISF College of Pharmacy, GT Road, GhalKalan, Moga 142001, Punjab, India
| |
Collapse
|
48
|
Prajapati S. Advances in the Management of Diabetes and Overweight using Incretin-based Pharmacotherapies. Curr Diabetes Rev 2024; 20:e131123223544. [PMID: 37962047 DOI: 10.2174/0115733998256797231009062744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/20/2023] [Accepted: 08/30/2023] [Indexed: 11/15/2023]
Abstract
Throughout the previous three decades, the secretion of glucagon-like peptide-1 hormone has attracted much attention to attain possible therapy goals for the treatment of both hypoglycaemic along type II diabetes militates and overweight. The pharmaceutical generation of peptides similar to hypoglycaemia-based medicines is exemplified by agonists of the GLP- 1R (Glucagon-like peptide-1 receptors). Pharmacokinetic profiles are continuously being improved, beginning with the native hormone with a two- to three-minute quarter and progressing through growth every day with once-drug combinations. Due to contradictory data that indicate stimulation or inhibition of the Glucagon-like peptide receptor, the Glucose-dependent insulin tropic peptide receptor offers favorable effects on systemic metabolism. The recent Glp-1R (Glucagon-like peptide-1 receptor-) targeting monomolecular drugs has demonstrated therapeutic effectiveness and has stoked interest in Glucose-dependent insulin tropic polypeptide antagonism as a treatment for overweight and diabetes mellitus. These drugs have been shown to dramatically improve carbohydrates with body weight management in sick people who have obesity and type II diabetes mellitus. In this study, recent breakthroughs in compelling therapeutic interventions are discussed, and the biology and pharmacology of the glucose-like peptide are reviewed.
Collapse
Affiliation(s)
- Shatrudhan Prajapati
- Department of Pharmacy, Golgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
49
|
Bagherzadeh-Rahmani B, Marzetti E, Karami E, Campbell BI, Fakourian A, Haghighi AH, Mousavi SH, Heinrich KM, Brazzi L, Jung F, Baker JS, Patel DI. Tirzepatide and exercise training in obesity. Clin Hemorheol Microcirc 2024; 87:465-480. [PMID: 38640145 DOI: 10.3233/ch-242134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
OBJECTIVES The purpose of this study was to investigate the effects of 6 weeks of resistance training (RT) combined with aerobic training (AT) and Tirzepatide supplementation on lipid profiles, insulin resistance, anthropometric characteristics and physical fitness in prediabetic obese soldiers. METHODS 61 obese men were randomly divided into six groups: Placebo; Tirzepatide 5 mg (T5); Tirzepatide 2.5 mg (T2.5); Hypertrophy, Strength, Power-Circuit Training+Placebo (Ex+P); Hypertrophy, Strength, Power-Circuit Training+Tirzepatide 5 mg (Ex+T5); Hypertrophy, Strength, Power-Circuit Training+Tirzepatide 2.5 mg (Ex+T2.5). All training groups performed aerobic training (AT) after resistance training. Subjects trained for six weeks, three sessions per week. Before and after the intervention period, the participants were evaluated for anthropometric measures, body composition [body weight, body mass index (BMI), waist circumference (WC), waist to hip ratio (WHR) and fat mass (FM)], cardiorespiratory fitness (VO2max), and muscle strength (chest press 1RM and leg press 1RM). Blood biochemistry evaluations included triglyceride (TG), total cholesterol (TC), low density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), fasting blood glucose (FBG), insulin level and insulin resistance (HOMA-IR). To evaluate the differences between the groups, ANCOVA statistical method was used along with Bonferroni's post hoc test, and the significance level was P < 0.05. RESULTS Body weight, BMI, WC, FM, FBG, LDL-C, TC, TG and HOMA-IR were significantly decreased in Ex+P, Ex+T5 and Ex+T2.5 groups compared to Placebo, T5 and T2.5 groups. WHR significantly decreased in Ex+P, Ex+T5 and Ex+T2.5 groups compared to Placebo group. HDL-C, chest press and leg press significantly increased in Ex+P, Ex+T5 and Ex+T2.5 groups compared to Placebo, T5 and T2.5 groups. VO2max significantly increased and insulin significantly decreased in Ex+P group compared to Placebo, T5 and T2.5 groups. FM, FBG and TG were significantly decreased in both the T2.5 and T5 groups compared to Placebo group. HOMA-IR, LDL-C and TC significantly decreased in the T5 group compared to Placebo group. Also, leg press significantly increased in Ex+P group compared to all other groups. CONCLUSIONS Performing six weeks of combined resistance and aerobic training in the form of RT+AT alone is more effective than the simultaneous use of Tirzepatide on cardiorespiratory fitness, strength, and modulating insulin levels. Taking Tirzepatide in doses of 5 mg and 2.5 mg in combination with exercise training did not have a significant advantage over exercise training alone. Finally, taking Tirzepatide in doses of 5 mg or 2.5 mg in combination with exercise training is not significantly superior to each other.
Collapse
Affiliation(s)
- Behnam Bagherzadeh-Rahmani
- Department of Exercise Physiology, Faculty of Sport Sciences, Hakim Sabzevari University, Sabzevar, Iran
| | - Emanuele Marzetti
- Department of Geriatrics and Orthopedics, UniversitÀ Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Esmail Karami
- Department of Physiology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Bill I Campbell
- Performance & Physique Enhancement Laboratory, University of South Florida, Tampa, FL, USA
| | - Ali Fakourian
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Amir Hossein Haghighi
- Department of Exercise Physiology, Faculty of Sport Sciences, Hakim Sabzevari University, Sabzevar, Iran
| | - Seyyed Hossein Mousavi
- Department of Cardiology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Katie M Heinrich
- Department of Kinesiology, Kansas State University, Manhattan, KS, USA
| | - Luca Brazzi
- Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Friedrich Jung
- Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Julien S Baker
- Department of Sport, Physical Education and Health, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Darpan I Patel
- School of Nursing, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
50
|
Le TTB, Minh LHN, Devi P, Islam N, Sachmechi I. A Case Report of Systemic Allergic Reaction to the Dual Glucose-Dependent Insulinotropic Polypeptide/Glucagon-Like Peptide-1 Receptor Agonist Tirzepatide. Cureus 2024; 16:e51460. [PMID: 38298324 PMCID: PMC10829695 DOI: 10.7759/cureus.51460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2023] [Indexed: 02/02/2024] Open
Abstract
This report examines a case of systemic hypersensitivity to tirzepatide in a patient with type 2 diabetes. Tirzepatide (Mounjaro®), a dual agonist of glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) receptor, has recently gained FDA approval. Additionally, a literature review was conducted to summarize recent research on tirzepatide's effectiveness and safety. A 67-year-old woman, previously treated with basal insulin, metformin, and semaglutide (a GLP-1 agonist), experienced severe disseminated pruritus and a generalized urticarial rash after her first dose of tirzepatide. This reaction, which subsided with antihistamines, raises questions about possible immunoglobulin E-mediated hypersensitivity. The report highlights the need for increased vigilance regarding allergic reactions to new diabetes medications, particularly in the context of GIP/GLP-1 receptor agonists.
Collapse
Affiliation(s)
- Trang Thi Bich Le
- Internal Medicine, Department of Cardiovascular Research, Methodist Hospital, Merrillville, USA
| | - Le Huu Nhat Minh
- College of Medicine, Taipei Medical University, Taipei, TWN
- Research Center for Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, TWN
| | - Pooja Devi
- Internal Medicine, Maimonides Medical Center, New York, USA
| | - Nabila Islam
- Internal Medicine, Mymensingh Medical College, Dhaka, BGD
- Internal Medicine, Queens Hospital Center, New York, USA
| | - Issac Sachmechi
- Internal Medicine, Icahn School of Medicine at Mount Sinai/Queens Hospital Center, New York, USA
| |
Collapse
|