1
|
Cohen A, Gotnayer L, Gal S, Aranovich D, Vidavsky N. Multicellular spheroids containing synthetic mineral particles: an advanced 3D tumor model system to investigate breast precancer malignancy potential according to the mineral type. J Mater Chem B 2023; 11:8033-8045. [PMID: 37534429 DOI: 10.1039/d3tb00439b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Mineral particles that form in soft tissues in association with disease conditions are heterogeneous in their composition and physiochemical properties. Hence, it is challenging to study the effect of mineral type on disease progression in a high-throughput and realistic manner. For example, most early breast precancer lesions, termed ductal carcinoma in situ (DCIS), contain microcalcifications (MCs), calcium-containing pathological minerals. The most common type of MCs is calcium phosphate crystals, mainly carbonated apatite; it is associated with either benign or malignant lesions. In vitro studies indicate that the crystal properties of apatite MCs can affect breast cancer progression. A less common type of MCs is calcium oxalate dihydrate (COD), which is almost always found in benign lesions. We developed a 3D tumor model of multicellular spheroids of human precancer cells containing synthetic MC analogs that link the crystal properties of MCs with the progression of breast precancer to invasive cancer. Using this 3D model, we show that apatite crystals induce Her2 overexpression in DCIS cells. This tumor-triggering effect is increased when the carbonate fraction in the MCs decreases. COD crystals, in contrast, decrease Her2 expression in the spheroids, even compared with a control group with no added MC analogs. Furthermore, COD decreases cell proliferation and migration in DCIS monolayers compared to untreated cells and cells incubated with apatite crystals. This finding suggests that COD is not randomly located only in benign lesions-it may actively contribute to suppressing precancer progression in its surroundings. Our model provides an easy-to-manipulate platform to better understand the interactions between mineral particles and their biological microenvironment. A better understanding of the effect of the crystal properties of MCs on precancer progression will potentially provide new directions for better precancer prognosis and treatment.
Collapse
Affiliation(s)
- Amit Cohen
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| | - Lotem Gotnayer
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| | - Sahar Gal
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| | - Dina Aranovich
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| | - Netta Vidavsky
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel.
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
2
|
Fan L, Li H, Huo W. Inhibitory role of microRNA-484 in kidney stone formation by repressing calcium oxalate crystallization via a VDR/FoxO1 regulator axis. Urolithiasis 2022; 50:665-678. [PMID: 36227295 DOI: 10.1007/s00240-022-01359-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 03/27/2021] [Indexed: 11/30/2022]
Abstract
Kidney stones are regarded as common malignant diseases in the developed world. As a result, significant research examining their formation is ongoing, with microRNAs (miRs) recently being linked with kidney stone formation. Here, we aim to define the potential role of miR-484 in regulating renal tubular epithelial cell (RTEC) viability and the attachment of calcium oxalate (CaOx) crystals to RTECs via vitamin D receptor (VDR)/forkhead box protein O1 (FoxO1) axis. The pathological condition of CaOx crystallization was induced and examined in Sprague-Dawley rats, while RTECs were isolated and cultured in vitro. Loss- and gain-function assays were performed to study the effects that miR-484, VDR, and FoxO1 on RTEC functions and CaOx crystallization in vitro and on kidney stone formation in vivo. The interaction between miR-484 and VDR was confirmed by dual-luciferase reporter gene assays. Downregulation of miR-484 and FoxO1 as well as overexpression of VDR were identified in kidney stone modelled rats. VDR was confirmed as a target gene of miR-484, while knockdown of VDR upregulated the FoxO1 expression. miR-484 overexpression or VDR suppression reduced RTEC cytotoxicity and crystal attachment to RTECs in vitro and reduced the CaOx crystallization in vivo. Taken together, these findings suggest that miR-484 overexpression may be a potential inhibitor of RTEC proliferation and CaOx crystallization through a VDR/FoxO1 regulatory axis, providing a novel therapeutic target for the treatment of kidney stone.
Collapse
Affiliation(s)
- Li Fan
- Department of Urology, China-Japan Union Hospital of Jilin University, No. 126, Xiantai Street, Changchun, 130033, Jilin Province, People's Republic of China
| | - Hai Li
- Department of Urology, China-Japan Union Hospital of Jilin University, No. 126, Xiantai Street, Changchun, 130033, Jilin Province, People's Republic of China
| | - Wei Huo
- Department of Urology, China-Japan Union Hospital of Jilin University, No. 126, Xiantai Street, Changchun, 130033, Jilin Province, People's Republic of China.
| |
Collapse
|
3
|
Increased Sulfation in Gracilaria fisheri Sulfated Galactans Enhances Antioxidant and Antiurolithiatic Activities and Protects HK-2 Cell Death Induced by Sodium Oxalate. Mar Drugs 2022; 20:md20060382. [PMID: 35736184 PMCID: PMC9230550 DOI: 10.3390/md20060382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 02/06/2023] Open
Abstract
Urolithiasis is a common urological disease characterized by the presence of a stone anywhere along the urinary tract. The major component of such stones is calcium oxalate, and reactive oxygen species act as an essential mediator of calcium oxalate crystallization. Previous studies have demonstrated the antioxidant and antiurolithiatic activities of sulfated polysaccharides. In this study, native sulfated galactans (N-SGs) with a molecular weight of 217.4 kDa from Gracilaria fisheri were modified to obtain lower molecular weight SG (L-SG) and also subjected to sulfation SG (S-SG). The in vitro antioxidant and antiurolithiatic activities of the modified substances and their ability to protect against sodium oxalate-induced renal tubular (HK-2) cell death were investigated. The results revealed that S-SG showed more pronounced antioxidant activities (DPPH and O2- scavenging activities) than those of other compounds. S-SG exhibited the highest antiurolithiatic activity in terms of nucleation and aggregation, as well as crystal morphology and size. Moreover, S-SG showed improved cell survival and increased anti-apoptotic BCL-2 protein in HK-2 cells treated with sodium oxalate. Our findings highlight the potential application of S-SG in the functional food and pharmaceutical industries.
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW The effect of the intestinal microbiome on urine chemistry and lithogenicity has been a popular topic. Here we review the evidence for exposure to antibiotics increasing the risk of nephrolithiasis. RECENT FINDINGS Studies of the intestinal microbiome have focused on Oxalobacter formigenes, an anaerobe that frequently colonizes the human colon. As a degrader of fecal oxalate its presence is associated with lower urinary oxalate, which would be protective against calcium oxalate stone formation. It also appears capable of stimulating colonic oxalate secretion. A recent study showed that antibiotics can eliminate colonization with O. formigenes. In a case-control study, exposure to sulfa drugs, cephalosporins, fluoroquinolones, nitrofurantoin/methenamine, and broad spectrum penicillins prospectively increased the odds of nephrolithiasis. The effect was greatest for those exposed at younger ages and 3-6 months before being diagnosed with nephrolithiasis. SUMMARY Recent evidence suggests a possible, causal role of antibiotics in the development of kidney stones. A possible explanation for this finding includes alterations in the microbiome, especially effects on oxalate-degrading bacteria like O. formigenes. Ample reasons to encourage antibiotic stewardship already exist, but the possible role of antibiotic exposure in contributing to the increasing prevalence of kidney stones in children and adults is another rationale.
Collapse
|
5
|
Wang X, Zhang Y, Han S, Chen H, Chen C, Ji L, Gao B. Overexpression of miR‑30c‑5p reduces cellular cytotoxicity and inhibits the formation of kidney stones through ATG5. Int J Mol Med 2019; 45:375-384. [PMID: 31894301 PMCID: PMC6984788 DOI: 10.3892/ijmm.2019.4440] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/05/2019] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs or miRs) are critical regulators in various diseases. In the current study, the role of miR-30c-5p in the formation of sodium oxalate-induced kidney stones was investigated. For this purpose, human renal tubular epithelial cells (HK-2 cells) were incubated with sodium oxalate at the concentrations of 100, 250, 500, 750 and 1,000 µM. Cell viability and the miR-30c-5p expression level were respectively measured by CCK-8 assay and RT-qPCR. After separately transfecting miR-30c-5p mimic and inhibitor into the HK-2 cells, the cell apoptotic rate, the levels of mitochondrial membrane potential (MMP) and ROS were determined by flow cytometry. The levels of oxidative stress indicators [lactate dehydrogenase (LDH), malondialdehyde (MDA), superoxide dismutase (SOD) and catalase (CAT)] were determined using commercial kits. Crystal-cell adhesion assay was performed to evaluate the crystal adhesion capacity in vitro. miR-30c-5p binding at autophagy related 5 (ATG5) was predicted by TargetScan7.2 and further verified by dual-luciferase reporter assay. Rescue experiments were performed to confirm the molecular mechanisms underlying sodium oxalate-induced kidney formation in HK-2 cells. The results revealed that sodium oxalate decreased the viability of HK-2 cells in a concentration-dependent manner, and that miR-30c-5p expression was significantly downregulated by exposure to 750 µM sodium oxalate. In addition, the increase in cell apoptosis and crystal number, and the upregulated levels of LDH, MDA and ROS were reversed by the overexpression of miR-30c-5p. Moreover, the overexpression of miR-30c-5p upregulated the levels of SOD, CAT and MMP induced by sodium oxalate. ATG5 was directly regulated by miR-30c-5p, and the inhibition of cell cytotoxicity and crystal-cell adhesion induced by miR-30c-5p mimic was blocked by ATG5. These data indicated that the overexpression of miR-30c-5p alleviated cell cytotoxicity and crystal-cell adhesion induced by sodium oxalate through ATG5. Thus, the current study provides a better understanding of the role of miR-30c-5p in sodium oxalate-induced kidney stones.
Collapse
Affiliation(s)
- Xin Wang
- Department of Nephrology, Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Yanan Zhang
- Department of Nephrology, Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Shuai Han
- Department of Nephrology, Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Hongshen Chen
- Department of Breast and Thyroid Surgery, Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Chen Chen
- Department of Nephrology, Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Lingling Ji
- Department of Nephrology, Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Bihu Gao
- Department of Nephrology, Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| |
Collapse
|
6
|
Convento M, Pessoa E, Aragão A, Schor N, Borges F. Oxalate induces type II epithelial to mesenchymal transition (EMT) in inner medullary collecting duct cells (IMCD) in vitro and stimulate the expression of osteogenic and fibrotic markers in kidney medulla in vivo. Oncotarget 2019; 10:1102-1118. [PMID: 30800221 PMCID: PMC6383687 DOI: 10.18632/oncotarget.26634] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 01/12/2019] [Indexed: 01/25/2023] Open
Abstract
EMT occurs in response to a number of stresses conditions as mechanical stretch, cancer, hypoxia, oxidative stress (ROS), among others. EMT describes a phenotypical change induced in epithelial cells. It is characterized by increases in motility, extracellular matrix synthesis, proliferation, and invasiveness. The present study analyzed if oxalate ions (Ox) could induce EMT in IMCD cells. Ox (0.5 mM) and transforming growth factor beta (TGF-β1 20 ng/mL) exposition during 48 hours increased migration and invasiveness, increased mesenchymal marker expression (Vimentin, alpha-smooth muscle actin: α-SMA, TGF-β1) and decreased epithelial marker expression (E-cadherin). IMCD stimulated with Ox and TGF-β1 and then exposed to the osteogenic medium during 15 days significantly increased early osteogenic markers (RUNX-2 and Alkaline Phosphatase) expression. Hyperoxaluric mice fed with trans-4-hydroxy-L-proline (HPL) presented calcium oxalate crystal excretion, increased in TGF-β1 expression and collagen fibers deposition and increased early osteogenic markers (RUNX-2 and Alkaline Phosphatase) at 60 days. Our in vitro and in vivo results suggest that oxalate induces EMT in inner medulla collecting duct cells and it may be involved in fibrotic tissue development, osteogenic differentiation and calcium crystal production both implicated in nephrolithiasis.
Collapse
Affiliation(s)
- Marcia Convento
- Nephrology Division, Department of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Edson Pessoa
- Nephrology Division, Department of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Alef Aragão
- Interdisciplinary Postgraduate Program in Health Sciences, Universidade Cruzeiro do Sul, São Paulo, SP, Brazil
| | - Nestor Schor
- Nephrology Division, Department of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Fernanda Borges
- Nephrology Division, Department of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
- Interdisciplinary Postgraduate Program in Health Sciences, Universidade Cruzeiro do Sul, São Paulo, SP, Brazil
| |
Collapse
|
7
|
Mittal A, Tandon S, Singla SK, Tandon C. Modulation of lithiatic injury to renal epithelial cells by aqueous extract of Terminalia arjuna. J Herb Med 2018. [DOI: 10.1016/j.hermed.2018.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Zhang X, Liang D, Lian X, Jiang Y, He H, Liang W, Zhao Y, Chi ZH. Berberine activates Nrf2 nuclear translocation and inhibits apoptosis induced by high glucose in renal tubular epithelial cells through a phosphatidylinositol 3-kinase/Akt-dependent mechanism. Apoptosis 2018; 21:721-36. [PMID: 26979714 DOI: 10.1007/s10495-016-1234-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Apoptosis of tubular epithelial cells is a major feature of diabetic kidney disease, and hyperglycemia triggers the generation of free radicals and oxidant stress in tubular cells. Berberine (BBR) is identified as a potential anti-diabetic herbal medicine due to its beneficial effects on insulin sensitivity, glucose metabolism and glycolysis. In this study, the underlying mechanisms involved in the protective effects of BBR on high glucose-induced apoptosis were explored using cultured renal tubular epithelial cells (NRK-52E cells) and human kidney proximal tubular cell line (HK-2 cells). We identified the pivotal role of phosphatidylinositol 3-kinase (PI3K)/Akt in BBR cellular defense mechanisms and revealed the novel effect of BBR on nuclear factor (erythroid-derived 2)-related factor-2 (Nrf2) and heme oxygenase (HO)-1 in NRK-52E and HK-2 cells. BBR attenuated reactive oxygen species production, antioxidant defense (GSH and SOD) and oxidant-sensitive proteins (Nrf2 and HO-1), which also were blocked by LY294002 (an inhibitor of PI3K) in HG-treated NRK-52E and HK-2 cells. Furthermore, BBR improved mitochondrial function by increasing mitochondrial membrane potential. BBR-induced anti-apoptotic function was demonstrated by decreasing apoptotic proteins (cytochrome c, Bax, caspase3 and caspase9). All these findings suggest that BBR exerts the anti-apoptosis effects through activation of PI3K/Akt signal pathways and leads to activation of Nrf2 and induction of Nrf2 target genes, and consequently protecting the renal tubular epithelial cells from HG-induced apoptosis.
Collapse
Affiliation(s)
- Xiuli Zhang
- Department of Nephrology, Liaoning Province Benxi Center Hospital, 29 Victory Road, Benxi, 117000, Liaoning, People's Republic of China. .,Research Laboratory, Liaoning Province Benxi Center Hospital, Benxi, 117000, Liaoning, People's Republic of China. .,Key Laboratory of Medical Cell Biology, Ministry of Education, Shenyang, 110001, Liaoning, People's Republic of China.
| | - Dan Liang
- Troops of 95935 Unit, Haerbin, Heilongjiang, People's Republic of China
| | - Xu Lian
- Department of endocrinology, The Affiliated Hospital of Mudanjiang Medical University, Mudanjiang, 157000, Heilongjiang, People's Republic of China
| | - Yan Jiang
- Research Laboratory, Liaoning Province Benxi Center Hospital, Benxi, 117000, Liaoning, People's Republic of China
| | - Hui He
- Research Laboratory, Liaoning Province Benxi Center Hospital, Benxi, 117000, Liaoning, People's Republic of China
| | - Wei Liang
- Research Laboratory, Liaoning Province Benxi Center Hospital, Benxi, 117000, Liaoning, People's Republic of China
| | - Yue Zhao
- Key Laboratory of Medical Cell Biology, Ministry of Education, Shenyang, 110001, Liaoning, People's Republic of China
| | - Zhi-Hong Chi
- Department of Pathophysiology, China Medical University, Shenyang, 110001, Liaoning, People's Republic of China
| |
Collapse
|
9
|
Erzhi Pill® Repairs Experimental Liver Injury via TSC/mTOR Signaling Pathway Inhibiting Excessive Apoptosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017. [PMID: 28638431 PMCID: PMC5468563 DOI: 10.1155/2017/5653643] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The present study aimed to investigate the mechanism of hepatoprotective effect of Erzhi Pill (EZP) on the liver injury via observing TSC/mTOR signaling pathway activation. The experimental liver injury was induced by 2-acetylaminofluorene (2-AAF) treatment combined with partial hepatectomy (PH). EZP treated 2-AAF/PH-induced liver injury by the therapeutic and prophylactic administration. After the administration of EZP, the activities of aspartic transaminase (AST), alanine aminotransferase (ALT), alkaline phosphatase (AKP), and gamma-glutamyl transpeptidase (γ-GT) were decreased, followed by the decreased levels of hepatocyte apoptosis and caspase-3 expression. However, the secretion of albumin, liver weight, and index of liver weight were elevated. Microscopic examination showed that EZP restored pathological liver injury. Meanwhile, Rheb and mammalian target of rapamycin (mTOR) activation were suppressed, and tuberous sclerosis complex (TSC) expression was elevated in liver tissues induced by 2-AAF/PHx and accompanied with lower-expression of Bax, Notch1, p70S6K, and 4E-EIF and upregulated levels of Bcl-2 and Cyclin D. Hepatoprotective effect of EZP was possibly realized via inhibiting TSC/mTOR signaling pathway to suppress excessive apoptosis of hepatocyte.
Collapse
|
10
|
Mittal A, Tandon S, Singla SK, Tandon C. Cytoprotective and anti-apoptotic role of Terminalia arjuna on oxalate injured renal epithelial cells. Cytotechnology 2017; 69:349-358. [PMID: 28181139 DOI: 10.1007/s10616-017-0065-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 01/05/2017] [Indexed: 11/26/2022] Open
Abstract
Urolithiasis is one of the painful multifactorial disorders caused by metabolic abnormalities influencing the composition of body fluids and urine. The bark of Terminalia arjuna (T. arjuna), very well known in Ayurveda for the treatment of cardiovascular diseases, possesses antioxidant and diuretic activity. The present study was undertaken to investigate the antiurolithiatic efficacy of aqueous extract of bark of T. arjuna on oxalate-induced injury to renal tubular epithelial cells. Madin-Darby canine kidney (MDCK) cells were exposed to 2 mM oxalate for 48 h to evaluate the protective effect of T. arjuna aqueous extract on cell viability, CaOx crystal adherence and apoptotic changes caused by oxalate. The results confirmed that oxalate injured MDCK cells were protected by T. arjuna extract. On treatment with a range concentrations, the cell viability increased in a concentration dependent manner. Moreover, the extract prevented the interaction of the calcium oxalate (CaOx) crystals with the cell surface and reduced the number of apoptotic cells. The current data suggests that T. arjuna bark confers a cytoprotective role and based on our results it could be a potential candidate from natural plant sources against urolithiasis.
Collapse
Affiliation(s)
- Amisha Mittal
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, 173234, India
| | - Simran Tandon
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida, U.P., 201313, India
| | | | - Chanderdeep Tandon
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector - 125, Noida, U.P., 201313, India.
| |
Collapse
|
11
|
Mittal A, Tandon S, Singla SK, Tandon C. Mechanistic Insights into the Antilithiatic Proteins from Terminalia arjuna: A Proteomic Approach in Urolithiasis. PLoS One 2016; 11:e0162600. [PMID: 27649531 PMCID: PMC5029924 DOI: 10.1371/journal.pone.0162600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/25/2016] [Indexed: 11/23/2022] Open
Abstract
Kidney stone formation during hyperoxaluric condition is inherently dependent on the interaction between renal epithelial cells and calcium oxalate (CaOx) crystals. Although modern medicine has progressed in terms of removal of these stones, recurrence and persistent side effects restricts their use. Strategies involving plant based agents which could be used as adjunct therapy is an area which needs to be explored. Plant proteins having antilithiatic activity is a hitherto unexplored area and therefore, we conducted a detailed identification and characterization of antilithiatic proteins from Terminalia arjuna (T. arjuna). Proteins were isolated from the dried bark of T. arjuna and those having molecular weights > 3 kDa were subjected to anion exchange chromatography followed by gel filtration chromatography. Four proteins were identified exhibiting inhibitory activity against CaOx crystallization and crystal growth kinetics The cytoprotective and anti-apoptotic efficacy of these purified proteins was further investigated on oxalate injured renal epithelial cells (MDCK and NRK-52E) wherein, injury due to oxalate was significantly attenuated and led to a dose dependent increase in viability of these cells. These proteins also prevented the interaction of the CaOx crystals to the cell surface and reduced the number of apoptotic cells. Identification of these 4 anionic proteins from the bark of T. arjuna was carried out by Matrix-assisted laser desorption/ionization-time of flight Mass spectrometry (MALDI-TOF MS). This was followed by database search with the MASCOT server and sequence similarity was found with Nuclear pore anchor, DEAD Box ATP-dependent RNA helicase 45, Lon protease homolog 1 and Heat shock protein 90–3. These novel proteins isolated from T. arjuna have the potential to inhibit CaOx crystallization and promote cell survival and therefore, offer novel avenues which need to be explored further for the medical management of urolithiasis.
Collapse
Affiliation(s)
- Amisha Mittal
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, India
| | - Simran Tandon
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | | | - Chanderdeep Tandon
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
- * E-mail:
| |
Collapse
|
12
|
Mittal A, Tandon S, Singla SK, Tandon C. In vitro inhibition of calcium oxalate crystallization and crystal adherence to renal tubular epithelial cells by Terminalia arjuna. Urolithiasis 2015; 44:117-25. [DOI: 10.1007/s00240-015-0822-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 09/07/2015] [Indexed: 11/24/2022]
|
13
|
Peeping into human renal calcium oxalate stone matrix: characterization of novel proteins involved in the intricate mechanism of urolithiasis. PLoS One 2013; 8:e69916. [PMID: 23894559 PMCID: PMC3722206 DOI: 10.1371/journal.pone.0069916] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 06/17/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The increasing number of patients suffering from urolithiasis represents one of the major challenges which nephrologists face worldwide today. For enhancing therapeutic outcomes of this disease, the pathogenic basis for the formation of renal stones is the need of hour. Proteins are found as major component in human renal stone matrix and are considered to have a potential role in crystal-membrane interaction, crystal growth and stone formation but their role in urolithiasis still remains obscure. METHODS Proteins were isolated from the matrix of human CaOx containing kidney stones. Proteins having MW>3 kDa were subjected to anion exchange chromatography followed by molecular-sieve chromatography. The effect of these purified proteins was tested against CaOx nucleation and growth and on oxalate injured Madin-Darby Canine Kidney (MDCK) renal epithelial cells for their activity. Proteins were identified by Matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF MS) followed by database search with MASCOT server. In silico molecular interaction studies with CaOx crystals were also investigated. RESULTS Five proteins were identified from the matrix of calcium oxalate kidney stones by MALDI-TOF MS followed by database search with MASCOT server with the competence to control the stone formation process. Out of which two proteins were promoters, two were inhibitors and one protein had a dual activity of both inhibition and promotion towards CaOx nucleation and growth. Further molecular modelling calculations revealed the mode of interaction of these proteins with CaOx at the molecular level. CONCLUSIONS We identified and characterized Ethanolamine-phosphate cytidylyltransferase, Ras GTPase-activating-like protein, UDP-glucose:glycoprotein glucosyltransferase 2, RIMS-binding protein 3A, Macrophage-capping protein as novel proteins from the matrix of human calcium oxalate stone which play a critical role in kidney stone formation. Thus, these proteins having potential to modulate calcium oxalate crystallization will throw light on understanding and controlling urolithiasis in humans.
Collapse
|
14
|
Abstract
Apoptosis contributes to the development of diabetic nephropathy, but the mechanism by which high glucose induces apoptosis is not fully understood. Apoptosis of tubular epithelial cells is a major feature of diabetic kidney disease, and hyperglycemia triggers the generation of free radicals and oxidant stress in tubular cells. Hyperglycemia and high glucose in vitro also lead to apoptosis, a form of programmed cell death. High glucose similar to those seen with hyperglycemia in people with diabetes mellitus, lead to accelerated apoptosis, a form of programmed cell death characterized by cell shrinkage, chromatin condensation and DNA fragmentation, in variety of cell types, including renal proximal tubular epithelial cells.
Collapse
|
15
|
Molecular mechanisms involved in the protective effect of the chloroform extract of Selaginella lepidophylla (Hook. et Grev.) Spring in a lithiasic rat model. Urolithiasis 2013; 41:205-15. [PMID: 23543194 DOI: 10.1007/s00240-013-0556-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 03/13/2013] [Indexed: 10/27/2022]
Abstract
Urolithiasis is a multifaceted process, progressing from urine supersaturation to the formation of mature renal calculi. Calcium oxalate, the main component of kidney stones, has toxicological effects on renal epithelial cells. Some medicinal plants have shown pharmacological effects against renal lithiasis, such as Selaginella lepidophylla (Hook. et Grev) Spring, a plant empirically used in Mexico for its diuretic and antilithiasic activity. The plant was identified and ground, and a chloroform extract (CE) was obtained. Urolithiasis was induced in Wistar female rats by administration of ethylene glycol and ammonium chloride for 21 days. Urolithiasis rats were treated with the CE (50 mg/kg) for 21 days. Osmolality, creatinine, sodium and potassium concentrations were measured in blood and urine. Glomerular filtration rate (GFR), and electrolytic and water balances were calculated. Urinary oxalic acid concentration was measured. Apoptosis, lipoperoxidation, ROS and p-amino hippuric acid were determined in cortical tissue. Urolithiasis rats showed a decrease of urinary flow, GFR, electrolytic balance, renal tubular secretion and ATP concentration and increase of urinary oxalic acid, lipoperoxidation, oxidative stress and apoptosis in cortical tissue. After treatment with the CE, urinary flow rate, GFR and renal tubular secretion levels were recovered; on the other hand, serum creatinine and urinary oxalic acid decreased on day 21. CE of Selaginella lepidophylla prevented the damage caused by lithiasic process by improving the active secretion in the proximal tubules, counteracting the ROS and lipoperoxidation effects by oxalate and decreased the OAT3 expression on kidney.
Collapse
|
16
|
Aggarwal KP, Tandon S, Naik PK, Singh SK, Tandon C. Novel antilithiatic cationic proteins from human calcium oxalate renal stone matrix identified by MALDI-TOF-MS endowed with cytoprotective potential: an insight into the molecular mechanism of urolithiasis. Clin Chim Acta 2012; 415:181-90. [PMID: 23123287 DOI: 10.1016/j.cca.2012.10.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/10/2012] [Accepted: 10/10/2012] [Indexed: 12/01/2022]
Abstract
BACKGROUND No substantial work has been conducted to date in context to cationic proteins with antilithiatic activity. We explored the antilithiatic cationic proteins present in human calcium oxalate (CaOx) stones and also examined their molecular interactions with calcium oxalate crystals in silico. METHODS Proteins were isolated from the matrix of human CaOx containing kidney stones. Proteins having MW>3 kDa were subjected to cation exchange chromatography followed by molecular-sieve chromatography. The effect of these purified cationic proteins was tested against CaOx nucleation and growth and on oxalate injured MDCK cells for their activity. Proteins were identified by MALDI-TOF MS. Molecular interaction studies with COM crystals in silico were also investigated. RESULTS Three antilithiatic cationic proteins were identified as histone-lysine N-methyltransferase, inward rectifier K channel and protein Wnt-2 (MW~53, ~44, and ~42 kDa respectively) by MALDI-TOF MS based on database search with MASCOT server. Further molecular modeling calculations revealed the mode of interaction of these proteins with CaOx at the molecular level. CONCLUSION We identified histone-lysine N-methyltransferase, inward rectifier K channel and protein Wnt-2 as novel antilithiatic proteins which play a vital role in the kidney function and have been associated with various kidney diseases.
Collapse
Affiliation(s)
- Kanu Priya Aggarwal
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan-173234 HP, India
| | | | | | | | | |
Collapse
|
17
|
Genome wide analysis of differentially expressed genes in HK-2 cells, a line of human kidney epithelial cells in response to oxalate. PLoS One 2012; 7:e43886. [PMID: 23028475 PMCID: PMC3446971 DOI: 10.1371/journal.pone.0043886] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 07/27/2012] [Indexed: 11/30/2022] Open
Abstract
Nephrolithiasis is a multi-factorial disease which, in the majority of cases, involves the renal deposition of calcium oxalate. Oxalate is a metabolic end product excreted primarily by the kidney. Previous studies have shown that elevated levels of oxalate are detrimental to the renal epithelial cells; however, oxalate renal epithelial cell interactions are not completely understood. In this study, we utilized an unbiased approach of gene expression profiling using Affymetrix HG_U133_plus2 gene chips to understand the global gene expression changes in human renal epithelial cells [HK-2] after exposure to oxalate. We analyzed the expression of 47,000 transcripts and variants, including 38,500 well characterized human genes, in the HK2 cells after 4 hours and 24 hours of oxalate exposure. Gene expression was compared among replicates as per the Affymetrix statistical program. Gene expression among various groups was compared using various analytical tools, and differentially expressed genes were classified according to the Gene Ontology Functional Category. The results from this study show that oxalate exposure induces significant expression changes in many genes. We show for the first time that oxalate exposure induces as well as shuts off genes differentially. We found 750 up-regulated and 2276 down-regulated genes which have not been reported before. Our results also show that renal cells exposed to oxalate results in the regulation of genes that are associated with specific molecular function, biological processes, and other cellular components. In addition we have identified a set of 20 genes that is differentially regulated by oxalate irrespective of duration of exposure and may be useful in monitoring oxalate nephrotoxicity. Taken together our studies profile global gene expression changes and provide a unique insight into oxalate renal cell interactions and oxalate nephrotoxicity.
Collapse
|
18
|
Khandrika L, Koul S, Meacham RB, Koul HK. Kidney injury molecule-1 is up-regulated in renal epithelial cells in response to oxalate in vitro and in renal tissues in response to hyperoxaluria in vivo. PLoS One 2012; 7:e44174. [PMID: 22984472 PMCID: PMC3440413 DOI: 10.1371/journal.pone.0044174] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 07/30/2012] [Indexed: 01/28/2023] Open
Abstract
Oxalate is a metabolic end product excreted by the kidney. Mild increases in urinary oxalate are most commonly associated with Nephrolithiasis. Chronically high levels of urinary oxalate, as seen in patients with primary hyperoxaluria, are driving factor for recurrent renal stones, and ultimately lead to renal failure, calcification of soft tissue and premature death. In previous studies others and we have demonstrated that high levels of oxalate promote injury of renal epithelial cells. However, methods to monitor oxalate induced renal injury are limited. In the present study we evaluated changes in expression of Kidney Injury Molecule-1 (KIM-1) in response to oxalate in human renal cells (HK2 cells) in culture and in renal tissue and urine samples in hyperoxaluric animals which mimic in vitro and in vivo models of hyper-oxaluria. Results presented, herein demonstrate that oxalate exposure resulted in increased expression of KIM-1 m RNA as well as protein in HK2 cells. These effects were rapid and concentration dependent. Using in vivo models of hyperoxaluria we observed elevated expression of KIM-1 in renal tissues of hyperoxaluric rats as compared to normal controls. The increase in KIM-1 was both at protein and mRNA level, suggesting transcriptional activation of KIM-1 in response to oxalate exposure. Interestingly, in addition to increased KIM-1 expression, we observed increased levels of the ectodomain of KIM-1 in urine collected from hyperoxaluric rats. To the best of our knowledge our studies are the first direct demonstration of regulation of KIM-1 in response to oxalate exposure in renal epithelial cells in vitro and in vivo. Our results suggest that detection of KIM-1 over-expression and measurement of the ectodomain of KIM-1 in urine may hold promise as a marker to monitor oxalate nephrotoxicity in hyperoxaluria.
Collapse
Affiliation(s)
- Lakshmipathi Khandrika
- Signal Transduction and Molecular Urology Laboratory-Program in Urosciences, Division of Urology- Department of Surgery, School of Medicine, University of Colorado at Denver, Aurora, Colorado, United States of America
| | - Sweaty Koul
- Signal Transduction and Molecular Urology Laboratory-Program in Urosciences, Division of Urology- Department of Surgery, School of Medicine, University of Colorado at Denver, Aurora, Colorado, United States of America
| | - Randall B. Meacham
- Signal Transduction and Molecular Urology Laboratory-Program in Urosciences, Division of Urology- Department of Surgery, School of Medicine, University of Colorado at Denver, Aurora, Colorado, United States of America
| | - Hari K. Koul
- Signal Transduction and Molecular Urology Laboratory-Program in Urosciences, Division of Urology- Department of Surgery, School of Medicine, University of Colorado at Denver, Aurora, Colorado, United States of America
- University of Colorado Comprehensive Cancer Center, University of Colorado at Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
- Denver Veterans Administration Medical Center, Denver, Colorado, United States of America
- * E-mail:
| |
Collapse
|
19
|
Mediation of calcium oxalate crystal growth on human kidney epithelial cells with different degrees of injury. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2012. [DOI: 10.1016/j.msec.2012.01.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Tayal S, Duggal S, Bandyopadhyay P, Aggarwal A, Tandon S, Tandon C. Cytoprotective role of the aqueous extract of Terminalia chebula on renal epithelial cells. Int Braz J Urol 2012; 38:204-13; discussion 213-4. [DOI: 10.1590/s1677-55382012000200008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2011] [Indexed: 11/22/2022] Open
Affiliation(s)
- S. Tayal
- Jaypee University of Information Technology, India
| | - S. Duggal
- Jaypee University of Information Technology, India
| | | | - A. Aggarwal
- Jaypee University of Information Technology, India
| | - S. Tandon
- Jaypee University of Information Technology, India
| | - C. Tandon
- Jaypee University of Information Technology, India
| |
Collapse
|
21
|
Zhang S, Peng H, Yao X, Su Z, Ouyang J. Promotion on Nucleation and Aggregation of Calcium Oxalate Crystals by Injured African Green Monkey Renal Epithelial Cells. CHINESE J CHEM 2012. [DOI: 10.1002/cjoc.201280020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
22
|
Gálicza J, Vargová A, Sándor V, Orbán CK, András CD, Abrahám B, Lányi S, Kilár F. Preparation and investigation of bioactive transferrin-iron complexes formed with different synergistic anions. Protein J 2011; 31:27-34. [PMID: 22101801 DOI: 10.1007/s10930-011-9370-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Human serum transferrin has a potential for drug-delivery systems. Oxalate and aziridine-carboxylate was conjugated to serum transferrin in order to transport into the targeted cancer cells via transferrin-receptor mediated endocytosis. Capillary zone electrophoresis and capillary isoelectric focusing were used to analyze the effectiveness of complexation reactions. The electropherograms show the differences between iron-free- and iron-complexed molecular forms of human serum transferrin. The iron-complexed transferrin sample containing the different anions as synergistic complexing agents were characterized by different electrophoretic parameters.
Collapse
Affiliation(s)
- Judit Gálicza
- Applied Chemistry and Material Science, Politehnica University of Bucharest, 010737, Bucharest, Romania.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Velagapudi C, Bhandari BS, Abboud-Werner S, Simone S, Abboud HE, Habib SL. The tuberin/mTOR pathway promotes apoptosis of tubular epithelial cells in diabetes. J Am Soc Nephrol 2011; 22:262-73. [PMID: 21289215 DOI: 10.1681/asn.2010040352] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Apoptosis contributes to the development of diabetic nephropathy, but the mechanism by which high glucose (HG) induces apoptosis is not fully understood. Because the tuberin/mTOR pathway can modulate apoptosis, we studied the role of this pathway in apoptosis in type I diabetes and in cultured proximal tubular epithelial (PTE) cells exposed to HG. Compared with control rats, diabetic rats had more apoptotic cells in the kidney cortex. Induction of diabetes also increased phosphorylation of tuberin in association with mTOR activation (measured by p70S6K phosphorylation), inactivation of Bcl-2, increased cytosolic cytochrome c expression, activation of caspase 3, and cleavage of PARP; insulin treatment prevented these changes. In vitro, exposure of PTE cells to HG increased phosphorylation of tuberin and p70S6K, phosphorylation of Bcl-2, expression of cytosolic cytochrome c, and caspase 3 activity. High glucose induced translocation of the caspase substrate YY1 from the cytoplasm to the nucleus and enhanced cleavage of PARP. Pretreatment the cells with the mTOR inhibitor rapamycin reduced the number of apoptotic cells induced by HG and the downstream effects of mTOR activation noted above. Furthermore, gene silencing of tuberin with siRNA decreased cleavage of PARP. These data show that the tuberin/mTOR pathway promotes apoptosis of tubular epithelial cells in diabetes, mediated in part by cleavage of PARP by YY1.
Collapse
Affiliation(s)
- Chakradhar Velagapudi
- The University of Texas Health Science Center, Department of Medicine-MSC 7882, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Aggarwal A, Tandon S, Singla SK, Tandon C. Diminution of oxalate induced renal tubular epithelial cell injury and inhibition of calcium oxalate crystallization in vitro by aqueous extract of Tribulus terrestris. Int Braz J Urol 2010; 36:480-8; discussion 488, 489. [DOI: 10.1590/s1677-55382010000400011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2009] [Indexed: 11/22/2022] Open
Affiliation(s)
| | - S. Tandon
- University of Information Technology, India
| | | | - C. Tandon
- University of Information Technology, India
| |
Collapse
|
25
|
Chen S, Gao X, Sun Y, Xu C, Wang L, Zhou T. Analysis of HK-2 cells exposed to oxalate and calcium oxalate crystals: proteomic insights into the molecular mechanisms of renal injury and stone formation. ACTA ACUST UNITED AC 2009; 38:7-15. [DOI: 10.1007/s00240-009-0226-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 10/06/2009] [Indexed: 11/30/2022]
|