1
|
Hornero-Ramirez H, Morisette A, Marcotte B, Penhoat A, Lecomte B, Panthu B, Lessard Lord J, Thirion F, Van-Den-Berghe L, Blond E, Simon C, Caussy C, Feugier N, Doré J, Sanoner P, Meynier A, Desjardins Y, Pilon G, Marette A, Cani PD, Laville M, Vinoy S, Michalski MC, Nazare JA. Multifunctional dietary approach reduces intestinal inflammation in relation with changes in gut microbiota composition in subjects at cardiometabolic risk: the SINFONI project. Gut Microbes 2025; 17:2438823. [PMID: 39710576 DOI: 10.1080/19490976.2024.2438823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/24/2024] Open
Abstract
The development of cardiometabolic (CM) diseases is associated with chronic low-grade inflammation, partly linked to alterations of the gut microbiota (GM) and reduced intestinal integrity. The SINFONI project investigates a multifunctional (MF) nutritional strategy's impact combining different bioactive compounds on inflammation, GM modulation and CM profile. In this randomized crossover-controlled study, 30 subjects at CM-risk consumed MF cereal-products, enriched with polyphenols, fibers, slowly-digestible starch, omega-3 fatty acids or Control cereal-products (without bioactive compounds) for 2 months. Metabolic endotoxemia (lipopolysaccharide (LPS), lipopolysaccharide-binding protein over soluble cluster of differentiation-14 (LBP/sCD14), systemic inflammation and cardiovascular risk markers, intestinal inflammation, CM profile and response to a one-week fructose supplementation, were assessed at fasting and post mixed-meal. GM composition and metabolomic analysis were conducted. Mixed linear models were employed, integrating time (pre/post), treatment (MF/control), and sequence/period. Compared to control, MF intervention reduced intestinal inflammation (fecal calprotectin, p = 0.007) and endotoxemia (fasting LPS, p < 0.05), without alteration of systemic inflammation. MF decreased serum branched-chain amino acids compared to control (p < 0.05) and increased B.ovatus, B.uniformis, A.butyriciproducens and unclassified Christensenellaceae.CAG-74 (p < 0.05). CM markers were unchanged. A 2-month dietary intervention combining multiple bioactive compounds improved intestinal inflammation and induced GM modulation. Such strategy appears as an effective strategy to target low-grade inflammation through multi-target approach.
Collapse
Affiliation(s)
- Hugo Hornero-Ramirez
- Centre de Recherche en Nutrition Humaine - Rhône-Alpes, INSERM, INRAe, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Pierre Bénite, France
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Arianne Morisette
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, Canada
- Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Bruno Marcotte
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, Canada
- Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Armelle Penhoat
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Béryle Lecomte
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Baptiste Panthu
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | | | | | - Laurie Van-Den-Berghe
- Centre de Recherche en Nutrition Humaine - Rhône-Alpes, INSERM, INRAe, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Pierre Bénite, France
| | - Emilie Blond
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
- Biochemistry Department, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Chantal Simon
- Centre de Recherche en Nutrition Humaine - Rhône-Alpes, INSERM, INRAe, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Pierre Bénite, France
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Cyrielle Caussy
- Centre de Recherche en Nutrition Humaine - Rhône-Alpes, INSERM, INRAe, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Pierre Bénite, France
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
- Endocrinology, Diabetes and Nutrition Department, Lyon South Hospital, Civil Hospices of Lyon, Pierre-Bénite, France
| | - Nathalie Feugier
- Centre de Recherche en Nutrition Humaine - Rhône-Alpes, INSERM, INRAe, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Pierre Bénite, France
| | - Joël Doré
- INRAE, MGP, Université Paris-Saclay, Jouy-en-Josas, France
| | - Philippe Sanoner
- iSymrise-Diana Food SAS, R&D, Naturals Food & Beverage, Rennes, France
| | - Alexandra Meynier
- Nutrition Research, Paris-Saclay Tech Center, Mondelez International R&D, Saclay, France
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, Canada
- Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Geneviève Pilon
- Department of Medicine, Faculty of Medicine, Québec Heart and Lung Institute, Université Laval, Québec, Canada
- Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, Canada
| | - André Marette
- Department of Medicine, Faculty of Medicine, Québec Heart and Lung Institute, Université Laval, Québec, Canada
- Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, Canada
| | - Patrice D Cani
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, (LDRI) Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium
- Louvain Drug Research Institute; Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium
- UCLouvain, Université catholique de Louvain, Institute of Experimental and Clinical Research (IREC), Brussels, Belgium
| | - Martine Laville
- Centre de Recherche en Nutrition Humaine - Rhône-Alpes, INSERM, INRAe, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Pierre Bénite, France
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Sophie Vinoy
- Nutrition Research, Paris-Saclay Tech Center, Mondelez International R&D, Saclay, France
| | - Marie-Caroline Michalski
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Julie-Anne Nazare
- Centre de Recherche en Nutrition Humaine - Rhône-Alpes, INSERM, INRAe, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Pierre Bénite, France
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| |
Collapse
|
2
|
Duerre DJ, Hansen JK, John SV, Jen A, Carrillo ND, Bui H, Bao Y, Fabregat M, Catrow JL, Chen LY, Overmyer KA, Shishkova E, Pearce Q, Keller MP, Anderson RA, Cryns VL, Attie AD, Cox JE, Coon JJ, Fan J, Galmozzi A. Haem biosynthesis regulates BCAA catabolism and thermogenesis in brown adipose tissue. Nat Metab 2025; 7:1018-1033. [PMID: 40133548 PMCID: PMC12116240 DOI: 10.1038/s42255-025-01253-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/19/2025] [Indexed: 03/27/2025]
Abstract
The distinctive colour of brown adipose tissue (BAT) is attributed to its high content of haem-rich mitochondria. However, the mechanisms by which BAT regulates intracellular haem levels remain largely unexplored. Here we demonstrate that haem biosynthesis is the primary source of haem in brown adipocytes. Inhibiting haem biosynthesis results in an accumulation of the branched-chain amino acids (BCAAs) valine and isoleucine, owing to a haem-associated metabolon that channels BCAA-derived carbons into haem biosynthesis. Haem synthesis-deficient brown adipocytes display reduced mitochondrial respiration and lower UCP1 levels than wild-type cells. Although exogenous haem supplementation can restore intracellular haem levels and mitochondrial function, UCP1 downregulation persists. This sustained UCP1 suppression is linked to epigenetic regulation induced by the accumulation of propionyl-CoA, a byproduct of disrupted haem synthesis. Finally, disruption of haem biosynthesis in BAT impairs thermogenic response and, in female but not male mice, hinders the cold-induced clearance of circulating BCAAs in a sex-hormone-dependent manner. These findings establish adipose haem biosynthesis as a key regulator of thermogenesis and sex-dependent BCAA homeostasis.
Collapse
Affiliation(s)
- Dylan J Duerre
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Julia K Hansen
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Steven V John
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
- Morgridge Institute for Research, Madison, WI, USA
| | - Annie Jen
- Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Noah D Carrillo
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Molecular and Environmental Toxicology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Hoang Bui
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Yutong Bao
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Matias Fabregat
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - J Leon Catrow
- Metabolomics Core Research Facility, University of Utah, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Li-Yu Chen
- Graduate Program in Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Katherine A Overmyer
- Morgridge Institute for Research, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- National Center for Quantitative Biology of Complex Systems, Madison, WI, USA
| | - Evgenia Shishkova
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- National Center for Quantitative Biology of Complex Systems, Madison, WI, USA
| | - Quentinn Pearce
- Metabolomics Core Research Facility, University of Utah, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Mark P Keller
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Richard A Anderson
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Vincent L Cryns
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Alan D Attie
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - James E Cox
- Metabolomics Core Research Facility, University of Utah, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Joshua J Coon
- Morgridge Institute for Research, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- National Center for Quantitative Biology of Complex Systems, Madison, WI, USA
| | - Jing Fan
- Morgridge Institute for Research, Madison, WI, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Andrea Galmozzi
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
3
|
Leite JSM, Vilas-Boas EA, Takahashi HK, Munhoz AC, Araújo LCC, Carvalho CR, Jr JD, Curi R, Carpinelli AR, Cruzat V. Liver lipid metabolism, oxidative stress, and inflammation in glutamine-supplemented ob/ob mice. J Nutr Biochem 2025; 138:109842. [PMID: 39824260 DOI: 10.1016/j.jnutbio.2025.109842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 12/21/2024] [Accepted: 01/13/2025] [Indexed: 01/20/2025]
Abstract
Glutamine availability may be reduced in chronic diseases, such as type 2 diabetes mellitus (T2DM)-induced by obesity. Herein, the antioxidant, anti-inflammatory and lipid metabolism effects of chronic oral glutamine supplementation in its free and dipeptide form were assessed in ob/ob mice. Adult male C57BL/6J ob/ob mice were supplemented with L-alanyl-L-glutamine (DIP) or free L-glutamine (GLN) in the drinking water for 40 days, whilst C57BL/6J Wild-type lean (WT) and control ob/ob mice (CTRL) received fresh water only. Plasma and tissue (skeletal muscle and liver) glutamine levels, and insulin resistance parameters (e.g., GTT, ITT, insulin) were determined. Oxidative stress (e.g., GSH system, Nrf2 translocation), inflammatory (e.g., NFkB translocation, TNF-α gene expression) and lipid metabolism parameters (e.g., plasma and liver triglyceride levels, SRBP-1, FAS, ACC, and ChRBP gene expression) were also analyzed. CTRL ob/ob mice showed lower glutamine levels in plasma and tissue, as well as increased insulin resistance and fat in the liver. Conversely, chronic DIP supplementation restored glutamine levels in plasma and tissues, improved glucose homeostasis and reduced plasma and liver lipid levels. Also, Nrf2 restoration, reduced NFkB translocation, and lower TNF-α gene expression was observed in the DIP group. Interestingly, chronic free GLN only increased muscle glutamine stores but reduced overall insulin resistance, and attenuated plasma and liver lipid metabolic biomarkers. The results presented herein indicate that restoration of body glutamine levels reduces oxidative stress and inflammation in obese and T2DM ob/ob mice. This effect attenuated hepatic lipid metabolic changes observed in obesity.
Collapse
Affiliation(s)
- Jaqueline Santos Moreira Leite
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Eloisa Aparecida Vilas-Boas
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, São Paulo, Brazil
| | - Hilton K Takahashi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Ana Cláudia Munhoz
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Layanne C C Araújo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Carla Roberta Carvalho
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Jose Donato Jr
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Rui Curi
- Interdisciplinary Post-graduate Program in Health Sciences, ICAFE, Universidade Cruzeiro do Sul, São Paulo, São Paulo, Brazil; Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Angelo Rafael Carpinelli
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Vinicius Cruzat
- Faculty of Health, Southern Cross University, Gold Coast, Queensland, Australia.
| |
Collapse
|
4
|
Chen Y, Torta F, Koh HWL, Benke PI, Gurung RL, Liu JJ, Ang K, Shao YM, Chan GC, Choo JCJ, Ching J, Kovalik JP, Kalhan T, Dorajoo R, Khor CC, Li Y, Tang WE, Seah DEJ, Sabanayagam C, Sobota RM, Venkataraman K, Coffman T, Wenk MR, Sim X, Lim SC, Tai ES. Metabolomics profiling in multi-ancestral individuals with type 2 diabetes in Singapore identified metabolites associated with renal function decline. Diabetologia 2025; 68:557-575. [PMID: 39621102 DOI: 10.1007/s00125-024-06324-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/19/2024] [Indexed: 02/19/2025]
Abstract
AIMS/HYPOTHESIS This study aims to explore the association between plasma metabolites and chronic kidney disease progression in individuals with type 2 diabetes. METHODS We performed a comprehensive metabolomic analysis in a prospective cohort study of 5144 multi-ancestral individuals with type 2 diabetes in Singapore, using eGFR slope as the primary outcome of kidney function decline. In addition, we performed genome-wide association studies on metabolites to assess how these metabolites could be genetically influenced by metabolite quantitative trait loci and performed colocalisation analysis to identify genes affecting both metabolites and kidney function. RESULTS Elevated levels of 61 lipids with long unsaturated fatty acid chains such as phosphatidylethanolamines, triacylglycerols, diacylglycerols, ceramides and deoxysphingolipids were prospectively associated with more rapid kidney function decline. In addition, elevated levels of seven amino acids and three lipids in the plasma were associated with a slower decline in eGFR. We also identified 15 metabolite quantitative trait loci associated with these metabolites, within which variants near TM6SF2, APOE and CPS1 could affect both metabolite levels and kidney functions. CONCLUSIONS/INTERPRETATION Our study identified plasma metabolites associated with prospective renal function decline, offering insights into the underlying mechanism by which the metabolite abnormalities due to fatty acid oversupply might reflect impaired β-oxidation and associate with future chronic kidney disease progression in individuals with diabetes.
Collapse
Affiliation(s)
- Yuqing Chen
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Republic of Singapore
| | - Federico Torta
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Republic of Singapore
- Precision Medicine Translational Research Programme and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Hiromi W L Koh
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore
| | - Peter I Benke
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Republic of Singapore
| | - Resham L Gurung
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, Republic of Singapore
| | - Jian-Jun Liu
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, Republic of Singapore
| | - Keven Ang
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, Republic of Singapore
| | - Yi-Ming Shao
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, Republic of Singapore
| | - Gek Cher Chan
- Division of Nephrology, Department of Medicine, National University Hospital, Singapore, Republic of Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Republic of Singapore
| | - Jason Chon-Jun Choo
- Department of Renal Medicine, Singapore General Hospital, Singapore, Republic of Singapore
| | - Jianhong Ching
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Republic of Singapore
- KK Research Centre, KK Women's and Children's Hospital, Singapore, Republic of Singapore
| | - Jean-Paul Kovalik
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Republic of Singapore
| | - Tosha Kalhan
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Republic of Singapore
| | - Rajkumar Dorajoo
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore
| | - Chiea Chuen Khor
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore
| | - Yun Li
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA
- Department of Computer Science, University of North Carolina, Chapel Hill, NC, USA
| | - Wern Ee Tang
- National Healthcare Group Polyclinics, Singapore, Republic of Singapore
| | - Darren E J Seah
- National Healthcare Group Polyclinics, Singapore, Republic of Singapore
| | - Charumathi Sabanayagam
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Republic of Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Republic of Singapore
| | - Radoslaw M Sobota
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore
| | - Kavita Venkataraman
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Republic of Singapore
| | - Thomas Coffman
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Republic of Singapore
| | - Markus R Wenk
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Republic of Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Republic of Singapore.
| | - Su-Chi Lim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Republic of Singapore.
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, Republic of Singapore.
- Diabetes Center, Khoo Teck Puat Hospital, Singapore, Republic of Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Republic of Singapore.
| | - E Shyong Tai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Republic of Singapore.
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Republic of Singapore.
| |
Collapse
|
5
|
Zhao Y, Chai X, Peng J, Zhu Y, Dong R, He J, Xia L, Liu S, Chen J, Xu Z, Luo C, Sheng J. Proline exacerbates hepatic gluconeogenesis via paraspeckle-dependent mRNA retention. Nat Metab 2025; 7:367-382. [PMID: 39820557 DOI: 10.1038/s42255-024-01206-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 12/10/2024] [Indexed: 01/19/2025]
Abstract
Type 2 diabetes (T2D) is a global health issue characterized by abnormal blood glucose levels and is often associated with excessive hepatic gluconeogenesis. Increased circulating non-essential amino acids (NEAAs) are consistently observed in individuals with T2D; however, the specific contribution of each amino acid to T2D pathogenesis remains less understood. Here, we report an unexpected role of the NEAA proline in coordinating hepatic glucose metabolism by modulating paraspeckle, a nuclear structure scaffolded by the long non-coding RNA Neat1. Mechanistically, proline diminished paraspeckles in hepatocytes, liberating the retained mRNA species into cytoplasm for translation, including the mRNAs of Ppargc1a and Foxo1, contributing to enhanced gluconeogenesis and hyperglycaemia. We further demonstrated that the proline-paraspeckle-mRNA retention axis existed in diabetic liver samples, and intervening in this axis via paraspeckle restoration substantially alleviated hyperglycaemia in both female and male diabetic mouse models. Collectively, our results not only delineated a previously unappreciated proline-instigated, paraspeckle-dependent mRNA-retention mechanism regulating gluconeogenesis, but also spotlighted proline and paraspeckle as potential targets for managing hyperglycaemia.
Collapse
Affiliation(s)
- Yurong Zhao
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Xinxin Chai
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Junxuan Peng
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Yi Zhu
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Rong Dong
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang, China
| | - Junwei He
- College of Life Science, Zhejiang University, Hangzhou, China
| | - Linghao Xia
- College of Life Science, Zhejiang University, Hangzhou, China
| | - Sishuo Liu
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Jingzhou Chen
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Zhengping Xu
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Chi Luo
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China.
| | - Jinghao Sheng
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
6
|
Khan SR, Ye WW, Van JAD, Singh I, Rabiee Y, Rodricks KL, Zhang X, Nicholson RJ, Razani B, Summers SA, Futerman AH, Gunderson EP, Wheeler MB. Reduced circulating sphingolipids and CERS2 activity are linked to T2D risk and impaired insulin secretion. SCIENCE ADVANCES 2025; 11:eadr1725. [PMID: 39792658 PMCID: PMC11790001 DOI: 10.1126/sciadv.adr1725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 12/09/2024] [Indexed: 01/12/2025]
Abstract
Gestational diabetes mellitus (GDM), a transient form of diabetes that resolves postpartum, is a major risk factor for type 2 diabetes (T2D) in women. While the progression from GDM to T2D is not fully understood, it involves both genetic and environmental components. By integrating clinical, metabolomic, and genome-wide association study (GWAS) data, we identified associations between decreased sphingolipid biosynthesis and future T2D, in part through the rs267738 allele of the CERS2 gene in Hispanic women shortly after a GDM pregnancy. To understand the impact of the CERS2 gene and risk allele on glucose regulation, we examined whole-body Cers2 knockout and rs267738 knock-in mice. Both models exhibited glucose intolerance and impaired insulin secretion in vivo. Islets isolated from these models also demonstrated reduced β cell function, as shown by decreased insulin secretion ex vivo. Overall, reduced circulating sphingolipids may indicate a high risk of GDM-to-T2D progression and reflect deficits in CERS2 activity that negatively affect glucose homeostasis and β cell function.
Collapse
Affiliation(s)
- Saifur R. Khan
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- VA Medical Center, Pittsburgh, PA, USA
- Center for Immunometabolism, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wenyue W. Ye
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Julie A. D. Van
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Ishnoor Singh
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Yasmin Rabiee
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | | | - Xiangyu Zhang
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- VA Medical Center, Pittsburgh, PA, USA
- Center for Immunometabolism, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rebekah J. Nicholson
- Departments of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Babak Razani
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- VA Medical Center, Pittsburgh, PA, USA
- Center for Immunometabolism, University of Pittsburgh, Pittsburgh, PA, USA
| | - Scott A. Summers
- Departments of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Anthony H. Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Erica P. Gunderson
- Division of Research, Kaiser Permanente Northern California, Pleasanton, CA, USA
- Department of Health Systems Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA, USA
| | - Michael B. Wheeler
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Zheng J, Zhang W, Miao YY, Li XR, Luo WM, Yang XL, Fang ZZ, Zhang Q. Interactive effect of phenylalanine with duration of diabetes on the risk of small vessel disease in Chinese patients with T2DM. Front Endocrinol (Lausanne) 2025; 15:1472967. [PMID: 39829954 PMCID: PMC11738608 DOI: 10.3389/fendo.2024.1472967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/04/2024] [Indexed: 01/22/2025] Open
Abstract
Aims Few prior studies have explored the relationship between phenylalanine and diabetic small vessel disease (SVD) in patients with different durations of type 2 diabetes mellitus(T2DM). Our study aimed to explore whether phenylalanine is associated with the risk of SVD and to further explore whether phenylalanine interacted with the duration of T2DM to alter the risk of SVD. Materials and methods A total of 1,032 T2DM patients were enrolled using the Liaoning Medical University First Affiliated Hospital (LMUFAH) system. SVD was defined as patients with diabetic nephropathy (DN) or diabetic retinopathy (DR) alone, or both. Serum amino acids were measured by mass spectrometry (MS) technology. A binary logistic regression model was used to examine associations of phenylalanine with SVD risk. Restricted cubic spline (RCS) regression was used to draw the odds ratio curves of plasma phenylalanine for SVD. Additive interaction analysis was employed to test the interaction of low phenylalanine with a long duration of T2DM for SVD. Results Among the 1,032 T2DM patients, 286 (27.7%) had SVD. Phenylalanine <42μmol/L was associated with a markedly increased risk of SVD (OR 1.76, 95%CI 1.23 to 2.51), which was enhanced by a duration of T2DM of ≥5 years to 4.83 (95%CI 2.97-7.87) with significant additive interactions. The inclusion of phenylalanine and duration of T2DM into a traditional risk factor model substantially increased the area under the receiver operating characteristic curve from 0.67 to 0.71 (95% CI 0.70 to 0.75) (P <0.05). Conclusions In Chinese patients with T2DM, phenylalanine <42μmol/L was associated with an increased risk of SVD, which was further amplified by a duration of T2DM of ≥5 years.
Collapse
Affiliation(s)
- Jun Zheng
- Department of Geriatrics, Tianjin Medical University General Hospital, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in the Central Nervous System, Ministry of Education, State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory of Elderly Health, Tianjin Geriatrics Institute, Tianjin, China
| | - Wei Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Yu-Yang Miao
- Department of Geriatrics, Tianjin Medical University General Hospital, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in the Central Nervous System, Ministry of Education, State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory of Elderly Health, Tianjin Geriatrics Institute, Tianjin, China
| | - Xue-Rui Li
- Department of Geriatrics, Tianjin Medical University General Hospital, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in the Central Nervous System, Ministry of Education, State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory of Elderly Health, Tianjin Geriatrics Institute, Tianjin, China
| | - Wei-Ming Luo
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xi-Lin Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Zhong-Ze Fang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Qiang Zhang
- Department of Geriatrics, Tianjin Medical University General Hospital, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in the Central Nervous System, Ministry of Education, State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory of Elderly Health, Tianjin Geriatrics Institute, Tianjin, China
| |
Collapse
|
8
|
Wu Y, Avcilar-Kücükgöze I, Santovito D, Atzler D. Amino Acid Metabolism and Autophagy in Atherosclerotic Cardiovascular Disease. Biomolecules 2024; 14:1557. [PMID: 39766264 PMCID: PMC11673637 DOI: 10.3390/biom14121557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Cardiovascular disease is the most common cause of mortality globally, accounting for approximately one out of three deaths. The main underlying pathology is atherosclerosis, a dyslipidemia-driven, chronic inflammatory disease. The interplay between immune cells and non-immune cells is of great importance in the complex process of atherogenesis. During atheroprogression, intracellular metabolic pathways, such as amino acid metabolism, are master switches of immune cell function. Autophagy, an important stress survival mechanism involved in maintaining (immune) cell homeostasis, is crucial during the development of atherosclerosis and is strongly regulated by the availability of amino acids. In this review, we focus on the interplay between amino acids, especially L-leucine, L-arginine, and L-glutamine, and autophagy during atherosclerosis development and progression, highlighting potential therapeutic perspectives.
Collapse
Affiliation(s)
- Yuting Wu
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, 80336 Munich, Germany; (Y.W.); (I.A.-K.)
| | - Irem Avcilar-Kücükgöze
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, 80336 Munich, Germany; (Y.W.); (I.A.-K.)
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Donato Santovito
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, 80336 Munich, Germany; (Y.W.); (I.A.-K.)
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
- Institute for Genetic and Biomedical Research (IRGB), Unit of Milan, National Research Council, 20133 Milan, Italy
| | - Dorothee Atzler
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, 80336 Munich, Germany; (Y.W.); (I.A.-K.)
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
- Walter Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| |
Collapse
|
9
|
Li C, Yang Q, Zhang L. Identification of putative allosteric inhibitors of BCKDK via virtual screening and biological evaluation. J Enzyme Inhib Med Chem 2024; 39:2290458. [PMID: 38059302 PMCID: PMC11721764 DOI: 10.1080/14756366.2023.2290458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023] Open
Abstract
Abnormal accumulation of branched-chain amino acids (BCAAs) can lead to metabolic diseases and cancers. Branched-chain α-keto acid dehydrogenase kinase (BCKDK) is a key negative regulator of BCAA catabolism, and targeting BCKDK provides a promising therapeutic approach for diseases caused by BCAA accumulation. Here, we screened PPHN and POAB as novel putative allosteric inhibitors by integrating allosteric binding site prediction, large-scale ligand database virtual screening, and bioactivity evaluation assays. Both of them showed a high binding affinity to BCKDK, with Kd values of 3.9 μM and 1.86 μM, respectively. In vivo experiments, the inhibitors demonstrated superior kinase inhibitory activity and notable antiproliferative and proapoptotic effects on diverse cancer cells. Finally, bulk RNA-seq analysis revealed that PPHN and POAB suppressed cell growth through a range of signalling pathways. Taken together, our findings highlight two novel BCKDK inhibitors as potent therapeutic candidates for metabolic diseases and cancers associated with BCAA dysfunctional metabolism.
Collapse
Affiliation(s)
- Chunqiong Li
- Genomics Center, Chinese Institute for Brain Research, Beijing, China
| | - Quanjun Yang
- Department of Pharmacy, Shanghai Sixth People’s Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Zhang
- Genomics Center, Chinese Institute for Brain Research, Beijing, China
| |
Collapse
|
10
|
Watanabe R, Mahbub MH, Yamaguchi N, Hase R, Wada S, Tanabe T. Relationship Between Altered Plasma-Free Amino Acid Levels and Hyperuricemia in Dyslipidemia Without and With Hypertension. Diseases 2024; 12:267. [PMID: 39589941 PMCID: PMC11592643 DOI: 10.3390/diseases12110267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Investigating the association between plasma-free amino acids (PFAAs) and hyperuricemia (HU) in dyslipidemia (DL) and dyslipidemia with hypertension (DH) is crucial, as it could provide valuable insights into the pathophysiology of these conditions and contribute to the development of targeted prevention and management strategies. Therefore, in this study, we aimed to elucidate the associations between PFAAs and HU in individuals with DL and DH. Methods: We quantified PFAAs and uric acid levels among Japanese healthy subjects (n = 1311; HU, n = 57), subjects with DL (n = 1483; HU, n = 219), and subjects with DH (n = 1159; HU, n = 237). Results: The concentrations of most PFAAs showed significant differences between subjects without and with HU across all groups (p < 0.05 to 0.001). Adjusted logistic regression analyses revealed that certain PFAAs were consistently positively or negatively associated with HU across all groups. Specifically, in the DL group, alanine, tryptophan, and tyrosine showed significant positive associations with HU, while in the DH group, citrulline and glutamate exhibited similar positive associations (p < 0.05 to 0.001). Conversely, threonine in the healthy group (p < 0.05) and glutamine in the DL group (p < 0.05) demonstrated significant inverse associations with HU. Conclusions: This study revealed a potential close relationship between alterations in PFAA profiles and HU in dyslipidemia, without and with hypertension. The findings warrant further research to elucidate the role of altered amino acid and uric acid levels as potential disease biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Rie Watanabe
- Department of Public Health and Preventive Medicine, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Yamaguchi, Japan; (R.W.); (N.Y.); (R.H.); (S.W.); (T.T.)
| | - M. H. Mahbub
- Department of Public Health and Preventive Medicine, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Yamaguchi, Japan; (R.W.); (N.Y.); (R.H.); (S.W.); (T.T.)
- Division of Systems Medicine and Informatics, Research Institute for Cell Design Medical Science, Yamaguchi University, Ube 755-8505, Yamaguchi, Japan
| | - Natsu Yamaguchi
- Department of Public Health and Preventive Medicine, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Yamaguchi, Japan; (R.W.); (N.Y.); (R.H.); (S.W.); (T.T.)
| | - Ryosuke Hase
- Department of Public Health and Preventive Medicine, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Yamaguchi, Japan; (R.W.); (N.Y.); (R.H.); (S.W.); (T.T.)
| | - Sunao Wada
- Department of Public Health and Preventive Medicine, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Yamaguchi, Japan; (R.W.); (N.Y.); (R.H.); (S.W.); (T.T.)
| | - Tsuyoshi Tanabe
- Department of Public Health and Preventive Medicine, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Yamaguchi, Japan; (R.W.); (N.Y.); (R.H.); (S.W.); (T.T.)
| |
Collapse
|
11
|
Pandey S. Metabolomics Characterization of Disease Markers in Diabetes and Its Associated Pathologies. Metab Syndr Relat Disord 2024; 22:499-509. [PMID: 38778629 DOI: 10.1089/met.2024.0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
With the change in lifestyle of people, there has been a considerable increase in diabetes, which brings with it certain follow-up pathological conditions, which lead to a substantial medical burden. Identifying biomarkers that aid in screening, diagnosis, and prognosis of diabetes and its associated pathologies would help better patient management and facilitate a personalized treatment approach for prevention and treatment. With the advancement in techniques and technologies, metabolomics has emerged as an omics approach capable of large-scale high throughput data analysis and identifying and quantifying metabolites that provide an insight into the underlying mechanism of the disease and its progression. Diabetes and metabolomics keywords were searched in correspondence with the assigned keywords, including kidney, cardiovascular diseases and critical illness from PubMed and Scopus, from its inception to Dec 2023. The relevant studies from this search were extracted and included in the study. This review is focused on the biomarkers identified in diabetes, diabetic kidney disease, diabetes-related development of CVD, and its role in critical illness.
Collapse
Affiliation(s)
- Swarnima Pandey
- School of Pharmacy, Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Cheng Y, Chao H, Liu J, Liu J. Nontargeted metabolomic profiling analysis of patients with type 2 diabetes mellitus undergoing corn silk treatment. Medicine (Baltimore) 2024; 103:e39396. [PMID: 39151489 PMCID: PMC11332781 DOI: 10.1097/md.0000000000039396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/10/2024] [Accepted: 08/01/2024] [Indexed: 08/19/2024] Open
Abstract
To explore the corn silk's effect and possible mechanism on patients with type 2 diabetes mellitus (T2DM) by untargeted metabolomics. Newly diagnosed patients with T2DM admitted to the endocrinology department of the author's hospital from March 2020 to September 2021 were chosen and then allocated to either the intervention or the control group (NC) randomly. Patients in the intervention group were administered corn silk in the same way as the patients in the NC were given a placebo. A hypoglycemic effect was observed, and an untargeted metabolomics study was done on patients of both groups. Compared with the NC, the glycosylated hemoglobin and fasting blood glucose of patients in the intervention group significantly decreased after 3 months of treatment (P < .05), identified using tandem mass spectrometry, and analyzed by orthogonal partial least squares-discriminant analysis. A total of 73 differential metabolites were screened under the conditions of variable important in projection value >1.0 and P < .05. Differential metabolites are mainly enriched in signaling pathways such as oxidative phosphorylation, purine metabolism, and endocrine resistance. Through untargeted metabolomic analysis, it is found that corn silk water extract may reduce blood glucose in patients with T2DM through multiple pathways, including oxidative phosphorylation and purine metabolism.
Collapse
Affiliation(s)
- Yu Cheng
- Postdoctoral Workstation, Research Institute of Medical and Pharmacy, Qiqihar Medical University, Qiqihar, China
- Postdoctoral Research Station, Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Preventive Medicine, School of Public Health, Qiqihar Medical University, Qiqihar, China
| | - Hong Chao
- Department of Preventive Medicine, School of Public Health, Qiqihar Medical University, Qiqihar, China
| | - Jinghua Liu
- Department of Preventive Medicine, School of Public Health, Qiqihar Medical University, Qiqihar, China
| | - Jicheng Liu
- Postdoctoral Workstation, Research Institute of Medical and Pharmacy, Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
13
|
Fotouhi Ardakani A, Anjom-Shoae J, Sadeghi O, Marathe CS, Feinle-Bisset C, Horowitz M. Association between total, animal, and plant protein intake and type 2 diabetes risk in adults: A systematic review and dose-response meta-analysis of prospective cohort studies. Clin Nutr 2024; 43:1941-1955. [PMID: 39032197 DOI: 10.1016/j.clnu.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/04/2024] [Accepted: 07/03/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND AND AIMS While clinical studies indicate that dietary protein may benefit glucose homeostasis in type 2 diabetes (T2D), the impact of dietary protein, including whether the protein is of animal or plant origin, on the risk of T2D is uncertain. We conducted a systematic review and meta-analysis to evaluate the associations of total, animal, and plant protein intakes with the risk of T2D. METHODS A systematic search was performed using multiple data sources, including PubMed/Medline, ISI Web of Science, Scopus, and Google Scholar, with the data cut-off in May 2023. Our selection criteria focused on prospective cohort studies that reported risk estimates for the association between protein intake and T2D risk. For data synthesis, we calculated summary relative risks and 95% confidence intervals for the highest versus lowest categories of protein intake using random-effects models. Furthermore, we conducted both linear and non-linear dose-response analyses to assess the dose-response associations between protein intake and T2D risk. RESULTS Sixteen prospective cohort studies, involving 615,125 participants and 52,342 T2D cases, were identified, of which eleven studies reported data on intake of both animal and plant protein. Intakes of total (pooled effect size: 1.14, 95% CI: 1.04-1.24) and animal (pooled effect size: 1.18, 95% CI: 1.09-1.27) protein were associated with an increased risk of T2D. These effects were dose-related - each 20-g increase in total or animal protein intake increased the risk of T2D by ∼3% and ∼7%, respectively. In contrast, there was no association between intake of plant protein and T2D risk (pooled effect size: 0.98, 95% CI: 0.89-1.08), while replacing animal with plant protein intake (per each 20 g) was associated with a reduced risk of T2D (pooled effect size: 0.80, 95% CI: 0.76-0.84). CONCLUSIONS Our findings indicate that long-term consumption of animal, but not plant, protein is associated with a significant and dose-dependent increase in the risk of T2D, with the implication that replacement of animal with plant protein intake may lower the risk of T2D.
Collapse
Affiliation(s)
- Amirmahdi Fotouhi Ardakani
- Student Research Committee, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran; Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Javad Anjom-Shoae
- Adelaide Medical School, University of Adelaide, Adelaide, Australia; Centre of Research Excellence in Translating Nutritional Sciences to Good Health, University of Adelaide, Adelaide, Australia
| | - Omid Sadeghi
- Nutrition and Food Security Research Centre and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Chinmay S Marathe
- Adelaide Medical School, University of Adelaide, Adelaide, Australia; Centre of Research Excellence in Translating Nutritional Sciences to Good Health, University of Adelaide, Adelaide, Australia; Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia.
| | - Christine Feinle-Bisset
- Adelaide Medical School, University of Adelaide, Adelaide, Australia; Centre of Research Excellence in Translating Nutritional Sciences to Good Health, University of Adelaide, Adelaide, Australia
| | - Michael Horowitz
- Adelaide Medical School, University of Adelaide, Adelaide, Australia; Centre of Research Excellence in Translating Nutritional Sciences to Good Health, University of Adelaide, Adelaide, Australia; Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
| |
Collapse
|
14
|
Majdizadeh G, Beytollahi M, Djazayery A, Movahedi A. Role of Branched and Aromatic Amino Acids, Diet Inflammatory Index, and Anthropometric Indices on Mental Health. Int J Prev Med 2024; 15:23. [PMID: 39170923 PMCID: PMC11338367 DOI: 10.4103/ijpvm.ijpvm_59_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/13/2023] [Indexed: 08/23/2024] Open
Abstract
Background Mental health disorders are one of the most important and increasing health problems in the youth of today's societies. Some dietary intake and body mass status are factors that affect mental health. This study aimed to investigate the relationship between the intake of branched-chain amino acids (BCAAs) and aromatic amino acids (AAAs) and anthropometric and dietary inflammatory indices with mental health, including depression, anxiety, and stress. Methods In this case-control study, the data of 138 teenage girls aged 13-18 years were collected. Three-day 24-hour food recall and standard anthropometric methods were used to calculate the dietary inflammation intake score of normal and energy-adjusted diets. Mental health disorders were diagnosed by the DASS-21 questionnaire. Statistical analysis used Student's t-test, correlation, and multiple regression were used to analyze the data based on the study's statistical requirements. Results Based on the findings, 59 (42%) of the girls had mental disorders, and 79 (58%) were healthy. The average weight of stressed people was significantly higher than that of healthy people, and the BMI of anxious people was significantly higher than that of nonanxious people (P < 0.05). A significant positive correlation was found between stress and weight and energy intake. Additionally, there was a significant negative correlation between BCAAs and mental health. The average intake of BCAAs was significantly lower in patients (P = 0.01). The trend analysis showed significantly lower BCAA levels among the 4th quartile of mental disorders. No significant relationship was observed between DII, AAA, and anthropometric indices. After adjustment of the results, no relationship was observed between mental health and the studied factors. Conclusions BCAA might be related to mental health. Further studies in different age and sex groups are highly recommended.
Collapse
Affiliation(s)
- Golnaz Majdizadeh
- Department of Nutrition, Science and Research Branch Islamic Azad University, Tehran, Iran
| | - Mina Beytollahi
- Department of Nutrition, Science and Research Branch Islamic Azad University, Tehran, Iran
| | - Abolghasem Djazayery
- Department of Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Ariyo Movahedi
- Department of Nutrition, Science and Research Branch Islamic Azad University, Tehran, Iran
| |
Collapse
|
15
|
Hasan MM, Razu MH, Akter S, Mou SA, Islam M, Khan M. Development and validation of a non-invasive method for quantifying amino acids in human saliva. RSC Adv 2024; 14:22292-22303. [PMID: 39010921 PMCID: PMC11247435 DOI: 10.1039/d4ra01130a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/22/2024] [Indexed: 07/17/2024] Open
Abstract
As an analytical matrix, saliva has superior characteristics than blood and urine. Saliva collection is, first and foremost, non-invasive, making it convenient, painless, and secure for more susceptible people. Second, it does not need professional training for medical personnel, resulting in cost-effectiveness and suitability for extensive collection in support of research. In this study, we developed a method and used it to quantify 13 salivary-free amino acid (SFAA) profiles to support the early clinical diagnosis of diseases using LC-MS/MS. Using an Intrada Amino Acid column (100 × 3 mm, 3 μm), chromatographic separation was accomplished with a binary gradient elution, and an electrospray ionisation source running in the positive ionisation mode was chosen for data collection using the multiple reaction monitoring (MRM) modes. Amino acids were extracted from saliva using acetonitrile. In the MRM mode, LODs and LOQs for ten amino acids were in the range of 0.06-2.50 μM and 0.19-7.58 μM, respectively, and those values were in the range of 1.00-3.00 μM and 3.00-8.50 μM, respectively, for three amino acids. Matrix-matched six-point calibration curves showed a linear correlation coefficient (r 2) of ≥0.998. Recovery experiments validated the method by spiking the control sample at three different concentration levels (5, 50 and 100 μM), and the accuracy level was 85-110%. Except for Thr and Ser, intra- (n = 3) and inter-day (n = 3) precision fell between 0.02 and 7.28. Salivary amino acids can serve as possible biomarkers for various malignancies, with fluctuations in body fluids being crucial for cancer diagnosis; therefore, examining amino acid patterns in saliva can assist in early cancer detection. LC-MS offers improved selectivity and sensitivity for non-derivatised amino acid analysis, surpassing conventional methods and offering proactive quality assurance, making it suitable for complicated sample matrices. These discoveries could be significant in investigating new pathways and cancer treatments and looking for possible AA biomarkers for other malignancies and diseases.
Collapse
Affiliation(s)
- Md Mehedi Hasan
- Bangladesh Reference Institute for Chemical Measurements Dhaka Bangladesh
| | - Mamudul Hasan Razu
- Bangladesh Reference Institute for Chemical Measurements Dhaka Bangladesh
| | - Sonia Akter
- Bangladesh Reference Institute for Chemical Measurements Dhaka Bangladesh
| | - Salma Akter Mou
- Bangladesh Reference Institute for Chemical Measurements Dhaka Bangladesh
| | - Minhazul Islam
- Bangladesh Reference Institute for Chemical Measurements Dhaka Bangladesh
| | - Mala Khan
- Bangladesh Reference Institute for Chemical Measurements Dhaka Bangladesh
| |
Collapse
|
16
|
Li H, Li L, Huang QQ, Yang SY, Zou JJ, Xiao F, Xiang Q, Liu X, Yu R. Global status and trends of metabolomics in diabetes: A literature visualization knowledge graph study. World J Diabetes 2024; 15:1021-1044. [PMID: 38766424 PMCID: PMC11099375 DOI: 10.4239/wjd.v15.i5.1021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/28/2024] [Accepted: 03/18/2024] [Indexed: 05/10/2024] Open
Abstract
BACKGROUND Diabetes is a metabolic disease characterized by hyperglycemia, which has increased the global medical burden and is also the main cause of death in most countries. AIM To understand the knowledge structure of global development status, research focus, and future trend of the relationship between diabetes and metabolomics in the past 20 years. METHODS The articles about the relationship between diabetes and metabolomics in the Web of Science Core Collection were retrieved from 2002 to October 23, 2023, and the relevant information was analyzed using CiteSpace6.2.2R (CiteSpace), VOSviewer6.1.18 (VOSviewer), and Bibliometrix software under R language. RESULTS A total of 3123 publications were included from 2002 to 2022. In the past two decades, the number of publications and citations in this field has continued to increase. The United States, China, Germany, the United Kingdom, and other relevant funds, institutions, and authors have significantly contributed to this field. Scientific Reports and PLoS One are the journals with the most publications and the most citations. Through keyword co-occurrence and cluster analysis, the closely related keywords are "insulin resistance", "risk", "obesity", "oxidative stress", "metabolomics", "metabolites" and "biomarkers". Keyword clustering included cardiovascular disease, gut microbiota, metabonomics, diabetic nephropathy, molecular docking, gestational diabetes mellitus, oxidative stress, and insulin resistance. Burst detection analysis of keyword depicted that "Gene", "microbiota", "validation", "kidney disease", "antioxidant activity", "untargeted metabolomics", "management", and "accumulation" are knowledge frontiers in recent years. CONCLUSION The relationship between metabolomics and diabetes is receiving extensive attention. Diabetic nephropathy, diabetic cardiovascular disease, and kidney disease are key diseases for future research in this field. Gut microbiota, molecular docking, and untargeted metabolomics are key research directions in the future. Antioxidant activity, gene, validation, mass spectrometry, management, and accumulation are at the forefront of knowledge frontiers in this field.
Collapse
Affiliation(s)
- Hong Li
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Liu Li
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Qiu-Qing Huang
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Si-Yao Yang
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Jun-Ju Zou
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Fan Xiao
- College of International Education, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Qin Xiang
- Department of Science and Technology, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Xiu Liu
- Hunan Key Laboratory of TCM Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Rong Yu
- Hunan Key Laboratory of TCM Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
- College of Graduate, Hunan University of Chinese Medicine, Hunan Changsha, Hunan Province, China
| |
Collapse
|
17
|
Yousf S, Batra HS, Jha RM, Sardesai DM, Ananthamohan K, Chugh J, Sharma S. Identification of potential serum biomarkers associated with HbA1c levels in Indian type 2 diabetic subjects using NMR-based metabolomics. Clin Chim Acta 2024; 557:117857. [PMID: 38484908 DOI: 10.1016/j.cca.2024.117857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND The prevalence of type 2 diabetes mellitus (T2DM), a progressive metabolic disorder characterized by chronic hyperglycemia and the development of insulin resistance, has increased globally, with worrying statistics coming from children, adolescents, and young adults from developing countries like India. Here, we investigated unique circulating metabolic signatures associated with prediabetes and T2DM in an Indian cohort using NMR-based metabolomics. MATERIALS AND METHODS The study subjects included healthy volunteers (N = 101), prediabetic subjects (N = 75), and T2DM patients (N = 108). Serum metabolic profiling was performed using 1H NMR spectroscopy and major perturbed metabolites were identified by multivariate analysis and receiver operating characteristic (ROC) modules. RESULTS Of the 36 aqueous abundant metabolites, 24 showed a statistically significant difference between healthy volunteers, prediabetics, and established T2DM subjects. On performing multivariate ROC curve analysis with 5 commonly dysregulated metabolites (namely, glucose, pyroglutamate, o-phosphocholine, serine, and methionine) in prediabetes and T2DM, AUC values obtained were 0.96 (95 % confidence interval (CI) = 0.93, 0.98) for T2DM; and 0.88 (95 % CI = 0.81, 0.93) for prediabetic subjects, respectively. CONCLUSION We propose that the identified metabolite panel can be used in the future as a biomarker for clinical diagnosis, patient surveillance, and for predicting individuals at risk for developing diabetes.
Collapse
Affiliation(s)
- Saleem Yousf
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411008, India; Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Hitender S Batra
- Department of Biochemistry, Armed Forces Medical College (AFMC), Wanowrie, Pune 411040, India; Department of Biochemistry, Symbiosis Medical College for Women, Pune 412115, India.
| | - Rakesh M Jha
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007, India
| | - Devika M Sardesai
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007, India
| | - Kalyani Ananthamohan
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007, India
| | - Jeetender Chugh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Shilpy Sharma
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007, India.
| |
Collapse
|
18
|
Hernandez N, Lokhnygina Y, Ramaker ME, Ilkayeva O, Muehlbauer MJ, Crawford ML, Grant RP, Hsia DS, Jain N, Bain JR, Armstrong S, Newgard CB, Freemark M, Gumus Balikcioglu P. Sex Differences in Branched-chain Amino Acid and Tryptophan Metabolism and Pathogenesis of Youth-onset Type 2 Diabetes. J Clin Endocrinol Metab 2024; 109:e1345-e1358. [PMID: 38066593 PMCID: PMC10940256 DOI: 10.1210/clinem/dgad708] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Indexed: 03/16/2024]
Abstract
OBJECTIVES Insulin resistance is associated with elevations in plasma branched-chain amino acids (BCAAs). BCAAs compete with aromatic amino acids including tryptophan for uptake into β cells. To explore relationships between BCAAs and tryptophan metabolism, adiposity, and glucose tolerance, we compared urine metabolites in overweight/obese youth with type 2 diabetes (T2D) with those in nondiabetic overweight/obese and lean youth. METHODS Metabolites were measured in 24-hour and first-morning urine samples of 56 nondiabetic adolescents with overweight/obesity, 42 adolescents with T2D, and 43 lean controls, aged 12 to 21 years. Group differences were assessed by Kruskal Wallis or ANOVA. RESULTS Groups were comparable for age, pubertal status, and ethnicity. Youth with T2D were predominantly female and had highest percent body fat. BCAAs, branched-chain ketoacids (BCKAs), tryptophan, and kynurenine were higher in urine of subjects with T2D. There were no differences between lean controls and nondiabetic youth with overweight/obesity. T2D was associated with diversion of tryptophan from the serotonin to the kynurenine pathway, with higher urinary kynurenine/serotonin ratio and lower serotonin/tryptophan and 5-HIAA/kynurenine ratios. Urinary BCAAs, BCKAs, tryptophan, and ratios reflecting diversion to the kynurenine pathway correlated positively with metrics of body fat and hemoglobin A1c. Increases in these metabolites in the obese T2D group were more pronounced and statistically significant only in adolescent girls. CONCLUSION Increases in urinary BCAAs and BCKAs in adolescent females with T2D are accompanied by diversion of tryptophan metabolism from the serotonin to the kynurenine pathway. These adaptations associate with higher risks of T2D in obese adolescent females than adolescent males.
Collapse
Affiliation(s)
- Natalie Hernandez
- Division of Pediatric Endocrinology and Diabetes, Duke University Medical Center, Durham, NC 27710, USA
| | - Yuliya Lokhnygina
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Clinical Research Institute, Duke University Medical Center, Durham, NC 27701, USA
| | - Megan Elizabeth Ramaker
- Duke Molecular Physiology Institute (DMPI), Duke University Medical Center, Durham, NC 27701, USA
| | - Olga Ilkayeva
- Duke Molecular Physiology Institute (DMPI), Duke University Medical Center, Durham, NC 27701, USA
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27705, USA
- Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC 27710, USA
| | - Michael J Muehlbauer
- Duke Molecular Physiology Institute (DMPI), Duke University Medical Center, Durham, NC 27701, USA
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27705, USA
| | - Matthew L Crawford
- Department of Research and Development, LabCorp, Burlington, NC 27215, USA
| | - Russell P Grant
- Department of Research and Development, LabCorp, Burlington, NC 27215, USA
| | - Daniel S Hsia
- Clinical Trials Unit, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Nina Jain
- Division of Endocrinology, Department of Pediatrics, University of North Carolina, Chapel Hill, NC 27514, USA
| | - James R Bain
- Duke Molecular Physiology Institute (DMPI), Duke University Medical Center, Durham, NC 27701, USA
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27705, USA
- Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC 27710, USA
| | - Sarah Armstrong
- Duke Clinical Research Institute, Duke University Medical Center, Durham, NC 27701, USA
- Division of General Pediatrics and Adolescent Health, Duke University Medical Center, Durham, NC 27710, USA
- Department of Family Medicine and Community Health, Duke University Medical Center, Durham, NC 27710, USA
- Department of Population Health Sciences, Duke University Medical Center, Durham, NC 27710, USA
| | - Christopher B Newgard
- Duke Molecular Physiology Institute (DMPI), Duke University Medical Center, Durham, NC 27701, USA
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27705, USA
- Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Michael Freemark
- Division of Pediatric Endocrinology and Diabetes, Duke University Medical Center, Durham, NC 27710, USA
- Duke Molecular Physiology Institute (DMPI), Duke University Medical Center, Durham, NC 27701, USA
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27705, USA
| | - Pinar Gumus Balikcioglu
- Division of Pediatric Endocrinology and Diabetes, Duke University Medical Center, Durham, NC 27710, USA
- Duke Molecular Physiology Institute (DMPI), Duke University Medical Center, Durham, NC 27701, USA
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27705, USA
| |
Collapse
|
19
|
Xing X, Sun Q, Wang R, Wang Y, Wang R. Impacts of glutamate, an exercise-responsive metabolite on insulin signaling. Life Sci 2024; 341:122471. [PMID: 38301875 DOI: 10.1016/j.lfs.2024.122471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
AIMS Disruption of the insulin signaling pathway leads to insulin resistance (IR). IR is characterized by impaired glucose and lipid metabolism. Elevated levels of circulating glutamate are correlated with metabolic indicators and may potentially predict the onset of metabolic diseases. Glutamate receptor antagonists have significantly enhanced insulin sensitivity, and improved glucose and lipid metabolism. Exercise is a well-known strategy to combat IR. The aims of our narrative review are to summarize preclinical and clinical findings to show the correlations between circulating glutamate levels, IR and metabolic diseases, discuss the causal role of excessive glutamate in IR and metabolic disturbance, and present an overview of the exercise-induced alteration in circulating glutamate levels. MATERIALS AND METHODS A literature search was conducted to identify studies on glutamate, insulin signaling, and exercise in the PubMed database. The search covered articles published from December 1955 to January 2024, using the search terms of "glutamate", "glutamic acid", "insulin signaling", "insulin resistance", "insulin sensitivity", "exercise", and "physical activity". KEY FINDINGS Elevated levels of circulating glutamate are correlated with IR. Excessive glutamate can potentially hinder the insulin signaling pathway through various mechanisms, including the activation of ectopic lipid accumulation, inflammation, and endoplasmic reticulum stress. Glutamate can also modify mitochondrial function through Ca2+ and induce purine degradation mediated by AMP deaminase 2. Exercise has the potential to decrease circulating levels of glutamate, which can be attributed to accelerated glutamate catabolism and enhanced glutamate uptake. SIGNIFICANCE Glutamate may act as a mediator in the exercise-induced improvement of insulin sensitivity.
Collapse
Affiliation(s)
- Xiaorui Xing
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Qin Sun
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Ruwen Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Yibing Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China.
| | - Ru Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
20
|
Tauriainen MM, Csader S, Lankinen M, Lo KK, Chen C, Lahtinen O, El-Nezamy H, Laakso M, Schwab U. PNPLA3 Genotype and Dietary Fat Modify Concentrations of Plasma and Fecal Short Chain Fatty Acids and Plasma Branched-Chain Amino Acids. Nutrients 2024; 16:261. [PMID: 38257154 PMCID: PMC10819939 DOI: 10.3390/nu16020261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/11/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
The GG genotype of the Patatin-like phosphatase domain-containing 3 (PNPLA3), dietary fat, short-chain fatty acids (SCFA) and branched-chain amino acids (BCAA) are linked with non-alcoholic fatty liver disease. We studied the impact of the quality of dietary fat on plasma (p) and fecal (f) SCFA and p-BCAA in men homozygous for the PNPLA3 rs738409 variant (I148M). Eighty-eight randomly assigned men (age 67.8 ± 4.3 years, body mass index 27.1 ± 2.5 kg/m2) participated in a 12-week diet intervention. The recommended diet (RD) group followed the National and Nordic nutrition recommendations for fat intake. The average diet (AD) group followed the average fat intake in Finland. The intervention resulted in a decrease in total p-SCFAs and iso-butyric acid in the RD group (p = 0.041 and p = 0.002). Valeric acid (p-VA) increased in participants with the GG genotype regardless of the diet (RD, 3.6 ± 0.6 to 7.0 ± 0.6 µmol/g, p = 0.005 and AD, 3.8 ± 0.3 to 9.7 ± 8.5 µmol/g, p = 0.015). Also, genotype relation to p-VA was seen statistically significantly in the RD group (CC: 3.7 ± 0.4 to 4.2 ± 1.7 µmol/g and GG: 3.6 ± 0.6 to 7.0 ± 0.6 µmol/g, p = 0.0026 for time and p = 0.004 for time and genotype). P-VA, unlike any other SCFA, correlated positively with plasma gamma-glutamyl transferase (r = 0.240, p = 0.025). Total p-BCAAs concentration changed in the AD group comparing PNPLA3 CC and GG genotypes (CC: 612 ± 184 to 532 ± 149 µmol/g and GG: 587 ± 182 to 590 ± 130 µmol/g, p = 0.015 for time). Valine decreased in the RD group (p = 0.009), and leucine decreased in the AD group (p = 0.043). RD decreased total fecal SCFA, acetic acid (f-AA), and butyric acid (f-BA) in those with CC genotype (p = 0.006, 0.013 and 0.005, respectively). Our results suggest that the PNPLA3 genotype modifies the effect of dietary fat modification for p-VA, total f-SCFA, f-AA and f-BA, and total p-BCAA.
Collapse
Affiliation(s)
- Milla-Maria Tauriainen
- Department of Medicine, Endoscopy Unit, Kuopio University Hospital, 70029 Kuopio, Finland
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70210 Kuopio, Finland (M.L.); (H.E.-N.); (U.S.)
| | - Susanne Csader
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70210 Kuopio, Finland (M.L.); (H.E.-N.); (U.S.)
| | - Maria Lankinen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70210 Kuopio, Finland (M.L.); (H.E.-N.); (U.S.)
| | - Kwun Kwan Lo
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China; (K.K.L.); (C.C.)
| | - Congjia Chen
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China; (K.K.L.); (C.C.)
| | - Olli Lahtinen
- Diagnostic Imaging Centre, Department of Clinical Radiology, Kuopio University Hospital, 70029 Kuopio, Finland;
| | - Hani El-Nezamy
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70210 Kuopio, Finland (M.L.); (H.E.-N.); (U.S.)
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China; (K.K.L.); (C.C.)
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70211 Kuopio, Finland;
- Department of Medicine, Kuopio University Hospital, 70029 Kuopio, Finland
| | - Ursula Schwab
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70210 Kuopio, Finland (M.L.); (H.E.-N.); (U.S.)
- Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, 70029 Kuopio, Finland
| |
Collapse
|
21
|
Zhang JX, Luo WM, Wang BW, Li RT, Zhang Q, Zhang XY, Fang ZZ, Zhang ZP. The association between plasma free amino acids and type 2 diabetes mellitus complicated with infection in Chinese patients. Diabetol Metab Syndr 2024; 16:9. [PMID: 38191455 PMCID: PMC10775586 DOI: 10.1186/s13098-023-01203-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 11/01/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM), one of the most common public diseases threatening human health, is always accompanied by infection. Though there are still a variety of flaws in the treatment of some infectious diseases, metabolomics provides a fresh perspective to explore the relationship between T2DM and infection. Our research aimed to investigate the association between plasma free amino acids (PFAAs) and T2DM complicated with infection in Chinese patients. METHODS A cross-sectional study was conducted from May 2015 to August 2016. We retrieved the medical records of 1032 inpatients with T2DM from Liaoning Medical University First Affiliated Hospital and we used mass spectrometry to quantify 23 PFAAs. Infections contained 15 individual categories that could be retrieved from the database. Principal component analysis was used to extract factors of PFAAs. Multi-variable binary logistic regression was used to obtain odds ratios (OR) and their 95% confidence intervals (CI). RESULTS Among 1032 inpatients,109 (10.6%) had infectious diseases. Six factors, accounting for 68.6% of the total variance, were extracted. Factor 4 consisted of Glu, Asp and Orn. Factor 5 consisted of Hcy and Pip. After adjusting for potential confounders, factor 4 was positively correlated with T2DM complicated with infection in Chinese T2DM patients (OR: 1.27, 95%CI: 1.06-1.52). Individual Hcy in factor 5 was positively associated with T2DM complicated with infection (OR: 1.33, 95%CI: 1.08-1.64). Furthermore, factor 4 (OR: 1.44, 95%CI: 1.11-1.87), Orn (OR: 1.01, 95%CI: 1.00-1.02) and Hcy (OR: 1.56, 95%CI: 1.14-3.14) were positively associated with bacterial infection in Chinese T2DM patients, while factor 5 (OR: 0.71, 95%CI: 0.50-1.00) was negatively associated with bacterial infection. CONCLUSIONS Urea cycle-related metabolites (Orn, Asp, Glu) and Hcy were positively associated with T2DM complicated with infection in China. Orn and Hcy were positively associated with bacterial infection in T2DM patients in China.
Collapse
Affiliation(s)
- Jing-Xi Zhang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Tianjin Medical University, No.22, Xinxing Street, Heping District, Tianjin, 300041, China
| | - Wei-Ming Luo
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, No.22, Xinxing Street, Heping District, Tianjin, 300041, China
| | - Bo-Wen Wang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, No.22, Xinxing Street, Heping District, Tianjin, 300041, China
| | - Ru-Tao Li
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Tianjin Medical University, No.22, Xinxing Street, Heping District, Tianjin, 300041, China
| | - Qian Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, No.22, Xinxing Street, Heping District, Tianjin, 300041, China
| | - Xiang-Yu Zhang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Tianjin Medical University, No.22, Xinxing Street, Heping District, Tianjin, 300041, China.
| | - Zhong-Ze Fang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, No.22, Xinxing Street, Heping District, Tianjin, 300041, China.
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, 300041, China.
| | - Zhi-Peng Zhang
- General Surgery of Peking University Third Hospital, Beijing, China
| |
Collapse
|
22
|
Imai D, Nakanishi N, Shinagawa N, Yamamoto S, Ichikawa T, Sumi M, Matsui T, Hosomi Y, Hasegawa Y, Munekawa C, Miyoshi T, Okamura T, Kitagawa N, Hashimoto Y, Okada H, Sakui N, Sasano R, Hamaguchi M, Fukui M. Association of Elevated Serum Branched-chain Amino Acid Levels With Longitudinal Skeletal Muscle Loss. J Endocr Soc 2024; 8:bvad178. [PMID: 38213909 PMCID: PMC10783241 DOI: 10.1210/jendso/bvad178] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Indexed: 01/13/2024] Open
Abstract
Context Branched-chain amino acids (BCAA) are substrates for protein synthesis. Although their intake may contribute to an increase in skeletal muscle mass, elevated serum BCAA levels have been reported to be associated with insulin resistance, potentially resulting in decreased skeletal muscle mass. Objective This study aimed to explore the association between elevated serum BCAA levels and longitudinal skeletal muscle loss. Design and Setting A cohort analysis was conducted, in which serum amino acids were analyzed in healthy individuals who underwent a medical health checkup at Kameoka Municipal Hospital (HOZUGAWA study), Japan. Patients Seventy-one participants (37 men and 34 women) underwent follow-up checkups after the baseline visit. The follow-up duration was 1.2 ± .4 years. Main Outcome Measures The relationship between fasting baseline serum BCAA levels and lifestyle factors, body composition, blood test results, dietary history, and changes in skeletal muscle mass was evaluated. Results In both men and women, serum BCAA levels were positively correlated with body weight, body mass index, skeletal muscle mass index (SMI), and serum triglycerides but inversely correlated with serum high-density lipoprotein cholesterol. In men, fasting serum BCAA levels were inversely associated with the rate of change in SMI (adjusted β = -.529, P = .006), and elevated BCAA levels were independently associated with a longitudinal decrease in skeletal muscle mass (odds ratio: 1.740; 95% confidence interval: 1.023-2.960 per 50 nmol/mL serum BCAAs increase). Conclusion Increased circulating BCAAs could be an indicator of skeletal muscle loss in men.
Collapse
Affiliation(s)
- Dan Imai
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Naoko Nakanishi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Natsuko Shinagawa
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Shinta Yamamoto
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Takahiro Ichikawa
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Madoka Sumi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Takaaki Matsui
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yukako Hosomi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yuka Hasegawa
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Chihiro Munekawa
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Tomoki Miyoshi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
- Department of Diabetology and Endocrinology, Kyoto Okamoto Memorial Hospital, Kyoto, 613-0034, Japan
| | - Takuro Okamura
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Noriyuki Kitagawa
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
- Department of Diabetology, Kameoka Municipal Hospital, Kyoto, 621-8585, Japan
| | - Yoshitaka Hashimoto
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
- Department of Diabetes and Endocrinology, Matsushita Memorial Hospital, Moriguchi, 570-8540, Japan
| | - Hiroshi Okada
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | | | | | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| |
Collapse
|
23
|
Zubiri-Gaitán A, Martínez-Álvaro M, Blasco A, Hernández P. Cecal metabolomics of 2 divergently selected rabbit lines revealed microbial mechanisms correlated to intramuscular fat deposition. J Anim Sci 2024; 102:skae339. [PMID: 39497598 PMCID: PMC11638726 DOI: 10.1093/jas/skae339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024] Open
Abstract
The gastrointestinal microbiota plays a key role in the host physiology and health through a complex host-microbiota co-metabolism. Metabolites produced by microbial metabolism can travel through the bloodstream to reach distal organs and affect their function, ultimately influencing the development of relevant production traits such as meat quality. Meat quality is a complex trait made up of a number of characteristics and intramuscular fat content (IMF) is considered to be one of the most important parameters. In this study, 52 rabbits from 2 lines divergently selected for IMF (high-IMF (H) and low-IMF (L) lines) were used to perform an untargeted metabolomic analysis of their cecal content, with the aim to obtain information on genetically determined microbial metabolism related to IMF. A large, correlated response to selection was found in their cecal metabolome composition. Partial least squares discriminant analysis was used to identify the pathways differentiating the lines, which showed a classification accuracy of 99%. On the other hand, 2 linear partial least squares analyses were performed, one for each line, to extract evidence on the specific pathways associated with IMF deposition within each line, which showed predictive abilities (estimated using the Q2) of approximately 60%. The most relevant pathways differentiating the lines were those related to amino acids (aromatic, branched-chain, and gamma-glutamyl), secondary bile acids, and purines. The higher content of secondary bile acids in the L-line was related to greater lipid absorption, while the differences found in purines suggested different fermentation activities, which could be related to greater nitrogen utilization and energy efficiency in the L-line. The linear analyses showed that lipid metabolism had a greater relative importance for IMF deposition in the L-line, whereas a more complex microbial metabolism was associated with the H-line. The lysophospholipids and gamma-glutamyl amino acids were associated with IMF in both lines; the nucleotide and secondary bile acid metabolisms were mostly associated in the H-line; and the long-chain and branched-chain fatty acids were mostly associated in the L-line. A metabolic signature consisting of 2 secondary bile acids and 2 protein metabolites was found with 88% classification accuracy, pointing to the interaction between lipid absorption and protein metabolism as a relevant driver of the microbiome activity influencing IMF.
Collapse
Affiliation(s)
- Agostina Zubiri-Gaitán
- Institute for Animal Science and Technology, Universitat Politècnica de València, Camino de Vera s/n, Valencia, Spain
| | - Marina Martínez-Álvaro
- Institute for Animal Science and Technology, Universitat Politècnica de València, Camino de Vera s/n, Valencia, Spain
| | - Agustín Blasco
- Institute for Animal Science and Technology, Universitat Politècnica de València, Camino de Vera s/n, Valencia, Spain
| | - Pilar Hernández
- Institute for Animal Science and Technology, Universitat Politècnica de València, Camino de Vera s/n, Valencia, Spain
| |
Collapse
|
24
|
Mangogna A, Di Girolamo FG, Fiotti N, Vinci P, Landolfo M, Mearelli F, Biolo G. High-protein diet with excess leucine prevents inactivity-induced insulin resistance in women. Clin Nutr 2023; 42:2578-2587. [PMID: 37972527 DOI: 10.1016/j.clnu.2023.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 09/18/2023] [Accepted: 10/29/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND AND AIMS Muscle inactivity leads to muscle atrophy and insulin resistance. The branched-chain amino acid (BCAA) leucine interacts with the insulin signaling pathway to modulate glucose metabolism. We have tested the ability of a high-protein BCAA-enriched diet to prevent insulin resistance during long-term bed rest (BR). METHODS Stable isotopes were infused to determine glucose and protein kinetics in the postabsorptive state and during a hyperinsulinemic-euglycemic clamp in combination with amino acid infusion (Clamp + AA) before and at the end of 60 days of BR in two groups of healthy, young women receiving eucaloric diets containing 1 g of protein/kg per day (n = 8) or 1.45 g of protein/kg per day enriched with 0.15 g/kg per day of BCAAs (leucine/valine/isoleucine = 2/1/1) (n = 8). Body composition was determined by Dual X-ray Absorptiometry. RESULTS BR decreased lean body mass by 7.6 ± 0.3 % and 7.2 ± 0.8 % in the groups receiving conventional or high protein-BCAA diets, respectively. Fat mass was unchanged in both groups. At the end of BR, percent changes of insulin-mediated glucose uptake significantly (p = 0.01) decreased in the conventional diet group from 155 ± 23 % to 84 ± 10 % while did not change significantly in the high protein-BCAA diet group from 126 ± 20 % to 141 ± 27 % (BR effect, p = 0.32; BR/diet interaction, p = 0.01; Repeated Measures ANCOVA). In contrast, there were no BR/diet interactions on proteolysis and protein synthesis Clamp + AA changes in the conventional diet and the high protein-BCAA diet groups. CONCLUSION A high protein-BCAA enriched diet prevented inactivity-induced insulin resistance in healthy women.
Collapse
Affiliation(s)
- Alessandro Mangogna
- Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Burlo Garofolo, Trieste, Italy
| | - Filippo Giorgio Di Girolamo
- Department of Medical Surgical and Health Sciences, Medical Clinic, Cattinara Hospital, University of Trieste, Trieste, Italy; Hospital Pharmacy, Cattinara Hospital, Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
| | - Nicola Fiotti
- Department of Medical Surgical and Health Sciences, Medical Clinic, Cattinara Hospital, University of Trieste, Trieste, Italy
| | - Pierandrea Vinci
- Department of Medical Surgical and Health Sciences, Medical Clinic, Cattinara Hospital, University of Trieste, Trieste, Italy
| | - Matteo Landolfo
- Department of Medical Surgical and Health Sciences, Medical Clinic, Cattinara Hospital, University of Trieste, Trieste, Italy
| | - Filippo Mearelli
- Department of Medical Surgical and Health Sciences, Medical Clinic, Cattinara Hospital, University of Trieste, Trieste, Italy
| | - Gianni Biolo
- Department of Medical Surgical and Health Sciences, Medical Clinic, Cattinara Hospital, University of Trieste, Trieste, Italy.
| |
Collapse
|
25
|
Duerre DJ, Hansen JK, John S, Jen A, Carrillo N, Bui H, Bao Y, Fabregat M, Overmeyer K, Shishkova E, Keller MP, Anderson RA, Cryns VL, Attie AD, Coon JJ, Fan J, Galmozzi A. Heme biosynthesis regulates BCAA catabolism and thermogenesis in brown adipose tissue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.28.568893. [PMID: 38076785 PMCID: PMC10705273 DOI: 10.1101/2023.11.28.568893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
With age, people tend to accumulate body fat and reduce energy expenditure 1 . Brown (BAT) and beige adipose tissue dissipate heat and increase energy expenditure via the activity of the uncoupling protein UCP1 and other thermogenic futile cycles 2,3 . The activity of brown and beige depots inversely correlates with BMI and age 4-11 , suggesting that promoting thermogenesis may be an effective approach for combating age-related metabolic disease 12-15 . Heme is an enzyme cofactor and signaling molecule that we recently showed to regulate BAT function 16 . Here, we show that heme biosynthesis is the primary contributor to intracellular heme levels in brown adipocytes. Inhibition of heme biosynthesis leads to mitochondrial dysfunction and reduction in UCP1. Although supplementing heme can restore mitochondrial function in heme-synthesis-deficient cells, the downregulation of UCP1 persists due to the accumulation of the heme precursors, particularly propionyl-CoA, which is a product of branched-chain amino acids (BCAA) catabolism. Cold exposure promotes BCAA uptake in BAT, and defects in BCAA catabolism in this tissue hinder thermogenesis 17 . However, BCAAs' contribution to the TCA cycle in BAT and WAT never exceeds 2% of total TCA flux 18 . Our work offers a way to integrate current literature by describing heme biosynthesis as an important metabolic sink for BCAAs.
Collapse
|
26
|
Najafi F, Mohseni P, Pasdar Y, Niknam M, Izadi N. The association between dietary amino acid profile and the risk of type 2 diabetes: Ravansar non-communicable disease cohort study. BMC Public Health 2023; 23:2284. [PMID: 37980456 PMCID: PMC10657569 DOI: 10.1186/s12889-023-17210-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023] Open
Abstract
BACKGROUND Type 2 diabetes (T2D) is one of the most common chronic diseases and the main risk factors for T2D consist of a combination of lifestyle, unhealthy diet, and genetic factors. Amino acids are considered to be a major component of dietary sources for many of the associations between dietary protein and chronic disease. Therefore, this study amied to determine the association between dietary amino acid intakes and the incidence of T2D. METHODS The present nested case-control study was conducted using data from the Ravansar Non-Communicable Disease (RaNCD) Cohort Study. The information required for this study was collected from individuals who participated in the Adult Cohort Study from the start of the study until September 2023. Over a 6-year follow-up period, data from 113 new T2D cases were available. Four controls were then randomly selected for each case using density sampling. Cases and controls were matched for sex and age at the interview. Food frequency questionnaire (FFQ) was used to collect data related to all amino acids including tryptophan, threonine, isoleucine, leucine, lysine, methionine, cysteine, phenylalanine, tyrosine, valine, arginine, histidine, alanine, aspartic acid, glutamic acid, glycine, proline, and serine were also extracted. Binary logistic regression was used to estimate the crude and adjusted odds ratio for the risk of T2D. RESULTS Using the univariable model, a significant association was found between T2D risk and branched-chain, alkaline, sulfuric, and essential amino acids in the fourth quartile. Accordingly, individuals in the fourth quartile had a 1.81- to 1.87-fold higher risk of developing new T2D than individuals in the lowest quartile (P<0.05). After adjustment for several variables, the risk of developing a new T2D was 2.70 (95% CI: 1.16-6.31), 2.68 (95% CI: 1.16-6.21), 2.98 (95% CI: 1.27-6.96), 2.45 (95% CI: 1.02-5.90), and 2.66 (95% CI: 1.13-6.25) times higher, for individuals in the fourth quartile of branched-chain, alkaline, sulfuric, alcoholic, and essential amino acids compared with those in the lowest quartile, respectively. CONCLUSIONS The results showed that the risk of developing a new T2D was higher for individuals in the fourth quartile of branched-chain amino acids, alkaline, sulfate, and essential amino acids than in the lower quartile.
Collapse
Affiliation(s)
- Farid Najafi
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Parisa Mohseni
- Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yahya Pasdar
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahdieh Niknam
- Research Center for Social Determinants of Health, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Izadi
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
27
|
Shastry A, Dunham-Snary K. Metabolomics and mitochondrial dysfunction in cardiometabolic disease. Life Sci 2023; 333:122137. [PMID: 37788764 DOI: 10.1016/j.lfs.2023.122137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/21/2023] [Accepted: 09/29/2023] [Indexed: 10/05/2023]
Abstract
Circulating metabolites are indicators of systemic metabolic dysfunction and can be detected through contemporary techniques in metabolomics. These metabolites are involved in numerous mitochondrial metabolic processes including glycolysis, fatty acid β-oxidation, and amino acid catabolism, and changes in the abundance of these metabolites is implicated in the pathogenesis of cardiometabolic diseases (CMDs). Epigenetic regulation and direct metabolite-protein interactions modulate metabolism, both within cells and in the circulation. Dysfunction of multiple mitochondrial components stemming from mitochondrial DNA mutations are implicated in disease pathogenesis. This review will summarize the current state of knowledge regarding: i) the interactions between metabolites found within the mitochondrial environment during CMDs, ii) various metabolites' effects on cellular and systemic function, iii) how harnessing the power of metabolomic analyses represents the next frontier of precision medicine, and iv) how these concepts integrate to expand the clinical potential for translational cardiometabolic medicine.
Collapse
Affiliation(s)
- Abhishek Shastry
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Kimberly Dunham-Snary
- Department of Medicine, Queen's University, Kingston, ON, Canada; Department of Biomedical & Molecular Sciences, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
28
|
Teymoori F, Ahmadirad H, Jahromi MK, Mokhtari E, Farhadnejad H, Mohammadzadeh M, Babrpanjeh M, Shahrokhtabar T, Jamshidi S, Mirmiran P. Serum branched amino acids and the risk of all-cause mortality: a meta-analysis and systematic review. Amino Acids 2023; 55:1475-1486. [PMID: 37725184 DOI: 10.1007/s00726-023-03329-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/29/2023] [Indexed: 09/21/2023]
Abstract
Recently, the serum levels of branched-chain amino acids (BCAAs) have been considered as an indicator to evaluate health status and predict chronic diseases risk. This systematic review and meta-analysis aimed to assess the relationship between Serum BCAAs and the risk of all-cause mortality. We carried out a comprehensive and systematic search in various important databases, including PubMed, Scopus, and Web of Science databases to find the relevant studies published up to October 2022 with no language, design, or time limitation. We extracted the reported hazard ratio (HR) with 95% confidence interval (CI) and odds ratio (OR) with 95%CI in cohorts and case-control studies, respectively, and computed the log HR or OR and its standard error. Then, we used the random-effects model with inverse variance weighting method for the present meta-analysis, to calculate the pooled effect size. Ten observational studies, including nine cohort studies and one case-control study, were included in the present meta-analysis. The number of participants ranges from 53 to 26,711, with an age range of 18-99 years. During 6 months to 24 years of follow-up, 3599 deaths were ascertained. The pooled results indicated that there was no significant association between serum BCAAs (RR: 1.17; 95% CI 0.85-1.60), isoleucine (RR: 1.41; 95%CI 0.92-2.17), leucine (RR: 1.13; 95% CI 0.94-1.36), and valine (RR: 1.02; 95%CI 0.86-1.22) and all-cause mortality. Also, there was significant heterogeneity between studies for serum BCAAs (I2 = 74.1% and P-heterogeneity = 0.021), isoleucine (I2 = 89.4% and P-heterogeneity < 0.001), leucine (I2 = 87.8% and P-heterogeneity < 0.001), and valine (I2 = 86.6% and P-heterogeneity < 0.001). Our results suggested that the serum BCAAs and its components, including isoleucine, leucine, and valine, were not associated with the risk of all-cause mortality.
Collapse
Affiliation(s)
- Farshad Teymoori
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Ahmadirad
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mitra Kazemi Jahromi
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ebrahim Mokhtari
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Farhadnejad
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Milad Mohammadzadeh
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mitra Babrpanjeh
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tahere Shahrokhtabar
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sanaz Jamshidi
- Imam Ali Hospital, Shiraz University of Medical Sciences, Kazerun, Iran.
| | - Parvin Mirmiran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
29
|
Khocht A, Paster B, Lenoir L, Irani C, Fraser G. Metabolomic profiles of obesity and subgingival microbiome in periodontally healthy individuals: A cross-sectional study. J Clin Periodontol 2023; 50:1455-1466. [PMID: 37536958 DOI: 10.1111/jcpe.13860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 07/19/2023] [Accepted: 07/22/2023] [Indexed: 08/05/2023]
Abstract
AIM Since blood metabolomic profiles of obese individuals are known to be altered, our objective was to examine the association between obesity-related metabolic patterns and subgingival microbial compositions in obese and non-obese periodontally healthy individuals. MATERIALS AND METHODS Thirty-nine periodontally healthy subjects were enrolled. Based on body mass index scores, 20 subjects were categorized as lean and 19 as obese. A comprehensive periodontal examination was performed. Subgingival plaque and blood samples were collected. Plaque samples were analysed for bacteria using 16S rDNA sequencing. Untargeted metabolomic profiling (mass spectrometry) was used to quantify metabolites in serum. RESULTS Obese subjects were statistically associated with several periodontopathic taxa including Dialister invisus, Prevotella intermedia, Prevotella denticola, Fusobacterium nucleatum_subsp.vincentii, Mogibacterium diversum, Parvimonas micra and Shuttleworthia satelles. In obese individuals, an amino acid-related metabolic pattern was elevated; however, there was a decrease in metabolic patterns related to lipids and cofactor/vitamins. These metabolic perturbations were associated with multiple subgingival bacterial species that differentiated lean from obese individuals. CONCLUSIONS Obesity-related perturbations in circulating blood metabolites are associated with the development of periodontopathic bacterial colonization in the subgingival microbiome and consequently may increase the risk for periodontal disease in obese individuals.
Collapse
Affiliation(s)
- Ahmed Khocht
- Department of Periodontics, School of Dentistry, Loma Linda University, Loma Linda, California, USA
| | - Bruce Paster
- Department of Molecular Genetics, Forsyth Institute, Cambridge, Massachusetts, USA
| | - Leticia Lenoir
- Department of Periodontics, School of Dentistry, Loma Linda University, Loma Linda, California, USA
| | - Crissy Irani
- Institute for Community Partnerships, Loma Linda University Health, Loma Linda, California, USA
| | - Gary Fraser
- Department of Preventive Medicine, School of Medicine, Loma Linda University, Loma Linda, California, USA
- School of Public Health, Loma Linda University, Loma Linda, California, USA
| |
Collapse
|
30
|
Liu Y, Wang D, Liu YP. Metabolite profiles of diabetes mellitus and response to intervention in anti-hyperglycemic drugs. Front Endocrinol (Lausanne) 2023; 14:1237934. [PMID: 38027178 PMCID: PMC10644798 DOI: 10.3389/fendo.2023.1237934] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) has become a major health problem, threatening the quality of life of nearly 500 million patients worldwide. As a typical multifactorial metabolic disease, T2DM involves the changes and interactions of various metabolic pathways such as carbohydrates, amino acid, and lipids. It has been suggested that metabolites are not only the endpoints of upstream biochemical processes, but also play a critical role as regulators of disease progression. For example, excess free fatty acids can lead to reduced glucose utilization in skeletal muscle and induce insulin resistance; metabolism disorder of branched-chain amino acids contributes to the accumulation of toxic metabolic intermediates, and promotes the dysfunction of β-cell mitochondria, stress signal transduction, and apoptosis. In this paper, we discuss the role of metabolites in the pathogenesis of T2DM and their potential as biomarkers. Finally, we list the effects of anti-hyperglycemic drugs on serum/plasma metabolic profiles.
Collapse
Affiliation(s)
| | | | - Yi-Ping Liu
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, China
| |
Collapse
|
31
|
Rodziewicz-Flis E, Juhas U, Kortas JA, Jaworska J, Bidzan-Bluma I, Babińska A, Micielska K, Żychowska M, Lombardi G, Antosiewicz J, Ziemann E. Nordic Walking training in BungyPump form improves cognitive functions and physical performance and induces changes in amino acids and kynurenine profiles in older adults. Front Endocrinol (Lausanne) 2023; 14:1151184. [PMID: 37766686 PMCID: PMC10520281 DOI: 10.3389/fendo.2023.1151184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
Introduction Although impacts of physical activity on cognitive functions have been intensively investigated, they are still far from being completely understood. The aim of this study was to evaluate the effect of 12 weeks of the Nordic Walking training with BungyPump resistance poles (NW-RSA) on the amino acid and kynurenine profiles as well as selected myokine/exerkine concentrations, which may modify the interface between physical and cognitive functions. Methods A group of 32 older adults participated in the study. Before and after the intervention, body composition, cognitive functions, and physical performance were assessed. Blood samples were taken before and 1 h after the first and last sessions of the NW-RSA training, to determine circulating levels of exercise-induced proteins, i.e., brain-derived neurotrophic factor (BDNF), irisin, kynurenine (KYN), metabolites, and amino acids. Results The NW-RSA training induced a significant improvement in cognitive functions and physical performance as well as a reduction in fat mass (p = 0.05). Changes were accompanied by a decline in resting serum BDNF (p = 0.02) and a slight reduction in irisin concentration (p = 0.08). Still, changes in irisin concentration immediately after the NW-RSA intervention depended on shifts in kynurenine-irisin dropped as kynurenine increased. The kynurenine-to-tryptophan and phenylalanine-to-tyrosine ratios decreased significantly, suggesting their possible involvement in the amelioration of cognitive functions. No changes of glucose homeostasis or lipid profile were found. Shifts in the concentrations of selected amino acids might have covered the increased energy demand in response to the NW-RSA training and contributed to an improvement of physical performance. Conclusion Regular Nordic Walking training with additional resistance (BungyPump) improved cognitive functions and physical performance. These positive effects were associated with a reduced BDNF concentration and kynurenine-to-tryptophan ratio as well as changes in the amino acid profile.
Collapse
Affiliation(s)
- Ewa Rodziewicz-Flis
- Department of Physiotherapy, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Ulana Juhas
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdansk, Gdansk, Poland
| | - Jakub Antoni Kortas
- Department of Health and Natural Sciences, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Joanna Jaworska
- Department of Physiology, Medical University of Gdansk, Gdansk, Poland
| | - Ilona Bidzan-Bluma
- Department of Psychology, Gdansk University of Physical Education and Sport, Gdansk, Poland
- Institute of Psychology, Faculty of Social Sciences, University of Gdansk, Gdansk, Poland
| | - Anna Babińska
- Department of Endocrinology and Internal Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Katarzyna Micielska
- Department of Physical Education and Lifelong Sports, Poznan University of Physical Education, Poznan, Poland
| | - Małgorzata Żychowska
- Department of Biological Foundations of Physical Culture, Kazimierz Wielki University in Bydgoszcz, Bydgoszcz, Poland
| | - Giovanni Lombardi
- Department of Athletics, Strength and Conditioning, Poznan University of Physical Education, Poznan, Poland
- Laboratory of Experimental Biochemistry and Molecular Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Ortopedico Galeazzi, Milano, Italy
| | - Jędrzej Antosiewicz
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdansk, Gdansk, Poland
| | - Ewa Ziemann
- Department of Athletics, Strength and Conditioning, Poznan University of Physical Education, Poznan, Poland
| |
Collapse
|
32
|
Hao Z, Yao J, Zhao X, Liu R, Chang B, Shao H. Preliminary observational study of metabonomics in patients with early and late-onset type 2 diabetes mellitus based on UPLC-Q-TOF/MS. Sci Rep 2023; 13:14579. [PMID: 37666906 PMCID: PMC10477211 DOI: 10.1038/s41598-023-41883-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023] Open
Abstract
Non-targeted metabonomic techniques were used to explore changes in metabolic profiles of patients with early onset and late onset T2DM. Newly diagnosed early onset T2DM (EarT2DM) and late onset T2DM (LatT2DM) patients were recruited, and the matched age, sex, and low-risk population of diabetes mellitus were selected as the control group. 117 adults were recruited in the study, including 21 in EarT2DM group with 25 in corresponding control group (heaCG1), and 48 in LatT2DM group with 23 in corresponding control group (heaCG2). There were 15 relatively distinctive metabolic variants in EarT2DM group and 10 distinctive metabolic variants in LatT2DM group. The same changing pathways mainly involved protein, aminoacyl-tRNA biosynthesis, fatty acid biosynthesis, taurine metabolism, arginine biosynthesis, lysosome and mTOR signaling pathway. The independent disturbed pathways in EarT2DM included branched chain amino acids, alanine, aspartate and glutamate metabolism. The independent disturbed pathways in LatT2DM involved linoleic acid metabolism, biosynthesis of unsaturated fatty acids, arginine, proline metabolism and FoxO signaling pathway. T2DM patients at different diagnosed ages may have different metabolite profiles. These metabolic differences need to be further verified.
Collapse
Affiliation(s)
- Zhaohu Hao
- Metabolic Disease Management Center of Endocrinology Department, Tianjin 4th Central Hospital, The 4th Center Clinical College of Tianjin Medical University, No.1 Zhongshan Road, Tianjin, 300140, China
| | - Junxin Yao
- Metabolic Disease Management Center of Endocrinology Department, Tianjin 4th Central Hospital, The 4th Center Clinical College of Tianjin Medical University, No.1 Zhongshan Road, Tianjin, 300140, China
| | - Xiaoying Zhao
- Metabolic Disease Management Center of Endocrinology Department, Tianjin 4th Central Hospital, The 4th Center Clinical College of Tianjin Medical University, No.1 Zhongshan Road, Tianjin, 300140, China
| | - Ran Liu
- Metabolic Disease Management Center of Endocrinology Department, Tianjin 4th Central Hospital, The 4th Center Clinical College of Tianjin Medical University, No.1 Zhongshan Road, Tianjin, 300140, China
| | - Baocheng Chang
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin, 300134, China.
| | - Hailin Shao
- Metabolic Disease Management Center of Endocrinology Department, Tianjin 4th Central Hospital, The 4th Center Clinical College of Tianjin Medical University, No.1 Zhongshan Road, Tianjin, 300140, China.
| |
Collapse
|
33
|
Liu CY, Li BY, Liang Y, Xu J, Zhuo LB, Wang JT, Hu W, Sun TY, Xu F, Gou W, Zheng JS, Chen YM. The Association between Circulating 25-Hydroxyvitamin D and Carotid Intima-Media Thickness Is Mediated by Gut Microbiota and Fecal and Serum Metabolites in Adults. Mol Nutr Food Res 2023; 67:e2300017. [PMID: 37377073 DOI: 10.1002/mnfr.202300017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/29/2023] [Indexed: 06/29/2023]
Abstract
SCOPE Vitamin D is vital to cardiovascular health. This study examines the association between plasma 25-hydroxyvitamin D (25[OH]D) and the progression of carotid intima-media thickness (cIMT) and identifies the potential mediating biomarkers of gut microbiota and metabolites in adults. METHODS AND RESULTS This 9-year prospective study includes 2975 subjects with plasma 25(OH)D at baseline and determined cIMT every 3 years. Higher circulating 25(OH)D is associated with decreased odds of higher (≥median) 9-year cIMT changes at the common carotid artery (hΔCCA-cIMT) (p-trend < 0.001). Multivariable-adjusted OR (95%CI) of hΔCCA-cIMT for tertiles 2 and 3 (vs. 1) of 25(OH)D is 0.87 (0.73-1.04) and 0.68 (0.57-0.82). Gut microbiome and metabolome analysis identify 18 biomarkers significantly associated with both 25(OH)D and hΔCCA-cIMT, including three microbial genera, seven fecal metabolites, eight serum metabolites, and pathway of synthesis and degradation of ketone bodies. Mediation/path analyses show the scores generated from the overlapped differential gut microbiota, fecal and serum metabolites, and serum acetoacetic acid alone could mediate the beneficial association between 25(OH)D and hΔCCA-cIMT by 10.8%, 23.1%, 59.2%, and 62.0% (all p < 0.05), respectively. CONCLUSIONS These findings show a beneficial association between plasma 25(OH)D and the CCA-cIMT progression. The identified multi-omics biomarkers provide novel mechanistic insights for the epidemiological association.
Collapse
Affiliation(s)
- Chun-Ying Liu
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510275, China
| | - Bang-Yan Li
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yuhui Liang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, China
| | - Jinjian Xu
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510275, China
| | - Lai-Bao Zhuo
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jia-Ting Wang
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wei Hu
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ting-Yu Sun
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510275, China
| | - Fengzhe Xu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, China
| | - Wanglong Gou
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, China
| | - Ju-Sheng Zheng
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, China
| | - Yu-Ming Chen
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
34
|
Rundle M, Fiamoncini J, Thomas EL, Wopereis S, Afman LA, Brennan L, Drevon CA, Gundersen TE, Daniel H, Perez IG, Posma JM, Ivanova DG, Bell JD, van Ommen B, Frost G. Diet-induced Weight Loss and Phenotypic Flexibility Among Healthy Overweight Adults: A Randomized Trial. Am J Clin Nutr 2023; 118:591-604. [PMID: 37661105 PMCID: PMC10517213 DOI: 10.1016/j.ajcnut.2023.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 09/05/2023] Open
Abstract
BACKGROUND The capacity of an individual to respond to changes in food intake so that postprandial metabolic perturbations are resolved, and metabolism returns to its pre-prandial state, is called phenotypic flexibility. This ability may be a more important indicator of current health status than metabolic markers in a fasting state. AIM In this parallel randomized controlled trial study, an energy-restricted healthy diet and 2 dietary challenges were used to assess the effect of weight loss on phenotypic flexibility. METHODS Seventy-two volunteers with overweight and obesity underwent a 12-wk dietary intervention. The participants were randomized to a weight loss group (WLG) with 20% less energy intake or a weight-maintenance group (WMG). At weeks 1 and 12, participants were assessed for body composition by MRI. Concurrently, markers of metabolism and insulin sensitivity were obtained from the analysis of plasma metabolome during 2 different dietary challenges-an oral glucose tolerance test (OGTT) and a mixed-meal tolerance test. RESULTS Intended weight loss was achieved in the WLG (-5.6 kg, P < 0.0001) and induced a significant reduction in total and regional adipose tissue as well as ectopic fat in the liver. Amino acid-based markers of insulin action and resistance such as leucine and glutamate were reduced in the postprandial phase of the OGTT in the WLG by 11.5% and 28%, respectively, after body weight reduction. Weight loss correlated with the magnitude of changes in metabolic responses to dietary challenges. Large interindividual variation in metabolic responses to weight loss was observed. CONCLUSION Application of dietary challenges increased sensitivity to detect metabolic response to weight loss intervention. Large interindividual variation was observed across a wide range of measurements allowing the identification of distinct responses to the weight loss intervention and mechanistic insight into the metabolic response to weight loss.
Collapse
Affiliation(s)
- Milena Rundle
- Section of Nutrition, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Jarlei Fiamoncini
- Food Research Center, Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - E Louise Thomas
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, United Kingdom
| | - Suzan Wopereis
- Department of Microbiology and Systems Biology, Netherlands Organization for Applied Scientific Research, Hague, The Netherlands
| | - Lydia A Afman
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Lorraine Brennan
- UCD School of Agriculture and Food Science, Institute of Food and Health, University College Dublin, Belfield, Dublin, Ireland
| | - Christian A Drevon
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway; Vitas Ltd, Oslo Science Park, Oslo, Norway
| | | | - Hannelore Daniel
- Hannelore Daniel, Molecular Nutrition Unit, Technische Universität München, München, Germany
| | - Isabel Garcia Perez
- Section of Nutrition, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Joram M Posma
- Section of Bioinformatics, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Diana G Ivanova
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Faculty of Pharmacy, Medical University, Varna, Bulgaria
| | - Jimmy D Bell
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, United Kingdom
| | - Ben van Ommen
- Department of Microbiology and Systems Biology, Netherlands Organization for Applied Scientific Research, Hague, The Netherlands
| | - Gary Frost
- Section of Nutrition, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom.
| |
Collapse
|
35
|
Becetti I, Lauze M, Lee H, Bredella MA, Misra M, Singhal V. Changes in Branched-Chain Amino Acids One Year after Sleeve Gastrectomy in Youth with Obesity and Their Association with Changes in Insulin Resistance. Nutrients 2023; 15:3801. [PMID: 37686833 PMCID: PMC10489782 DOI: 10.3390/nu15173801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Adults with obesity have a reduction in branched-chain amino acid (BCAA) levels following metabolic and bariatric surgery (MBS), which is hypothesized to contribute to the metabolic advantages of MBS. We examined this relationship in 62 youth 13-24 years old with severe obesity (47 female) over 12 months. Thirty had sleeve gastrectomy (SG) and 32 were non-surgical controls (NS). We measured fasting insulin, glucose, glycated hemoglobin (HbA1c), isoleucine, leucine, and valine concentrations, and post-prandial insulin and glucose, following a mixed meal tolerance test. Twenty-four-hour food recalls were collected. At baseline, groups did not differ in the intake or the serum levels of BCAAs, HbA1C, HOMA-IR, Matsuda index, insulinogenic index, or oral Disposition index (oDI). Over 12 months, SG vs. NS had greater reductions in serum BCAAs, and SG had significant reductions in BCAA intake. SG vs. NS had greater reductions in HbA1c and HOMA-IR, with increases in the Matsuda index and oDI. In SG, baseline leucine and total BCAA concentrations were negatively correlated with the baseline Matsuda index. Reductions in serum leucine were positively associated with the reductions in HOMA-IR over 12 months. These associations suggest a potential role of BCAA in regulating metabolic health. Reducing dietary intake and serum BCAA concentrations may reduce insulin resistance.
Collapse
Affiliation(s)
- Imen Becetti
- Division of Pediatric Endocrinology, Mass General for Children and Harvard Medical School, Boston, MA 02114, USA; (M.M.); (V.S.)
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Meghan Lauze
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Hang Lee
- Biostatistics Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Miriam A. Bredella
- Department of Radiology, Musculoskeletal Imaging and Interventions, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Madhusmita Misra
- Division of Pediatric Endocrinology, Mass General for Children and Harvard Medical School, Boston, MA 02114, USA; (M.M.); (V.S.)
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Vibha Singhal
- Division of Pediatric Endocrinology, Mass General for Children and Harvard Medical School, Boston, MA 02114, USA; (M.M.); (V.S.)
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Pediatric Program, MGH Weight Center, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
36
|
Gadgil MD, Wood AC, Karaman I, Graça G, Tzoulaki I, Zhong VW, Greenland P, Kanaya AM, Herrington DM. Metabolomic Profile of the Healthy Eating Index-2015 in the Multiethnic Study of Atherosclerosis. J Nutr 2023; 153:2174-2180. [PMID: 37271414 PMCID: PMC10493432 DOI: 10.1016/j.tjnut.2023.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND Poor diet quality is a risk factor for type 2 diabetes and cardiovascular disease. However, knowledge of metabolites marking adherence to Dietary Guidelines for Americans (2015 version) are limited. OBJECTIVES The goal was to determine a pattern of metabolites associated with the Healthy Eating Index (HEI)-2015, which measures adherence to the Dietary Guidelines for Americans. METHODS The analysis examined 3557 adult men and women from the longitudinal cohort Multiethnic Study of Atherosclerosis (MESA), without known cardiovascular disease and with complete dietary data. Fasting serum specimens and diet and demographic questionnaires were assessed at baseline. Untargeted 1H 1-dimensional nuclei magnetic resonance spectroscopy (600 MHz) was used to generate metabolomics and lipidomics. A metabolome-wide association study specified each spectral feature as outcomes, HEI-2015 score as predictor, adjusting for age, sex, race, and study site in linear regression analyses. Subsequently, hierarchical clustering defined the discrete groups of correlated nuclei magnetic resonance features associated with named metabolites, and the linear regression analysis assessed for associations with HEI-2015 total and component scores. RESULTS The sample included 50% women with an mean age of 63 years, with 40% identifying as White, 23% as Black, 24% as Hispanic, and 13% as Chinese American. The mean HEI-2015 score was 66. The metabolome-wide association study identified 179 spectral features significantly associated with HEI-2015 score. The cluster analysis identified 7 clusters representing 4 metabolites; HEI-2015 score was significantly associated with all. HEI-2015 score was associated with proline betaine [β = 0.12 (SE = 0.02); P = 4.70 × 10-13] and was inversely related to proline [β = -0.13 (SE = 0.02); P = 4.45 × 10-14], 1,5 anhydrosorbitol [β = -0.08 (SE = 0.02); P = 4.37 × 10-7] and unsaturated fatty acyl chains [β = 0.08 (SE = 0.02); P = 8.98 × 10-7]. Intake of total fruit, whole grains, and seafood and plant proteins was associated with proline betaine. CONCLUSIONS Diet quality is significantly associated with unsaturated fatty acyl chains, proline betaine, and proline. Further analysis may clarify the link between diet quality, metabolites, and pathogenesis of cardiometabolic disease.
Collapse
Affiliation(s)
- Meghana D Gadgil
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, CA, United States.
| | - Alexis C Wood
- USDA/ARS Children's Nutrition Research Center, Houston, TX United States
| | - Ibrahim Karaman
- National Phenome Centre, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Goncalo Graça
- Section of Bioinformatics, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington Campus, Sir Alexander Fleming Building, London, United Kingdom
| | - Ioanna Tzoulaki
- National Phenome Centre, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Victor W Zhong
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Philip Greenland
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Alka M Kanaya
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, CA, United States
| | - David M Herrington
- Section on Cardiovascular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
37
|
Forteath C, Mordi I, Nisr R, Gutierrez-Lara EJ, Alqurashi N, Phair IR, Cameron AR, Beall C, Bahr I, Mohan M, Wong AKF, Dihoum A, Mohammad A, Palmer CNA, Lamont D, Sakamoto K, Viollet B, Foretz M, Lang CC, Rena G. Amino acid homeostasis is a target of metformin therapy. Mol Metab 2023; 74:101750. [PMID: 37302544 PMCID: PMC10328998 DOI: 10.1016/j.molmet.2023.101750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/04/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023] Open
Abstract
OBJECTIVE Unexplained changes in regulation of branched chain amino acids (BCAA) during diabetes therapy with metformin have been known for years. Here we have investigated mechanisms underlying this effect. METHODS We used cellular approaches, including single gene/protein measurements, as well as systems-level proteomics. Findings were then cross-validated with electronic health records and other data from human material. RESULTS In cell studies, we observed diminished uptake/incorporation of amino acids following metformin treatment of liver cells and cardiac myocytes. Supplementation of media with amino acids attenuated known effects of the drug, including on glucose production, providing a possible explanation for discrepancies between effective doses in vivo and in vitro observed in most studies. Data-Independent Acquisition proteomics identified that SNAT2, which mediates tertiary control of BCAA uptake, was the most strongly suppressed amino acid transporter in liver cells following metformin treatment. Other transporters were affected to a lesser extent. In humans, metformin attenuated increased risk of left ventricular hypertrophy due to the AA allele of KLF15, which is an inducer of BCAA catabolism. In plasma from a double-blind placebo-controlled trial in nondiabetic heart failure (trial registration: NCT00473876), metformin caused selective accumulation of plasma BCAA and glutamine, consistent with the effects in cells. CONCLUSIONS Metformin restricts tertiary control of BCAA cellular uptake. We conclude that modulation of amino acid homeostasis contributes to therapeutic actions of the drug.
Collapse
Affiliation(s)
- Calum Forteath
- Division of Cellular and Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, DD1 9SY, UK
| | - Ify Mordi
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, DD1 9SY, UK
| | - Raid Nisr
- Division of Cellular and Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, DD1 9SY, UK
| | - Erika J Gutierrez-Lara
- Division of Cellular and Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, DD1 9SY, UK
| | - Noor Alqurashi
- Division of Cellular and Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, DD1 9SY, UK
| | - Iain R Phair
- Division of Cellular and Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, DD1 9SY, UK
| | - Amy R Cameron
- Division of Cellular and Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, DD1 9SY, UK; Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, RILD Building, Exeter, EX2 5DW, UK
| | - Craig Beall
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, RILD Building, Exeter, EX2 5DW, UK
| | - Ibrahim Bahr
- Division of Cellular and Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, DD1 9SY, UK
| | - Mohapradeep Mohan
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, DD1 9SY, UK
| | - Aaron K F Wong
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, DD1 9SY, UK
| | - Adel Dihoum
- Division of Cellular and Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, DD1 9SY, UK; Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, DD1 9SY, UK
| | - Anwar Mohammad
- Public Health and Epidemiology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Colin N A Palmer
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, DD1 9SY, UK
| | - Douglas Lamont
- Centre for Advanced Scientific Technologies, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Kei Sakamoto
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Benoit Viollet
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, 75014, France
| | - Marc Foretz
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, 75014, France
| | - Chim C Lang
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, DD1 9SY, UK.
| | - Graham Rena
- Division of Cellular and Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, DD1 9SY, UK.
| |
Collapse
|
38
|
Aguillard AM, Tzeng J, Ferrer I, Tam BT, Lorenzo DN. A cell-autonomous mechanism regulates BCAA catabolism in white adipocytes and systemic metabolic balance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.551146. [PMID: 37577547 PMCID: PMC10418053 DOI: 10.1101/2023.07.31.551146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Elevated plasma branched-chain amino acids (BCAAs) are strongly associated with obesity, insulin resistance (IR), and diabetes in humans and rodent models. However, the mechanisms of BCAA dysregulation and its systemic, organ, and cell-specific implications in the development of obesity and IR are not well understood. To gain mechanistic insight into the causes and effects of plasma BCAA elevations, we leveraged mouse models with high circulating BCAA levels prior to the onset of obesity and IR. Young mice lacking ankyrin-B in white adipose tissue (WAT) or bearing an ankyrin-B variant that causes age-driven metabolic syndrome exhibit downregulation of BCAA catabolism selectively in WAT and excess plasma BCAAs. Using cellular assays, we demonstrated that ankyrin-B promotes the surface localization of the amino acid transporter Asct2 in white adipocytes, and its deficit impairs BCAA uptake. Excess BCAA supplementation worsened glucose tolerance and insulin sensitivity across genotypes. In contrast, BCAA overconsumption only increased adiposity in control mice, implicating WAT utilization of BCAAs in their obesogenic effects. These results shed light into the mechanistic underpinnings of metabolic syndrome caused by ankyrin-B deficits and provide new evidence of the relevance of WAT in the regulation of systemic BCAA levels, adiposity, and glucose homeostasis.
Collapse
Affiliation(s)
- Ashley M Aguillard
- Department of Cell and Developmental Biology, Perelman School of Medicine. University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joyce Tzeng
- Department of Cell and Developmental Biology, Perelman School of Medicine. University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ismael Ferrer
- Department of Cell and Developmental Biology, Perelman School of Medicine. University of Pennsylvania, Philadelphia, PA, USA
| | - Bjorn T Tam
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Damaris N Lorenzo
- Department of Cell and Developmental Biology, Perelman School of Medicine. University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
39
|
Shahisavandi M, Wang K, Ghanbari M, Ahmadizar F. Exploring Metabolomic Patterns in Type 2 Diabetes Mellitus and Response to Glucose-Lowering Medications-Review. Genes (Basel) 2023; 14:1464. [PMID: 37510368 PMCID: PMC10379356 DOI: 10.3390/genes14071464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
The spectrum of information related to precision medicine in diabetes generally includes clinical data, genetics, and omics-based biomarkers that can guide personalized decisions on diabetes care. Given the remarkable progress in patient risk characterization, there is particular interest in using molecular biomarkers to guide diabetes management. Metabolomics is an emerging molecular approach that helps better understand the etiology and promises the identification of novel biomarkers for complex diseases. Both targeted or untargeted metabolites extracted from cells, biofluids, or tissues can be investigated by established high-throughput platforms, like nuclear magnetic resonance (NMR) and mass spectrometry (MS) techniques. Metabolomics is proposed as a valuable tool in precision diabetes medicine to discover biomarkers for diagnosis, prognosis, and management of the progress of diabetes through personalized phenotyping and individualized drug-response monitoring. This review offers an overview of metabolomics knowledge as potential biomarkers in type 2 diabetes mellitus (T2D) diagnosis and the response to glucose-lowering medications.
Collapse
Affiliation(s)
- Mina Shahisavandi
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Kan Wang
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Fariba Ahmadizar
- Department of Data Science & Biostatistics, Julius Global Health, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
| |
Collapse
|
40
|
Li N, Li J, Wang H, Liu J, Li W, Yang K, Huo X, Leng J, Yu Z, Hu G, Fang Z, Yang X. Aromatic Amino Acids and Their Interactions with Gut Microbiota-Related Metabolites for Risk of Gestational Diabetes: A Prospective Nested Case-Control Study in a Chinese Cohort. ANNALS OF NUTRITION & METABOLISM 2023; 79:291-300. [PMID: 37339616 DOI: 10.1159/000531481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 06/05/2023] [Indexed: 06/22/2023]
Abstract
INTRODUCTION The aim of this study was to explore associations of aromatic amino acids (AAA) in early pregnancy with gestational diabetes mellitus (GDM), and whether high AAA and gut microbiota-related metabolites had interactive effects on GDM risk. METHODS We conducted a 1:1 case-control study (n = 486) nested in a prospective cohort of pregnant women from 2010 to 2012. According to the International Association of Diabetes and Pregnancy Study Group's criteria, 243 women were diagnosed with GDM. Binary conditional logistic regression was performed to examine associations of AAA with GDM risk. Interactions between AAA and gut microbiota-related metabolites for GDM were examined using additive interaction measures. RESULTS High phenylalanine and tryptophan were associated with increased GDM risk (OR: 1.72, 95% CI: 1.07-2.78 and 1.66, 1.02-2.71). The presence of high trimethylamine (TMA) markedly increased the OR of high phenylalanine alone up to 7.95 (2.79-22.71), while the presence of low glycoursodeoxycholic acid (GUDCA) markedly increased the OR of high tryptophan alone up to 22.88 (5.28-99.26), both with significant additive interactions. Furthermore, high lysophosphatidylcholines (LPC18:0) mediated both interactive effects. CONCLUSIONS High phenylalanine may have an additive interaction with high TMA, while high tryptophan may have an additive interaction with low GUDCA toward increased risk of GDM, both being mediated via LPC18:0.
Collapse
Affiliation(s)
- Ninghua Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Jing Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
- Tianjin Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China
| | - Hui Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Jinnan Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Weiqin Li
- Project Office, Tianjin Women and Children's Health Center, Tianjin, China
| | - Kai Yang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xiaoxu Huo
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
- Tianjin Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China
| | - Junhong Leng
- Project Office, Tianjin Women and Children's Health Center, Tianjin, China
| | - Zhijie Yu
- Population Cancer Research Program and Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Gang Hu
- Chronic Disease Epidemiology Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Zhongze Fang
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
- Tianjin Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xilin Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
- Tianjin Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China
| |
Collapse
|
41
|
Cuciureanu M, Caratașu CC, Gabrielian L, Frăsinariu OE, Checheriță LE, Trandafir LM, Stanciu GD, Szilagyi A, Pogonea I, Bordeianu G, Soroceanu RP, Andrițoiu CV, Anghel MM, Munteanu D, Cernescu IT, Tamba BI. 360-Degree Perspectives on Obesity. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1119. [PMID: 37374323 PMCID: PMC10304508 DOI: 10.3390/medicina59061119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023]
Abstract
Alarming statistics show that the number of people affected by excessive weight has surpassed 2 billion, representing approximately 30% of the world's population. The aim of this review is to provide a comprehensive overview of one of the most serious public health problems, considering that obesity requires an integrative approach that takes into account its complex etiology, including genetic, environmental, and lifestyle factors. Only an understanding of the connections between the many contributors to obesity and the synergy between treatment interventions can ensure satisfactory outcomes in reducing obesity. Mechanisms such as oxidative stress, chronic inflammation, and dysbiosis play a crucial role in the pathogenesis of obesity and its associated complications. Compounding factors such as the deleterious effects of stress, the novel challenge posed by the obesogenic digital (food) environment, and the stigma associated with obesity should not be overlooked. Preclinical research in animal models has been instrumental in elucidating these mechanisms, and translation into clinical practice has provided promising therapeutic options, including epigenetic approaches, pharmacotherapy, and bariatric surgery. However, more studies are necessary to discover new compounds that target key metabolic pathways, innovative ways to deliver the drugs, the optimal combinations of lifestyle interventions with allopathic treatments, and, last but not least, emerging biological markers for effective monitoring. With each passing day, the obesity crisis tightens its grip, threatening not only individual lives but also burdening healthcare systems and societies at large. It is high time we took action as we confront the urgent imperative to address this escalating global health challenge head-on.
Collapse
Affiliation(s)
- Magdalena Cuciureanu
- Department of Pharmacology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.C.); (C.-C.C.); (I.T.C.); (B.I.T.)
| | - Cătălin-Cezar Caratașu
- Department of Pharmacology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.C.); (C.-C.C.); (I.T.C.); (B.I.T.)
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (G.D.S.); (A.S.)
| | - Levon Gabrielian
- Department of Anatomy and Pathology, The University of Adelaide, Adelaide 5000, Australia;
| | - Otilia Elena Frăsinariu
- Department of Mother and Child, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Laura Elisabeta Checheriță
- 2nd Dental Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Laura Mihaela Trandafir
- Department of Mother and Child, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Gabriela Dumitrița Stanciu
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (G.D.S.); (A.S.)
| | - Andrei Szilagyi
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (G.D.S.); (A.S.)
| | - Ina Pogonea
- Department of Pharmacology and Clinical Pharmacology, “Nicolae Testemiţanu” State University of Medicine and Pharmacy, 2004 Chisinau, Moldova; (I.P.); (M.M.A.)
| | - Gabriela Bordeianu
- Department of Biochemistry, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Radu Petru Soroceanu
- Department of Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Călin Vasile Andrițoiu
- Specialization of Nutrition and Dietetics, “Vasile Goldis” Western University of Arad, 310025 Arad, Romania
| | - Maria Mihalache Anghel
- Department of Pharmacology and Clinical Pharmacology, “Nicolae Testemiţanu” State University of Medicine and Pharmacy, 2004 Chisinau, Moldova; (I.P.); (M.M.A.)
| | - Diana Munteanu
- Institute of Mother and Child, “Nicolae Testemiţanu” State University of Medicine and Pharmacy, 2062 Chisinau, Moldova;
| | - Irina Teodora Cernescu
- Department of Pharmacology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.C.); (C.-C.C.); (I.T.C.); (B.I.T.)
| | - Bogdan Ionel Tamba
- Department of Pharmacology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (M.C.); (C.-C.C.); (I.T.C.); (B.I.T.)
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (G.D.S.); (A.S.)
| |
Collapse
|
42
|
Okut H, Lu Y, Palmer ND, Chen YDI, Taylor KD, Norris JM, Lorenzo C, Rotter JI, Langefeld CD, Wagenknecht LE, Bowden DW, Ng MCY. Metabolomic profiling of glucose homeostasis in African Americans: the Insulin Resistance Atherosclerosis Family Study (IRAS-FS). Metabolomics 2023; 19:35. [PMID: 37005925 PMCID: PMC10068644 DOI: 10.1007/s11306-023-01984-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 03/04/2023] [Indexed: 04/04/2023]
Abstract
INTRODUCTION African Americans are at increased risk for type 2 diabetes. OBJECTIVES This work aimed to examine metabolomic signature of glucose homeostasis in African Americans. METHODS We used an untargeted liquid chromatography-mass spectrometry metabolomic approach to comprehensively profile 727 plasma metabolites among 571 African Americans from the Insulin Resistance Atherosclerosis Family Study (IRAS-FS) and investigate the associations between these metabolites and both the dynamic (SI, insulin sensitivity; AIR, acute insulin response; DI, disposition index; and SG, glucose effectiveness) and basal (HOMA-IR and HOMA-B) measures of glucose homeostasis using univariate and regularized regression models. We also compared the results with our previous findings in the IRAS-FS Mexican Americans. RESULTS We confirmed increased plasma metabolite levels of branched-chain amino acids and their metabolic derivatives, 2-aminoadipate, 2-hydroxybutyrate, glutamate, arginine and its metabolic derivatives, carbohydrate metabolites, and medium- and long-chain fatty acids were associated with insulin resistance, while increased plasma metabolite levels in the glycine, serine and threonine metabolic pathway were associated with insulin sensitivity. We also observed a differential ancestral effect of glutamate on glucose homeostasis with significantly stronger effects observed in African Americans than those previously observed in Mexican Americans. CONCLUSION We extended the observations that metabolites are useful biomarkers in the identification of prediabetes in individuals at risk of type 2 diabetes in African Americans. We revealed, for the first time, differential ancestral effect of certain metabolites (i.e., glutamate) on glucose homeostasis traits. Our study highlights the need for additional comprehensive metabolomic studies in well-characterized multiethnic cohorts.
Collapse
Affiliation(s)
- Hayrettin Okut
- Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Population Health, University of Kansas School of Medicine-Wichita, Wichita, KS, USA
| | - Yingchang Lu
- Division of Genetic Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Nicholette D Palmer
- Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Yii-Der Ida Chen
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Kent D Taylor
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jill M Norris
- Departments of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Aurora, CO, USA
| | - Carlos Lorenzo
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | - Jerome I Rotter
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Carl D Langefeld
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Lynne E Wagenknecht
- Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Donald W Bowden
- Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Maggie C Y Ng
- Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
- Division of Genetic Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| |
Collapse
|
43
|
Moissl AP, Lorkowski S, Meinitzer A, Pilz S, Scharnagl H, Delgado GE, Kleber ME, Krämer BK, Pieske B, Grübler MR, Brussee H, von Lewinski D, Toplak H, Fahrleitner-Pammer A, März W, Tomaschitz A. Association of branched-chain amino acids with mortality-the Ludwigshafen Risk and Cardiovascular Health (LURIC) study. iScience 2023; 26:106459. [PMID: 37020954 PMCID: PMC10067756 DOI: 10.1016/j.isci.2023.106459] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/31/2023] [Accepted: 03/16/2023] [Indexed: 04/03/2023] Open
Abstract
Branched-chain amino acids (BCAAs) are effectors of metabolic diseases, but their impact on mortality is largely unknown. We investigated the association of BCAA with risk factors and mortality in 2,236 participants of the Ludwigshafen Risk and Cardiovascular Health (LURIC) study using linear and Cox regression. Adiponectin, hemoglobin, C-peptide, hemoglobin A1c, and homoarginine showed the strongest association with BCAA concentration (all p < 0.001). During a median follow-up of 10.5 years, 715 participants died, including 450 cardiovascular-related deaths. BCAA concentrations were inversely associated with the risk of all-cause and cardiovascular mortality (HR [95% CI] per 1-SD increase in log-BCAA: 0.75 [0.69-0.82] and 0.72 [0.65-0.80], respectively) after adjustment for potential confounders. BCAAs are directly associated with metabolic risk but inversely with mortality in persons with intermediate-to-high cardiovascular risk. Further studies are warranted to evaluate the diagnostic and therapeutic utility of BCAA in the context of cardiovascular diseases.
Collapse
|
44
|
Liu Y, Gan L, Zhao B, Yu K, Wang Y, Männistö S, Weinstein SJ, Huang J, Albanes D. Untargeted metabolomic profiling identifies serum metabolites associated with type 2 diabetes in a cross-sectional study of the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study. Am J Physiol Endocrinol Metab 2023; 324:E167-E175. [PMID: 36516224 PMCID: PMC9925157 DOI: 10.1152/ajpendo.00287.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/07/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022]
Abstract
Type 2 diabetes (T2D) is a complex chronic disease with substantial phenotypic heterogeneity affecting millions of individuals. Yet, its relevant metabolites and etiological pathways are not fully understood. The aim of this study is to assess a broad spectrum of metabolites related to T2D in a large population-based cohort. We conducted a metabolomic analysis of 4,281 male participants within the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study. The serum metabolomic analysis was performed using an LC-MS/GC-MS platform. Associations between 1,413 metabolites and T2D were examined using linear regression, controlling for important baseline risk factors. Standardized β-coefficients and standard errors (SEs) were computed to estimate the difference in metabolite concentrations. We identified 74 metabolites that were significantly associated with T2D based on the Bonferroni-corrected threshold (P < 3.5 × 10-5). The strongest signals associated with T2D were of carbohydrates origin, including glucose, 1,5-anhydroglucitol (1,5-AG), and mannose (β = 0.34, -0.91, and 0.41, respectively; all P < 10-75). We found several chemical class pathways that were significantly associated with T2D, including carbohydrates (P = 1.3 × 10-11), amino acids (P = 2.7 × 10-6), energy (P = 1.5 × 10-4), and xenobiotics (P = 1.2 × 10-3). The strongest subpathway associations were seen for fructose-mannose-galactose metabolism, glycolysis-gluconeogenesis-pyruvate metabolism, fatty acid metabolism (acyl choline), and leucine-isoleucine-valine metabolism (all P < 10-8). Our findings identified various metabolites and candidate chemical class pathways that can be characterized by glycolysis and gluconeogenesis metabolism, fructose-mannose-galactose metabolism, branched-chain amino acids, diacylglycerol, acyl cholines, fatty acid oxidation, and mitochondrial dysfunction.NEW & NOTEWORTHY These metabolomic patterns may provide new additional evidence and potential insights relevant to the molecular basis of insulin resistance and the etiology of T2D.
Collapse
Affiliation(s)
- Yuzhao Liu
- Department of Endocrinology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lu Gan
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Bin Zhao
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Kai Yu
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, NIH, Bethesda, Maryland
| | - Yangang Wang
- Department of Endocrinology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Satu Männistö
- Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland
| | - Stephanie J Weinstein
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, NIH, Bethesda, Maryland
| | - Jiaqi Huang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
- Xiangya School of Public Health, Central South University, Changsha, China
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, NIH, Bethesda, Maryland
| |
Collapse
|
45
|
The role of exercise and hypoxia on glucose transport and regulation. Eur J Appl Physiol 2023; 123:1147-1165. [PMID: 36690907 DOI: 10.1007/s00421-023-05135-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/06/2023] [Indexed: 01/25/2023]
Abstract
Muscle glucose transport activity increases with an acute bout of exercise, a process that is accomplished by the translocation of glucose transporters to the plasma membrane. This process remains intact in the skeletal muscle of individuals with insulin resistance and type 2 diabetes mellitus (T2DM). Exercise training is, therefore, an important cornerstone in the management of individuals with T2DM. However, the acute systemic glucose responses to carbohydrate ingestion are often augmented during the early recovery period from exercise, despite increased glucose uptake into skeletal muscle. Accordingly, the first aim of this review is to summarize the knowledge associated with insulin action and glucose uptake in skeletal muscle and apply these to explain the disparate responses between systemic and localized glucose responses post-exercise. Herein, the importance of muscle glycogen depletion and the key glucoregulatory hormones will be discussed. Glucose uptake can also be stimulated independently by hypoxia; therefore, hypoxic training presents as an emerging method for enhancing the effects of exercise on glucose regulation. Thus, the second aim of this review is to discuss the potential for systemic hypoxia to enhance the effects of exercise on glucose regulation.
Collapse
|
46
|
Rigamonti AE, Frigerio G, Caroli D, De Col A, Cella SG, Sartorio A, Fustinoni S. A Metabolomics-Based Investigation of the Effects of a Short-Term Body Weight Reduction Program in a Cohort of Adolescents with Obesity: A Prospective Interventional Clinical Study. Nutrients 2023; 15:529. [PMID: 36771236 PMCID: PMC9921209 DOI: 10.3390/nu15030529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/10/2023] [Accepted: 01/14/2023] [Indexed: 01/20/2023] Open
Abstract
Metabolomics applied to assess the response to a body weight reduction program (BWRP) may generate valuable information concerning the biochemical mechanisms/pathways underlying the BWRP-induced cardiometabolic benefits. The aim of the present study was to establish the BWRP-induced changes in the metabolomic profile that characterizes the obese condition. In particular, a validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) targeted metabolomic approach was used to determine a total of 188 endogenous metabolites in the plasma samples of a cohort of 42 adolescents with obesity (female/male = 32/10; age = 15.94 ± 1.33 year; body mass index standard deviation score (BMI SDS) = 2.96 ± 0.46) who underwent a 3-week BWRP, including hypocaloric diet, physical exercise, nutritional education, and psychological support. The BWRP was capable of significantly improving body composition (e.g., BMI SDS, p < 0.0001), glucometabolic homeostasis (e.g., glucose, p < 0.0001), and cardiovascular function (e.g., diastolic blood pressure, p = 0.016). A total of 64 metabolites were significantly reduced after the intervention (at least p < 0.05), including 53 glycerophospholipids (23 PCs ae, 21 PCs aa, and 9 lysoPCs), 7 amino acids (tyrosine, phenylalanine, arginine, citrulline, tryptophan, glutamic acid, and leucine), the biogenic amine kynurenine, 2 sphingomyelins, and (free) carnitine (C0). On the contrary, three metabolites were significantly increased after the intervention (at least p < 0.05)-in particular, glutamine, trans-4-hydroxyproline, and the octadecenoyl-carnitine (C18:1). In conclusion, when administered to adolescents with obesity, a short-term BWRP is capable of changing the metabolomic profile in the plasma.
Collapse
Affiliation(s)
- Antonello E. Rigamonti
- Department of Clinical Sciences and Community Health, University of Milan, 20129 Milan, Italy
| | - Gianfranco Frigerio
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue Du Swing, L-4367 Belvaux, Luxembourg
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Diana Caroli
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Laboratory for Auxo-Endocrinological Research, 28824 Piancavallo-Verbania, Italy
| | - Alessandra De Col
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Laboratory for Auxo-Endocrinological Research, 28824 Piancavallo-Verbania, Italy
| | - Silvano G. Cella
- Department of Clinical Sciences and Community Health, University of Milan, 20129 Milan, Italy
| | - Alessandro Sartorio
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Laboratory for Auxo-Endocrinological Research, 28824 Piancavallo-Verbania, Italy
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Laboratory for Auxo-Endocrinological Research, 20145 Milan, Italy
| | - Silvia Fustinoni
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
47
|
Specific Alteration of Branched-Chain Amino Acid Profile in Polycystic Ovary Syndrome. Biomedicines 2023; 11:biomedicines11010108. [PMID: 36672616 PMCID: PMC9856032 DOI: 10.3390/biomedicines11010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/09/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrinopathies in reproductive age women; it is a complex health issue with numerous comorbidities. Attention has recently been drawn to amino acids as they are molecules essential to maintain homeostasis. The aim of the study was to investigate the branch chain amino acid (BCAA) profile in women with PCOS. A total of 326 women, 208 diagnosed with PCOS and 118 healthy controls, participated in the study; all the patients were between 18 and 40 years old. Anthropometrical, biochemical and hormonal parameters were assessed. Gas-liquid chromatography combined with tandem mass spectrometry was used to investigate BCAA levels. Statistical analysis showed significantly higher plasma levels of BCAAs (540.59 ± 97.23 nmol/mL vs. 501.09 ± 85.33 nmol/mL; p < 0.001) in women with PCOS. Significant correlations (p < 0.05) were found between BCAA and BMI, HOMA-IR, waist circumference and total testosterone levels. In the analysis of individuals with abdominal obesity, there were significant differences between PCOS and controls in BCAA (558.13 ± 100.51 vs. 514.22 ± 79.76 nmol/mL) and the concentrations of all the analyzed amino acids were higher in the PCOS patients. Hyperandrogenemia in PCOS patients was associated with significantly higher leucine, isoleucine and total BCAA levels. The increase of BCAA levels among PCOS patients in comparison to healthy controls might be an early sign of metabolic alteration and a predictive factor for other disturbances.
Collapse
|
48
|
Branched-Chain Amino Acids and Insulin Resistance, from Protein Supply to Diet-Induced Obesity. Nutrients 2022; 15:nu15010068. [PMID: 36615726 PMCID: PMC9824001 DOI: 10.3390/nu15010068] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/30/2022] [Accepted: 12/09/2022] [Indexed: 12/28/2022] Open
Abstract
For more than a decade, there has been a wide debate about the branched-chain amino acids (BCAA) leucine, valine, and isoleucine, with, on the one hand, the supporters of their anabolic effects and, on the other hand, those who suspect them of promoting insulin resistance. Indeed, the role of leucine in the postprandial activation of protein synthesis has been clearly established, even though supplementation studies aimed at taking advantage of this property are rather disappointing. Furthermore, there is ample evidence of an association between the elevation of their plasma concentrations and insulin resistance or the risk of developing type 2 diabetes, although there are many confounding factors, starting with the level of animal protein consumption. After a summary of their metabolism and anabolic properties, we analyze in this review the factors likely to increase the plasma concentrations of BCAAs, including insulin-resistance. After an analysis of supplementation or restriction studies in search of a direct role of BCAAs in insulin resistance, we discuss an indirect role through some of their metabolites: branched-chain keto acids, C3 and C5 acylcarnitines, and hydroxyisobutyrate. Overall, given the importance of insulin in the metabolism of these amino acids, it is very likely that small alterations in insulin sensitivity are responsible for a reduction in their catabolism long before the onset of impaired glucose tolerance.
Collapse
|
49
|
Caloric restriction improves glycaemic control without reducing plasma branched-chain amino acids or keto-acids in obese men. Sci Rep 2022; 12:19273. [PMID: 36369511 PMCID: PMC9652417 DOI: 10.1038/s41598-022-21814-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Abstract
Higher plasma leucine, isoleucine and valine (BCAA) concentrations are associated with diabetes, obesity and insulin resistance (IR). Here, we evaluated the effects of 6-weeks very-low calorie diet (VLCD) upon fasting BCAA in overweight (OW) non-diabetic men, to explore associations between circulating BCAA and IR, before and after a weight loss intervention. Fasting plasma BCAAs were quantified in an OW (n = 26; BMI 32.4 ± 3 kg/m2; mean age 44 ± 9 y) and a normal-weight (NW) group (n = 26; BMI 24 ± 3.1 kg/m2; mean age 32 ± 12.3 y). Ten of the OW group (BMI 32.2 ± 4 kg/m2; 46 ± 8 y) then underwent 6-weeks of VLCD (600-800 kcal/day). Fasting plasma BCAA (gas chromatography-mass spectrometry), insulin sensitivity (HOMA-IR) and body-composition (DXA) were assessed before and after VLCD. Total BCAA were higher in OW individuals (sum leucine/isoleucine/valine: 457 ± 85 µM) compared to NW control individuals (365 ± 78 µM, p < 0.001). Despite significant weight loss (baseline 103.9 ± 12.3 to 93 ± 9.6 kg and BMI 32.2 ± 4 to 28.9 ± 3.6 kg/m2), no changes were observed in BCAAs after 6-weeks of VLCD. Moreover, although VLCD resulted in a significant reduction in HOMA-IR (baseline 1.19 ± 0.62 to 0.51 ± 0.21 post-VLCD; p < 0.001), Pearson's r revealed no relationships between BCAA and HOMA-IR, either before (leucine R2: 2.49e-005, p = 0.98; isoleucine R2: 1.211-e006, p = 0.9; valine R2: 0.004, p = 0.85) or after VLCD (leucine R2: 0.003, p = 0.86; isoleucine R2: 0.006, p = 0.82; valine R2: 0.002, p = 0.65). Plasma BCAA are higher in OW compared to NW individuals. However, while 6-weeks VLCD reduced body weight and IR in OW individuals, this was not associated with reductions in BCAA. This suggests that studies demonstrating links between BCAA and insulin resistance in OW individuals, are complex and are not normalised by simply losing weight.
Collapse
|
50
|
Ren Y, Li Z, Li W, Fan X, Han F, Huang Y, Yu Y, Qian L, Xiong Y. Arginase: Biological and Therapeutic Implications in Diabetes Mellitus and Its Complications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2419412. [PMID: 36338341 PMCID: PMC9629921 DOI: 10.1155/2022/2419412] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/18/2022] [Indexed: 09/21/2023]
Abstract
Arginase is a ubiquitous enzyme in the urea cycle (UC) that hydrolyzes L-arginine to urea and L-ornithine. Two mammalian arginase isoforms, arginase1 (ARG1) and arginase2 (ARG2), play a vital role in the regulation of β-cell functions, insulin resistance (IR), and vascular complications via modulating L-arginine metabolism, nitric oxide (NO) production, and inflammatory responses as well as oxidative stress. Basic and clinical studies reveal that abnormal alterations of arginase expression and activity are strongly associated with the onset and development of diabetes mellitus (DM) and its complications. As a result, targeting arginase may be a novel and promising approach for DM treatment. An increasing number of arginase inhibitors, including chemical and natural inhibitors, have been developed and shown to protect against the development of DM and its complications. In this review, we discuss the fundamental features of arginase. Next, the regulatory roles and underlying mechanisms of arginase in the pathogenesis and progression of DM and its complications are explored. Furthermore, we review the development and discuss the challenges of arginase inhibitors in treating DM and its related pathologies.
Collapse
Affiliation(s)
- Yuanyuan Ren
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Zhuozhuo Li
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Wenqing Li
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Xiaobin Fan
- Department of Obstetrics and Gynecology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, China
| | - Feifei Han
- Department of Endocrinology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, China
| | - Yaoyao Huang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Yi Yu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Lu Qian
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
- Department of Obstetrics and Gynecology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, China
| | - Yuyan Xiong
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| |
Collapse
|