1
|
Singh R, Madruga LYC, Savargaonkar A, Martins AF, Kipper MJ, Popat KC. Tanfloc-Modified Titanium Surfaces: Optimizing Blood Coagulant Activity and Stem Cell Compatibility. ACS Biomater Sci Eng 2025; 11:1445-1455. [PMID: 40013664 PMCID: PMC11897940 DOI: 10.1021/acsbiomaterials.4c02106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 02/28/2025]
Abstract
This study explores the synergistic effects of combining titania nanotubes (TiNTs) with the biopolymer Tanfloc (TAN) to enhance the surface properties of TiNTs for biomedical applications. We investigated the interactions of blood components and human adipose-derived stem cells (ADSCs) with TiNT surfaces covalently functionalized with Tanfloc (TAN), an aminolyzed polyphenolic tannin derivative. The functionalized surfaces (TiNT-TAN) have great potential to control protein adsorption and platelet adhesion and activation. Fluorescence and scanning electron microscopy (SEM) were used to analyze platelet adherence and activation. The amphoteric nature and multiple functional groups on TAN can control blood protein adsorption, platelet adhesion, and activation. Further, the modified surface supports adipose-derived stem cell (ADSC) viability, attachment, and growth without any cytotoxic effect. The TAN conjugation significantly (****p < 0.0001) increased the proliferation rate of ADSCs compared to the TiNT surfaces.
Collapse
Affiliation(s)
- Ramesh Singh
- Department
of Bioengineering, College of Engineering and Computing, George Mason University, Fairfax, Virginia 22030, United States
| | - Liszt Y. C. Madruga
- Department
of Bioengineering, College of Engineering and Computing, George Mason University, Fairfax, Virginia 22030, United States
| | - Aniruddha Savargaonkar
- Department
of Mechanical Engineering, Colorado State
University, Fort Collins, Colorado 80523, United States
| | - Alessandro F. Martins
- Department
of Chemical and Biological Engineering, Colorado State University, Fort
Collins, Colorado 80523, United States
- Department
of Chemistry, Pittsburgh State University, Pittsburgh, Kansas 66762, United States
| | - Matt J. Kipper
- Department
of Chemical and Biological Engineering, Colorado State University, Fort
Collins, Colorado 80523, United States
| | - Ketul C. Popat
- Department
of Bioengineering, College of Engineering and Computing, George Mason University, Fairfax, Virginia 22030, United States
- Department
of Mechanical Engineering, Colorado State
University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
2
|
Plissonneau C, Santosa S. Regional primary preadipocyte characteristics in humans with obesity and type 2 diabetes mellitus. Heliyon 2024; 10:e39710. [PMID: 39553621 PMCID: PMC11564010 DOI: 10.1016/j.heliyon.2024.e39710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024] Open
Abstract
The excessive accumulation of adipose tissue in obesity appears to result in adipose tissue dysfunction perpetuating the onset of obesity-related diseases, including type 2 diabetes (T2DM). In humans, adipose tissue is stored in several depots including subcutaneous and visceral. These depots contribute to the pathology of obesity differently owing to differences in the tissue microenvironment, a main one being preadipocyte function. In examining adipocyte and preadipocyte characteristics, many have used the 3T3-L1 murine cell lines. Though these cell lines provide valuable mechanistic data, the results remain to be translated to humans. Experiments using primary human preadipocytes has shown that obesity and T2DM impact preadipocyte phenotypes. The objective of this review is to describe the differences in regional characteristics of primary preadipocytes collected from humans with obesity and to discuss how these characteristics might be affected in type 2 diabetes mellitus. In doing so, we will show that the characteristics of regional primary preadipocytes in humans are differentially affected by obesity and the development of T2DM.
Collapse
Affiliation(s)
- Claire Plissonneau
- Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montreal, Quebec, Canada
- Metabolism, Obesity, and Nutrition Lab, School of Health, Concordia University, Montreal, Quebec, Canada
- Centre de recherche - Axe maladies chroniques, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Ile-de-Montréal, Hôpital du Sacré-Coeur de Montréal, Montréal, Québec, Canada
| | - Sylvia Santosa
- Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montreal, Quebec, Canada
- Metabolism, Obesity, and Nutrition Lab, School of Health, Concordia University, Montreal, Quebec, Canada
- Centre de recherche - Axe maladies chroniques, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Ile-de-Montréal, Hôpital du Sacré-Coeur de Montréal, Montréal, Québec, Canada
| |
Collapse
|
3
|
Singh R, Madruga LYC, Savargaonkar A, Martins AF, Kipper MJ, Popat KC. COVALENT GRAFTING OF TANFLOC ON TITANIA NANOTUBE ARRAYS: AN APPROACH TO MITIGATE BACTERIAL ADHESION AND IMPROVE THE ANTIBACTERIAL EFFICACY OF TITANIUM IMPLANTS. ADVANCED MATERIALS INTERFACES 2024; 11:2400406. [PMID: 40248746 PMCID: PMC12002416 DOI: 10.1002/admi.202400406] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Indexed: 04/19/2025]
Abstract
Implanted medical devices often face the challenge of infections, which can compromise their successful integration and use. To address this issue, this study demonstrates the covalent grafting of a tannin-based antimicrobial biopolymer tanfloc (TAN) onto the titania nanotube arrays (TiNTs) surface to enhance antibacterial properties. Due to its polyphenolic and ionic structural configuration, tanfloc possesses unique properties that enable it to interact with and disrupt bacterial cell walls and membranes. Combining the topographical effect of TiNTs with the inherent antibacterial properties of tanfloc, this approach aims to mitigate bacterial threats on medical implants effectively. The successful attachment of tanfloc on TiNTs was confirmed through X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR). The antibacterial and antibiofilm efficacy of the tanfloc-functionalized TiNTs was evaluated against Staphylococcus aureus (Gram-positive) and Pseudomonas aeruginosa (Gram-negative) bacteria. The findings suggest that the covalent conjugation of tanfloc onto TiNTs is a promising approach to improve the infection resistance of titanium-based medical implants, with potential applications in orthopedic, dental, and other biomedical device areas.
Collapse
Affiliation(s)
- Ramesh Singh
- Department of Mechanical Engineering, Colorado State University, CO, USA
- Department of Bioengineering, College of Engineering and Computing, George Mason University, VA, USA
| | - Liszt Y. C. Madruga
- Department of Chemical and Biological Engineering, Colorado State University, CO, USA
- Department of Bioengineering, College of Engineering and Computing, George Mason University, VA, USA
| | | | - Alessandro F. Martins
- Department of Chemical and Biological Engineering, Colorado State University, CO, USA
- Department of Chemistry and Biotechnology, University of Wisonsin-River Falls, River Falls, USA
| | - Matt J. Kipper
- Department of Chemical and Biological Engineering, Colorado State University, CO, USA
| | - Ketul C. Popat
- Department of Mechanical Engineering, Colorado State University, CO, USA
- Department of Bioengineering, College of Engineering and Computing, George Mason University, VA, USA
| |
Collapse
|
4
|
Liermann-Wooldrik KT, Kosmacek EA, Oberley-Deegan RE. Adipose Tissues Have Been Overlooked as Players in Prostate Cancer Progression. Int J Mol Sci 2024; 25:12137. [PMID: 39596205 PMCID: PMC11594286 DOI: 10.3390/ijms252212137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/07/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
Obesity is a common risk factor in multiple tumor types, including prostate cancer. Obesity has been associated with driving metastasis, therapeutic resistance, and increased mortality. The effect of adipose tissue on the tumor microenvironment is still poorly understood. This review aims to highlight the work conducted in the field of obesity and prostate cancer and bring attention to areas where more research is needed. In this review, we have described key differences between healthy adipose tissues and obese adipose tissues, as they relate to the tumor microenvironment, focusing on mechanisms related to metabolic changes, abnormal adipokine secretion, altered immune cell presence, and heightened oxidative stress as drivers of prostate cancer formation and progression. Interestingly, common treatment options for prostate cancer ignore the adipose tissue located near the site of the tumor. Because of this, we have outlined how excess adipose tissue potentially affects therapeutics' efficacy, such as androgen deprivation, chemotherapy, and radiation treatment, and identified possible drug targets to increase prostate cancer responsiveness to clinical treatments. Understanding how obesity affects the tumor microenvironment will pave the way for understanding why some prostate cancers become metastatic or treatment-resistant, and why patients experience recurrence.
Collapse
Affiliation(s)
| | | | - Rebecca E. Oberley-Deegan
- Department of Biochemistry and Molecular Biology, 985870 University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.T.L.-W.)
| |
Collapse
|
5
|
Rosell-Moll E, My NTK, Balbuena-Pecino S, Montblanch M, Rodríguez I, Gutiérrez J, Garcia de la Serrana D, Capilla E, Navarro I. Morphofunctional characterization of the three main adipose tissue depots in rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol B Biochem Mol Biol 2024; 275:111039. [PMID: 39396638 DOI: 10.1016/j.cbpb.2024.111039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/15/2024]
Abstract
Visceral adipose tissue (VAT) is the primary fat reservoir and energy source in fish. Other relevant fat depots include subcutaneous adipose tissue (SAT), located under epithelial layers, and intramuscular adipose tissue (IMAT), found between the myotomes. The present study investigates the morphological, gene expression and functional characteristics of these different depots in rainbow trout (Oncorhynchus mykiss). Commercial rainbow trout of two different average weights were sampled for histology, lipid quantification and fatty acids profile. Mature adipocytes were isolated for gene expression analyses of lipid metabolic markers. Both VAT and SAT showed large adipocytes, and high total lipid content, suggesting hypertrophic growth. Adipocytes in IMAT were consistently smaller regardless of fish size. While fatty acid composition was similar across depots, SAT had lower levels of palmitic acid and higher levels of polyunsaturated fatty acids that act as precursors of phospholipids and eicosanoids such as eicosapentaenoic acid, compared to VAT and IMAT. Gene expression analyses revealed higher levels of fatty acid transporters, lipolysis and β-oxidation markers in VAT and SAT compared to IMAT, suggesting a more active lipid metabolism. These data support the role of VAT as the main energy depot, while SAT may act as a secondary reservoir, and IMAT potentially serves as an occasional energy source for muscles. This study provides valuable insights into the distinct properties of the different fat depots in fish, which may help to optimize strategies to modulate adiposity for improved health, metabolism, and product quality.
Collapse
Affiliation(s)
- E Rosell-Moll
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - N T K My
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - S Balbuena-Pecino
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - M Montblanch
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - I Rodríguez
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - J Gutiérrez
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - D Garcia de la Serrana
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - E Capilla
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - I Navarro
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
6
|
Mo YY, Han YX, Xu SN, Jiang HL, Wu HX, Cai JM, Li L, Bu YH, Xiao F, Liang HD, Wen Y, Liu YZ, Yin YL, Zhou HD. Adipose Tissue Plasticity: A Comprehensive Definition and Multidimensional Insight. Biomolecules 2024; 14:1223. [PMID: 39456156 PMCID: PMC11505740 DOI: 10.3390/biom14101223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Adipose tissue is composed of adipocytes, stromal vascular fraction, nerves, surrounding immune cells, and the extracellular matrix. Under various physiological or pathological conditions, adipose tissue shifts cellular composition, lipid storage, and organelle dynamics to respond to the stress; this remodeling is called "adipose tissue plasticity". Adipose tissue plasticity includes changes in the size, species, number, lipid storage capacity, and differentiation function of adipocytes, as well as alterations in the distribution and cellular composition of adipose tissue. This plasticity has a major role in growth, obesity, organismal protection, and internal environmental homeostasis. Moreover, certain thresholds exist for this plasticity with significant individualized differences. Here, we comprehensively elaborate on the specific connotation of adipose tissue plasticity and the relationship between this plasticity and the development of many diseases. Meanwhile, we summarize possible strategies for treating obesity in response to adipose tissue plasticity, intending to provide new insights into the dynamic changes in adipose tissue and contribute new ideas to relevant clinical problems.
Collapse
Affiliation(s)
- Yu-Yao Mo
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Yu-Xin Han
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Shi-Na Xu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Hong-Li Jiang
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Hui-Xuan Wu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Jun-Min Cai
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Long Li
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Yan-Hong Bu
- Department of Blood Transfusion, The Second Xiangya Hospital, Central South University, Changsha 410012, China;
| | - Fen Xiao
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Han-Dan Liang
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Ying Wen
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Yu-Ze Liu
- Pediatric Cardiac Surgery Centre, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China;
| | - Yu-Long Yin
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Hou-De Zhou
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| |
Collapse
|
7
|
Yang Z, Chen F, Zhang Y, Ou M, Tan P, Xu X, Li Q, Zhou S. Therapeutic targeting of white adipose tissue metabolic dysfunction in obesity: mechanisms and opportunities. MedComm (Beijing) 2024; 5:e560. [PMID: 38812572 PMCID: PMC11134193 DOI: 10.1002/mco2.560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 04/09/2024] [Accepted: 04/14/2024] [Indexed: 05/31/2024] Open
Abstract
White adipose tissue is not only a highly heterogeneous organ containing various cells, such as adipocytes, adipose stem and progenitor cells, and immune cells, but also an endocrine organ that is highly important for regulating metabolic and immune homeostasis. In individuals with obesity, dynamic cellular changes in adipose tissue result in phenotypic switching and adipose tissue dysfunction, including pathological expansion, WAT fibrosis, immune cell infiltration, endoplasmic reticulum stress, and ectopic lipid accumulation, ultimately leading to chronic low-grade inflammation and insulin resistance. Recently, many distinct subpopulations of adipose tissue have been identified, providing new insights into the potential mechanisms of adipose dysfunction in individuals with obesity. Therefore, targeting white adipose tissue as a therapeutic agent for treating obesity and obesity-related metabolic diseases is of great scientific interest. Here, we provide an overview of white adipose tissue remodeling in individuals with obesity including cellular changes and discuss the underlying regulatory mechanisms of white adipose tissue metabolic dysfunction. Currently, various studies have uncovered promising targets and strategies for obesity treatment. We also outline the potential therapeutic signaling pathways of targeting adipose tissue and summarize existing therapeutic strategies for antiobesity treatment including pharmacological approaches, lifestyle interventions, and novel therapies.
Collapse
Affiliation(s)
- Zi‐Han Yang
- Department of Plastic and Burn SurgeryWest China Hospital of Sichuan UniversityChengduChina
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fang‐Zhou Chen
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yi‐Xiang Zhang
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Min‐Yi Ou
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Poh‐Ching Tan
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xue‐Wen Xu
- Department of Plastic and Burn SurgeryWest China Hospital of Sichuan UniversityChengduChina
| | - Qing‐Feng Li
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shuang‐Bai Zhou
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
8
|
Gambaro SE, Zubiría MG, Giordano AP, Castro PF, Garraza C, Harnichar AE, Alzamendi A, Spinedi E, Giovambattista A. Role of Spexin in White Adipose Tissue Thermogenesis under Basal and Cold-Stimulated Conditions. Int J Mol Sci 2024; 25:1767. [PMID: 38339044 PMCID: PMC10855774 DOI: 10.3390/ijms25031767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Spexin (SPX) is a novel adipokine that plays an emerging role in metabolic diseases due to its involvement in carbohydrate homeostasis, weight loss, appetite control, and gastrointestinal movement, among others. In obese patients, SPX plasma levels are reduced. Little is known about the relationship between SPX and white adipose tissue (WAT) thermogenesis. Therefore, the aim of the present study was to evaluate the role of SPX in this process. C57BL/6J male mice were treated or not with SPX for ten days. On day 3, mice were randomly divided into two groups: one kept at room temperature and the other kept at cold temperature (4 °C). Caloric intake and body weight were recorded daily. At the end of the protocol, plasma, abdominal (epididymal), subcutaneous (inguinal), and brown AT (EAT, IAT, and BAT, respectively) depots were collected for measurements. We found that SPX treatment reduced Uncoupling protein 1 levels in WAT under both basal and cold conditions. SPX also reduced cox8b and pgc1α mRNA levels and mitochondrial DNA, principally in IAT. SPX did not modulate the number of beige precursors. SPX decreased spx levels in IAT depots and galr2 in WAT depots. No differences were observed in the BAT depots. In conclusion, we showed, for the first time, that SPX treatment in vivo reduced the thermogenic process in subcutaneous and abdominal AT, being more evident under cold stimulation.
Collapse
Affiliation(s)
- Sabrina E. Gambaro
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), La Plata 1900, Argentina; (S.E.G.); (M.G.Z.); (A.P.G.); (P.F.C.); (C.G.); (A.E.H.); (A.A.)
- Biology Department, School of Exact Sciences, La Plata National University, La Plata 1900, Argentina
| | - María G. Zubiría
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), La Plata 1900, Argentina; (S.E.G.); (M.G.Z.); (A.P.G.); (P.F.C.); (C.G.); (A.E.H.); (A.A.)
- Biology Department, School of Exact Sciences, La Plata National University, La Plata 1900, Argentina
| | - Alejandra P. Giordano
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), La Plata 1900, Argentina; (S.E.G.); (M.G.Z.); (A.P.G.); (P.F.C.); (C.G.); (A.E.H.); (A.A.)
- Biology Department, School of Exact Sciences, La Plata National University, La Plata 1900, Argentina
| | - Patricia F. Castro
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), La Plata 1900, Argentina; (S.E.G.); (M.G.Z.); (A.P.G.); (P.F.C.); (C.G.); (A.E.H.); (A.A.)
| | - Carolina Garraza
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), La Plata 1900, Argentina; (S.E.G.); (M.G.Z.); (A.P.G.); (P.F.C.); (C.G.); (A.E.H.); (A.A.)
| | - Alejandro E. Harnichar
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), La Plata 1900, Argentina; (S.E.G.); (M.G.Z.); (A.P.G.); (P.F.C.); (C.G.); (A.E.H.); (A.A.)
| | - Ana Alzamendi
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), La Plata 1900, Argentina; (S.E.G.); (M.G.Z.); (A.P.G.); (P.F.C.); (C.G.); (A.E.H.); (A.A.)
| | - Eduardo Spinedi
- CENEXA (UNLP-CONICET), La Plata Medical School-UNLP, Calles 60 y 120, La Plata 1900, Argentina;
| | - Andrés Giovambattista
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), La Plata 1900, Argentina; (S.E.G.); (M.G.Z.); (A.P.G.); (P.F.C.); (C.G.); (A.E.H.); (A.A.)
- Biology Department, School of Exact Sciences, La Plata National University, La Plata 1900, Argentina
| |
Collapse
|
9
|
Kar A, Alvarez M, Garske KM, Huang H, Lee SHT, Deal M, Das SS, Koka A, Jamal Z, Mohlke KL, Laakso M, Heinonen S, Pietiläinen KH, Pajukanta P. Age-dependent genes in adipose stem and precursor cells affect regulation of fat cell differentiation and link aging to obesity via cellular and genetic interactions. Genome Med 2024; 16:19. [PMID: 38297378 PMCID: PMC10829214 DOI: 10.1186/s13073-024-01291-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/19/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Age and obesity are dominant risk factors for several common cardiometabolic disorders, and both are known to impair adipose tissue function. However, the underlying cellular and genetic factors linking aging and obesity on adipose tissue function have remained elusive. Adipose stem and precursor cells (ASPCs) are an understudied, yet crucial adipose cell type due to their deterministic adipocyte differentiation potential, which impacts the capacity to store fat in a metabolically healthy manner. METHODS We integrated subcutaneous adipose tissue (SAT) bulk (n=435) and large single-nucleus RNA sequencing (n=105) data with the UK Biobank (UKB) (n=391,701) data to study age-obesity interactions originating from ASPCs by performing cell-type decomposition, differential expression testing, cell-cell communication analyses, and construction of polygenic risk scores for body mass index (BMI). RESULTS We found that the SAT ASPC proportions significantly decrease with age in an obesity-dependent way consistently in two independent cohorts, both showing that the age dependency of ASPC proportions is abolished by obesity. We further identified 76 genes (72 SAT ASPC marker genes and 4 transcription factors regulating ASPC marker genes) that are differentially expressed by age in SAT and functionally enriched for developmental processes and adipocyte differentiation (i.e., adipogenesis). The 76 age-perturbed ASPC genes include multiple negative regulators of adipogenesis, such as RORA, SMAD3, TWIST2, and ZNF521, form tight clusters of longitudinally co-expressed genes during human adipogenesis, and show age-based differences in cellular interactions between ASPCs and adipose cell types. Finally, our genetic data demonstrate that cis-regional variants of these genes interact with age as predictors of BMI in an obesity-dependent way in the large UKB, while no such gene-age interaction on BMI is observed with non-age-dependent ASPC marker genes, thus independently confirming our cellular ASPC results at the biobank level. CONCLUSIONS Overall, we discover that obesity prematurely induces a decrease in ASPC proportions and identify 76 developmentally important ASPC genes that implicate altered negative regulation of fat cell differentiation as a mechanism for aging and directly link aging to obesity via significant cellular and genetic interactions.
Collapse
Affiliation(s)
- Asha Kar
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles (UCLA), Gonda Center, Room 6357B, 695 Charles E. Young Drive South, Los Angeles, CA, 90095-7088, USA
| | - Marcus Alvarez
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles (UCLA), Gonda Center, Room 6357B, 695 Charles E. Young Drive South, Los Angeles, CA, 90095-7088, USA
| | - Kristina M Garske
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles (UCLA), Gonda Center, Room 6357B, 695 Charles E. Young Drive South, Los Angeles, CA, 90095-7088, USA
| | - Huiling Huang
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles (UCLA), Gonda Center, Room 6357B, 695 Charles E. Young Drive South, Los Angeles, CA, 90095-7088, USA
- Bioinformatics Interdepartmental Program, UCLA, Los Angeles, USA
| | - Seung Hyuk T Lee
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles (UCLA), Gonda Center, Room 6357B, 695 Charles E. Young Drive South, Los Angeles, CA, 90095-7088, USA
| | - Milena Deal
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles (UCLA), Gonda Center, Room 6357B, 695 Charles E. Young Drive South, Los Angeles, CA, 90095-7088, USA
| | - Sankha Subhra Das
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles (UCLA), Gonda Center, Room 6357B, 695 Charles E. Young Drive South, Los Angeles, CA, 90095-7088, USA
| | - Amogha Koka
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles (UCLA), Gonda Center, Room 6357B, 695 Charles E. Young Drive South, Los Angeles, CA, 90095-7088, USA
| | - Zoeb Jamal
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles (UCLA), Gonda Center, Room 6357B, 695 Charles E. Young Drive South, Los Angeles, CA, 90095-7088, USA
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Markku Laakso
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Sini Heinonen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kirsi H Pietiläinen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- HealthyWeightHub, Endocrinology, Abdominal Center, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - Päivi Pajukanta
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles (UCLA), Gonda Center, Room 6357B, 695 Charles E. Young Drive South, Los Angeles, CA, 90095-7088, USA.
- Bioinformatics Interdepartmental Program, UCLA, Los Angeles, USA.
- Institute for Precision Health, David Geffen School of Medicine at UCLA, Los Angeles, USA.
| |
Collapse
|
10
|
Carobbio S, Pellegrinelli V, Vidal-Puig A. Adipose Tissue Dysfunction Determines Lipotoxicity and Triggers the Metabolic Syndrome: Current Challenges and Clinical Perspectives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:231-272. [PMID: 39287854 DOI: 10.1007/978-3-031-63657-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The adipose tissue organ is organised as distinct anatomical depots located all along the body axis, and it is constituted of three different types of adipocytes: white, beige and brown, which are integrated with vascular, immune, neural, and extracellular stroma cells. These distinct adipocytes serve different specialised functions. The main function of white adipocytes is to ensure healthy storage of excess nutrients/energy and its rapid mobilisation to supply the demand of energy imposed by physiological cues in other organs, whereas brown and beige adipocytes are designed for heat production through uncoupling lipid oxidation from energy production. The concerted action of the three types of adipocytes/tissues ensures an optimal metabolic status. However, when one or several of these adipose depots become dysfunctional because of sustained lipid/nutrient overload, then insulin resistance and associated metabolic complications ensue. These metabolic alterations close a vicious cycle that negatively affects the adipose tissue functionality and compromises global metabolic homeostasis. Optimising white adipose tissue expandability and ensuring its functional metabolic flexibility and/or promoting brown/beige mediated thermogenic activity are complementary strategies that counteract obesity and its associated lipotoxic metabolic effects. However, the development of these therapeutic approaches requires a deep understanding of adipose tissue in all broad aspects. In this chapter, we will discuss the characteristics of the different adipose tissue depots with respect to origins and precursors recruitment, plasticity, cellular composition, and expandability capacity potential as well as molecular and metabolic characteristic signatures in both physiological and pathophysiological conditions. Current antilipotoxic strategies for future clinical application are also discussed in this chapter.
Collapse
Affiliation(s)
- Stefania Carobbio
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
- Centro de Investigación Principe Felipe, Valencia, Spain.
| | - Vanessa Pellegrinelli
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Antonio Vidal-Puig
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
- Centro de Investigación Principe Felipe, Valencia, Spain.
| |
Collapse
|
11
|
Scheidl TB, Brightwell AL, Easson SH, Thompson JA. Maternal obesity and programming of metabolic syndrome in the offspring: searching for mechanisms in the adipocyte progenitor pool. BMC Med 2023; 21:50. [PMID: 36782211 PMCID: PMC9924890 DOI: 10.1186/s12916-023-02730-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 01/09/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND It is now understood that it is the quality rather than the absolute amount of adipose tissue that confers risk for obesity-associated disease. Adipose-derived stem cells give rise to adipocytes during the developmental establishment of adipose depots. In adult depots, a reservoir of progenitors serves to replace adipocytes that have reached their lifespan and for recruitment to increase lipid buffering capacity under conditions of positive energy balance. MAIN: The adipose tissue expandability hypothesis posits that a failure in de novo differentiation of adipocytes limits lipid storage capacity and leads to spillover of lipids into the circulation, precipitating the onset of obesity-associated disease. Since adipose progenitors are specified to their fate during late fetal life, perturbations in the intrauterine environment may influence the rapid expansion of adipose depots that occurs in childhood or progenitor function in established adult depots. Neonates born to mothers with obesity or diabetes during pregnancy tend to have excessive adiposity at birth and are at increased risk for childhood adiposity and cardiometabolic disease. CONCLUSION In this narrative review, we synthesize current knowledge in the fields of obesity and developmental biology together with literature from the field of the developmental origins of health and disease (DOHaD) to put forth the hypothesis that the intrauterine milieu of pregnancies complicated by maternal metabolic disease disturbs adipogenesis in the fetus, thereby accelerating the trajectory of adipose expansion in early postnatal life and predisposing to impaired adipose plasticity.
Collapse
Affiliation(s)
- Taylor B. Scheidl
- Cumming School of Medicine, Calgary, Canada
- Alberta Children’s Hospital Research Institute, Calgary, Canada
- Libin Cardiovascular Institute, Calgary, Canada
- University of Calgary, 3330 Hospital Dr. NW, Calgary, AB T2N 4N1 Canada
| | - Amy L. Brightwell
- University of Calgary, 3330 Hospital Dr. NW, Calgary, AB T2N 4N1 Canada
| | - Sarah H. Easson
- Cumming School of Medicine, Calgary, Canada
- University of Calgary, 3330 Hospital Dr. NW, Calgary, AB T2N 4N1 Canada
| | - Jennifer A. Thompson
- Cumming School of Medicine, Calgary, Canada
- Alberta Children’s Hospital Research Institute, Calgary, Canada
- Libin Cardiovascular Institute, Calgary, Canada
- University of Calgary, 3330 Hospital Dr. NW, Calgary, AB T2N 4N1 Canada
| |
Collapse
|
12
|
Oh S, Kim HM, Batsukh S, Sun HJ, Kim T, Kang D, Son KH, Byun K. High-Intensity Focused Ultrasound Induces Adipogenesis via Control of Cilia in Adipose-Derived Stem Cells in Subcutaneous Adipose Tissue. Int J Mol Sci 2022; 23:ijms23168866. [PMID: 36012125 PMCID: PMC9408610 DOI: 10.3390/ijms23168866] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/30/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
During skin aging, the volume of subcutaneous adipose tissue (sWAT) and the adipogenesis potential of adipose-derived stem cells (ASCs) decrease. It is known that the shortening of cilia length by pro-inflammatory cytokines is related to the decreased adipogenic differentiation of ASCs via increase in Wnt5a/β-catenin. High-intensity focused ultrasound (HIFU) is known to upregulate heat shock proteins (HSP), which decrease levels of pro-inflammatory cytokines. In this study, we evaluated whether HIFU modulates the cilia of ASCs by upregulating HSP70 and decreasing inflammatory cytokines. HIFU was applied at 0.2 J to rat skin, which was harvested at 1, 3, 7, and 28 days. All results for HIFU-applied animals were compared with control animals that were not treated. HIFU increased expression of HSP70 and decreased expression of NF-κB, IL-6, and TNF-α in sWAT. HIFU decreased the expression of cilia disassembly-related factors (AurA and HDAC9) in ASCs. Furthermore, HIFU increased the expression of cilia assembly-related factors (KIF3A and IFT88), decreased that of WNT5A/β-catenin, and increased that of the adipogenesis markers PPARγ and CEBPα in sWAT. HIFU increased the number of adipocytes in the sWAT and the thickness of sWAT. In conclusion, HIFU could selectively increase sWAT levels by modulating the cilia of ASCs and be used for skin rejuvenation.
Collapse
Affiliation(s)
- Seyeon Oh
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine, Incheon 21999, Korea
| | - Hyoung Moon Kim
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine, Incheon 21999, Korea
- Department of Anatomy & Cell Biology, Gachon University College of Medicine, Incheon 21936, Korea
| | - Sosorburam Batsukh
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine, Incheon 21999, Korea
- Department of Anatomy & Cell Biology, Gachon University College of Medicine, Incheon 21936, Korea
| | | | | | | | - Kuk Hui Son
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Korea
- Correspondence: (K.H.S.); (K.B.); Tel.: +82-32-460-3666 (K.H.S.); +82-32-899-6511 (K.B.)
| | - Kyunghee Byun
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine, Incheon 21999, Korea
- Department of Anatomy & Cell Biology, Gachon University College of Medicine, Incheon 21936, Korea
- Correspondence: (K.H.S.); (K.B.); Tel.: +82-32-460-3666 (K.H.S.); +82-32-899-6511 (K.B.)
| |
Collapse
|
13
|
Ye RZ, Richard G, Gévry N, Tchernof A, Carpentier AC. Fat Cell Size: Measurement Methods, Pathophysiological Origins, and Relationships With Metabolic Dysregulations. Endocr Rev 2022; 43:35-60. [PMID: 34100954 PMCID: PMC8755996 DOI: 10.1210/endrev/bnab018] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Indexed: 11/19/2022]
Abstract
The obesity pandemic increasingly causes morbidity and mortality from type 2 diabetes, cardiovascular diseases and many other chronic diseases. Fat cell size (FCS) predicts numerous obesity-related complications such as lipid dysmetabolism, ectopic fat accumulation, insulin resistance, and cardiovascular disorders. Nevertheless, the scarcity of systematic literature reviews on this subject is compounded by the use of different methods by which FCS measurements are determined and reported. In this paper, we provide a systematic review of the current literature on the relationship between adipocyte hypertrophy and obesity-related glucose and lipid dysmetabolism, ectopic fat accumulation, and cardiovascular disorders. We also review the numerous mechanistic origins of adipocyte hypertrophy and its relationship with metabolic dysregulation, including changes in adipogenesis, cell senescence, collagen deposition, systemic inflammation, adipokine secretion, and energy balance. To quantify the effect of different FCS measurement methods, we performed statistical analyses across published data while controlling for body mass index, age, and sex.
Collapse
Affiliation(s)
- Run Zhou Ye
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Gabriel Richard
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Nicolas Gévry
- Department of Biology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - André Tchernof
- Québec Heart and Lung Research Institute, Laval University, Québec, Québec, Canada
| | - André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
14
|
Thyroid hormone receptor alpha sumoylation modulates white adipose tissue stores. Sci Rep 2021; 11:24105. [PMID: 34916557 PMCID: PMC8677787 DOI: 10.1038/s41598-021-03491-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 12/01/2021] [Indexed: 11/20/2022] Open
Abstract
Thyroid hormone (TH) and thyroid hormone receptor (THR) regulate stem cell proliferation and differentiation during development, as well as during tissue renewal and repair in the adult. THR undergoes posttranslational modification by small ubiquitin-like modifier (SUMO). We generated the THRA (K283Q/K288R)−/− mouse model for in vivo studies and used human primary preadipocytes expressing the THRA sumoylation mutant (K283R/K288R) and isolated preadipocytes from mutant mice for in vitro studies. THRA mutant mice had reduced white adipose stores and reduced adipocyte cell diameter on a chow diet, compared to wild-type, and these differences were further enhanced after a high fat diet. Reduced preadipocyte proliferation in mutant mice, compared to wt, was shown after in vivo labeling of preadipocytes with EdU and in preadipocytes isolated from mice fat stores and studied in vitro. Mice with the desumoylated THRA had disruptions in cell cycle G1/S transition and this was associated with a reduction in the availability of cyclin D2 and cyclin-dependent kinase 2. The genes coding for cyclin D1, cyclin D2, cyclin-dependent kinase 2 and Culin3 are stimulated by cAMP Response Element Binding Protein (CREB) and contain CREB Response Elements (CREs) in their regulatory regions. We demonstrate, by Chromatin Immunoprecipitation (ChIP) assay, that in mice with the THRA K283Q/K288R mutant there was reduced CREB binding to the CRE. Mice with a THRA sumoylation mutant had reduced fat stores on chow and high fat diets and reduced adipocyte diameter.
Collapse
|
15
|
Gavin KM, Sullivan TM, Maltzahn JK, Rahkola JT, Acosta AS, Kohrt WM, Majka SM, Klemm DJ. Hematopoietic stem cells produce intermediate lineage adipocyte progenitors that simultaneously express both myeloid and mesenchymal lineage markers in adipose tissue. Adipocyte 2021; 10:394-407. [PMID: 34404315 PMCID: PMC8381847 DOI: 10.1080/21623945.2021.1957290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Some adipocytes are produced from bone marrow hematopoietic stem cells. In vitro studies previously indicated that these bone marrow-derived adipocytes (BMDAs) were generated from adipose tissue macrophage (ATM) that lose their hematopoietic markers and acquire mesenchymal markers prior to terminal adipogenic differentiation. Here we interrogated whether this hematopoietic-to-mesenchymal transition drives BMDA production In vitro. We generated transgenic mice in which the lysozyme gene promoter (LysM) indelibly labeled ATM with green fluorescent protein (GFP). We discovered that adipose stroma contained a population of LysM-positive myeloid cells that simultaneously expressed hematopoietic/myeloid markers (CD45 and CD11b), and mesenchymal markers (CD29, PDGFRa and Sca-1) typically found on conventional adipocyte progenitors. These cells were capable of adipogenic differentiation In vitro and In vitro, while other stromal populations deficient in PDGFRa and Sca-1 were non-adipogenic. BMDAs and conventional adipocytes expressed common fat cell markers but exhibited little or no expression of hematopoietic and mesenchymal progenitor cell markers. The data indicate that BMDAs are produced from ATM simultaneously expressing hematopoietic and mesenchymal markers rather than via a stepwise hematopoietic-to-mesenchymal transition. Because BMDA production is stimulated by high fat feeding, their production from hematopoietic progenitors may maintain adipocyte production when conventional adipocyte precursors are diminished.
Collapse
Affiliation(s)
- Kathleen M. Gavin
- Eastern Colorado Veterans Administration Geriatric Research, Education and Clinical Center (GRECC), Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Timothy M. Sullivan
- Eastern Colorado Veterans Administration Geriatric Research, Education and Clinical Center (GRECC), Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
- Cardiovascular Pulmonary Research Laboratory, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Joanne K. Maltzahn
- Eastern Colorado Veterans Administration Geriatric Research, Education and Clinical Center (GRECC), Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
- Cardiovascular Pulmonary Research Laboratory, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jeremy T. Rahkola
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
| | - Alistair S. Acosta
- Flow Cytometry Shared Resource, University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Wendy M. Kohrt
- Eastern Colorado Veterans Administration Geriatric Research, Education and Clinical Center (GRECC), Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Susan M. Majka
- Cardiovascular Pulmonary Research Laboratory, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Biomedical Research, National Jewish Health, Denver, CO, USA
- Charles C. Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Dwight J. Klemm
- Eastern Colorado Veterans Administration Geriatric Research, Education and Clinical Center (GRECC), Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
- Cardiovascular Pulmonary Research Laboratory, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Charles C. Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
16
|
Mikolajczak A, Sallam NA, Singh RD, Scheidl TB, Walsh EJ, Larion S, Huang C, Thompson JA. Accelerated developmental adipogenesis programs adipose tissue dysfunction and cardiometabolic risk in offspring born to dams with metabolic dysfunction. Am J Physiol Endocrinol Metab 2021; 321:E581-E591. [PMID: 34459218 PMCID: PMC8791794 DOI: 10.1152/ajpendo.00229.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
This study determined if a perturbation in in utero adipogenesis leading to later life adipose tissue (AT) dysfunction underlies programming of cardiometabolic risk in offspring born to dams with metabolic dysfunction. Female mice heterozygous for the leptin receptor deficiency (Hetdb) had 2.4-fold higher prepregnancy fat mass and in late gestation had higher plasma insulin and triglycerides compared with wild-type (Wt) females (P < 0.05). To isolate the role of the intrauterine milieu, wild-type (Wt) offspring from each pregnancy were studied. Differentiation potential in isolated progenitors and cell size distribution analysis revealed accelerated adipogenesis in Wt pups born to Hetdb dams, accompanied by a higher accumulation of neonatal fat mass. In adulthood, whole body fat mass by NMR was higher in male (69%) and female (20%) Wt offspring born to Hetdb versus Wt pregnancies, along with adipocyte hypertrophy and hyperlipidemia (all P < 0.05). Lipidomic analyses by gas chromatography revealed an increased lipogenic index (16:0/18:2n6) after high-fat/fructose diet (HFFD). Postprandial insulin, ADIPO-IR, and ex vivo AT lipolytic responses to isoproterenol were all higher in Wt offspring born to Hetdb dams (P < 0.05). Intrauterine metabolic stimuli may direct a greater proportion of progenitors toward terminal differentiation, thereby predisposing to hypertrophy-induced adipocyte dysfunction.NEW & NOTEWORTHY This study reveals that accelerated adipogenesis during the perinatal window of adipose tissue development predisposes to later life hypertrophic adipocyte dysfunction, thereby compromising the buffering function of the subcutaneous depot.
Collapse
Affiliation(s)
- Anna Mikolajczak
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | - Nada A Sallam
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Radha D Singh
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute, Calgary, Alberta, Canada
| | - Taylor B Scheidl
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | - Emma J Walsh
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sebastian Larion
- Division of Gastroenterology and Hepatology, Medical University of South Carolina, Charleston, South Carolina
| | - Carol Huang
- Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | - Jennifer A Thompson
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| |
Collapse
|
17
|
Reyes-Farias M, Fos-Domenech J, Serra D, Herrero L, Sánchez-Infantes D. White adipose tissue dysfunction in obesity and aging. Biochem Pharmacol 2021; 192:114723. [PMID: 34364887 DOI: 10.1016/j.bcp.2021.114723] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/19/2022]
Abstract
Both obesity and aging are associated with the development of metabolic diseases such as type 2 diabetes and cardiovascular disease. Chronic low-grade inflammation of adipose tissue is one of the mechanisms implicated in the progression of these diseases. Obesity and aging trigger adipose tissue alterations that ultimately lead to a pro-inflammatory phenotype of the adipose tissue-resident immune cells. Obesity and aging also share other features such as a higher visceral vs. subcutaneous adipose tissue ratio and a decreased lifespan. Here, we review the common characteristics of obesity and aging and the alterations in white adipose tissue and resident immune cells. We focus on the adipose tissue metabolic derangements in obesity and aging such as inflammation and adipose tissue remodeling.
Collapse
Affiliation(s)
- Marjorie Reyes-Farias
- Department of Endocrinology and Nutrition, Germans Trias i Pujol Research Institute, Barcelona, Spain; Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Julia Fos-Domenech
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Dolors Serra
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Laura Herrero
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain.
| | - David Sánchez-Infantes
- Department of Endocrinology and Nutrition, Germans Trias i Pujol Research Institute, Barcelona, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain; Department of Health Sciences, Campus Alcorcón, University Rey Juan Carlos (URJC), E-28922 Madrid, Spain.
| |
Collapse
|
18
|
Björk C, Subramanian N, Liu J, Acosta JR, Tavira B, Eriksson AB, Arner P, Laurencikiene J. An RNAi Screening of Clinically Relevant Transcription Factors Regulating Human Adipogenesis and Adipocyte Metabolism. Endocrinology 2021; 162:6272286. [PMID: 33963396 PMCID: PMC8197287 DOI: 10.1210/endocr/bqab096] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 12/13/2022]
Abstract
CONTEXT Healthy hyperplasic (many but smaller fat cells) white adipose tissue (WAT) expansion is mediated by recruitment, proliferation and/or differentiation of new fat cells. This process (adipogenesis) is controlled by transcriptional programs that have been mostly identified in rodents. OBJECTIVE A systemic investigation of adipogenic human transcription factors (TFs) that are relevant for metabolic conditions has not been revealed previously. METHODS TFs regulated in WAT by obesity, adipose morphology, cancer cachexia, and insulin resistance were selected from microarrays. Their role in differentiation of human adipose tissue-derived stem cells (hASC) was investigated by RNA interference (RNAi) screen. Lipid accumulation, cell number, and lipolysis were measured for all screened factors (148 TFs). RNA (RNAseq), protein (Western blot) expression, insulin, and catecholamine responsiveness were examined in hASC following siRNA treatment of selected target TFs. RESULTS Analysis of TFs regulated by metabolic conditions in human WAT revealed that many of them belong to adipogenesis-regulating pathways. The RNAi screen identified 39 genes that affected fat cell differentiation in vitro, where 11 genes were novel. Of the latter JARID2 stood out as being necessary for formation of healthy fat cell metabolic phenotype by regulating expression of multiple fat cell phenotype-specific genes. CONCLUSION This comprehensive RNAi screening in hASC suggests that a large proportion of WAT TFs that are impacted by metabolic conditions might be important for hyperplastic adipose tissue expansion. The screen also identified JARID2 as a novel TF essential for the development of functional adipocytes.
Collapse
Affiliation(s)
- Christel Björk
- Lipid laboratory, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, SE-14186, Sweden
| | - Narmadha Subramanian
- Lipid laboratory, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, SE-14186, Sweden
| | - Jianping Liu
- Karolinska High Throughput Center, Department of Medical Biochemistry and Biophysics (MBB), Division of Functional Genomics, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Juan Ramon Acosta
- Lipid laboratory, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, SE-14186, Sweden
| | - Beatriz Tavira
- Lipid laboratory, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, SE-14186, Sweden
| | - Anders B Eriksson
- Karolinska High Throughput Center, Department of Medical Biochemistry and Biophysics (MBB), Division of Functional Genomics, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Peter Arner
- Lipid laboratory, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, SE-14186, Sweden
| | - Jurga Laurencikiene
- Lipid laboratory, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, SE-14186, Sweden
- Correspondence: Jurga Laurencikiene, PhD, Karolinska Institutet, Lipid laboratory, Dept. of Medicine Huddinge (MedH), NEO, Hälsovägen 9/Blickagången 16, 14183 Huddinge, Sweden.
| |
Collapse
|
19
|
Zou P, Wang F, Wang J, Lu Y, Tran D, Seo SK. Impact of injection sites on clinical pharmacokinetics of subcutaneously administered peptides and proteins. J Control Release 2021; 336:310-321. [PMID: 34186147 DOI: 10.1016/j.jconrel.2021.06.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/28/2021] [Accepted: 06/24/2021] [Indexed: 01/26/2023]
Abstract
For most approved subcutaneously (SC) administered drug products in the US, the recommended injection sites (i.e., abdomen, thigh, and upper arm) are usually based on experience from phase 3 trials. Relative bioavailability data directly comparing the pharmacokinetics (PK) of different SC injection sites are often not available and the underlying mechanisms that may affect SC absorption have not been systematically investigated. In this study, we surveyed clinical PK data (AUC, Cmax, and Tmax) for SC administered drug products including therapeutic proteins and peptides based on literature and FDA database. The PK data after abdominal injection was used as a reference to determine the relative bioavailability of SC injections to the arm and thigh. The survey retrieved 19 immunoglobulin G (IgGs), 18 peptides/small proteins (molecular weight < 16 kDa), and 8 non-IgG proteins that had available clinical PK data from multiple SC injection sites. Among these, 5 (26%) IgGs, 9 (50%) peptides/small proteins, and 3 (38%) non-IgG proteins, exhibited injection site-dependent PK (i.e. PK differed by injection sites). Correlation analyses revealed that the PK of peptides/small proteins undergoing rapid SC absorption (Tmax ≤ 2 h), elimination (CL/F ≥ 39 L/h) or low plasma protein binding were more sensitive to injection sites. Similarly, non-IgG proteins (molecular weight ≥ 16 kDa) with high CL/F and low Tmax are associated with high risk of injection site-dependent SC absorption. IgGs with T1/2 < 15 days or Tmax < 5 days are more likely to show injection site-dependent SC absorption. Positive charge of the drug molecule (isoelectric point ≥8) may reduce SC absorption from all three injection sites but is not associated with high risk of injection site-dependent SC absorption. In summary, the results suggested that regional differences in pre-systemic catabolism and local SC blood flow potentially contribute injection site-dependent SC absorption of peptides/small proteins while local lymphatic flow and FcRn binding likely contribute to site-dependent SC absorption of IgGs.
Collapse
Affiliation(s)
- Peng Zou
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD, USA.
| | - Fuyuan Wang
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD, USA; Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, USA
| | - Jie Wang
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD, USA
| | - Yanhui Lu
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD, USA
| | - Doanh Tran
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD, USA
| | - Shirley K Seo
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD, USA
| |
Collapse
|
20
|
Felix JB, Cox AR, Hartig SM. Acetyl-CoA and Metabolite Fluxes Regulate White Adipose Tissue Expansion. Trends Endocrinol Metab 2021; 32:320-332. [PMID: 33712368 PMCID: PMC8035226 DOI: 10.1016/j.tem.2021.02.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 12/29/2022]
Abstract
White adipose tissue (WAT) depends on coordinated regulation of transcriptional and metabolic pathways to respond to whole-body energy demands. We highlight metabolites that contribute to biosynthetic reactions for WAT expansion. Recent studies have precisely defined how byproducts of carbohydrate and lipid metabolism affect physiological and endocrine functions in adipocytes. We emphasize the critical emerging roles of short-chain fatty acids (SCFAs) and tricarboxylic acid (TCA) cycle metabolites that connect lipogenesis to WAT energy balance and endocrine functions. These insights address how adipocytes use small molecules generated from central carbon metabolism to measure responses to nutritional stress.
Collapse
Affiliation(s)
- Jessica B Felix
- Division of Diabetes, Endocrinology, and Metabolism, Baylor College of Medicine, Houston, TX, USA; Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Aaron R Cox
- Division of Diabetes, Endocrinology, and Metabolism, Baylor College of Medicine, Houston, TX, USA; Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Sean M Hartig
- Division of Diabetes, Endocrinology, and Metabolism, Baylor College of Medicine, Houston, TX, USA; Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
21
|
Koc M, Wald M, Varaliová Z, Ondrůjová B, Čížková T, Brychta M, Kračmerová J, Beranová L, Pala J, Šrámková V, Šiklová M, Gojda J, Rossmeislová L. Lymphedema alters lipolytic, lipogenic, immune and angiogenic properties of adipose tissue: a hypothesis-generating study in breast cancer survivors. Sci Rep 2021; 11:8171. [PMID: 33854130 PMCID: PMC8046998 DOI: 10.1038/s41598-021-87494-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 03/30/2021] [Indexed: 12/26/2022] Open
Abstract
Later stages of secondary lymphedema are associated with the massive deposition of adipose tissue (AT). The factors driving lymphedema-associated AT (LAT) expansion in humans remain rather elusive. We hypothesized that LAT expansion could be based on alterations of metabolic, adipogenic, immune and/or angiogenic qualities of AT. AT samples were acquired from upper limbs of 11 women with unilateral breast cancer-related lymphedema and 11 healthy women without lymphedema. Additional control group of 11 female breast cancer survivors without lymphedema was used to assess systemic effects of lymphedema. AT was analysed for adipocyte size, lipolysis, angiogenesis, secretion of cytokines, immune and stem cell content and mRNA gene expression. Further, adipose precursors were isolated and tested for their proliferative and adipogenic capacity. The effect of undrained LAT- derived fluid on adipogenesis was also examined. Lymphedema did not have apparent systemic effect on metabolism and cytokine levels, but it was linked with higher lymphocyte numbers and altered levels of several miRNAs in blood. LAT showed higher basal lipolysis, (lymph)angiogenic capacity and secretion of inflammatory cytokines when compared to healthy AT. LAT contained more activated CD4+ T lymphocytes than healthy AT. mRNA levels of (lymph)angiogenic markers were deregulated in LAT and correlated with markers of lipolysis. In vitro, adipose cells derived from LAT did not differ in their proliferative, adipogenic, lipogenic and lipolytic potential from cells derived from healthy AT. Nevertheless, exposition of preadipocytes to LAT-derived fluid improved their adipogenic conversion when compared with the effect of serum. This study presents results of first complex analysis of LAT from upper limb of breast cancer survivors. Identified LAT alterations indicate a possible link between (lymph)angiogenesis and lipolysis. In addition, our in vitro results imply that AT expansion in lymphedema could be driven partially by exposition of adipose precursors to undrained LAT-derived fluid.
Collapse
Affiliation(s)
- Michal Koc
- Department of Pathophysiology, Centre for Research On Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Ruská 87, 100 00, Prague 10, Czech Republic
| | - Martin Wald
- Department of Surgery, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague 5, Czech Republic
| | - Zuzana Varaliová
- Department of Pathophysiology, Centre for Research On Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Ruská 87, 100 00, Prague 10, Czech Republic
| | - Barbora Ondrůjová
- Department of Pathophysiology, Centre for Research On Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Ruská 87, 100 00, Prague 10, Czech Republic
| | - Terezie Čížková
- Department of Pathophysiology, Centre for Research On Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Ruská 87, 100 00, Prague 10, Czech Republic
| | - Milan Brychta
- Department of Radiotherapy and Oncology, Kralovske Vinohrady University Hospital, Prague 10, Czech Republic
| | - Jana Kračmerová
- Department of Pathophysiology, Centre for Research On Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Ruská 87, 100 00, Prague 10, Czech Republic
| | - Lenka Beranová
- Department of Pathophysiology, Centre for Research On Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Ruská 87, 100 00, Prague 10, Czech Republic
| | - Jan Pala
- Department of Pathophysiology, Centre for Research On Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Ruská 87, 100 00, Prague 10, Czech Republic
| | - Veronika Šrámková
- Department of Pathophysiology, Centre for Research On Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Ruská 87, 100 00, Prague 10, Czech Republic.,Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague 10, Czech Republic
| | - Michaela Šiklová
- Department of Pathophysiology, Centre for Research On Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Ruská 87, 100 00, Prague 10, Czech Republic.,Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague 10, Czech Republic
| | - Jan Gojda
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague 10, Czech Republic.,Second Internal Medicine Department, Kralovske Vinohrady University Hospital, Prague 10, Czech Republic
| | - Lenka Rossmeislová
- Department of Pathophysiology, Centre for Research On Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Ruská 87, 100 00, Prague 10, Czech Republic. .,Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague 10, Czech Republic.
| |
Collapse
|
22
|
Adipose stem cells in obesity: challenges and opportunities. Biosci Rep 2021; 40:225001. [PMID: 32452515 PMCID: PMC7284323 DOI: 10.1042/bsr20194076] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/08/2020] [Accepted: 05/22/2020] [Indexed: 02/07/2023] Open
Abstract
Adipose tissue, the storage of excessive energy in the body, secretes various proteins called adipokines, which connect the body’s nutritional status to the regulation of energy balance. Obesity triggers alterations of quantity and quality of various types of cells that reside in adipose tissue, including adipose stem cells (ASCs; referred to as adipose-derived stem/stromal cells in vitro). These alterations in the functionalities and properties of ASCs impair adipose tissue remodeling and adipose tissue function, which induces low-grade systemic inflammation, progressive insulin resistance, and other metabolic disorders. In contrast, the ability of ASCs to recruit new adipocytes when faced with caloric excess leads to healthy adipose tissue expansion, associated with lower amounts of inflammation, fibrosis, and insulin resistance. This review focuses on recent advances in our understanding of the identity of ASCs and their roles in adipose tissue development, homeostasis, expansion, and thermogenesis, and how these roles go awry in obesity. A better understanding of the biology of ASCs and their adipogenesis may lead to novel therapeutic targets for obesity and metabolic disease.
Collapse
|
23
|
Extracellular Vesicles from Adipose Tissue Stem Cells in Diabetes and Associated Cardiovascular Disease; Pathobiological Impact and Therapeutic Potential. Int J Mol Sci 2020; 21:ijms21249598. [PMID: 33339409 PMCID: PMC7766415 DOI: 10.3390/ijms21249598] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
Adipose tissue-derived stem cells (ADSCs) are pluripotent mesenchymal stem cells found in relatively high percentages in the adipose tissue and able to self-renew and differentiate into many different types of cells. “Extracellular vesicles (EVs), small membrane vesicular structures released during cell activation, senescence, or apoptosis, act as mediators for long distance communication between cells, transferring their specific bioactive molecules into host target cells”. There is a general consensus on how to define and isolate ADSCs, however, multiple separation and characterization protocols are being used in the present which complicate the results’ integration in a single theory on ADSCs’ and their derived factors’ way of action. Metabolic syndrome and type 2 diabetes mellitus (T2DM) are mainly caused by abnormal adipose tissue size, distribution and metabolism and so ADSCs and their secretory factors such as EVs are currently investigated as therapeutics in these diseases. Moreover, due to their relatively easy isolation and propagation in culture and their differentiation ability, ADSCs are being employed in preclinical studies of implantable devices or prosthetics. This review aims to provide a comprehensive summary of the current knowledge on EVs secreted from ADSCs both as diagnostic biomarkers and therapeutics in diabetes and associated cardiovascular disease, the molecular mechanisms involved, as well as on the use of ADSC differentiation potential in cardiovascular tissue repair and prostheses.
Collapse
|
24
|
Murphy J, Delaney KZ, Dam V, Tam BT, Khor N, Tsoukas MA, Morais JA, Santosa S. Sex Affects Regional Variations in Subcutaneous Adipose Tissue T Cells but not Macrophages in Adults with Obesity. Obesity (Silver Spring) 2020; 28:2310-2314. [PMID: 33179451 DOI: 10.1002/oby.23039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/09/2020] [Accepted: 09/01/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The inflammatory environment in lower-body subcutaneous adipose tissue (SAT) has been largely unexplored. This study aimed to examine the effects of region (upper body vs. lower body) and sex on SAT immune cell profiles in young adults with obesity. METHODS Abdominal (AB) and femoral (FEM) SAT was collected from 12 males (mean [SEM] age = 30.8 [1.4] years; mean [SEM] BMI = 34.1 [1.1] kg/m2 ) and 22 females (mean [SEM] age = 30.6 [0.6] years; mean [SEM] BMI = 34.0 [0.7] kg/m2 ) with obesity via needle aspiration. Flow cytometry was used to quantify macrophage (CD68+) and T-cell (CD3+) subpopulations in the stromovascular fraction of each SAT region. RESULTS Females had a greater proportion of most T-cell types (CD3+CD4+CD45RA+, CD3+CD4+CD45RA-, and CD3+CD8+CD45RA+) in FEM compared with AB SAT, while males had similar proportions in both regions. Regardless of sex, the M1-like macrophage population (CD68+CD206-) was proportionally higher in AB SAT than in FEM SAT. CONCLUSIONS Results showed that T-cell populations vary by SAT region in females but not males. Both sexes, however, have proportionately more proinflammatory macrophages in upper-body than in lower-body SAT. It remains to be seen how these unique immune cell profiles in males and females with obesity contribute to adipose tissue inflammation and metabolic disease risk.
Collapse
Affiliation(s)
- Jessica Murphy
- Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montreal, Quebec, Canada
- Metabolism, Obesity, and Nutrition Laboratory, PERFORM Centre, Concordia University, Montreal, Quebec, Canada
- Centre de recherche - Axe maladies chroniques, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Ile-de-Montréal, Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada
| | - Kerri Z Delaney
- Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montreal, Quebec, Canada
- Metabolism, Obesity, and Nutrition Laboratory, PERFORM Centre, Concordia University, Montreal, Quebec, Canada
- Centre de recherche - Axe maladies chroniques, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Ile-de-Montréal, Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada
| | - Vi Dam
- Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montreal, Quebec, Canada
- Metabolism, Obesity, and Nutrition Laboratory, PERFORM Centre, Concordia University, Montreal, Quebec, Canada
- Centre de recherche - Axe maladies chroniques, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Ile-de-Montréal, Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada
| | - Bjorn T Tam
- Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montreal, Quebec, Canada
- Metabolism, Obesity, and Nutrition Laboratory, PERFORM Centre, Concordia University, Montreal, Quebec, Canada
- Centre de recherche - Axe maladies chroniques, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Ile-de-Montréal, Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada
| | - Natalie Khor
- Metabolism, Obesity, and Nutrition Laboratory, PERFORM Centre, Concordia University, Montreal, Quebec, Canada
| | - Michael A Tsoukas
- Division of Endocrinology, Department of Medicine, McGill University, Royal Victoria Hospital, MUHC Glen site, Montreal, Quebec, Canada
| | - José A Morais
- Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montreal, Quebec, Canada
- Division of Geriatric Medicine, Department of Medicine, McGill University, MUHC-Montreal General Hospital, Montreal, Quebec, Canada
| | - Sylvia Santosa
- Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montreal, Quebec, Canada
- Metabolism, Obesity, and Nutrition Laboratory, PERFORM Centre, Concordia University, Montreal, Quebec, Canada
- Centre de recherche - Axe maladies chroniques, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Ile-de-Montréal, Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
25
|
Dadson P, Rebelos E, Honka H, Juárez-Orozco LE, Kalliokoski KK, Iozzo P, Teuho J, Salminen P, Pihlajamäki J, Hannukainen JC, Nuutila P. Change in abdominal, but not femoral subcutaneous fat CT-radiodensity is associated with improved metabolic profile after bariatric surgery. Nutr Metab Cardiovasc Dis 2020; 30:2363-2371. [PMID: 32919861 DOI: 10.1016/j.numecd.2020.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Computed tomography (CT)-derived adipose tissue radiodensity represents a potential noninvasive surrogate marker for lipid deposition and obesity-related metabolic disease risk. We studied the effects of bariatric surgery on CT-derived adipose radiodensities in abdominal and femoral areas and their relationships to circulating metabolites in morbidly obese patients. METHODS AND RESULTS We examined 23 morbidly obese women who underwent CT imaging before and 6 months after bariatric surgery. Fifteen healthy non-obese women served as controls. Radiodensities of the abdominal subcutaneous (SAT) and visceral adipose tissue (VAT), and the femoral SAT, adipose tissue masses were measured in all participants. Circulating metabolites were measured by NMR. At baseline, radiodensities of abdominal fat depots were lower in the obese patients as compared to the controls. Surprisingly, radiodensity of femoral SAT was higher in the obese as compared to the controls. In the abdominal SAT depot, radiodensity strongly correlated with SAT mass (r = -0.72, p < 0.001). After surgery, the radiodensities of abdominal fat increased significantly (both p < 0.01), while femoral SAT radiodensity remained unchanged. Circulating ApoB/ApoA-I, leucine, valine, and GlycA decreased, while glycine levels significantly increased as compared to pre-surgical values (all p < 0.05). The increase in abdominal fat radiodensity correlated negatively with the decreased levels of ApoB/ApoA-I ratio, leucine and GlycA (all p < 0.05). The increase in abdominal SAT density was significantly correlated with the decrease in the fat depot mass (r = -0.66, p = 0.002). CONCLUSION Higher lipid content in abdominal fat depots, and lower content in femoral subcutaneous fat, constitute prominent pathophysiological features in morbid obesity. Further studies are needed to clarify the role of non-abdominal subcutaneous fat in the pathogenesis of obesity. CLINICAL TRIAL REGISTRATION NUMBER NCT01373892.
Collapse
Affiliation(s)
- Prince Dadson
- Turku PET Centre, University of Turku, Turku, Finland
| | - Eleni Rebelos
- Turku PET Centre, University of Turku, Turku, Finland
| | - Henri Honka
- Turku PET Centre, University of Turku, Turku, Finland
| | | | | | - Patricia Iozzo
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
| | - Jarmo Teuho
- Turku PET Centre, University of Turku, Turku, Finland; Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Paulina Salminen
- Division of Digestive Surgery and Urology, Turku University Hospital, Turku, Finland; Department of Surgery, University of Turku, Turku, Finland
| | - Jussi Pihlajamäki
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Clinical Nutrition and Obesity Centre, Kuopio University Hospital, Kuopio, Finland
| | - Jarna C Hannukainen
- Turku PET Centre, University of Turku, Turku, Finland; Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Turku, Finland; Department of Endocrinology, Turku University Hospital, Turku, Finland.
| |
Collapse
|
26
|
BMP7 overexpression in adipose tissue induces white adipogenesis and improves insulin sensitivity in ob/ob mice. Int J Obes (Lond) 2020; 45:449-460. [PMID: 33110143 DOI: 10.1038/s41366-020-00700-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 08/26/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND/OBJECTIVES During obesity, hypertrophic enlargement of white adipose tissue (WAT) promotes ectopic lipid deposition and development of insulin resistance. In contrast, WAT hyperplasia is associated with preservation of insulin sensitivity. The complex network of factors that regulates white adipogenesis is not fully understood. Bone morphogenic protein 7 (BMP7) can induce brown adipogenesis, but its role on white adipogenesis remains to be elucidated. Here, we assessed BMP7-mediated effects on white adipogenesis in ob/ob mice. METHODS BMP7 was overexpressed in either WAT or liver of ob/ob mice using adeno-associated viral (AAV) vectors. Analysis of gene expression, histological and morphometric alterations, and metabolites and hormones concentrations were carried out. RESULTS Overexpression of BMP7 in adipocytes of subcutaneous and visceral WAT increased fat mass, the proportion of small-size adipocytes and the expression of adipogenic and mature adipocyte genes, suggesting induction of adipogenesis irrespective of fat depot. These changes were associated with reduced hepatic steatosis and improved insulin sensitivity. In contrast, liver-specific overproduction of BMP7 did not promote WAT hyperplasia despite BMP7 circulating levels were similar to those achieved after genetic engineering of WAT. CONCLUSIONS This study unravels a new autocrine/paracrine role of BMP7 on white adipogenesis and highlights that BMP7 may modulate WAT plasticity and increase insulin sensitivity.
Collapse
|
27
|
Saha PK, Hamilton MP, Rajapakshe K, Putluri V, Felix JB, Masschelin P, Cox AR, Bajaj M, Putluri N, Coarfa C, Hartig SM. miR-30a targets gene networks that promote browning of human and mouse adipocytes. Am J Physiol Endocrinol Metab 2020; 319:E667-E677. [PMID: 32799658 PMCID: PMC7864240 DOI: 10.1152/ajpendo.00045.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
MicroRNA-30a (miR-30a) impacts adipocyte function, and its expression in white adipose tissue (WAT) correlates with insulin sensitivity in obesity. Bioinformatic analysis demonstrates that miR-30a expression contributes to 2% of all miRNA expression in human tissues. However, molecular mechanisms of miR-30a function in fat cells remain unclear. Here, we expanded our understanding of how miR-30a expression contributes to antidiabetic peroxisome proliferator-activated receptor-γ (PPARγ) agonist activity and metabolic functions in adipocytes. We found that WAT isolated from diabetic patients shows reduced miR-30a levels and diminished expression of the canonical PPARγ target genes ADIPOQ and FABP4 relative to lean counterparts. In human adipocytes, miR-30a required PPARγ for maximal expression, and the PPARγ agonist rosiglitazone robustly induced miR-30a but not other miR-30 family members. Transcriptional activity studies in human adipocytes also revealed that ectopic expression of miR-30a enhanced the activity of rosiglitazone coupled with higher expression of fatty acid and glucose metabolism markers. Diabetic mice that overexpress ectopic miR-30a in subcutaneous WAT display durable reductions in serum glucose and insulin levels for more than 30 days. In agreement with our in vitro findings, RNA-seq coupled with Gene Set Enrichment Analysis (GSEA) suggested that miR-30a enabled activation of the beige fat program in vivo, as evidenced by enhanced mitochondrial biogenesis and induction of UCP1 expression. Metabolomic and gene expression profiling established that the long-term effects of ectopic miR-30a expression enable accelerated glucose metabolism coupled with subcutaneous WAT hyperplasia. Together, we establish a putative role of miR-30a in mediating PPARγ activity and advancing metabolic programs of white to beige fat conversion.
Collapse
Affiliation(s)
- Pradip K Saha
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Mark P Hamilton
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Kimal Rajapakshe
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Vasanta Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Jessica B Felix
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Peter Masschelin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Aaron R Cox
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Mandeep Bajaj
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Sean M Hartig
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
28
|
Vishvanath L, Gupta RK. Contribution of adipogenesis to healthy adipose tissue expansion in obesity. J Clin Invest 2020; 129:4022-4031. [PMID: 31573549 DOI: 10.1172/jci129191] [Citation(s) in RCA: 368] [Impact Index Per Article: 73.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The manner in which white adipose tissue (WAT) expands and remodels directly impacts the risk of developing metabolic syndrome in obesity. Preferential accumulation of visceral WAT is associated with increased risk for insulin resistance, whereas subcutaneous WAT expansion is protective. Moreover, pathologic WAT remodeling, typically characterized by adipocyte hypertrophy, chronic inflammation, and fibrosis, is associated with insulin resistance. Healthy WAT expansion, observed in the "metabolically healthy" obese, is generally associated with the presence of smaller and more numerous adipocytes, along with lower degrees of inflammation and fibrosis. Here, we highlight recent human and rodent studies that support the notion that the ability to recruit new fat cells through adipogenesis is a critical determinant of healthy adipose tissue distribution and remodeling in obesity. Furthermore, we discuss recent advances in our understanding of the identity of tissue-resident progenitor populations in WAT made possible through single-cell RNA sequencing analysis. A better understanding of adipose stem cell biology and adipogenesis may lead to novel strategies to uncouple obesity from metabolic disease.
Collapse
|
29
|
Cruz MM, Simão JJ, de Sá RDCC, Farias TSM, da Silva VS, Abdala F, Antraco VJ, Armelin-Correa L, Alonso-Vale MIC. Palmitoleic Acid Decreases Non-alcoholic Hepatic Steatosis and Increases Lipogenesis and Fatty Acid Oxidation in Adipose Tissue From Obese Mice. Front Endocrinol (Lausanne) 2020; 11:537061. [PMID: 33117273 PMCID: PMC7561405 DOI: 10.3389/fendo.2020.537061] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 08/28/2020] [Indexed: 01/06/2023] Open
Abstract
We recently demonstrated that palmitoleic acid (C16:1n7), a monounsaturated fatty acid, increases the metabolic and oxidative capacity of 3T3-L1 adipocytes. Herein, the effect of 16:1n7 supplementation on metabolic parameters on white adipose tissue (WAT) and liver of obese mice induced by a high-fat diet (HFD) was addressed by analyzing metabolic (dys)function and altered genes expression in adipose tissue, as well as liver and serum biochemistry analysis. For this purpose, mice were induced to obesity for 8 weeks, and from the 5th week, they received 16:1n7 (300 mg/kg per day) or water for 30 days, by gavage. Subcutaneous inguinal (ING) and epididymal (EPI) WAT were removed for analysis of metabolic, (anti)inflammatory, adipogenic, and thermogenic genes expression by real-time reverse transcriptase-polymerase chain reaction. Additionally, metabolic activities of isolated adipocytes, such as glucose uptake, lipogenesis (triacylglycerol esterification), β-oxidation, and lipolysis in ING adipocytes, were also assessed. Despite the higher fat intake, the HFD group showed lower food intake but higher body weight, increased glucose, significant dyslipidemia, and increased liver and adipose depot mass, accompanied by liver steatosis. The 16:1n7 supplementation slowed down the body mass gain and prevented the increase of lipids in the liver. HFD+n7 animals presented increased fatty acid oxidation and lipogenesis compared to control, but no effect was observed on lipolysis and glucose uptake in ING isolated adipocytes. Besides, 16:1n7 increased the content of the mRNA encoding FABP4, but partially prevented the expression of genes encoding ATGL, HSL, perilipin, lipin, C/EBP-α, PPAR-γ, C/EBP-β, CPT1, NRF1, TFAM, PRDM16, and nitric oxide synthase 2 in ING depot from HFD group of animals. Finally, HFD increased Mcp1 and Tnfα expression, and 16:1n7 promoted a more marked increase in it. In summary, the data show that palmitoleic acid promotes metabolic changes and partially prevents the increase in gene expression on adipocytes triggered by obesity, suggesting that HFD+n7 animals do not require the same magnitude of metabolic adaptation to cope with energy demand from the HFD. In the long term, the effects of 16:1n7 may be more evident and beneficial for the function/dysfunction of WAT from an obese organism, with relevant repercussions in the systemic metabolic homeostasis.
Collapse
Affiliation(s)
- Maysa M. Cruz
- Post-graduate Program in Chemical Biology – Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo - UNIFESP, Diadema, Brazil
| | - Jussara J. Simão
- Post-graduate Program in Chemical Biology – Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo - UNIFESP, Diadema, Brazil
| | - Roberta D. C. C. de Sá
- Post-graduate Program in Chemical Biology – Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo - UNIFESP, Diadema, Brazil
| | - Talita S. M. Farias
- Post-graduate Program in Chemical Biology – Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo - UNIFESP, Diadema, Brazil
| | - Viviane S. da Silva
- Post-graduate Program in Chemical Biology – Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo - UNIFESP, Diadema, Brazil
| | - Fernanda Abdala
- Department of Biological Sciences, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo - UNIFESP, Diadema, Brazil
| | - Vitor J. Antraco
- Post-graduate Program in Chemical Biology – Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo - UNIFESP, Diadema, Brazil
| | - Lucia Armelin-Correa
- Post-graduate Program in Chemical Biology – Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo - UNIFESP, Diadema, Brazil
- Department of Biological Sciences, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo - UNIFESP, Diadema, Brazil
| | - Maria Isabel C. Alonso-Vale
- Post-graduate Program in Chemical Biology – Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo - UNIFESP, Diadema, Brazil
- Department of Biological Sciences, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo - UNIFESP, Diadema, Brazil
- *Correspondence: Maria Isabel C. Alonso-Vale
| |
Collapse
|
30
|
Vyas KS, Bole M, Vasconez HC, Banuelos JM, Martinez-Jorge J, Tran N, Lemaine V, Mardini S, Bakri K. Profile of Adipose-Derived Stem Cells in Obese and Lean Environments. Aesthetic Plast Surg 2019; 43:1635-1645. [PMID: 31267153 DOI: 10.1007/s00266-019-01397-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 05/04/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND With the demand for stem cells in regenerative medicine, new methods of isolating stem cells are highly sought. Adipose tissue is a readily available and non-controversial source of multipotent stem cells that carries a low risk for potential donors. However, elevated donor body mass index has been associated with an altered cellular microenvironment and thus has implications for stem cell efficacy in recipients. This review explored the literature on adipose-derived stem cells (ASCs) and the effect of donor obesity on cellular function. METHODS A review of published articles on obesity and ASCs was conducted with the PubMed database and the following search terms: obesity, overweight, adipose-derived stem cells and ASCs. Two investigators screened and reviewed the relevant abstracts. RESULTS There is agreement on reduced ASC function in response to obesity in terms of angiogenic differentiation, proliferation, migration, viability, and an altered and inflammatory transcriptome. Osteogenic differentiation and cell yield do not show reasonable agreement. Weight loss partially rescues some of the aforementioned features. CONCLUSIONS Generally, obesity reduces ASC qualities and may have an effect on the therapeutic value of ASCs. Because weight loss and some biomolecules have been shown to rescue these qualities, further research should be conducted on methods to return obese-derived ASCs to baseline. LEVEL V This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors- www.springer.com/00266.
Collapse
Affiliation(s)
- Krishna S Vyas
- Division of Plastic Surgery, Department of Surgery, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA.
| | - Madhav Bole
- Division of Orthopaedic Surgery, London Health Sciences Centre, University Hospital, 339 Windermere Rd., London, ON, N6A 5A5, Canada
| | - Henry C Vasconez
- Division of Plastic Surgery, University of Kentucky, Lexington, KY, USA
| | - Joseph M Banuelos
- Division of Plastic Surgery, Department of Surgery, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Jorys Martinez-Jorge
- Division of Plastic Surgery, Department of Surgery, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Nho Tran
- Division of Plastic Surgery, Department of Surgery, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Valerie Lemaine
- Division of Plastic Surgery, Department of Surgery, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Samir Mardini
- Division of Plastic Surgery, Department of Surgery, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Karim Bakri
- Division of Plastic Surgery, Department of Surgery, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| |
Collapse
|
31
|
Schaar A, Sun Y, Sukumaran P, Rosenberger TA, Krout D, Roemmich JN, Brinbaumer L, Claycombe-Larson K, Singh BB. Ca 2+ entry via TRPC1 is essential for cellular differentiation and modulates secretion via the SNARE complex. J Cell Sci 2019; 132:jcs.231878. [PMID: 31182642 PMCID: PMC6633397 DOI: 10.1242/jcs.231878] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/27/2019] [Indexed: 12/17/2022] Open
Abstract
Properties of adipocytes, including differentiation and adipokine secretion, are crucial factors in obesity-associated metabolic syndrome. Here, we provide evidence that Ca2+ influx in primary adipocytes, especially upon Ca2+ store depletion, plays an important role in adipocyte differentiation, functionality and subsequently metabolic regulation. The endogenous Ca2+ entry channel in both subcutaneous and visceral adipocytes was found to be dependent on TRPC1–STIM1, and blocking Ca2+ entry with SKF96365 or using TRPC1−/− knockdown adipocytes inhibited adipocyte differentiation. Additionally, TRPC1−/− mice have decreased organ weight, but increased adipose deposition and reduced serum adiponectin and leptin concentrations, without affecting total adipokine expression. Mechanistically, TRPC1-mediated Ca2+ entry regulated SNARE complex formation, and agonist-mediated secretion of adipokine-loaded vesicles was inhibited in TRPC1−/− adipose. These results suggest an unequivocal role of TRPC1 in adipocyte differentiation and adiponectin secretion, and that loss of TRPC1 disturbs metabolic homeostasis. This article has an associated First Person interview with the first author of the paper. Summary: TRPC1 modulates Ca2+ entry, which is essential in adipocyte differentiation and adiponectin secretion, through facilitating SNARE complex formation, thereby maintaining metabolic homeostasis.
Collapse
Affiliation(s)
- Anne Schaar
- Department of Biomedical Science, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Yuyang Sun
- Department of Biomedical Science, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Pramod Sukumaran
- Department of Biomedical Science, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Thad A Rosenberger
- Department of Biomedical Science, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Danielle Krout
- US Department of Agriculture-Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203, USA
| | - James N Roemmich
- US Department of Agriculture-Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203, USA
| | - Lutz Brinbaumer
- Neurobiology Laboratory, NIHES, NIH, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA.,Institute of Biomedical Research, (BIOMED) Catholic University of Argentina, Av. Alicia Moreau de Justo 1300, Edificio San Jose Piso 3, Buenos Aires C1107AAZ, Argentina
| | - Kate Claycombe-Larson
- US Department of Agriculture-Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58203, USA
| | - Brij B Singh
- Department of Biomedical Science, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| |
Collapse
|
32
|
Cox AR, Chernis N, Masschelin PM, Hartig SM. Immune Cells Gate White Adipose Tissue Expansion. Endocrinology 2019; 160:1645-1658. [PMID: 31107528 PMCID: PMC6591013 DOI: 10.1210/en.2019-00266] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/14/2019] [Indexed: 12/15/2022]
Abstract
The immune system plays a critical role in white adipose tissue (WAT) energy homeostasis and, by extension, whole-body metabolism. Substantial evidence from mouse and human studies firmly establishes that insulin sensitivity deteriorates as a result of subclinical inflammation in the adipose tissue of individuals with diabetes. However, the relationship between adipose tissue expandability and immune cell infiltration remains a complex problem important for understanding the pathogenesis of obesity. Notably, a large body of work challenges the idea that all immune responses are deleterious to WAT function. This review highlights recent advances that describe how immune cells and adipocytes coordinately enable WAT expansion and regulation of energy homeostasis.
Collapse
Affiliation(s)
- Aaron R Cox
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Natasha Chernis
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Peter M Masschelin
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Sean M Hartig
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Correspondence: Sean M. Hartig, PhD, Baylor College of Medicine, One Baylor Plaza, BCM185, Houston, Texas 77030. E-mail:
| |
Collapse
|
33
|
White JD, Dewal RS, Stanford KI. The beneficial effects of brown adipose tissue transplantation. Mol Aspects Med 2019; 68:74-81. [PMID: 31228478 DOI: 10.1016/j.mam.2019.06.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 02/20/2019] [Accepted: 06/18/2019] [Indexed: 01/02/2023]
Abstract
Obesity is a disease that results from an imbalance between energy intake and energy expenditure. Brown adipose tissue (BAT) is a potential therapeutic target to improve the comorbidities associated with obesity due to its inherent thermogenic capacity and its ability to improve glucose metabolism. Multiple studies have shown that activation of BAT using either pharmacological treatments or cold exposure had an acute effect to increase metabolic function and reduce adiposity. Recent preclinical investigations have explored whether increasing BAT mass or activation through transplantation models could improve glucose metabolism and metabolic health. Successful BAT transplantation models have shown improvements in glucose metabolism and insulin sensitivity, as well as reductions in body mass and decreased adiposity in recipients. BAT transplantation may confer its beneficial effects through several different mechanisms, including endocrine effects via the release of 'batokines'. More recent studies have demonstrated that beige and brown adipocytes isolated from human progenitor cells and transplanted into mouse models result in metabolic improvements similar to transplantation of whole BAT; this could represent a clinically translatable model. In this review we will discuss the impetus for both early and recent investigations utilizing BAT transplantation models, the outcomes of these studies, and review the mechanisms associated with the beneficial effects of BAT transplant to confer improvements in metabolic health.
Collapse
Affiliation(s)
- Joseph D White
- Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Revati S Dewal
- Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Kristin I Stanford
- Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| |
Collapse
|
34
|
Jiang N, Li Y, Shu T, Wang J. Cytokines and inflammation in adipogenesis: an updated review. Front Med 2019; 13:314-329. [PMID: 30066061 DOI: 10.1007/s11684-018-0625-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 12/12/2017] [Indexed: 02/07/2023]
Abstract
The biological relevance of cytokines is known for more than 20 years. Evidence suggests that adipogenesis is one of the biological events involved in the regulation of cytokines, and pro-inflammatory cytokines (e.g., TNFα and IL-1β) inhibit adipogenesis through various pathways. This inhibitory effect can constrain the hyperplastic expandability of adipose tissues. Meanwhile, chronic low-grade inflammation is commonly observed in obese populations. In some individuals, the impaired ability of adipose tissues to recruit new adipocytes to adipose depots during overnutrition results in adipocyte hypertrophy, ectopic lipid accumulation, and insulin resistance. Intervention studies showed that pro-inflammatory cytokine antagonists improve metabolism in patients with metabolic syndrome. This review focuses on the cytokines currently known to regulate adipogenesis under physiological and pathophysiological circumstances. Recent studies on how inhibited adipogenesis leads to metabolic disorders were summarized. Although the interplay of cytokines and lipid metabolism is yet incompletely understood, cytokines represent a class of potential therapeutic targets in the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Ning Jiang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, 100730, China
| | - Yao Li
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, 100730, China
| | - Ting Shu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, 100730, China
| | - Jing Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
35
|
Silva KR, Baptista LS. Adipose-derived stromal/stem cells from different adipose depots in obesity development. World J Stem Cells 2019; 11:147-166. [PMID: 30949294 PMCID: PMC6441940 DOI: 10.4252/wjsc.v11.i3.147] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 01/27/2019] [Accepted: 02/28/2019] [Indexed: 02/06/2023] Open
Abstract
The increasing prevalence of obesity is alarming because it is a risk factor for cardiovascular and metabolic diseases (such as type 2 diabetes). The occurrence of these comorbidities in obese patients can arise from white adipose tissue (WAT) dysfunctions, which affect metabolism, insulin sensitivity and promote local and systemic inflammation. In mammals, WAT depots at different anatomical locations (subcutaneous, preperitoneal and visceral) are highly heterogeneous in their morpho-phenotypic profiles and contribute differently to homeostasis and obesity development, depending on their ability to trigger and modulate WAT inflammation. This heterogeneity is likely due to the differential behavior of cells from each depot. Numerous studies suggest that adipose-derived stem/stromal cells (ASC; referred to as adipose progenitor cells, in vivo) with depot-specific gene expression profiles and adipogenic and immunomodulatory potentials are keys for the establishment of the morpho-functional heterogeneity between WAT depots, as well as for the development of depot-specific responses to metabolic challenges. In this review, we discuss depot-specific ASC properties and how they can contribute to the pathophysiology of obesity and metabolic disorders, to provide guidance for researchers and clinicians in the development of ASC-based therapeutic approaches.
Collapse
Affiliation(s)
- Karina Ribeiro Silva
- Laboratory of Tissue Bioengineering, Directory of Metrology Applied to Life Sciences, National Institute of Metrology, Quality and Technology, Duque de Caxias, RJ 25250-020, Brazil
- Post-Graduation Program of Biotechnology, National Institute of Metrology, Quality and Technology, Duque de Caxias, RJ 25250-020, Brazil
| | - Leandra Santos Baptista
- Laboratory of Tissue Bioengineering, Directory of Metrology Applied to Life Sciences, National Institute of Metrology, Quality and Technology, Duque de Caxias, RJ 25250-020, Brazil
- Post-Graduation Program of Biotechnology, National Institute of Metrology, Quality and Technology, Duque de Caxias, RJ 25250-020, Brazil
- Multidisciplinary Center for Biological Research (Numpex-Bio), Federal University of Rio de Janeiro Campus Duque de Caxias, Duque de Caxias, RJ 25245-390, Brazil
| |
Collapse
|
36
|
Abstract
Adipogenesis is a complex process whereby the multipotent adipose-derived stem cell is converted to a preadipocyte before terminal differentiation into the mature adipocyte. Preadipocytes are present throughout adult life, exhibit adipose fat depot specificity, and differentiate and proliferate from distinct progenitor cells. The mechanisms that promote preadipocyte commitment and maturation involve numerous protein factor regulators, epigenetic factors, and miRNAs. Detailed characterization of this process is currently an area of intense research and understanding the roles of preadipocytes in tissue plasticity may provide insight into novel approaches for tissue engineering, regenerative medicine and treating a host of obesity-related conditions. In the current study, we analyzed the current literature and present a review of the characteristics of transitioning adipocytes and detail how local microenvironments influence their progression towards terminal differentiation and maturation. Specifically, we detail the characterization of preadipocyte via surface markers, examine the signaling cascades and regulation behind adipogenesis and cell maturation, and survey their role in tissue plasticity and health and disease.
Collapse
|
37
|
Sadie-Van Gijsen H. Adipocyte biology: It is time to upgrade to a new model. J Cell Physiol 2018; 234:2399-2425. [PMID: 30192004 DOI: 10.1002/jcp.27266] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 07/25/2018] [Indexed: 12/15/2022]
Abstract
Globally, the obesity pandemic is profoundly affecting quality of life and economic productivity, but efforts to address this, especially on a pharmacological level, have generally proven unsuccessful to date, serving as a stark demonstration that our understanding of adipocyte biology and pathophysiology is incomplete. To deliver better insight into adipocyte function and obesity, we need improved adipocyte models with a high degree of fidelity in representing the in vivo state and with a diverse range of experimental applications. Adipocyte cell lines, especially 3T3-L1 cells, have been used extensively over many years, but these are limited in terms of relevance and versatility. In this review, I propose that primary adipose-derived stromal/stem cells (ASCs) present a superior model with which to study adipocyte biology ex vivo. In particular, ASCs afford us the opportunity to study adipocytes from different, functionally distinct, adipose depots and to investigate, by means of in vivo/ex vivo studies, the effects of many different physiological and pathophysiological factors, such as age, body weight, hormonal status, diet and nutraceuticals, as well as disease and pharmacological treatments, on the biology of adipocytes and their precursors. This study will give an overview of the characteristics of ASCs and published studies utilizing ASCs, to highlight the areas where our knowledge is lacking. More comprehensive studies in primary ASCs will contribute to an improved understanding of adipose tissue, in healthy and dysfunctional states, which will enhance our efforts to more successfully manage and treat obesity.
Collapse
Affiliation(s)
- Hanél Sadie-Van Gijsen
- Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Parow, South Africa.,Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Parow, South Africa
| |
Collapse
|
38
|
Adipose Tissue Function and Expandability as Determinants of Lipotoxicity and the Metabolic Syndrome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 960:161-196. [PMID: 28585199 DOI: 10.1007/978-3-319-48382-5_7] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The adipose tissue organ is organised as distinct anatomical depots located all along the body axis and it is constituted of three different types of adipocytes : white, beige and brown which are integrated with vascular, immune, neural and extracellular stroma cells. These distinct adipocytes serve different specialised functions. The main function of white adipocytes is to ensure healthy storage of excess nutrients/energy and its rapid mobilisation to supply the demand of energy imposed by physiological cues in other organs, whereas brown and beige adipocytes are designed for heat production through uncoupling lipid oxidation from energy production. The concert action of the three type of adipocytes/tissues has been reported to ensure an optimal metabolic status in rodents. However, when one or multiple of these adipose depots become dysfunctional as a consequence of sustained lipid/nutrient overload, then insulin resistance and associated metabolic complications ensue. These metabolic alterations negatively affects the adipose tissue functionality and compromises global metabolic homeostasis. Optimising white adipose tissue expandability and its functional metabolic flexibility and/or promoting brown/beige mediated thermogenic activity counteracts obesity and its associated lipotoxic metabolic effects. The development of these therapeutic approaches requires a deep understanding of adipose tissue in all broad aspects. In this chapter we will discuss the characteristics of the different adipose tissue depots with respect to origins and precursors recruitment, plasticity, cellular composition and expandability capacity as well as molecular and metabolic signatures in both physiological and pathophysiological conditions.
Collapse
|
39
|
Pérez LM, de Lucas B, Lunyak VV, Gálvez BG. Adipose stem cells from obese patients show specific differences in the metabolic regulators vitamin D and Gas5. Mol Genet Metab Rep 2017; 12:51-56. [PMID: 28580301 PMCID: PMC5447652 DOI: 10.1016/j.ymgmr.2017.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/22/2017] [Indexed: 12/21/2022] Open
Abstract
Adipose tissue is a significant source of mesenchymal stem cells for regenerative therapies; however, caution should be taken as their environmental niche can affect their functional properties. We have previously demonstrated the negative impact of obesity on the function of adipose-derived stem cells (ASCs). Here we have evaluated other possible properties and targets that are altered by obesity such as the recently described long non-coding molecule Gas5, which is involved in glucocorticoid resistance. Using ASCs isolated from obese (oASCs) and control subjects (cASCs), we have analyzed additional metabolic and inflammatory conditions that could be related with their impaired therapeutic potential and consequently their possible usefulness in the clinic.
Altered genetic and metabolic targets by obesity in adipose stem cells population Gas5 involved in glucocorticoid resistance such as altered target Additional metabolic and inflammation conditions on obese adipose stem cells
Collapse
Affiliation(s)
- Laura M Pérez
- Universidad Europea de Madrid, Madrid, Spain.,Instituto de Investigación Hospital 12 de Octubre (i + 12), Madrid, Spain
| | - Beatriz de Lucas
- Universidad Europea de Madrid, Madrid, Spain.,Instituto de Investigación Hospital 12 de Octubre (i + 12), Madrid, Spain
| | | | - Beatriz G Gálvez
- Universidad Europea de Madrid, Madrid, Spain.,Instituto de Investigación Hospital 12 de Octubre (i + 12), Madrid, Spain
| |
Collapse
|
40
|
Cox-York KA, Erickson CB, Pereira RI, Bessesen DH, Van Pelt RE. Region-specific effects of oestradiol on adipose-derived stem cell differentiation in post-menopausal women. J Cell Mol Med 2016; 21:677-684. [PMID: 27862950 PMCID: PMC5345675 DOI: 10.1111/jcmm.13011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/18/2016] [Indexed: 12/25/2022] Open
Abstract
The goal of this study was to determine the effect of acute transdermal 17β‐oestradiol (E2) on the adipogenic potential of subcutaneous adipose‐derived stem cells (ASC) in post‐menopausal women. Post‐menopausal women (n = 11; mean age 57 ± 4.5 years) were treated for 2 weeks, in a randomized, cross‐over design, with transdermal E2 (0.15 mg) or placebo patches. Biopsies of abdominal (AB) and femoral (FEM) subcutaneous adipose tissue (SAT) were obtained after each treatment and mature adipocytes were analysed for cell size and ASC for their capacity for proliferation (growth rate), differentiation (triglyceride accumulation) and susceptibility to tumour necrosis factor alpha‐induced apoptosis. Gene expression of oestrogen receptors α and β (ESR1 and ESR2), perilipin 1 and hormone‐sensitive lipase (HSL), was also assessed. In FEM SAT, but not AB SAT, 2 weeks of E2 significantly (P = 0.03) increased ASC differentiation and whole SAT HSL mRNA expression (P = 0.03) compared to placebo. These changes were not associated with mRNA expression of oestrogen receptors α and β, but HSL expression was significantly increased in FEM SAT with transdermal E2 treatment. Adipose‐derived stem cells proliferation and apoptosis did not change in either SAT depot after E2 compared with placebo. Short‐term E2 appeared to increase the adipogenic potential of FEM, but not AB, SAT in post‐menopausal women with possible implications for metabolic disease. Future studies are needed to determine longer term impact of E2 on regional SAT accumulation in the context of positive energy imbalance.
Collapse
Affiliation(s)
| | - Christopher B Erickson
- Department of Medicine, Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rocio I Pereira
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Denver Health and Hospital Authority, Denver, CO, USA
| | - Daniel H Bessesen
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Denver Health and Hospital Authority, Denver, CO, USA
| | - Rachael E Van Pelt
- Department of Medicine, Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
41
|
Zubiría MG, Alzamendi A, Moreno G, Portales A, Castrogiovanni D, Spinedi E, Giovambattista A. Relationship between the Balance of Hypertrophic/Hyperplastic Adipose Tissue Expansion and the Metabolic Profile in a High Glucocorticoids Model. Nutrients 2016; 8:nu8070410. [PMID: 27384583 PMCID: PMC4963886 DOI: 10.3390/nu8070410] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/27/2016] [Accepted: 06/14/2016] [Indexed: 12/12/2022] Open
Abstract
Adipose tissue (AT) expansion is the result of two processes: hyperplasia and hypertrophy; and both, directly or indirectly, depend on the adipogenic potential of adipocyte precursor cells (APCs). Glucocorticoids (GCs) have a potent stimulatory effect on terminal adipogenesis; while their effects on early stages of adipogenesis are largely unknown. In the present work, we study, in a model of high GC levels, the adipogenic potential of APCs from retroperitoneal AT (RPAT) and its relationship with RPAT mass expansion. We employed a model of hyper-adiposity (30- and 60-day-old rats) due to high endogenous GC levels induced by neonatal treatment with l-monosodium glutamate (MSG). We found that the RPAT APCs from 30-day-old MSG rats showed an increased adipogenic capacity, depending on the APCs’ competency, but not in their number. Analyses of RPAT adipocyte diameter revealed an increase in cell size, regardless of the rat age, indicating the prevalence of a hypertrophic process. Moreover, functional RPAT alterations worsened in 60-day-old rats, suggesting that the hyperplastic AT expansion found in 30-day-old animals might have a protective role. We conclude that GCs chronic excess affects APCs’ adipogenic capacity, modifying their competency. This change would modulate the hyperplastic/hypertrophic balance determining healthy or unhealthy RPAT expansion and, therefore, its functionality.
Collapse
Affiliation(s)
- María Guillermina Zubiría
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), Calles 526 10 y 11, La Plata 1900, Argentina.
- Biology Department, School of Exact Sciences, Universidad Nacional de La Plata, La Plata 1900, Argentina.
| | - Ana Alzamendi
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), Calles 526 10 y 11, La Plata 1900, Argentina.
| | - Griselda Moreno
- Institute of Immunological and Physiopathological Research (IIFP, CONICET-UNLP), School of Exact Sciences, Universidad Nacional de La Plata, La Plata 1900, Argentina.
| | - Andrea Portales
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), Calles 526 10 y 11, La Plata 1900, Argentina.
- Biology Department, School of Exact Sciences, Universidad Nacional de La Plata, La Plata 1900, Argentina.
| | - Daniel Castrogiovanni
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), Calles 526 10 y 11, La Plata 1900, Argentina.
| | - Eduardo Spinedi
- Center of Experimental and Applied Endocrinology (CENEXA, UNLP-CONICET, PAHO/WHO Collaborating Center for Diabetes), La Plata Medical School, Universidad Nacional de La Plata, La Plata 1900, Argentina.
| | - Andrés Giovambattista
- Neuroendocrinology Laboratory, Multidisciplinary Institute of Cellular Biology (IMBICE, CICPBA-CONICET-UNLP), Calles 526 10 y 11, La Plata 1900, Argentina.
- Biology Department, School of Exact Sciences, Universidad Nacional de La Plata, La Plata 1900, Argentina.
| |
Collapse
|
42
|
Pellegrinelli V, Carobbio S, Vidal-Puig A. Adipose tissue plasticity: how fat depots respond differently to pathophysiological cues. Diabetologia 2016; 59:1075-88. [PMID: 27039901 PMCID: PMC4861754 DOI: 10.1007/s00125-016-3933-4] [Citation(s) in RCA: 291] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/23/2016] [Indexed: 02/07/2023]
Abstract
White adipose tissue (WAT) has key metabolic and endocrine functions and plays a role in regulating energy homeostasis and insulin sensitivity. WAT is characterised by its capacity to adapt and expand in response to surplus energy through processes of adipocyte hypertrophy and/or recruitment and proliferation of precursor cells in combination with vascular and extracellular matrix remodelling. However, in the context of sustained obesity, WAT undergoes fibro-inflammation, which compromises its functionality, contributing to increased risk of type 2 diabetes and cardiovascular diseases. Conversely, brown adipose tissue (BAT) and browning of WAT represent potential therapeutic approaches, since dysfunctional white adipocyte-induced lipid overspill can be halted by BAT/browning-mediated oxidative anti-lipotoxic effects. Better understanding of the cellular and molecular pathophysiological mechanisms regulating adipocyte size, number and depot-dependent expansion has become a focus of interest over recent decades. Here, we summarise the mechanisms contributing to adipose tissue (AT) plasticity and function including characteristics and cellular complexity of the various adipose depots and we discuss recent insights into AT origins, identification of adipose precursors, pathophysiological regulation of adipogenesis and its relation to WAT/BAT expandability in obesity and its associated comorbidities.
Collapse
Affiliation(s)
- Vanessa Pellegrinelli
- University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge, CB2 OQQ, UK.
| | - Stefania Carobbio
- University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge, CB2 OQQ, UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Antonio Vidal-Puig
- University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge, CB2 OQQ, UK.
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.
| |
Collapse
|
43
|
Myneni VD, Melino G, Kaartinen MT. Transglutaminase 2--a novel inhibitor of adipogenesis. Cell Death Dis 2015; 6:e1868. [PMID: 26313919 PMCID: PMC4558519 DOI: 10.1038/cddis.2015.238] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/12/2015] [Accepted: 07/22/2015] [Indexed: 12/22/2022]
Abstract
Differentiation of preadipocytes to lipid storing adipocytes involves extracellular signaling pathways, matrix remodeling and cytoskeletal changes. A number of factors have been implicated in maintaining the preadipocyte state and preventing their differentiation to adipocytes. We have previously reported that a multifunctional and protein crosslinking enzyme, transglutaminase 2 (TG2) is present in white adipose tissue. In this study, we have investigated TG2 function during adipocyte differentiation. We show that TG2 deficient mouse embryonic fibroblasts (Tgm2-/- MEFs) display increased and accelerated lipid accumulation due to increased expression of major adipogenic transcription factors, PPARγ and C/EBPα. Examination of Pref-1/Dlk1, an early negative regulator of adipogenesis, showed that the Pref-1/Dlk1 protein was completely absent in Tgm2-/- MEFs during early differentiation. Similarly, Tgm2-/- MEFs displayed defective canonical Wnt/β-catenin signaling with reduced β-catenin nuclear translocation. TG2 deficiency also resulted in reduced ROCK kinase activity, actin stress fiber formation and increased Akt phosphorylation in MEFs, but did not alter fibronectin matrix levels or solubility. TG2 protein levels were unaltered during adipogenic differentiation, and was found predominantly in the extracellular compartment of MEFs and mouse WAT. Addition of exogenous TG2 to Tgm2+/+ and Tgm2-/- MEFs significantly inhibited lipid accumulation, reduced expression of PPARγ and C/EBPα, promoted the nuclear accumulation of β-catenin, and recovered Pref-1/Dlk1 protein levels. Our study identifies TG2 as a novel negative regulator of adipogenesis.
Collapse
Affiliation(s)
- V D Myneni
- Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - G Melino
- Department Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | - M T Kaartinen
- Faculty of Dentistry, McGill University, Montreal, QC, Canada
- Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
44
|
Fried SK, Lee MJ, Karastergiou K. Shaping fat distribution: New insights into the molecular determinants of depot- and sex-dependent adipose biology. Obesity (Silver Spring) 2015; 23:1345-52. [PMID: 26054752 PMCID: PMC4687449 DOI: 10.1002/oby.21133] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 04/01/2015] [Accepted: 04/03/2015] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To review recent advances in understanding the cellular mechanisms that regulate fat distribution. METHODS In this review, new insights into depot and sex differences in the developmental origins and growth of adipose tissues as revealed by studies that use new methods, including lineage tracing, are highlighted. RESULTS Variations in fat distribution during normal growth and in response to alterations in nutritional or hormonal status are driven by intrinsic differences in cells found in each adipose depot. Adipose progenitor cells and preadipocytes in different anatomical adipose tissues derive from cell lineages that determine their capacity for proliferation and differentiation. As a result, rates of hypertrophy and hyperplasia during growth and remodeling vary among depots. The metabolic capacities of adipose cells are also determined by variations in the expression of key transcription factors and non-coding RNAs. These developmental events are influenced by sex chromosomes and hormonal and nutrient signals that determine the adipogenic, metabolic, and functional properties of each depot. CONCLUSIONS These new developments in the understanding of fat distribution provide a sound basis for understanding the association of body shape and health in men and women with and without obesity.
Collapse
Affiliation(s)
- Susan K Fried
- Obesity Research Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Mi-Jeong Lee
- Obesity Research Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Kalypso Karastergiou
- Obesity Research Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
45
|
Silva KR, Liechocki S, Carneiro JR, Claudio-da-Silva C, Maya-Monteiro CM, Borojevic R, Baptista LS. Stromal-vascular fraction content and adipose stem cell behavior are altered in morbid obese and post bariatric surgery ex-obese women. Stem Cell Res Ther 2015; 6:72. [PMID: 25884374 PMCID: PMC4435525 DOI: 10.1186/s13287-015-0029-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 01/29/2015] [Accepted: 03/02/2015] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Subcutaneous adipose tissue is an interesting source of autologous stem cells with a fundamental role in the pathophysiology of obesity, metabolic syndromes and insulin resistance. We hypothesize that obesity could alter the stromal-vascular fraction (SVF) and adipose stem cell (ASCs) functions, which could compromise its regenerative behavior. Furthermore, we aimed to evaluate whether ASCs derived from post bariatric surgery ex-obese women maintain their functions in a similar fashion as do those from individuals who have never been obese. METHODS The SVF of subcutaneous adipose tissue from control (n = 6, body mass index - BMI - 27.5 ± 0.5 kg/m(2)), obese (n = 12, BMI 46.2 ± 5.1 kg/m(2)) and post bariatric surgery ex-obese (n = 7, initial BMI 47.8 ± 1.3 kg/m(2); final BMI 28.1 ± 1.1 kg/m(2)) women were isolated and evaluated by flow cytometry. ASCs were tested for lipid accumulation by perilipin, adipose differentiation-related protein (ADRP) and Oil Red O staining after adipogenic stimulus. The cytokines secreted by the ASCs and after lipid accumulation induction were also evaluated. RESULTS The subcutaneous adipose tissue of obese and post bariatric surgery ex-obese women was enriched in pericytes (p = 0.0345). The number of supra-adventitial cells was not altered in the obese patients, but it was highly enriched in the post bariatric surgery ex-obese women (p = 0.0099). The ASCs of the post bariatric surgery ex-obese patients secreted more MCP-1 (monocyte chemoattractant protein-1; p = 0.0078). After lipid accumulation induction, the ASCs of the patients in all groups secreted less IL-6 than the ASCs with no adipogenic stimulus (p < 0.0001). Obese ASCs with lipid accumulation secreted the highest amount of IL-6 (p < 0.001) whereas the ASCs from the controls secreted the highest amount of adiponectin (p < 0.0001). The ASCs from the post bariatric surgery ex-obese patients showed the highest levels of lipid accumulation whereas those from the obese women had the lowest levels (p < 0.0001). CONCLUSIONS SVF content and ASC behavior are altered in the subcutaneous adipose tissue of morbid obese women; these changes are not completely restored after bariatric surgery-induced weight loss. The cellular alterations described in this study could affect the regenerative effects of adipose stem cells. Further investigations are required to avoid jeopardizing the development of autologous stem cell-based therapies.
Collapse
Affiliation(s)
- Karina R Silva
- Programa de Pós-graduação em Clínica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-913, Brazil. .,Núcleo Multidisciplinar de Pesquisa UFRJ - Xerém em Biologia (Numpex-Bio), Universidade Federal do Rio de Janeiro, Polo Xerém, Duque de Caxias, RJ 25245-390, Brazil. .,Programa de Bioengenharia, Diretoria de Programas, Instituto Nacional de Metrologia, Qualidade e Tecnologia (Inmetro), Duque de Caxias, RJ 25250-020, Brazil.
| | - Sally Liechocki
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ 21.040-900, Brazil.
| | - João R Carneiro
- Departamento de Nutrologia do Hospital Universitário Clementino Fraga Filho, Universidade Fereal do Rio de Janeiro, Rio de Janeiro, RJ 21941-913, Brazil.
| | - Cesar Claudio-da-Silva
- Serviço de Cirurgia Plástica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-913, Brazil.
| | - Clarissa M Maya-Monteiro
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ 21.040-900, Brazil.
| | - Radovan Borojevic
- Programa de Pós-graduação em Clínica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-913, Brazil. .,Programa de Bioengenharia, Diretoria de Programas, Instituto Nacional de Metrologia, Qualidade e Tecnologia (Inmetro), Duque de Caxias, RJ 25250-020, Brazil.
| | - Leandra S Baptista
- Programa de Pós-graduação em Clínica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-913, Brazil. .,Núcleo Multidisciplinar de Pesquisa UFRJ - Xerém em Biologia (Numpex-Bio), Universidade Federal do Rio de Janeiro, Polo Xerém, Duque de Caxias, RJ 25245-390, Brazil. .,Programa de Bioengenharia, Diretoria de Programas, Instituto Nacional de Metrologia, Qualidade e Tecnologia (Inmetro), Duque de Caxias, RJ 25250-020, Brazil.
| |
Collapse
|
46
|
Ota A, Kovary KM, Wu OH, Ahrends R, Shen WJ, Costa MJ, Feldman BJ, Kraemer FB, Teruel MN. Using SRM-MS to quantify nuclear protein abundance differences between adipose tissue depots of insulin-resistant mice. J Lipid Res 2015; 56:1068-78. [PMID: 25840986 PMCID: PMC4409283 DOI: 10.1194/jlr.d056317] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Indexed: 01/14/2023] Open
Abstract
Insulin resistance (IR) underlies metabolic disease. Visceral, but not subcutaneous, white adipose tissue (WAT) has been linked to the development of IR, potentially due to differences in regulatory protein abundance. Here we investigate how protein levels are changed in IR in different WAT depots by developing a targeted proteomics approach to quantitatively compare the abundance of 42 nuclear proteins in subcutaneous and visceral WAT from a commonly used insulin-resistant mouse model, Lepr(db/db), and from C57BL/6J control mice. The most differentially expressed proteins were important in adipogenesis, as confirmed by siRNA-mediated depletion experiments, suggesting a defect in adipogenesis in visceral, but not subcutaneous, insulin-resistant WAT. Furthermore, differentiation of visceral, but not subcutaneous, insulin-resistant stromal vascular cells (SVCs) was impaired. In an in vitro approach to understand the cause of this impaired differentiation, we compared insulin-resistant visceral SVCs to preadipocyte cell culture models made insulin resistant by different stimuli. The insulin-resistant visceral SVC protein abundance profile correlated most with preadipocyte cell culture cells treated with both palmitate and TNFα. Together, our study introduces a method to simultaneously measure and quantitatively compare nuclear protein expression patterns in primary adipose tissue and adipocyte cell cultures, which we show can reveal relationships between differentiation and disease states of different adipocyte tissue types.
Collapse
Affiliation(s)
- Asuka Ota
- Departments of Chemical and Systems Biology, Stanford University, Stanford, CA
| | - Kyle M Kovary
- Departments of Chemical and Systems Biology, Stanford University, Stanford, CA
| | - Olivia H Wu
- Departments of Chemical and Systems Biology, Stanford University, Stanford, CA
| | - Robert Ahrends
- Departments of Chemical and Systems Biology, Stanford University, Stanford, CA
| | - Wen-Jun Shen
- Medicine/Division of Endocrinology, Stanford University, Stanford, CA Veterans Administration Palo Alto Health Care System, Palo Alto, CA
| | - Maria J Costa
- Pediatrics/Division of Endocrinology, Stanford University, Stanford, CA
| | - Brian J Feldman
- Pediatrics/Division of Endocrinology, Stanford University, Stanford, CA
| | - Fredric B Kraemer
- Medicine/Division of Endocrinology, Stanford University, Stanford, CA Veterans Administration Palo Alto Health Care System, Palo Alto, CA
| | - Mary N Teruel
- Departments of Chemical and Systems Biology, Stanford University, Stanford, CA
| |
Collapse
|
47
|
Varlamov O, Chu M, Cornea A, Sampath H, Roberts CT. Cell-autonomous heterogeneity of nutrient uptake in white adipose tissue of rhesus macaques. Endocrinology 2015; 156:80-9. [PMID: 25356825 PMCID: PMC4272393 DOI: 10.1210/en.2014-1699] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Phenotypic diversity may play an adaptive role by providing graded biological responses to fluctuations in environmental stimuli. We used single-cell imaging of the metabolizable fluorescent fatty acid analog 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY)-C12 and fluorescent 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-D-glucose (2-NBDG) to explore cellular heterogeneity in nutrient uptake in white adipose tissue (WAT) explants of rhesus macaques. Surprisingly, WAT displayed a striking cell size-independent mosaic pattern, in that adjacent adipocytes varied with respect to insulin-stimulated BODIPY-C12 and 2-NBDG uptake. Relative free fatty acid (FFA) transport activity correlated with the cellular levels of FFA transporter protein-1 and the scavenger receptor CD36 in individual adipocytes. In vitro incubation of WAT explants for 24 hours caused partial desynchronization of cellular responses, suggesting that adipocytes may slowly alter their differential nutrient uptake activity. In vitro-differentiated human adipocytes also exhibited a mosaic pattern of BODIPY-C12 uptake. WAT from animals containing a homogeneous population of large adipocytes was nonmosaic, in that every adipocyte exhibited a similar level of BODIPY-C12 fluorescence, suggesting that the development of obesity is associated with the loss of heterogeneity in WAT. Hence, for the first time, we demonstrate an intrinsic heterogeneity in FFA and glucose transport activity in WAT.
Collapse
Affiliation(s)
- Oleg Varlamov
- Divisions of Diabetes, Obesity, and Metabolism and Developmental and Reproductive Science (O.V., C.T.R.), and Division of Neuroscience (A.C.), Oregon National Primate Research Center, Beaverton, Oregon 97006; and Division of Endocrinology, Diabetes, and Clinical Nutrition, Department of Medicine (M.C., C.T.R.) and Center for Research Occupational and Environmental Toxicology (H.S.), Oregon Health and Science University, Portland, Oregon 97239
| | | | | | | | | |
Collapse
|
48
|
Du L, Fan H, Miao H, Zhao G, Hou Y. Extremely low frequency magnetic fields inhibit adipogenesis of human mesenchymal stem cells. Bioelectromagnetics 2014; 35:519-30. [DOI: 10.1002/bem.21873] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 07/14/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Leilei Du
- The State Key Laboratory of Pharmaceutical Biotechnology; Division of Immunology; Medical School; Nanjing University; Nanjing P.R. China
| | - Hongye Fan
- The State Key Laboratory of Pharmaceutical Biotechnology; Division of Immunology; Medical School; Nanjing University; Nanjing P.R. China
| | - Huishuang Miao
- The State Key Laboratory of Pharmaceutical Biotechnology; Division of Immunology; Medical School; Nanjing University; Nanjing P.R. China
| | - Guangfeng Zhao
- Department of Obstetrics and Gynecology; Nanjing Drum Tower Hospital; Nanjing University Medical School; Nanjing P.R. China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology; Division of Immunology; Medical School; Nanjing University; Nanjing P.R. China
| |
Collapse
|
49
|
Bunner AE, Chandrasekera PC, Barnard ND. Knockout mouse models of insulin signaling: Relevance past and future. World J Diabetes 2014; 5:146-159. [PMID: 24748928 PMCID: PMC3990311 DOI: 10.4239/wjd.v5.i2.146] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 01/03/2014] [Accepted: 02/20/2014] [Indexed: 02/05/2023] Open
Abstract
Insulin resistance is a hallmark of type 2 diabetes. In an effort to understand and treat this condition, researchers have used genetic manipulation of mice to uncover insulin signaling pathways and determine the effects of their perturbation. After decades of research, much has been learned, but the pathophysiology of insulin resistance in human diabetes remains controversial, and treating insulin resistance remains a challenge. This review will discuss limitations of mouse models lacking select insulin signaling molecule genes. In the most influential mouse models, glucose metabolism differs from that of humans at the cellular, organ, and whole-organism levels, and these differences limit the relevance and benefit of the mouse models both in terms of mechanistic investigations and therapeutic development. These differences are due partly to immutable differences in mouse and human biology, and partly to the failure of genetic modifications to produce an accurate model of human diabetes. Several factors often limit the mechanistic insights gained from experimental mice to the particular species and strain, including: developmental effects, unexpected metabolic adjustments, genetic background effects, and technical issues. We conclude that the limitations and weaknesses of genetically modified mouse models of insulin resistance underscore the need for redirection of research efforts toward methods that are more directly relevant to human physiology.
Collapse
|
50
|
Rogers C, Davis B, Neufer PD, Murphy MP, Anderson EJ, Robidoux J. A transient increase in lipid peroxidation primes preadipocytes for delayed mitochondrial inner membrane permeabilization and ATP depletion during prolonged exposure to fatty acids. Free Radic Biol Med 2014; 67:330-41. [PMID: 24269897 PMCID: PMC3935619 DOI: 10.1016/j.freeradbiomed.2013.11.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 10/29/2013] [Accepted: 11/12/2013] [Indexed: 12/22/2022]
Abstract
Preadipocytes are periodically subjected to fatty acid (FA) concentrations that are potentially cytotoxic. We tested the hypothesis that prolonged exposure of preadipocytes of human origin to a physiologically relevant mix of FAs leads to mitochondrial inner membrane (MIM) permeabilization and ultimately to mitochondrial crisis. We found that exposure of preadipocytes to FAs led to progressive cyclosporin A-sensitive MIM permeabilization, which in turn caused a reduction in MIM potential, oxygen consumption, and ATP synthetic capacity and, ultimately, death. Additionally, we showed that FAs induce a transient increase in intramitochondrial reactive oxygen species (ROS) and lipid peroxide production, lasting roughly 30 and 120min for the ROS and lipid peroxides, respectively. MIM permeabilization and its deleterious consequences including mitochondrial crisis and cell death were prevented by treating the cells with the mitochondrial FA uptake inhibitor etomoxir, the mitochondrion-selective superoxide and lipid peroxide antioxidants MitoTempo and MitoQ, or the lipid peroxide and reactive carbonyl scavenger l-carnosine. FAs also promoted a delayed oxidative stress phase. However, the beneficial effects of etomoxir, MitoTempo, and l-carnosine were lost by delaying the treatment by 2h, suggesting that the initial phase was sufficient to prime the cells for the delayed MIM permeabilization and mitochondrial crisis. It also suggested that the second ROS production phase is a consequence of this loss in mitochondrial health. Altogether, our data suggest that approaches designed to diminish intramitochondrial ROS or lipid peroxide accumulation, as well as MIM permeabilization, are valid mechanism-based therapeutic avenues to prevent the loss in preadipocyte metabolic fitness associated with prolonged exposure to elevated FA levels.
Collapse
Affiliation(s)
- Carlyle Rogers
- Department of Pharmacology and Toxicology, East Carolina University, Greenville, NC 27834, USA
| | - Barbara Davis
- Department of Pharmacology and Toxicology, East Carolina University, Greenville, NC 27834, USA
| | - P Darrell Neufer
- Department of Physiology, East Carolina University, Greenville, NC 27834, USA; Department of Kinesiology, East Carolina University, Greenville, NC 27834, USA; East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834, USA
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Cambridge CB2 0XY, UK
| | - Ethan J Anderson
- Department of Pharmacology and Toxicology, East Carolina University, Greenville, NC 27834, USA; Department of Kinesiology, East Carolina University, Greenville, NC 27834, USA; East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834, USA
| | - Jacques Robidoux
- Department of Pharmacology and Toxicology, East Carolina University, Greenville, NC 27834, USA; East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834, USA.
| |
Collapse
|