1
|
Prithiviraj S, Garcia Garcia A, Linderfalk K, Yiguang B, Ferveur S, Falck LN, Subramaniam A, Mohlin S, Hidalgo Gil D, Dupard SJ, Zacharaki D, Raina DB, Bourgine PE. Compositional editing of extracellular matrices by CRISPR/Cas9 engineering of human mesenchymal stem cell lines. eLife 2025; 13:RP96941. [PMID: 40152921 PMCID: PMC11952750 DOI: 10.7554/elife.96941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025] Open
Abstract
Tissue engineering strategies predominantly rely on the production of living substitutes, whereby implanted cells actively participate in the regenerative process. Beyond cost and delayed graft availability, the patient-specific performance of engineered tissues poses serious concerns on their clinical translation ability. A more exciting paradigm consists in exploiting cell-laid, engineered extracellular matrices (eECMs), which can be used as off-the-shelf materials. Here, the regenerative capacity solely relies on the preservation of the eECM structure and embedded signals to instruct an endogenous repair. We recently described the possibility to exploit custom human stem cell lines for eECM manufacturing. In addition to the conferred standardization, the availability of such cell lines opened avenues for the design of tailored eECMs by applying dedicated genetic tools. In this study, we demonstrated the exploitation of CRISPR/Cas9 as a high precision system for editing the composition and function of eECMs. Human mesenchymal stromal/stem cell (hMSC) lines were modified to knock out vascular endothelial growth factor (VEGF) and Runt-related transcription factor 2 (RUNX2) and assessed for their capacity to generate osteoinductive cartilage matrices. We report the successful editing of hMSCs, subsequently leading to targeted VEGF and RUNX2-knockout cartilage eECMs. Despite the absence of VEGF, eECMs retained full capacity to instruct ectopic endochondral ossification. Conversely, RUNX2-edited eECMs exhibited impaired hypertrophy, reduced ectopic ossification, and superior cartilage repair in a rat osteochondral defect. In summary, our approach can be harnessed to identify the necessary eECM factors driving endogenous repair. Our work paves the road toward the compositional eECMs editing and their exploitation in broad regenerative contexts.
Collapse
Affiliation(s)
- Sujeethkumar Prithiviraj
- Cell, Tissue & Organ Engineering Laboratory, BMC, Department of Clinical Sciences, Lund UniversityLundSweden
- Wallenberg Centre for Molecular Medicine, Lund Stem Cell Centre, Lund University Cancer Centre, Lund UniversityLundSweden
| | - Alejandro Garcia Garcia
- Cell, Tissue & Organ Engineering Laboratory, BMC, Department of Clinical Sciences, Lund UniversityLundSweden
- Wallenberg Centre for Molecular Medicine, Lund Stem Cell Centre, Lund University Cancer Centre, Lund UniversityLundSweden
| | - Karin Linderfalk
- Cell, Tissue & Organ Engineering Laboratory, BMC, Department of Clinical Sciences, Lund UniversityLundSweden
- Wallenberg Centre for Molecular Medicine, Lund Stem Cell Centre, Lund University Cancer Centre, Lund UniversityLundSweden
| | - Bai Yiguang
- Cell, Tissue & Organ Engineering Laboratory, BMC, Department of Clinical Sciences, Lund UniversityLundSweden
- Wallenberg Centre for Molecular Medicine, Lund Stem Cell Centre, Lund University Cancer Centre, Lund UniversityLundSweden
- Department of Orthopaedics, Nanchong Central Hospital, The Second Clinical Institute of North Sichuan Medical College NanchongSichuanChina
| | - Sonia Ferveur
- Cell, Tissue & Organ Engineering Laboratory, BMC, Department of Clinical Sciences, Lund UniversityLundSweden
- Wallenberg Centre for Molecular Medicine, Lund Stem Cell Centre, Lund University Cancer Centre, Lund UniversityLundSweden
| | - Ludvig Nilsén Falck
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Lund UniversityLundSweden
| | | | - Sofie Mohlin
- Division of Pediatrics, Clinical Sciences, Translational Cancer Research, Lund University Cancer Center at Medicon VillageLundSweden
| | - David Hidalgo Gil
- Cell, Tissue & Organ Engineering Laboratory, BMC, Department of Clinical Sciences, Lund UniversityLundSweden
- Wallenberg Centre for Molecular Medicine, Lund Stem Cell Centre, Lund University Cancer Centre, Lund UniversityLundSweden
| | - Steven J Dupard
- Cell, Tissue & Organ Engineering Laboratory, BMC, Department of Clinical Sciences, Lund UniversityLundSweden
- Wallenberg Centre for Molecular Medicine, Lund Stem Cell Centre, Lund University Cancer Centre, Lund UniversityLundSweden
| | - Dimitra Zacharaki
- Cell, Tissue & Organ Engineering Laboratory, BMC, Department of Clinical Sciences, Lund UniversityLundSweden
- Wallenberg Centre for Molecular Medicine, Lund Stem Cell Centre, Lund University Cancer Centre, Lund UniversityLundSweden
| | - Deepak Bushan Raina
- The Faculty of Medicine, Department of Clinical Sciences Lund, OrthopedicsLundSweden
| | - Paul E Bourgine
- Cell, Tissue & Organ Engineering Laboratory, BMC, Department of Clinical Sciences, Lund UniversityLundSweden
- Wallenberg Centre for Molecular Medicine, Lund Stem Cell Centre, Lund University Cancer Centre, Lund UniversityLundSweden
| |
Collapse
|
2
|
Martinez-Zalbidea I, Wagner G, Bergendahl N, Mesfin A, Puvanesarajah V, Hitzl W, Schulze S, Wuertz-Kozak K. CRISPR-dCas9 Activation of TSG-6 in MSCs Modulates the Cargo of MSC-Derived Extracellular Vesicles and Attenuates Inflammatory Responses in Human Intervertebral Disc Cells In Vitro. Cell Mol Bioeng 2025; 18:83-98. [PMID: 39949490 PMCID: PMC11813855 DOI: 10.1007/s12195-025-00843-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/16/2025] [Indexed: 02/16/2025] Open
Abstract
Purpose The purpose of this study was to boost the therapeutic effect of mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) by overexpressing the gene TSG-6 through CRISPR activation, and assess the biological activity of EVs from these modified MSCs in vitro on human intervertebral disc (IVD) cells. Methods An immortalized human MSC line was transduced with a CRISPR activation lentivirus system targeting TSG-6. MSC-EVs were harvested by ultracentrifugation and particle number/size distribution was determined by nanoparticle tracking analysis. The efficiency of transduction activation was assessed by analyzing gene and protein expression. EV proteomic contents were analyzed by mass spectrometry. Human IVD cells from patients undergoing spinal surgery were isolated, expanded, exposed to IL-1β pre-stimulation and co-treated with MSC-EVs. Results MSC-EVs presented size distribution, morphology, and molecular markers consistent with common EV characteristics. The expression level of TSG-6 was significantly higher (> 800 fold) in transduced MSCs relative to controls. Protein analysis of MSCs and EVs showed higher protein expression of TSG-6 in CRISPR activated samples than controls. Proteomics of EVs identified 35 proteins (including TSG-6) that were differentially expressed in TSG-6 activated EVs vs control EVs. EV co-Treatment of IL-1β pre-Stimulated IVD cells resulted in a significant downregulation of IL-8 and COX-2. Conclusions We successfully generated an MSC line overexpressing TSG-6. Furthermore, we show that EVs isolated from these modified MSCs have the potential to attenuate the pro-inflammatory gene expression in IVD cells. This genomic engineering approach hence holds promise for boosting the therapeutic effects of EVs. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-025-00843-4.
Collapse
Affiliation(s)
- Iker Martinez-Zalbidea
- Department of Biomedical Engineering, Rochester Institute of Technology (RIT), Rochester, NY USA
| | - Gabbie Wagner
- Department of Biomedical Engineering, Rochester Institute of Technology (RIT), Rochester, NY USA
| | - Nea Bergendahl
- Department of Biomedical Engineering, Rochester Institute of Technology (RIT), Rochester, NY USA
| | - Addisu Mesfin
- Medstar Orthopaedic Institute, Georgetown University School of Medicine Washington, Washington, DC USA
| | - Varun Puvanesarajah
- Department of Orthopedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY USA
| | - Wolfgang Hitzl
- Research and Innovation Management (RIM), Paracelsus Medical University, Salzburg, Austria
- Department of Ophthalmology and Optometry, Paracelsus Medical University, Salzburg, Austria
- Research Program Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University, Salzburg, Austria
| | - Stefan Schulze
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY USA
| | - Karin Wuertz-Kozak
- Department of Biomedical Engineering, Rochester Institute of Technology (RIT), Rochester, NY USA
- Schön Clinic Munich Harlaching, Spine Center, Academic Teaching Hospital and Spine Research Institute of the Paracelsus Medical University Salzburg (Austria), Munich, Germany
| |
Collapse
|
3
|
Yang C, Wang R, Hardy P. The Multifaceted Roles of MicroRNA-181 in Stem Cell Differentiation and Cancer Stem Cell Plasticity. Cells 2025; 14:132. [PMID: 39851559 PMCID: PMC11763446 DOI: 10.3390/cells14020132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/26/2025] Open
Abstract
Stem cells are undifferentiated or partially differentiated cells with an extraordinary ability to self-renew and differentiate into various cell types during growth and development. The epithelial-mesenchymal transition (EMT), a critical developmental process, enhances stem cell-like properties in cells, and is associated with both normal stem cell function and the formation of cancer stem cells. Cell stemness and the EMT often coexist and are interconnected in various contexts. Cancer stem cells are a critical tumor cell population that drives tumorigenesis, cancer progression, drug resistance, and metastasis. Stem cell differentiation and the generation of cancer stem cells are regulated by numerous molecules, including microRNAs (miRNAs). These miRNAs, particularly through the modulation of EMT-associated factors, play major roles in controlling the stemness of cancer stem cells. This review presents an up-to-date summary of the regulatory roles of miR-181 in human stem cell differentiation and cancer cell stemness. We outline studies from the current literature and summarize the miR-181-controlled signaling pathways responsible for driving human stem cell differentiation or the emergence of cancer stem cells. Given its critical role in regulating cell stemness, miR-181 is a promising target for influencing human cell fate. Modulation of miR-181 expression has been found to be altered in cancer stem cells' biological behaviors and to significantly improve cancer treatment outcomes. Additionally, we discuss challenges in miRNA-based therapies and targeted delivery with nanotechnology-based systems.
Collapse
Affiliation(s)
- Chun Yang
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC H3T 1C5, Canada;
| | - Rui Wang
- Departments of Pharmacology and Physiology, Université de Montréal, Montreal, QC H3T 1C5, Canada;
| | - Pierre Hardy
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC H3T 1C5, Canada;
- Departments of Pharmacology and Physiology, Université de Montréal, Montreal, QC H3T 1C5, Canada;
- Departments of Pediatrics, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1C5, Canada
| |
Collapse
|
4
|
Renu K. Exosomes derived from human adipose mesenchymal stem cells act as a therapeutic target for oral submucous fibrosis. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2025:102224. [PMID: 39765310 DOI: 10.1016/j.jormas.2025.102224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
Oral submucosal fibrosis is a highly malignant oral condition that necessitates the use of sophisticated therapeutic procedures. OSF is a multifactorial precancerous condition induced by areca nut chewing, deficiencies in vitamins and trace minerals, immunological aspects, and hereditary factors. Adipose tissue-derived mesenchymal stem cells possess the capability for multidirectional activation and are extensively distributed throughout the body. They have minimal immunogenicity and are extensively utilized in cancer treatment. Exosomes are extracellular vesicles produced by the intracellular route. They are biological carriers comprising microRNA, messenger RNA, lipids and proteins crucial for intercellular communication. ADSC exosomes, serving as a vehicle for miRNA, possess accessibility and little immunogenicity. They can significantly contribute to adipose tissue regrowth, angiogenesis, immunological modulation, and tissue repair. ADSC-Exo exhibits antifibrotic properties and may serve as a potential treatment for OSF. This review presents a novel therapeutic approach and clarifies the precise mechanisms involved in the clinical management of OSF using ADSC-Exo.
Collapse
Affiliation(s)
- Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 600077, Tamil Nadu, India.
| |
Collapse
|
5
|
Ali EAM, Smaida R, Meyer M, Ou W, Li Z, Han Z, Benkirane-Jessel N, Gottenberg JE, Hua G. iPSCs chondrogenic differentiation for personalized regenerative medicine: a literature review. Stem Cell Res Ther 2024; 15:185. [PMID: 38926793 PMCID: PMC11210138 DOI: 10.1186/s13287-024-03794-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Cartilage, an important connective tissue, provides structural support to other body tissues, and serves as a cushion against impacts throughout the body. Found at the end of the bones, cartilage decreases friction and averts bone-on-bone contact during joint movement. Therefore, defects of cartilage can result from natural wear and tear, or from traumatic events, such as injuries or sudden changes in direction during sports activities. Overtime, these cartilage defects which do not always produce immediate symptoms, could lead to severe clinical pathologies. The emergence of induced pluripotent stem cells (iPSCs) has revolutionized the field of regenerative medicine, providing a promising platform for generating various cell types for therapeutic applications. Thus, chondrocytes differentiated from iPSCs become a promising avenue for non-invasive clinical interventions for cartilage injuries and diseases. In this review, we aim to highlight the current strategies used for in vitro chondrogenic differentiation of iPSCs and to explore their multifaceted applications in disease modeling, drug screening, and personalized regenerative medicine. Achieving abundant functional iPSC-derived chondrocytes requires optimization of culture conditions, incorporating specific growth factors, and precise temporal control. Continual improvements in differentiation methods and integration of emerging genome editing, organoids, and 3D bioprinting technologies will enhance the translational applications of iPSC-derived chondrocytes. Finally, to unlock the benefits for patients suffering from cartilage diseases through iPSCs-derived technologies in chondrogenesis, automatic cell therapy manufacturing systems will not only reduce human intervention and ensure sterile processes within isolator-like platforms to minimize contamination risks, but also provide customized production processes with enhanced scalability and efficiency.
Collapse
Affiliation(s)
- Eltahir Abdelrazig Mohamed Ali
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1260, Regenerative NanoMedicine (RNM), 1 Rue Eugène Boeckel, 67000, Strasbourg, France
- Université de Strasbourg, 67000, Strasbourg, France
| | - Rana Smaida
- Lamina Therapeutics, 1 Rue Eugène Boeckel, 67000, Strasbourg, France
| | - Morgane Meyer
- Université de Strasbourg, 67000, Strasbourg, France
- Lamina Therapeutics, 1 Rue Eugène Boeckel, 67000, Strasbourg, France
| | - Wenxin Ou
- Université de Strasbourg, 67000, Strasbourg, France
- Centre National de Référence des Maladies Auto-Immunes et Systémiques Rares, Est/Sud-Ouest (RESO), Service de Rhumatologie, Centre Hospitalier Universitaire de Strasbourg, 67000, Strasbourg, France
- Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Zongjin Li
- Nankai University School of Medicine, Tianjin, 300071, China
| | - Zhongchao Han
- Beijing Engineering Laboratory of Perinatal Stem Cells, Beijing Institute of Health and Stem Cells, Health & Biotech Co, Beijing, 100176, China
| | - Nadia Benkirane-Jessel
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1260, Regenerative NanoMedicine (RNM), 1 Rue Eugène Boeckel, 67000, Strasbourg, France.
- Université de Strasbourg, 67000, Strasbourg, France.
- Lamina Therapeutics, 1 Rue Eugène Boeckel, 67000, Strasbourg, France.
| | - Jacques Eric Gottenberg
- Université de Strasbourg, 67000, Strasbourg, France.
- Centre National de Référence des Maladies Auto-Immunes et Systémiques Rares, Est/Sud-Ouest (RESO), Service de Rhumatologie, Centre Hospitalier Universitaire de Strasbourg, 67000, Strasbourg, France.
| | - Guoqiang Hua
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1260, Regenerative NanoMedicine (RNM), 1 Rue Eugène Boeckel, 67000, Strasbourg, France.
- Université de Strasbourg, 67000, Strasbourg, France.
| |
Collapse
|
6
|
Kannan S, Gokul Krishna S, Gupta PK, Kolkundkar UK. Advantages of pooling of human bone marrow-derived mesenchymal stromal cells from different donors versus single-donor MSCs. Sci Rep 2024; 14:12654. [PMID: 38825595 PMCID: PMC11144708 DOI: 10.1038/s41598-024-62544-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/17/2024] [Indexed: 06/04/2024] Open
Abstract
Mesenchymal stromal cells (MSC) from adult bone marrow are the most commonly used cells in clinical trials. MSCs from single donors are the preferred starting material but suffer from a major setback of being heterogeneous that results in unpredictable and inconsistent clinical outcomes. To overcome this, we developed a method of pooling MSCs from different donors and created cell banks to cater clinical needs. Initially, the master cell banks (MCBs) were created at passage 1 (P1) from the bone marrow MSCs isolated from of nine different donors. At this stage, MCBs from three different donors were mixed in equal proportion and expanded till P3 to create working cell banks. Further, the pooled cells and individual donor MSCs were expanded till P5 and cryopreserved and extensively characterised. There was a large heterogeneity among the individual donor MSCs in terms of growth kinetics (90% Coefficient of variation (CV) for cell yield and 44% CV for population doubling time at P5), immunosuppressive ability (30% CV at 1:1 and 300% CV at 1:10 ratio), and the angiogenic factor secretion potential (20% CV for VEGF and71% CV for SDF-1). Comparatively, the pooled cells have more stable profiles (60% CV for cell yield and 7% CV for population doubling time at P5) and exhibit better immunosuppressive ability (15% CV at 1:1 and 32% CV at 1:10 ratio ) and consistent secretion of angiogenic factors (16% CV for VEGF and 51% CV for SDF-1). Further pooling does not compromise the trilineage differentiation capacity or phenotypic marker expression of the MSCs. The senescence and in vitro tumourigenicity characteristics of the pooled cells are also similar to those of individual donor MSCs. We conclude that pooling of MSCs from three different donors reduces heterogeneity among individual donors and produces MSCs with a consistent secretion and higher immunosuppressive profile.
Collapse
Affiliation(s)
- Suresh Kannan
- Stempeutics Research Pvt Ltd, 3rd Floor, Manipal Hospitals Whitefield Pvt. Ltd., #143, EPIP Industrial Area, ITPL Main Road, Bangalore, Karnataka, 560 048, India.
| | - S Gokul Krishna
- Stempeutics Research Pvt Ltd, 3rd Floor, Manipal Hospitals Whitefield Pvt. Ltd., #143, EPIP Industrial Area, ITPL Main Road, Bangalore, Karnataka, 560 048, India
| | - Pawan Kumar Gupta
- Stempeutics Research Pvt Ltd, 3rd Floor, Manipal Hospitals Whitefield Pvt. Ltd., #143, EPIP Industrial Area, ITPL Main Road, Bangalore, Karnataka, 560 048, India
| | - Uday Kumar Kolkundkar
- Stempeutics Research Pvt Ltd, 3rd Floor, Manipal Hospitals Whitefield Pvt. Ltd., #143, EPIP Industrial Area, ITPL Main Road, Bangalore, Karnataka, 560 048, India
| |
Collapse
|
7
|
Maličev E, Jazbec K. An Overview of Mesenchymal Stem Cell Heterogeneity and Concentration. Pharmaceuticals (Basel) 2024; 17:350. [PMID: 38543135 PMCID: PMC10975472 DOI: 10.3390/ph17030350] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/22/2024] [Accepted: 03/05/2024] [Indexed: 01/06/2025] Open
Abstract
Mesenchymal stem cells (MSCs) are of great interest in cell therapies due to the immunomodulatory and other effects they have after autologous or allogeneic transplantation. In most clinical applications, a high number of MSCs is required; therefore, the isolated MSC population must be expanded in the cell culture until the desired number is reached. Analysing freshly isolated MSCs is challenging due to their rareness and heterogeneity, which is noticeable among donors, tissues, and cell subpopulations. Although the phenotype of MSCs in tissue can differ from those of cultured cells, phenotyping and counting are usually performed only after MSC proliferation. As MSC applicability is a developing and growing field, there is a need to implement phenotyping and counting methods for freshly isolated MSCs, especially in new one-step procedures where isolated cells are implanted immediately without cell culturing. Only by analysing harvested cells can we correctly evaluate such studies. This review describes multilevel heterogeneity and concentrations of MSCs and different strategies for phenotype determination and enumeration of freshly isolated MSCs.
Collapse
Affiliation(s)
- Elvira Maličev
- Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, 1000 Ljubljana, Slovenia;
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia
| | - Katerina Jazbec
- Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, 1000 Ljubljana, Slovenia;
| |
Collapse
|
8
|
Hatt LP, Wirth S, Ristaniemi A, Ciric DJ, Thompson K, Eglin D, Stoddart MJ, Armiento AR. Micro-porous PLGA/ β-TCP/TPU scaffolds prepared by solvent-based 3D printing for bone tissue engineering purposes. Regen Biomater 2023; 10:rbad084. [PMID: 37936893 PMCID: PMC10627288 DOI: 10.1093/rb/rbad084] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/14/2023] [Accepted: 08/31/2023] [Indexed: 11/09/2023] Open
Abstract
The 3D printing process of fused deposition modelling is an attractive fabrication approach to create tissue-engineered bone substitutes to regenerate large mandibular bone defects, but often lacks desired surface porosity for enhanced protein adsorption and cell adhesion. Solvent-based printing leads to the spontaneous formation of micropores on the scaffold's surface upon solvent removal, without the need for further post processing. Our aim is to create and characterize porous scaffolds using a new formulation composed of mechanically stable poly(lactic-co-glycol acid) and osteoconductive β-tricalcium phosphate with and without the addition of elastic thermoplastic polyurethane prepared by solvent-based 3D-printing technique. Large-scale regenerative scaffolds can be 3D-printed with adequate fidelity and show porosity at multiple levels analysed via micro-computer tomography, scanning electron microscopy and N2 sorption. Superior mechanical properties compared to a commercially available calcium phosphate ink are demonstrated in compression and screw pull out tests. Biological assessments including cell activity assay and live-dead staining prove the scaffold's cytocompatibility. Osteoconductive properties are demonstrated by performing an osteogenic differentiation assay with primary human bone marrow mesenchymal stromal cells. We propose a versatile fabrication process to create porous 3D-printed scaffolds with adequate mechanical stability and osteoconductivity, both important characteristics for segmental mandibular bone reconstruction.
Collapse
Affiliation(s)
- Luan P Hatt
- AO Research Institute Davos, 7270 Davos Platz, Switzerland
- Institute for Biomechanics, ETH Zürich, 8093 Zürich, Switzerland
| | - Sylvie Wirth
- AO Research Institute Davos, 7270 Davos Platz, Switzerland
- Institute for Biomechanics, ETH Zürich, 8093 Zürich, Switzerland
| | | | - Daniel J Ciric
- AO Research Institute Davos, 7270 Davos Platz, Switzerland
| | - Keith Thompson
- AO Research Institute Davos, 7270 Davos Platz, Switzerland
- UCB Pharma, SL1 3WE Slough, UK
| | - David Eglin
- AO Research Institute Davos, 7270 Davos Platz, Switzerland
- Mines Saint-Étienne, Université de Lyon, Université Jean Monnet, INSERM, U1059, 42023 Sainbiose, Saint-Étienne, France
| | - Martin J Stoddart
- AO Research Institute Davos, 7270 Davos Platz, Switzerland
- Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79106 Freiburg, Germany
| | - Angela R Armiento
- AO Research Institute Davos, 7270 Davos Platz, Switzerland
- UCB Pharma, SL1 3WE Slough, UK
| |
Collapse
|
9
|
Konteles V, Papathanasiou I, Tzetis M, Goussetis E, Trachana V, Mourmoura E, Balis C, Malizos K, Tsezou A. Integration of Transcriptome and MicroRNA Profile Analysis of iMSCs Defines Their Rejuvenated State and Conveys Them into a Novel Resource for Cell Therapy in Osteoarthritis. Cells 2023; 12:1756. [PMID: 37443790 PMCID: PMC10340510 DOI: 10.3390/cells12131756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/18/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Although MSCs grant pronounced potential for cell therapies, several factors, such as their heterogeneity restrict their use. To overcome these limitations, iMSCs (MSCs derived from induced pluripotent stem cells (iPSCs) have attracted attention. Here, we analyzed the transcriptome of MSCs, iPSCs and iMSCs derived from healthy individuals and osteoarthritis (OA) patients and explored miRNA-mRNA interactions during these transitions. We performed RNA-seq and gene expression comparisons and Protein-Protein-Interaction analysis followed by GO enrichment and KEGG pathway analyses. MicroRNAs' (miRNA) expression profile using miRarrays and differentially expressed miRNA's impact on regulating iMSCs gene expression was also explored. Our analyses revealed that iMSCs derivation from iPSCs favors the expression of genes conferring high proliferation, differentiation, and migration properties, all of which contribute to a rejuvenated state of iMSCs compared to primary MSCs. Additionally, our exploration of the involvement of miRNAs in this rejuvenated iMSCs transcriptome concluded in twenty-six miRNAs that, as our analysis showed, are implicated in pluripotency. Notably, the identified here interactions between hsa-let7b/i, hsa-miR-221/222-3p, hsa-miR-302c, hsa-miR-181a, hsa-miR-331 with target genes HMGA2, IGF2BP3, STARD4, and APOL6 could prove to be the necessary tools that will convey iMSCs into the ideal mean for cell therapy in osteoarthritis.
Collapse
Affiliation(s)
- Vasileios Konteles
- Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece; (V.K.); (I.P.)
| | - Ioanna Papathanasiou
- Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece; (V.K.); (I.P.)
- Department of Biology, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece;
| | - Maria Tzetis
- Department of Medical Genetics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Evgenios Goussetis
- Stem Cell Transplant Unit, Aghia Sophia Children’s Hospital, 11527 Athens, Greece;
| | - Varvara Trachana
- Department of Biology, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece;
| | - Evanthia Mourmoura
- Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece; (V.K.); (I.P.)
| | - Charalampos Balis
- Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece; (V.K.); (I.P.)
| | - Konstantinos Malizos
- Department of Orthopaedics, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Aspasia Tsezou
- Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece; (V.K.); (I.P.)
- Department of Biology, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece;
| |
Collapse
|
10
|
Rong W, Rome CP, Dietrich MA, Yao S. Decreased CRISPLD2 expression impairs osteogenic differentiation of human mesenchymal stem cells during in vitro expansion. J Cell Physiol 2023; 238:1368-1380. [PMID: 37021796 PMCID: PMC10330378 DOI: 10.1002/jcp.31014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/06/2023] [Accepted: 03/17/2023] [Indexed: 04/07/2023]
Abstract
Human mesenchymal stem cells (hMSCs) are the cornerstone of regenerative medicine; large quantities of hMSCs are required via in vitro expansion to meet therapeutic purposes. However, hMSCs quickly lose their osteogenic differentiation potential during in vitro expansion, which is a major roadblock to their clinical applications. In this study, we found that the osteogenic differentiation potential of human bone marrow stem cells (hBMSCs), dental pulp stem cells (hDPSCs), and adipose stem cells (hASCs) was severely impaired after in vitro expansion. To clarify the molecular mechanism underlying this in vitro expansion-related loss of osteogenic capacity in hMSCs, the transcriptome changes following in vitro expansion of these hMSCs were compared. Cysteine-rich secretory protein LCCL domain-containing 2 (CRISPLD2) was identified as the most downregulated gene shared by late passage hBMSCs, hDPSCs, and hASCs. Both the secreted and non-secreted CRISPLD2 proteins progressively declined in hMSCs during in vitro expansion when the cells gradually lost their osteogenic potential. We thus hypothesized that the expression of CRISPLD2 is critical for hMSCs to maintain their osteogenic differentiation potential during in vitro expansion. Our studies showed that the knockdown of CRISPLD2 in early passage hBMSCs inhibited the cells' osteogenic differentiation in a siRNA dose-dependent manner. Transcriptome analysis and immunoblotting indicated that the CRISPLD2 knockdown-induced osteogenesis suppression might be attributed to the downregulation of matrix metallopeptidase 1 (MMP1) and forkhead box Q1 (FOXQ1). Furthermore, adeno-associated virus (AAV)-mediated CRISPLD2 overexpression could somewhat rescue the impaired osteogenic differentiation of hBMSCs during in vitro expansion. These results revealed that the downregulation of CRISPLD2 contributes to the impaired osteogenic differentiation of hMSCs during in vitro expansion. Our findings shed light on understanding the loss of osteogenic differentiation in hMSCs and provide a potential therapeutic target gene for bone-related diseases.
Collapse
Affiliation(s)
- Weiqiong Rong
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Calvin P. Rome
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Marilyn A. Dietrich
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Shaomian Yao
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
11
|
Yamada S, Yassin MA, Torelli F, Hansmann J, Green JBA, Schwarz T, Mustafa K. Unique osteogenic profile of bone marrow stem cells stimulated in perfusion bioreactor is Rho-ROCK-mediated contractility dependent. Bioeng Transl Med 2023; 8:e10509. [PMID: 37206242 PMCID: PMC10189446 DOI: 10.1002/btm2.10509] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 03/19/2023] Open
Abstract
The fate determination of bone marrow mesenchymal stem/stromal cells (BMSC) is tightly regulated by mechanical cues, including fluid shear stress. Knowledge of mechanobiology in 2D culture has allowed researchers in bone tissue engineering to develop 3D dynamic culture systems with the potential for clinical translation in which the fate and growth of BMSC are mechanically controlled. However, due to the complexity of 3D dynamic cell culture compared to the 2D counterpart, the mechanisms of cell regulation in the dynamic environment remain relatively undescribed. In the present study, we analyzed the cytoskeletal modulation and osteogenic profiles of BMSC under fluid stimuli in a 3D culture condition using a perfusion bioreactor. BMSC subjected to fluid shear stress (mean 1.56 mPa) showed increased actomyosin contractility, accompanied by the upregulation of mechanoreceptors, focal adhesions, and Rho GTPase-mediated signaling molecules. Osteogenic gene expression profiling revealed that fluid shear stress promoted the expression of osteogenic markers differently from chemically induced osteogenesis. Osteogenic marker mRNA expression, type 1 collagen formation, ALP activity, and mineralization were promoted in the dynamic condition, even in the absence of chemical supplementation. The inhibition of cell contractility under flow by Rhosin chloride, Y27632, MLCK inhibitor peptide-18, or Blebbistatin revealed that actomyosin contractility was required for maintaining the proliferative status and mechanically induced osteogenic differentiation in the dynamic culture. The study highlights the cytoskeletal response and unique osteogenic profile of BMSC in this type of dynamic cell culture, stepping toward the clinical translation of mechanically stimulated BMCS for bone regeneration.
Collapse
Affiliation(s)
- Shuntaro Yamada
- Center of Translational Oral Research (TOR)‐Tissue Engineering Group, Department of Clinical Dentistry, Faculty of MedicineUniversity of BergenNorway
| | - Mohammed A. Yassin
- Center of Translational Oral Research (TOR)‐Tissue Engineering Group, Department of Clinical Dentistry, Faculty of MedicineUniversity of BergenNorway
| | - Francesco Torelli
- Center of Translational Oral Research (TOR)‐Tissue Engineering Group, Department of Clinical Dentistry, Faculty of MedicineUniversity of BergenNorway
| | - Jan Hansmann
- Translational Center Regenerative TherapiesFraunhofer Institute for Silicate Research ISCWürzburgGermany
- Chair of Tissue Engineering and Regenerative MedicineUniversity Hospital WürzburgWürzburgGermany
- Department of Electrical EngineeringUniversity of Applied Sciences Würzburg‐SchweinfurtSchweinfurtGermany
| | - Jeremy B. A. Green
- Centre for Craniofacial & Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial SciencesKing's College LondonUK
| | - Thomas Schwarz
- Translational Center Regenerative TherapiesFraunhofer Institute for Silicate Research ISCWürzburgGermany
| | - Kamal Mustafa
- Center of Translational Oral Research (TOR)‐Tissue Engineering Group, Department of Clinical Dentistry, Faculty of MedicineUniversity of BergenNorway
| |
Collapse
|
12
|
Lang E, Semon JA. Mesenchymal stem cells in the treatment of osteogenesis imperfecta. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:7. [PMID: 36725748 PMCID: PMC9892307 DOI: 10.1186/s13619-022-00146-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/18/2022] [Indexed: 02/03/2023]
Abstract
Osteogenesis imperfecta (OI) is a disease caused by mutations in different genes resulting in mild, severe, or lethal forms. With no cure, researchers have investigated the use of cell therapy to correct the underlying molecular defects of OI. Mesenchymal stem cells (MSCs) are of particular interest because of their differentiation capacity, immunomodulatory effects, and their ability to migrate to sites of damage. MSCs can be isolated from different sources, expanded in culture, and have been shown to be safe in numerous clinical applications. This review summarizes the preclinical and clinical studies of MSCs in the treatment of OI. Altogether, the culmination of these studies show that MSCs from different sources: 1) are safe to use in the clinic, 2) migrate to fracture sites and growth sites in bone, 3) engraft in low levels, 4) improve clinical outcome but have a transient effect, 5) have a therapeutic effect most likely due to paracrine mechanisms, and 6) have a reduced therapeutic potential when isolated from patients with OI.
Collapse
Affiliation(s)
- Erica Lang
- grid.260128.f0000 0000 9364 6281Department of Biological Sciences, Missouri University of Science and Technology, 400 W 11th St., Rolla, MO USA
| | - Julie A. Semon
- grid.260128.f0000 0000 9364 6281Department of Biological Sciences, Missouri University of Science and Technology, 400 W 11th St., Rolla, MO USA
| |
Collapse
|
13
|
Burns JS, Kassem M. Identifying Biomarkers for Osteogenic Potency Assay Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1420:39-58. [PMID: 37258783 DOI: 10.1007/978-3-031-30040-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
There has been extensive exploration of how cells may serve as advanced therapy medicinal products to treat skeletal pathologies. Osteoblast progenitors responsible for production of extracellular matrix that is subsequently mineralized during bone formation have been characterised as a rare bone marrow subpopulation of cell culture plastic adherent cells. Conveniently, they proliferate to form single-cell derived colonies of fibroblastoid cells, termed colony forming unit fibroblasts that can subsequently differentiate to aggregates resembling small areas of cartilage or bone. However, donor heterogeneity and loss of osteogenic differentiation capacity during extended cell culture have made the discovery of reliable potency assay biomarkers difficult. Nonetheless, functional osteoblast models derived from telomerised human bone marrow stromal cells have allowed extensive comparative analysis of gene expression, microRNA, morphological phenotypes and secreted proteins. This chapter highlights numerous insights into the molecular mechanisms underpinning osteogenic differentiation of multipotent stromal cells and bone formation, discussing aspects involved in the choice of useful biomarkers for functional attributes that can be quantitively measured in osteogenic potency assays.
Collapse
Affiliation(s)
- Jorge S Burns
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy.
| | - Moustapha Kassem
- University Hospital of Odense, University of Southern Denmark, Odense, Denmark
- Danish Stem Cell Center, University of Copenhagen, Copenhagen, Denmark
- College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
14
|
Korntner SH, Di Nubila A, Gaspar D, Zeugolis DI. Macromolecular crowding in animal component-free, xeno-free and foetal bovine serum media for human bone marrow mesenchymal stromal cell expansion and differentiation. Front Bioeng Biotechnol 2023; 11:1136827. [PMID: 36949882 PMCID: PMC10025396 DOI: 10.3389/fbioe.2023.1136827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
Background: Cell culture media containing undefined animal-derived components and prolonged in vitro culture periods in the absence of native extracellular matrix result in phenotypic drift of human bone marrow stromal cells (hBMSCs). Methods: Herein, we assessed whether animal component-free (ACF) or xeno-free (XF) media formulations maintain hBMSC phenotypic characteristics more effectively than foetal bovine serum (FBS)-based media. In addition, we assessed whether tissue-specific extracellular matrix, induced via macromolecular crowding (MMC) during expansion and/or differentiation, can more tightly control hBMSC fate. Results: Cells expanded in animal component-free media showed overall the highest phenotype maintenance, as judged by cluster of differentiation expression analysis. Contrary to FBS media, ACF and XF media increased cellularity over time in culture, as measured by total DNA concentration. While MMC with Ficoll™ increased collagen deposition of cells in FBS media, FBS media induced significantly lower collagen synthesis and/or deposition than the ACF and XF media. Cells expanded in FBS media showed higher adipogenic differentiation than ACF and XF media, which was augmented by MMC with Ficoll™ during expansion. Similarly, Ficoll™ crowding also increased chondrogenic differentiation. Of note, donor-to-donor variability was observed for collagen type I deposition and trilineage differentiation capacity of hBMSCs. Conclusion: Collectively, our data indicate that appropriate screening of donors, media and supplements, in this case MMC agent, should be conducted for the development of clinically relevant hBMSC medicines.
Collapse
Affiliation(s)
- Stefanie H. Korntner
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), University of Galway, Galway, Ireland
| | - Alessia Di Nubila
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), University of Galway, Galway, Ireland
| | - Diana Gaspar
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), University of Galway, Galway, Ireland
| | - Dimitrios I. Zeugolis
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), University of Galway, Galway, Ireland
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular and Biomedical Research and School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
- *Correspondence: Dimitrios I. Zeugolis,
| |
Collapse
|
15
|
Wu J, Chen LH, Sun SY, Li Y, Ran XW. Mesenchymal stem cell-derived exosomes: The dawn of diabetic wound healing. World J Diabetes 2022; 13:1066-1095. [PMID: 36578867 PMCID: PMC9791572 DOI: 10.4239/wjd.v13.i12.1066] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/04/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
Chronic wound healing has long been an unmet medical need in the field of wound repair, with diabetes being one of the major etiologies. Diabetic chronic wounds (DCWs), especially diabetic foot ulcers, are one of the most threatening chronic complications of diabetes. Although the treatment strategies, drugs, and dressings for DCWs have made great progress, they remain ineffective in some patients with refractory wounds. Stem cell-based therapies have achieved specific efficacy in various fields, with mesenchymal stem cells (MSCs) being the most widely used. Although MSCs have achieved good feedback in preclinical studies and clinical trials in the treatment of cutaneous wounds or other situations, the potential safety concerns associated with allogeneic/autologous stem cells and unknown long-term health effects need further attention and supervision. Recent studies have reported that stem cells mainly exert their trauma repair effects through paracrine secretion, and exosomes play an important role in intercellular communication as their main bioactive component. MSC-derived exosomes (MSC-Exos) inherit the powerful inflammation and immune modulation, angiogenesis, cell proliferation and migration promotion, oxidative stress alleviation, collagen remodeling imbalances regulation of their parental cells, and can avoid the potential risks of direct stem cell transplantation to a large extent, thus demonstrating promising performance as novel "cell-free" therapies in chronic wounds. This review aimed to elucidate the potential mechanism and update the progress of MSC-Exos in DCW healing, thereby providing new therapeutic directions for DCWs that are difficult to be cured using conventional therapy.
Collapse
Affiliation(s)
- Jing Wu
- Innovation Center for Wound Repair, Diabetic Foot Care Center, Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Li-Hong Chen
- Innovation Center for Wound Repair, Diabetic Foot Care Center, Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Shi-Yi Sun
- Innovation Center for Wound Repair, Diabetic Foot Care Center, Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yan Li
- Innovation Center for Wound Repair, Diabetic Foot Care Center, Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Xing-Wu Ran
- Innovation Center for Wound Repair, Diabetic Foot Care Center, Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
16
|
Kim H, Park K, Yon JM, Kim SW, Lee SY, Jeong I, Jang J, Lee S, Cho DW. Predicting multipotency of human adult stem cells derived from various donors through deep learning. Sci Rep 2022; 12:21614. [PMID: 36517519 PMCID: PMC9749643 DOI: 10.1038/s41598-022-25423-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
Adult stem cell-based therapeutic approaches have great potential in regenerative medicine because of their immunoregulatory properties and multidifferentiation capacity. Nevertheless, the outcomes of stem cell‑based therapies to date have shown inconsistent efficacy owing to donor variation, thwarting the expectation of clinical effects. However, such donor dependency has been elucidated by biological consequences that current research could not predict. Here, we introduce cellular morphology-based prediction to determine the multipotency rate of human nasal turbinate stem cells (hNTSCs), aiming to predict the differentiation rate of keratocyte progenitors. We characterized the overall genes and morphologies of hNTSCs from five donors and compared stemness-related properties, including multipotency and specific lineages, using mRNA sequencing. It was demonstrated that transformation factors affecting the principal components were highly related to cell morphology. We then performed a convolutional neural network-based analysis, which enabled us to assess the multipotency level of each cell group based on their morphologies with 85.98% accuracy. Surprisingly, the trend in expression levels after ex vivo differentiation matched well with the deep learning prediction. These results suggest that AI‑assisted cellular behavioral prediction can be utilized to perform quantitative, non-invasive, single-cell, and multimarker characterizations of live stem cells for improved quality control in clinical cell therapies.
Collapse
Affiliation(s)
- Hyeonji Kim
- grid.49100.3c0000 0001 0742 4007Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673 South Korea
| | - Keonhyeok Park
- grid.49100.3c0000 0001 0742 4007Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673 South Korea
| | - Jung-Min Yon
- grid.411947.e0000 0004 0470 4224Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591 South Korea
| | - Sung Won Kim
- grid.411947.e0000 0004 0470 4224Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591 South Korea
| | - Soo Young Lee
- grid.49100.3c0000 0001 0742 4007Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673 South Korea
| | - Iljoo Jeong
- grid.49100.3c0000 0001 0742 4007Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673 South Korea
| | - Jinah Jang
- grid.49100.3c0000 0001 0742 4007Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673 South Korea ,grid.49100.3c0000 0001 0742 4007Department of Convergence IT Engineering, POSTECH, Pohang, Gyeongbuk 37673 South Korea ,grid.15444.300000 0004 0470 5454Institute of Convergence Science, Yonsei University, Seoul, 03722 South Korea
| | - Seungchul Lee
- grid.49100.3c0000 0001 0742 4007Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673 South Korea ,grid.15444.300000 0004 0470 5454Institute of Convergence Science, Yonsei University, Seoul, 03722 South Korea
| | - Dong-Woo Cho
- grid.49100.3c0000 0001 0742 4007Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673 South Korea ,grid.15444.300000 0004 0470 5454Institute of Convergence Science, Yonsei University, Seoul, 03722 South Korea
| |
Collapse
|
17
|
Kagami H, Inoue M, Agata H, Asahina I, Nagamura-Inoue T, Taguri M, Tojo A. A Clinical Study of Alveolar Bone Tissue Engineering Using Autologous Bone Marrow Stromal Cells: Effect of Optimized Cell-Processing Protocol on Efficacy. J Clin Med 2022; 11:jcm11247328. [PMID: 36555944 PMCID: PMC9783548 DOI: 10.3390/jcm11247328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
(1) Objectives: The effect of cell-processing protocols on the clinical efficacy of bone tissue engineering is not well-known. To maximize efficacy, we optimized the cell-processing protocol for bone-marrow-derived mesenchymal stromal cells for bone tissue engineering. In this study, the efficacy of bone tissue engineering using this modified protocol was compared to that of the original protocol. (2) Materials and Methods: This single-arm clinical study included 15 patients. Cells were obtained from bone marrow aspirates and expanded in culture flasks containing basic fibroblast growth factor. The cells were seeded onto β-tricalcium phosphate granules and induced into osteogenic cells for two weeks. Then, the cell-scaffold composites were transplanted into patients with severe atrophic alveolar bone. Radiographic evaluations and bone biopsies were performed. The results were compared with those of a previous clinical study that used the original protocol. (3) Results: Panoramic X-ray and computed tomography showed bone regeneration at the transplantation site in all cases. The average bone area in the biopsy samples at 4 months was 44.0%, which was comparable to that in a previous clinical study at 6 months (41.9%) but with much less deviation. No side effects related to cell transplantation were observed. In regenerated bone, 100% of the implants were integrated. (4) Conclusions: Compared to the original protocol, the non-inferiority of this protocol was proven. The introduction of an optimized cell-processing protocol resulted in a comparable quality of regenerated bone, with less fluctuation. Optimized cell-processing protocols may contribute to stable bone regeneration.
Collapse
Affiliation(s)
- Hideaki Kagami
- Division of Stem Cell Engineering, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Tissue Engineering Research Group, Division of Molecular Therapy, The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Department of Oral and Maxillofacial Surgery, Matsumoto Dental University, Shiojiri 399-0781, Japan
- Institute for Oral Science, Matsumoto Dental University, Shiojiri 399-0781, Japan
- Department of Dentistry and Oral Surgery, Aichi Medical University, Nagakute 480-1195, Japan
- Correspondence:
| | - Minoru Inoue
- Tissue Engineering Research Group, Division of Molecular Therapy, The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Department of Oral and Maxillofacial Surgery, Matsumoto Dental University, Shiojiri 399-0781, Japan
- Inoue Dental Clinic, Shizuoka 420-0866, Japan
| | - Hideki Agata
- Division of Stem Cell Engineering, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Tissue Engineering Research Group, Division of Molecular Therapy, The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Agata Dental Clinic, Hamamatsu 430-0929, Japan
| | - Izumi Asahina
- Division of Stem Cell Engineering, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Unit of Translational Medicine, Department of Regenerative Oral Surgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
- Department of Oral and Maxillofacial Surgery, Juntendo University Hospital, Tokyo 113-8431, Japan
| | - Tokiko Nagamura-Inoue
- Department of Cell Processing and Transfusion, The Institute of Medical Science, Research Hospital, The University of Tokyo, Tokyo 108-8639, Japan
| | - Masataka Taguri
- Division of Medical Data Science, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Arinobu Tojo
- Tissue Engineering Research Group, Division of Molecular Therapy, The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Institute of Innovation Advancement, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| |
Collapse
|
18
|
Bollmann A, Sons HC, Schiefer JL, Fuchs PC, Windolf J, Suschek CV. Comparative Study of the Osteogenic Differentiation Potential of Adipose Tissue-Derived Stromal Cells and Dedifferentiated Adipose Cells of the Same Tissue Origin under Pro and Antioxidant Conditions. Biomedicines 2022; 10:biomedicines10123071. [PMID: 36551827 PMCID: PMC9776284 DOI: 10.3390/biomedicines10123071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022] Open
Abstract
Adipose tissue-derived stromal cells (ASCs) play an important role in various therapeutic approaches to bone regeneration. However, such applications become challenging when the obtained cells show a functional disorder, e.g., an impaired osteogenic differentiation potential (ODP). In addition to ASCs, human adipose tissue is also a source for another cell type with therapeutic potential, the dedifferentiated fat cells (DFATs), which can be obtained from mature adipocytes. Here, we for the first time compared the ODPs of each donors ASC and DFAT obtained from the same adipose tissue sample as well as the role of oxidative stress or antioxidative catalase on their osteogenic outcome. Osteogenic potential of ASC and DFAT from nine human donors were compared in vitro. Flow cytometry, staining for calcium accumulation with alizarin red, alkaline phosphatase assay and Western blots were used over an osteogenic induction period of up to 14 days. H2O2 was used to induce oxidative stress and catalase was used as an antioxidative measure. We have found that ASC and DFAT cultures' ODPs are nearly identical. If ASCs from an adipose tissue sample showed good or bad ODP, so did the corresponding DFAT cultures. The inter-individual variability of the donor ODPs was immense with a maximum factor of about 20 and correlated neither with the age nor the sex of the donors of the adipose tissue. Oxidative stress in the form of exogenously added H2O2 led to a significant ODP decrease in both cell types, with this ODP decrease being significantly lower in DFAT cultures than in the corresponding ASC cultures. Regardless of the individual cell culture-specific ODP, however, exogenously applied catalase led to an approx. 2.5-fold increase in osteogenesis in the ASC and DFAT cultures. Catalase appears to be a potent pro-osteogenic factor, at least in vitro. A new finding that points to innovative strategies and therapeutic approaches in bone regeneration. Furthermore, our results show that DFATs behave similarly to ASCs of the same adipose tissue sample with respect to ODPs and could therefore be a very attractive and readily available source of multipotent stem cells in bone regenerative therapies.
Collapse
Affiliation(s)
- Anne Bollmann
- Department for Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Hans Christian Sons
- Department for Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Jennifer Lynn Schiefer
- Department of Plastic Surgery, Hand Surgery, Burn Center, Merheim Hospital Cologne, University of Witten/Herdecke, Ostmerheimer Straße 200, 51109 Köln, Germany
| | - Paul C. Fuchs
- Department of Plastic Surgery, Hand Surgery, Burn Center, Merheim Hospital Cologne, University of Witten/Herdecke, Ostmerheimer Straße 200, 51109 Köln, Germany
| | - Joachim Windolf
- Department for Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Christoph Viktor Suschek
- Department for Orthopedics and Trauma Surgery, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
- Correspondence:
| |
Collapse
|
19
|
Yuan W, Wu Y, Huang M, Zhou X, Liu J, Yi Y, Wang J, Liu J. A new frontier in temporomandibular joint osteoarthritis treatment: Exosome-based therapeutic strategy. Front Bioeng Biotechnol 2022; 10:1074536. [PMID: 36507254 PMCID: PMC9732036 DOI: 10.3389/fbioe.2022.1074536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
Temporomandibular joint osteoarthritis (TMJOA) is a debilitating degenerative disease with high incidence, deteriorating quality of patient life. Currently, due to ambiguous etiology, the traditional clinical strategies of TMJOA emphasize on symptomatic treatments such as pain relief and inflammation alleviation, which are unable to halt or reverse the destruction of cartilage or subchondral bone. A number of studies have suggested the potential application prospect of mesenchymal stem cells (MSCs)-based therapy in TMJOA and other cartilage injury. Worthy of note, exosomes are increasingly being considered the principal efficacious agent of MSC secretions for TMJOA management. The extensive study of exosomes (derived from MSCs, synoviocytes, chondrocytes or adipose tissue et al.) on arthritis recently, has indicated exosomes and their specific miRNA components to be potential therapeutic agents for TMJOA. In this review, we aim to systematically summarize therapeutic properties and underlying mechanisms of MSCs and exosomes from different sources in TMJOA, also analyze and discuss the approaches to optimization, challenges, and prospects of exosome-based therapeutic strategy.
Collapse
Affiliation(s)
- Wenxiu Yuan
- Lab for Aging Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yange Wu
- Lab for Aging Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Maotuan Huang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
| | - Xueman Zhou
- Lab for Aging Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiaqi Liu
- Lab for Aging Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yating Yi
- Lab for Aging Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China,*Correspondence: Jin Liu, ; Jun Wang,
| | - Jin Liu
- Lab for Aging Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Jin Liu, ; Jun Wang,
| |
Collapse
|
20
|
MSC-EV therapy for bone/cartilage diseases. Bone Rep 2022; 17:101636. [DOI: 10.1016/j.bonr.2022.101636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022] Open
|
21
|
Lee PS, Heinemann C, Zheng K, Appali R, Alt F, Krieghoff J, Bernhardt A, Boccaccini AR, van Rienen U, Hintze V. The interplay of collagen/bioactive glass nanoparticle coatings and electrical stimulation regimes distinctly enhanced osteogenic differentiation of human mesenchymal stem cells. Acta Biomater 2022; 149:373-386. [PMID: 35817340 DOI: 10.1016/j.actbio.2022.06.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/24/2022] [Accepted: 06/30/2022] [Indexed: 12/25/2022]
Abstract
Increasing research has incorporated bioactive glass nanoparticles (BGN) and electric field (EF) stimulation for bone tissue engineering and regeneration applications. However, their interplay and the effects of different EF stimulation regimes on osteogenic differentiation of human mesenchymal stem cells (hMSC) are less investigated. In this study, we introduced EF with negligible magnetic field strength through a well-characterized transformer-like coupling (TLC) system, and applied EF disrupted (4/4) or consecutive (12/12) regime on type I collagen (Col) coatings with/without BGN over 28 days. Additionally, dexamethasone was excluded to enable an accurate interpretation of BGN and EF in supporting osteogenic differentiation. Here, we demonstrated the influences of BGN and EF on collagen topography and maintaining coating stability. Coupled with the release profile of Si ions from the BGN, cell proliferation and calcium deposition were enhanced in the Col-BGN samples after 28 days. Further, osteogenic differentiation was initiated as early as d 7, and each EF regime was shown to activate distinct pathways. The disrupted (4/4) regime was associated with the BMP/Smad4 pathways that up-regulate Runx2/OCN gene expression on d 7, with a lesser effect on ALP activity. In contrast, the canonical Wnt/β-Catenin signaling pathway activated through mechanotransduction cues is associated with the consecutive (12/12) regime, with significantly elevated ALP activity and Sp7 gene expression reported on d 7. In summary, our results illustrated the synergistic effects of BGN and EF in different stimulation regimes on osteogenic differentiation that can be further exploited to enhance current bone tissue engineering and regeneration approaches. STATEMENT OF SIGNIFICANCE: The unique release mechanisms of silica from bioactive glass nanoparticles (BGN) were coupled with pulsatile electric field (EF) stimulation to support hMSC osteogenic differentiation, in the absence of dexamethasone. Furthermore, the interplay with consecutive (12/12) and disrupted (4/4) stimulation regimes was investigated. The reported physical, mechanical and topographical effects of BGN and EF on the collagen coating, hMSC and the distinct progression of osteogenic differentiation (canonical Wnt/β-Catenin and BMP/Smad) triggered by respective stimulation regime were not explicitly reported previously. These results provide the fundamentals for further exploitations on BGN composites with metal ions and rotation of EF regimes to enhance osteogenic differentiation. The goal is sustaining continual osteogenic differentiation and achieving a more physiologically-relevant state and bone constructs in vitro.
Collapse
Affiliation(s)
- Poh Soo Lee
- Institute of General Electrical Engineering, Faculty of Computer Science and Electrical Engineering, University of Rostock, Albert-Einstein-Straße 2, Rostock 18059, Germany; Max Bergmann Centre of Biomaterials, Institute of Materials Science, Faculty of Mechanical Science and Engineering, Technische Universität Dresden, Budapesterstraße 27, Dresden, Saxony 01069, Germany.
| | - Christiane Heinemann
- Max Bergmann Centre of Biomaterials, Institute of Materials Science, Faculty of Mechanical Science and Engineering, Technische Universität Dresden, Budapesterstraße 27, Dresden, Saxony 01069, Germany
| | - Kai Zheng
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, China; Department of Material Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremburg, Cauerstraße 6, Erlangen 91058, Germany
| | - Revathi Appali
- Institute of General Electrical Engineering, Faculty of Computer Science and Electrical Engineering, University of Rostock, Albert-Einstein-Straße 2, Rostock 18059, Germany; Department of Ageing of Individuals and Society, Interdisciplinary Faculty, University of Rostock, Albert-Einstein-Straße 21, Rostock 18059, Germany
| | - Franziska Alt
- Max Bergmann Centre of Biomaterials, Institute of Materials Science, Faculty of Mechanical Science and Engineering, Technische Universität Dresden, Budapesterstraße 27, Dresden, Saxony 01069, Germany
| | - Jan Krieghoff
- Institute of Pharmacy, Pharmaceutical Technology, Faculty of Medicine, University Leipzig. Eilenburgerstraße 15a, Leipzig 04317, Germany
| | - Anne Bernhardt
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, Dresden 01307, Germany
| | - Aldo R Boccaccini
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, China; Department of Material Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremburg, Cauerstraße 6, Erlangen 91058, Germany
| | - Ursula van Rienen
- Institute of General Electrical Engineering, Faculty of Computer Science and Electrical Engineering, University of Rostock, Albert-Einstein-Straße 2, Rostock 18059, Germany; Department of Ageing of Individuals and Society, Interdisciplinary Faculty, University of Rostock, Albert-Einstein-Straße 21, Rostock 18059, Germany; Department of Life, Light and Matter, Interdisciplinary Faculty, University of Rostock, Albert-Einstein-Straße 25, Rostock 18059, Germany
| | - Vera Hintze
- Max Bergmann Centre of Biomaterials, Institute of Materials Science, Faculty of Mechanical Science and Engineering, Technische Universität Dresden, Budapesterstraße 27, Dresden, Saxony 01069, Germany.
| |
Collapse
|
22
|
Black RM, Flaman LL, Lindblom K, Chubinskaya S, Grodzinsky AJ, Önnerfjord P. Tissue catabolism and donor-specific dexamethasone response in a human osteochondral model of post-traumatic osteoarthritis. Arthritis Res Ther 2022; 24:137. [PMID: 35689293 PMCID: PMC9185927 DOI: 10.1186/s13075-022-02828-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/22/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Post-traumatic osteoarthritis (PTOA) does not currently have clinical prognostic biomarkers or disease-modifying drugs, though promising candidates such as dexamethasone (Dex) exist. Many challenges in studying and treating this disease stem from tissue interactions that complicate understanding of drug effects. We present an ex vivo human osteochondral model of PTOA to investigate disease effects on cartilage and bone homeostasis and discover biomarkers for disease progression and drug efficacy. METHODS Human osteochondral explants were harvested from normal (Collins grade 0-1) ankle talocrural joints of human donors (2 female, 5 male, ages 23-70). After pre-equilibration, osteochondral explants were treated with a single-impact mechanical injury and TNF-α, IL-6, and sIL-6R ± 100 nM Dex for 21 days and media collected every 2-3 days. Chondrocyte viability, tissue DNA content, and glycosaminoglycan (sGAG) percent loss to the media were assayed and compared to untreated controls using a linear mixed effects model. Mass spectrometry analysis was performed for both cartilage tissue and pooled culture medium, and the statistical significance of protein abundance changes was determined with the R package limma and empirical Bayes statistics. Partial least squares regression analyses of sGAG loss and Dex attenuation of sGAG loss against proteomic data were performed. RESULTS Injury and cytokine treatment caused an increase in the release of matrix components, proteases, pro-inflammatory factors, and intracellular proteins, while tissue lost intracellular metabolic proteins, which was mitigated with the addition of Dex. Dex maintained chondrocyte viability and reduced sGAG loss caused by injury and cytokine treatment by 2/3 overall, with donor-specific differences in the sGAG attenuation effect. Biomarkers of bone metabolism had mixed effects, and collagen II synthesis was suppressed with both disease and Dex treatment by 2- to 5-fold. Semitryptic peptides associated with increased sGAG loss were identified. Pro-inflammatory humoral proteins and apolipoproteins were associated with lower Dex responses. CONCLUSIONS Catabolic effects on cartilage tissue caused by injury and cytokine treatment were reduced with the addition of Dex in this osteochondral PTOA model. This study presents potential peptide biomarkers of early PTOA progression and Dex efficacy that can help identify and treat patients at risk of PTOA.
Collapse
Affiliation(s)
- Rebecca Mae Black
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Lisa L Flaman
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Karin Lindblom
- Rheumatology and Molecular Skeletal Biology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Susan Chubinskaya
- Departments of Pediatrics, Orthopedic Surgery and Medicine (Section of Rheumatology), Rush University Medical Center, Chicago, IL, USA
| | - Alan J Grodzinsky
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Patrik Önnerfjord
- Rheumatology and Molecular Skeletal Biology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| |
Collapse
|
23
|
Gultian KA, Gandhi R, Sarin K, Sladkova-Faure M, Zimmer M, de Peppo GM, Vega SL. Human induced mesenchymal stem cells display increased sensitivity to matrix stiffness. Sci Rep 2022; 12:8483. [PMID: 35589731 PMCID: PMC9119934 DOI: 10.1038/s41598-022-12143-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
The clinical translation of mesenchymal stem cells (MSCs) is limited by population heterogeneity and inconsistent responses to engineered signals. Specifically, the extent in which MSCs respond to mechanical cues varies significantly across MSC lines. Although induced pluripotent stem cells (iPSCs) have recently emerged as a novel cell source for creating highly homogeneous MSC (iMSC) lines, cellular mechanosensing of iMSCs on engineered materials with defined mechanics is not well understood. Here, we tested the mechanosensing properties of three human iMSC lines derived from iPSCs generated using a fully automated platform. Stiffness-driven changes in morphology were comparable between MSCs and iMSCs cultured atop hydrogels of different stiffness. However, contrary to tissue derived MSCs, no significant changes in iMSC morphology were observed between iMSC lines atop different stiffness hydrogels, demonstrating a consistent response to mechanical signals. Further, stiffness-driven changes in mechanosensitive biomarkers were more pronounced in iMSCs than MSCs, which shows that iMSCs are more adaptive and responsive to mechanical cues than MSCs. This study reports that iMSCs are a promising stem cell source for basic and applied research due to their homogeneity and high sensitivity to engineered mechanical signals.
Collapse
Affiliation(s)
- Kirstene A Gultian
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, 08028, USA
| | - Roshni Gandhi
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, 08028, USA
| | - Khushi Sarin
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, 08028, USA
| | | | - Matthew Zimmer
- The New York Stem Cell Foundation Research Institute, New York, NY, 10019, USA
| | | | - Sebastián L Vega
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, 08028, USA.
| |
Collapse
|
24
|
Wharton’s Jelly-Derived Mesenchymal Stem Cells with High Aurora Kinase A Expression Show Improved Proliferation, Migration, and Therapeutic Potential. Stem Cells Int 2022; 2022:4711499. [PMID: 35450345 PMCID: PMC9017458 DOI: 10.1155/2022/4711499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/11/2022] [Indexed: 11/25/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are effective therapeutic agents that contribute to tissue repair and regeneration by secreting various factors. However, donor-dependent variations in MSC proliferation and therapeutic potentials result in variable production yields and clinical outcomes, thereby impeding MSC-based therapies. Hence, selection of MSCs with high proliferation and therapeutic potentials would be important for effective clinical application of MSCs. This study is aimed at identifying the upregulated genes in human Wharton's jelly-derived MSCs (WJ-MSCs) with high proliferation potential using mRNA sequencing. Aurora kinase A (AURKA) and dedicator of cytokinesis 2 (DOCK2) were selected as the upregulated genes, and their effects on proliferation, migration, and colony formation of the WJ-MSCs were verified using small interfering RNA (siRNA) techniques. mRNA expression levels of both the genes were positively correlated with the proliferation capacity of WJ-MSCs. Moreover, AURKA from human WJ-MSCs regulated the antiapoptotic effect of skeletal muscle cells by upregulating the chemokine (C motif) ligand (XCL1); this was further confirmed in the mdx mouse model. Taken together, the results indicated that AURKA and DOCK2 can be used as potential biomarkers for proliferation and migration of human WJ-MSCs. In particular, human WJ-MSCs with high expression of AURKA might have therapeutic efficacy against muscle diseases, such as Duchenne muscular dystrophy (DMD).
Collapse
|
25
|
Silk Fibroin-Based Therapeutics for Impaired Wound Healing. Pharmaceutics 2022; 14:pharmaceutics14030651. [PMID: 35336024 PMCID: PMC8949428 DOI: 10.3390/pharmaceutics14030651] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/04/2022] [Accepted: 03/11/2022] [Indexed: 02/06/2023] Open
Abstract
Impaired wound healing can lead to local hypoxia or tissue necrosis and ultimately result in amputation or even death. Various factors can influence the wound healing environment, including bacterial or fungal infections, different disease states, desiccation, edema, and even systemic viral infections such as COVID-19. Silk fibroin, the fibrous structural-protein component in silk, has emerged as a promising treatment for these impaired processes by promoting functional tissue regeneration. Silk fibroin’s dynamic properties allow for customizable nanoarchitectures, which can be tailored for effectively treating several wound healing impairments. Different forms of silk fibroin include nanoparticles, biosensors, tissue scaffolds, wound dressings, and novel drug-delivery systems. Silk fibroin can be combined with other biomaterials, such as chitosan or microRNA-bound cerium oxide nanoparticles (CNP), to have a synergistic effect on improving impaired wound healing. This review focuses on the different applications of silk-fibroin-based nanotechnology in improving the wound healing process; here we discuss silk fibroin as a tissue scaffold, topical solution, biosensor, and nanoparticle.
Collapse
|
26
|
Kim JY, Park S, Oh SY, Nam YH, Choi YM, Choi Y, Kim HY, Jung SY, Kim HS, Jo I, Jung SC. Density-Dependent Differentiation of Tonsil-Derived Mesenchymal Stem Cells into Parathyroid-Hormone-Releasing Cells. Int J Mol Sci 2022; 23:ijms23020715. [PMID: 35054901 PMCID: PMC8775366 DOI: 10.3390/ijms23020715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 02/04/2023] Open
Abstract
Mesenchymal stem cells (MSCs) can differentiate into endoderm lineages, especially parathyroid-hormone (PTH)-releasing cells. We have previously reported that tonsil-derived MSC (T-MSC) can differentiate into PTH-releasing cells (T-MSC-PTHCs), which restored the parathyroid functions in parathyroidectomy (PTX) rats. In this study, we demonstrate quality optimization by standardizing the differentiation rate for a better clinical application of T-MSC-PTHCs to overcome donor-dependent variation of T-MSCs. Quantitation results of PTH mRNA copy number in the differentiated cells and the PTH concentration in the conditioned medium confirmed that the differentiation efficiency largely varied depending on the cells from each donor. In addition, the differentiation rate of the cells from all the donors greatly improved when differentiation was started at a high cell density (100% confluence). The large-scale expression profiling of T-MSC-PTHCs by RNA sequencing indicated that those genes involved in exiting the differentiation and the cell cycle were the major pathways for the differentiation of T-MSC-PTHCs. Furthermore, the implantation of the T-MSC-PTHCs, which were differentiated at a high cell density embedded in hyaluronic acid, resulted in a higher serum PTH in the PTX model. This standardized efficiency of differentiation into PTHC was achieved by initiating differentiation at a high cell density. Our findings provide a potential solution to overcome the limitations due to donor-dependent variation by establishing a standardized differentiation protocol for the clinical application of T-MSC therapy in treating hypoparathyroidism.
Collapse
Affiliation(s)
- Ji Yeon Kim
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (J.Y.K.); (S.P.); (Y.H.N.); (Y.C.)
| | - Saeyoung Park
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (J.Y.K.); (S.P.); (Y.H.N.); (Y.C.)
| | - Se-Young Oh
- Departments of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (S.-Y.O.); (Y.M.C.); (I.J.)
| | - Yu Hwa Nam
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (J.Y.K.); (S.P.); (Y.H.N.); (Y.C.)
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 07804, Korea
| | - Young Min Choi
- Departments of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (S.-Y.O.); (Y.M.C.); (I.J.)
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 07804, Korea
| | - Yeonzi Choi
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (J.Y.K.); (S.P.); (Y.H.N.); (Y.C.)
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 07804, Korea
| | - Ha Yeong Kim
- Departments of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (H.Y.K.); (S.Y.J.); (H.S.K.)
| | - Soo Yeon Jung
- Departments of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (H.Y.K.); (S.Y.J.); (H.S.K.)
| | - Han Su Kim
- Departments of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (H.Y.K.); (S.Y.J.); (H.S.K.)
| | - Inho Jo
- Departments of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (S.-Y.O.); (Y.M.C.); (I.J.)
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 07804, Korea
| | - Sung-Chul Jung
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (J.Y.K.); (S.P.); (Y.H.N.); (Y.C.)
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 07804, Korea
- Correspondence: ; Tel.: +82-2-6986-6199
| |
Collapse
|
27
|
Ahn SY, Sung DK, Chang YS, Sung SI, Kim YE, Kim HJ, Lee SM, Park WS. BDNF-Overexpressing Engineered Mesenchymal Stem Cells Enhances Their Therapeutic Efficacy against Severe Neonatal Hypoxic Ischemic Brain Injury. Int J Mol Sci 2021; 22:ijms222111395. [PMID: 34768827 PMCID: PMC8583727 DOI: 10.3390/ijms222111395] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/20/2022] Open
Abstract
We investigated whether irradiated brain-derived neurotropic factor (BDNF)-overexpressing engineered human mesenchymal stem cells (BDNF-eMSCs) improve paracrine efficiency and, thus, the beneficial potency of naïve MSCs against severe hypoxic ischemic (HI) brain injury in newborn rats. Irradiated BDNF-eMSCs hyper-secreted BDNF > 10 fold and were >5 fold more effective than naïve MSCs in attenuating the oxygen-glucose deprivation-induced increase in cytotoxicity, oxidative stress, and cell death in vitro. Only the irradiated BDNF-eMSCs, but not naïve MSCs, showed significant attenuating effects on severe neonatal HI-induced short-term brain injury scores, long-term progress of brain infarct, increased apoptotic cell death, astrogliosis and inflammatory responses, and impaired negative geotaxis and rotarod tests in vivo. Our data, showing better paracrine potency and the resultant better therapeutic efficacy of the irradiated BDNF-eMSCs, compared to naïve MSCs, suggest that MSCs transfected with the BDNF gene might represent a better, new therapeutic strategy against severe neonatal HI brain injury.
Collapse
Affiliation(s)
- So Yoon Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (S.Y.A.); (D.K.S.); (Y.S.C.); (S.I.S.)
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul 06351, Korea;
| | - Dong Kyung Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (S.Y.A.); (D.K.S.); (Y.S.C.); (S.I.S.)
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul 06351, Korea;
| | - Yun Sil Chang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (S.Y.A.); (D.K.S.); (Y.S.C.); (S.I.S.)
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul 06351, Korea;
| | - Se In Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (S.Y.A.); (D.K.S.); (Y.S.C.); (S.I.S.)
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul 06351, Korea;
| | - Young Eun Kim
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul 06351, Korea;
| | - Hyo-Jin Kim
- SL BiGen, Inc., SL BIGEN Research Hall, 85, Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Korea; (H.-J.K.); (S.M.L.)
| | - Soon Min Lee
- SL BiGen, Inc., SL BIGEN Research Hall, 85, Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Korea; (H.-J.K.); (S.M.L.)
| | - Won Soon Park
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (S.Y.A.); (D.K.S.); (Y.S.C.); (S.I.S.)
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul 06351, Korea;
- Correspondence: ; Tel.: +82-2-3410-3523
| |
Collapse
|
28
|
Strategies to address mesenchymal stem/stromal cell heterogeneity in immunomodulatory profiles to improve cell-based therapies. Acta Biomater 2021; 133:114-125. [PMID: 33857693 DOI: 10.1016/j.actbio.2021.03.069] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/15/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023]
Abstract
Mesenchymal stromal cells (MSCs) have gained immense attention over the past two decades due to their multipotent differentiation potential and pro-regenerative and immunomodulatory cytokine secretory profiles. Their ability to modulate the host immune system and promote tolerance has prompted several allogeneic and autologous hMSC-based clinical trials for the treatment of graft-versus-host disease and several other immune-induced disorders. However, clinical success beyond safety is still controversial and highly variable, with inconclusive therapeutic benefits and little mechanistic explanation. This clinical variability has been broadly attributed to inconsistent MSC sourcing, phenotypic characterization, variable potency, and non-standard isolation protocols, leading to functional heterogeneity among administered MSCs. Homogeneous MSC populations are proposed to yield more predictable, reliable biological responses and clinically meaningful properties relevant to cell-based therapies. Limited comparisons of heterogeneous MSCs with homogenous MSCs are reported. This review addresses this gap in the literature with a critical analysis of strategies aimed at decreasing MSC heterogeneity concerning their reported immunomodulatory profiles. STATEMENT OF SIGNIFICANCE: This review collates, summarizes, and critically analyzes published strategies that seek to improve homogeneity in immunomodulatory functioning MSC populations intended as cell therapies to treat immune-based disorders, such as graft-vs-host-disease. No such review for MSC therapies, immunomodulatory profiles and cell heterogeneity analysis is published. Since MSCs represent the most clinically studied experimental cell therapy platform globally for which there remains no US domestic marketing approval, insights into MSC challenges in therapeutic product development are imperative to providing solutions for immunomodulatory variabilities.
Collapse
|
29
|
Clark JN, Tavana S, Clark B, Briggs T, Jeffers JRT, Hansen U. High resolution three-dimensional strain measurements in human articular cartilage. J Mech Behav Biomed Mater 2021; 124:104806. [PMID: 34509906 DOI: 10.1016/j.jmbbm.2021.104806] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 06/21/2021] [Accepted: 08/28/2021] [Indexed: 12/21/2022]
Abstract
An unresolved challenge in osteoarthritis research is characterising the localised intra-tissue mechanical response of articular cartilage. The aim of this study was to explore whether laboratory micro-computed tomography (micro-CT) and digital volume correlation (DVC) permit non-destructive quantification of three-dimensional (3D) strain fields in human articular cartilage. Human articular cartilage specimens were harvested from the knee, mounted into a loading device and imaged in the unloaded and loaded states using a micro-CT scanner. Strain was measured throughout the cartilage volume using the micro-CT image data and DVC analysis. The volumetric DVC-measured strain was within 5% of the known applied strain. Variation in strain distribution between the superficial, middle and deep zones was observed, consistent with the different architecture of the material in these locations. These results indicate DVC method may be suitable for calculating strain in human articular cartilage.
Collapse
Affiliation(s)
- Jeffrey N Clark
- Department of Mechanical Engineering, Imperial College London, London, UK
| | - Saman Tavana
- Department of Mechanical Engineering, Imperial College London, London, UK
| | - Brett Clark
- Imaging and Analysis Centre, Natural History Museum London, London, UK
| | - Tom Briggs
- Department of Mechanical Engineering, Imperial College London, London, UK
| | | | - Ulrich Hansen
- Department of Mechanical Engineering, Imperial College London, London, UK
| |
Collapse
|
30
|
Li Z, Huang Z, Bai L. Cell Interplay in Osteoarthritis. Front Cell Dev Biol 2021; 9:720477. [PMID: 34414194 PMCID: PMC8369508 DOI: 10.3389/fcell.2021.720477] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/14/2021] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) is a common chronic disease and a significant health concern that needs to be urgently solved. OA affects the cartilage and entire joint tissues, including the subchondral bone, synovium, and infrapatellar fat pads. The physiological and pathological changes in these tissues affect the occurrence and development of OA. Understanding complex crosstalk among different joint tissues and their roles in OA initiation and progression is critical in elucidating the pathogenic mechanism of OA. In this review, we begin with an overview of the role of chondrocytes, synovial cells (synovial fibroblasts and macrophages), mast cells, osteoblasts, osteoclasts, various stem cells, and engineered cells (induced pluripotent stem cells) in OA pathogenesis. Then, we discuss the various mechanisms by which these cells communicate, including paracrine signaling, local microenvironment, co-culture, extracellular vesicles (exosomes), and cell tissue engineering. We particularly focus on the therapeutic potential and clinical applications of stem cell-derived extracellular vesicles, which serve as modulators of cell-to-cell communication, in the field of regenerative medicine, such as cartilage repair. Finally, the challenges and limitations related to exosome-based treatment for OA are discussed. This article provides a comprehensive summary of key cells that might be targets of future therapies for OA.
Collapse
Affiliation(s)
- Zihao Li
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ziyu Huang
- Foreign Languages College, Shanghai Normal University, Shanghai, China
| | - Lunhao Bai
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
31
|
Qiao K, Chen Q, Cao Y, Li J, Xu G, Liu J, Cui X, Tian K, Zhang W. Diagnostic and Therapeutic Role of Extracellular Vesicles in Articular Cartilage Lesions and Degenerative Joint Diseases. Front Bioeng Biotechnol 2021; 9:698614. [PMID: 34422779 PMCID: PMC8371972 DOI: 10.3389/fbioe.2021.698614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/28/2021] [Indexed: 01/15/2023] Open
Abstract
Two leading contributors to the global disability are cartilage lesions and degenerative joint diseases, which are characterized by the progressive cartilage destruction. Current clinical treatments often fail due to variable outcomes and an unsatisfactory long-term repair. Cell-based therapies were once considered as an effective solution because of their anti-inflammatory and immunosuppression characteristics as well as their differentiation capacity to regenerate the damaged tissue. However, stem cell-based therapies have inherent limitations, such as a high tumorigenicity risk, a low retention, and an engraftment rate, as well as strict regulatory requirements, which result in an underwhelming therapeutic effect. Therefore, the non-stem cell-based therapy has gained its popularity in recent years. Extracellular vesicles (EVs), in particular, like the paracrine factors secreted by stem cells, have been proven to play a role in mediating the biological functions of target cells, and can achieve the therapeutic effect similar to stem cells in cartilage tissue engineering. Therefore, a comprehensive review of the therapeutic role of EVs in cartilage lesions and degenerative joint diseases can be discussed both in terms of time and favorability. In this review, we summarized the physiological environment of a joint and its pathological alteration after trauma and consequent changes in EVs, which are lacking in the current literature studies. In addition, we covered the potential working mechanism of EVs in the repair of the cartilage and the joint and also discussed the potential therapeutic applications of EVs in future clinical use.
Collapse
Affiliation(s)
- Kai Qiao
- First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Qi Chen
- First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yiguo Cao
- First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jie Li
- First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Gang Xu
- First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jiaqing Liu
- Qingdao University of Science and Technology, Qingdao, China
| | - Xiaolin Cui
- First Affiliated Hospital, Dalian Medical University, Dalian, China
- Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, New Zealand
| | - Kang Tian
- First Affiliated Hospital, Dalian Medical University, Dalian, China
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Weiguo Zhang
- First Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
32
|
Wang YH, Tao YC, Wu DB, Wang ML, Tang H, Chen EQ. Cell heterogeneity, rather than the cell storage solution, affects the behavior of mesenchymal stem cells in vitro and in vivo. Stem Cell Res Ther 2021; 12:391. [PMID: 34256842 PMCID: PMC8278752 DOI: 10.1186/s13287-021-02450-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 06/06/2021] [Indexed: 02/08/2023] Open
Abstract
Background Mesenchymal stem cells (MSCs) have to be expanded in vitro to reach a sufficient cell dose for the treatment of various diseases. During the process of expansion, some obstacles remain to be overcome. The purpose of this study was to investigate the effects of storage solutions and heterogeneity on the behavior of MSCs in vitro and in vivo. Methods Umbilical cord MSCs (UC-MSCs) of similar sizes within normal ranges were suspended in three different storage solutions, phosphate buffer solution, normal saline, and Dulbecco’s modified Eagle medium. Then, the ultrastructure, viability, and safety of these cells were compared. Other two UC-MSC populations of different sizes were categorized based on their mean diameters. The ultrastructure, proliferation, immunosuppression, hepatic differentiation potential, and number of senescent cells were investigated and compared. The survival rates of mice after the infusion of UC-MSCs of different sizes were compared. Results For UC-MSCs suspended in different storage solutions, the cell apoptosis rates, ultrastructure, and survival rates of mice were similar, and no differences were observed. Cells with a diameter of 19.14 ± 4.89 μm were categorized as the larger UC-MSC population, and cells with a diameter of 15.58 ± 3.81 μm were categorized as the smaller population. The mean diameter of the larger UC-MSC population was significantly larger than that of the smaller UC-MSC population (p < 0.01). Smaller UC-MSCs had more powerful proliferation and immunosuppressive potential and a higher nucleus-cytoplasm ratio than those of large UC-MSCs. The number of cells positive for β-galactosidase staining was higher in the larger UC-MSC population than in the smaller UC-MSC population. The survival rates of mice receiving 1 × 106 or 2 × 106 smaller UC-MSCs were 100%, both of which were higher than those of mice receiving the same amounts of larger UC-MSCs (p < 0.01). The cause of mouse death was explored and it was found that some larger UC-MSCs accumulated in the pulmonary capillary in dead mice. Conclusion Different storage solutions showed no significant effects on cell behavior, whereas heterogeneity was quite prevalent in MSC populations and might limit cells application. Hence, it is necessary to establish a more precise standardization for culture-expanded MSCs. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02450-2.
Collapse
Affiliation(s)
- Yong-Hong Wang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Ya-Chao Tao
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Dong-Bo Wu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Meng-Lan Wang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China. .,Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China.
| | - En-Qiang Chen
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China. .,Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
33
|
Basoli V, Della Bella E, Kubosch EJ, Alini M, Stoddart MJ. Effect of expansion media and fibronectin coating on growth and chondrogenic differentiation of human bone marrow-derived mesenchymal stromal cells. Sci Rep 2021; 11:13089. [PMID: 34158528 PMCID: PMC8219706 DOI: 10.1038/s41598-021-92270-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/08/2021] [Indexed: 01/01/2023] Open
Abstract
In the field of regenerative medicine, considerable advances have been made from the technological and biological point of view. However, there are still large gaps to be filled regarding translation and application of mesenchymal stromal cell (MSC)-based therapies into clinical practice. Indeed, variables such as cell type, unpredictable donor variation, and expansion/differentiation methods lead to inconsistencies. Most protocols use bovine serum (FBS) derivatives during MSC expansion. However, the xenogeneic risks associated with FBS limits the use of MSC-based products in clinical practice. Herein we compare a chemically defined, xenogeneic-free commercial growth medium with a conventional medium containing 10% FBS and 5 ng/ml FGF2. Furthermore, the effect of a fibronectin-coated growth surface was investigated. The effect of the different culture conditions on chondrogenic commitment was assessed by analyzing matrix deposition and gene expression of common chondrogenic markers. Chondrogenic differentiation potential was similar between the FBS-containing αMEM and the chemically defined medium with fibronectin coating. On the contrary, the use of fibronectin coating with FBS-containing medium appeared to reduce the differentiation potential of MSCs. Moreover, cells that were poorly responsive to in vitro chondrogenic stimuli were shown to improve their differentiation potential after expansion in a TGF-β1 containing medium. In conclusion, the use of a xenogeneic-free medium provides a suitable alternative for human bone marrow MSC expansion, due the capability to maintain cell characteristic and potency. To further improve chondrogenic potential of BMSCs, priming the cells with TGF-β1 during expansion is a promising strategy.
Collapse
Affiliation(s)
- Valentina Basoli
- Regenerative Orthopaedics, AO Research Institute Davos, Clavadelerstrasse 8, Davos Platz, Switzerland
| | - Elena Della Bella
- Regenerative Orthopaedics, AO Research Institute Davos, Clavadelerstrasse 8, Davos Platz, Switzerland
| | - Eva Johanna Kubosch
- Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, Albert-Ludwigs-University of Freiburg, 79106, Freiburg, Germany
| | - Mauro Alini
- Regenerative Orthopaedics, AO Research Institute Davos, Clavadelerstrasse 8, Davos Platz, Switzerland
| | - Martin J Stoddart
- Regenerative Orthopaedics, AO Research Institute Davos, Clavadelerstrasse 8, Davos Platz, Switzerland. .,Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, Albert-Ludwigs-University of Freiburg, 79106, Freiburg, Germany.
| |
Collapse
|
34
|
Kowal JM, Möller S, Ali D, Figeac F, Barington T, Schmal H, Kassem M. Identification of a clinical signature predictive of differentiation fate of human bone marrow stromal cells. Stem Cell Res Ther 2021; 12:265. [PMID: 33941262 PMCID: PMC8091554 DOI: 10.1186/s13287-021-02338-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 04/19/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Transplantation of human bone marrow stromal cells (hBMSCs) is a promising therapy for bone regeneration due to their ability to differentiate into bone forming osteoblastic cells. However, transplanted hBMSCs exhibit variable capacity for bone formation resulting in inconsistent clinical outcome. The aim of the study was to identify a set of donor- and cell-related characteristics that detect hBMSCs with optimal osteoblastic differentiation capacity. METHODS We collected hBMSCs from 58 patients undergoing surgery for bone fracture. Clinical profile of the donors and in vitro characteristics of cultured hBMSCs were included in uni- and multivariable analysis to determine their predictive value for osteoblastic versus adipocytic differentiation capacity assessed by quantification of mineralized matrix and mature adipocyte formation, respectively. RESULTS We identified a signature that explained > 50% of variation in osteoblastic differentiation outcome which included the following positive predictors: donor sex (male), absence of osteoporosis diagnosis, intake of vitamin D supplements, higher fraction of CD146+, and alkaline phosphate (ALP+) cells. With the exception of vitamin D and ALP+ cells, these variables were also negative predictors of adipocytic differentiation. CONCLUSIONS Using a combination of clinical and cellular criteria, it is possible to predict differentiation outcome of hBMSCs. This signature may be helpful in selecting donor cells in clinical trials of bone regeneration.
Collapse
Affiliation(s)
- Justyna Magdalena Kowal
- Department of Endocrinology, Odense University Hospital, Odense, Denmark. .,Molecular Endocrinology Unit (KMEB), Institute of Clinical Research, University of Southern Denmark, Odense, Denmark.
| | - Sören Möller
- OPEN - Open Patient data Explorative Network, Odense University Hospital and Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Dalia Ali
- Department of Endocrinology, Odense University Hospital, Odense, Denmark.,Molecular Endocrinology Unit (KMEB), Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Florence Figeac
- Department of Endocrinology, Odense University Hospital, Odense, Denmark.,Molecular Endocrinology Unit (KMEB), Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Torben Barington
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Hagen Schmal
- Department of Orthopedics and Traumatology, Odense University Hospital, Odense, Denmark.,Department of Orthopedics and Trauma Surgery, Medical Center - Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - Moustapha Kassem
- Department of Endocrinology, Odense University Hospital, Odense, Denmark.,Molecular Endocrinology Unit (KMEB), Institute of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Cellular and Molecular Medicine, Danish Stem Cell Center (DanStem), University of Copenhagen, 2200, Copenhagen, Denmark
| |
Collapse
|
35
|
Kim GB, Shon OJ, Seo MS, Choi Y, Park WT, Lee GW. Mesenchymal Stem Cell-Derived Exosomes and Their Therapeutic Potential for Osteoarthritis. BIOLOGY 2021; 10:285. [PMID: 33915850 PMCID: PMC8066608 DOI: 10.3390/biology10040285] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 12/18/2022]
Abstract
Exosomes are nano-sized vesicles (50-150 nm in diameter) that contain nucleic acids (e.g., microRNA and messenger RNA), functional proteins, and bioactive lipids. They are secreted by various types of cells, including B cells, T cells, reticulocytes, dendritic cells, mast cells, epithelial cells, and mesenchymal stem cells (MSCs). They perform a wide variety of functions, including the repair of damaged tissues, regulation of immune responses, and reduction in inflammation. When considering the limitations of MSCs, including issues in standardization and immunogenicity, MSC-derived exosomes have advantages such as small dimensions, low immunogenicity, and lack of requirement for additional procedures for culture expansion or delivery. MSC-derived exosomes have shown outstanding therapeutic effects through chondro-protective and anti-inflammatory properties. MSC-derived exosomes may enable a new therapeutic paradigm for the treatment of osteoarthritis. However, further research is needed to prove their clinical effectiveness and feasibility.
Collapse
Affiliation(s)
- Gi Beom Kim
- Department of Orthopedic Surgery, Yeungnam University College of Medicine, Yeungnam University, Medical Center, 170 Hyonchung-ro, Namgu, Daegu 42415, Korea; (G.B.K.); (O.-J.S.); (W.T.P.)
| | - Oog-Jin Shon
- Department of Orthopedic Surgery, Yeungnam University College of Medicine, Yeungnam University, Medical Center, 170 Hyonchung-ro, Namgu, Daegu 42415, Korea; (G.B.K.); (O.-J.S.); (W.T.P.)
| | - Min-Soo Seo
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea;
| | - Young Choi
- Department of Orthopedic Surgery, Kosin University College of Medicine, Kosin University Gospel Hospital, 262 Gamcheon-ro, Seogu, Busan 49267, Korea;
| | - Wook Tae Park
- Department of Orthopedic Surgery, Yeungnam University College of Medicine, Yeungnam University, Medical Center, 170 Hyonchung-ro, Namgu, Daegu 42415, Korea; (G.B.K.); (O.-J.S.); (W.T.P.)
| | - Gun Woo Lee
- Department of Orthopedic Surgery, Yeungnam University College of Medicine, Yeungnam University, Medical Center, 170 Hyonchung-ro, Namgu, Daegu 42415, Korea; (G.B.K.); (O.-J.S.); (W.T.P.)
| |
Collapse
|
36
|
Dwivedi G, Chevrier A, Alameh MG, Hoemann CD, Buschmann MD. Quality of Cartilage Repair from Marrow Stimulation Correlates with Cell Number, Clonogenic, Chondrogenic, and Matrix Production Potential of Underlying Bone Marrow Stromal Cells in a Rabbit Model. Cartilage 2021; 12:237-250. [PMID: 30569762 PMCID: PMC7970370 DOI: 10.1177/1947603518812555] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE Previous studies have shown that intrinsic behavior of subchondral bone marrow stem cells (BMSCs) is influenced by donors and locations. To understand the variability in cartilage repair outcomes following bone marrow stimulation, we tested the hypothesis that in vivo cartilage repair correlates with in vitro biological properties of BMSCs using a rabbit model. METHODS Full-thickness cartilage defects were created in the trochlea and condyle in one knee of skeletally mature New Zealand White rabbits (n = 8) followed by microdrilling. Three-week repair tissues were analyzed by macroscopic International Cartilage Repair Society (ICRS) scores, O'Driscoll histological scores, and Safranin-O (Saf-O) and type-II collagen (Coll-II) % stain. BMSCs isolated from contralateral knees were assessed for cell yield, surface marker expression, CFU-f, %Saf-O, and %Coll-II in pellet culture followed by correlation analyses with the above cartilage repair responses. RESULTS In vivo cartilage repair scores showed strong, positive correlation with cell number, clonogenic, chondrogenic, and matrix production (Coll-II, GAG) potential of in vitro TGF-βIII stimulated BMSC cultures. Trochlear repair showed clear evidence of donor dependency and strong correlation was observed for interdonor variation in repair and the above in vitro properties of trochlear BMSCs. Correlation analyses indicated that donor- and location-dependent variability observed in cartilage repair can be attributed to variation in the properties of BMSCs in underlying subchondral bone. CONCLUSION Variation in cell number, clonogenic, chondrogenic, and matrix production potential of BMSCs correlated with repair response observed in vivo and appear to be responsible for interanimal variability as well as location-dependent repair.
Collapse
Affiliation(s)
- Garima Dwivedi
- Chemical Engineering Department,
Polytechnique Montreal, Montreal, Quebec, Canada
| | - Anik Chevrier
- Chemical Engineering Department,
Polytechnique Montreal, Montreal, Quebec, Canada
| | | | - Caroline D. Hoemann
- Chemical Engineering Department,
Polytechnique Montreal, Montreal, Quebec, Canada,Biomedical Engineering Institute,
Polytechnique Montreal, Montreal, Quebec, Canada
| | - Michael D. Buschmann
- Chemical Engineering Department,
Polytechnique Montreal, Montreal, Quebec, Canada,Biomedical Engineering Institute,
Polytechnique Montreal, Montreal, Quebec, Canada,Michael D. Buschmann, Department of
Bioengineering, Volgenau School of Engineering, George Mason University, 4400
University Drive, MS 1J7, Fairfax, VA 22030, USA.
| |
Collapse
|
37
|
Dong X, Shen LH, Yi Z, He LH, Yi Z. Exosomes from Adipose-Derived Stem Cells Can Prevent Medication-Related Osteonecrosis of the Jaw. Med Sci Monit 2021; 27:e929684. [PMID: 33690263 PMCID: PMC7958499 DOI: 10.12659/msm.929684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The treatment measures of medication-related osteonecrosis of the jaw (MRONJ) is a worldwide challenge in oral and maxillofacial surgery because of its unclear pathogenesis. Previous studies suggested that mesenchymal stem cells played important roles in promoting MRONJ lesion healing, but the detailed mechanisms were unknown. Increasing numbers of studies have demonstrated that exosomes derived from mesenchymal stem cells, especially adipose-derived stem cells, have key roles in stem cell-based therapies by accelerating bone remodeling, facilitating angiogenesis, and promoting wound healing. We hypothesized that exosomes derived from adipose-derived stem cells can prevent MRONJ by accelerating gingival healing and enhancing bone remodeling processes. Our results may provide a promising therapeutic option for MRONJ clinical therapy.
Collapse
Affiliation(s)
- Xian Dong
- Laboratory of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China (mainland)
| | - Li-Hang Shen
- Laboratory of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China (mainland)
| | - Zheng Yi
- Laboratory of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China (mainland)
| | - Lin-Hai He
- First Clinical Division, Peking University School Hospital of Stomatology, Beijing, China (mainland)
| | - Zhang Yi
- Laboratory of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China (mainland)
| |
Collapse
|
38
|
The Impact of Various Culture Conditions on Human Mesenchymal Stromal Cells Metabolism. Stem Cells Int 2021; 2021:6659244. [PMID: 33727935 PMCID: PMC7939743 DOI: 10.1155/2021/6659244] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/01/2021] [Accepted: 02/10/2021] [Indexed: 12/31/2022] Open
Abstract
In vitro and in vivo analyses are closely connected, and the reciprocal relationship between the two comprises a key assumption with concern to the conducting of meaningful research. The primary purpose of in vitro analysis is to provide a solid background for in vivo and clinical study purposes. The fields of cell therapy, tissue engineering, and regenerative medicine depend upon the high quality and appropriate degree of the expansion of mesenchymal stromal cells (MSCs) under low-risk and well-defined conditions. Hence, it is necessary to determine suitable alternatives to fetal bovine serum (FBS—the laboratory gold standard) that comply with all the relevant clinical requirements and that provide the appropriate quantity of high-quality cells while preserving the required properties. Human serum (autologous and allogeneic) and blood platelet lysates and releasates are currently considered to offer promising and relatively well-accessible MSC cultivation alternatives. Our study compared the effect of heat-inactivated FBS on MSC metabolism as compared to its native form (both are used as the standard in laboratory practice) and to potential alternatives with concern to clinical application—human serum (allogeneic and autologous) or platelet releasate (PR-SRGF). The influence of the origin of the serum (fetal versus adult) was also determined. The results revealed the key impact of the heat inactivation of FBS on MSCs and the effectiveness of human sera and platelet releasates with respect to MSC behaviour (metabolic activity, proliferation, morphology, and cytokine production).
Collapse
|
39
|
Futrega K, Music E, Robey PG, Gronthos S, Crawford R, Saifzadeh S, Klein TJ, Doran MR. Characterisation of ovine bone marrow-derived stromal cells (oBMSC) and evaluation of chondrogenically induced micro-pellets for cartilage tissue repair in vivo. Stem Cell Res Ther 2021; 12:26. [PMID: 33413652 PMCID: PMC7791713 DOI: 10.1186/s13287-020-02045-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Abstract Bone marrow stromal cells (BMSC) show promise in cartilage repair, and sheep are the most common large animal pre-clinical model. Objective The objective of this study was to characterise ovine BMSC (oBMSC) in vitro, and to evaluate the capacity of chondrogenic micro-pellets manufactured from oBMSC or ovine articular chondrocytes (oACh) to repair osteochondral defects in sheep. Design oBMSC were characterised for surface marker expression using flow cytometry and evaluated for tri-lineage differentiation capacity. oBMSC micro-pellets were manufactured in a microwell platform, and chondrogenesis was compared at 2%, 5%, and 20% O2. The capacity of cartilage micro-pellets manufactured from oBMSC or oACh to repair osteochondral defects in adult sheep was evaluated in an 8-week pilot study. Results Expanded oBMSC were positive for CD44 and CD146 and negative for CD45. The common adipogenic induction ingredient, 3-Isobutyl-1-methylxanthine (IBMX), was toxic to oBMSC, but adipogenesis could be restored by excluding IBMX from the medium. BMSC chondrogenesis was optimal in a 2% O2 atmosphere. Micro-pellets formed from oBMSC or oACh appeared morphologically similar, but hypertrophic genes were elevated in oBMSC micro-pellets. While oACh micro-pellets formed cartilage-like repair tissue in sheep, oBMSC micro-pellets did not. Conclusion The sensitivity of oBMSC, compared to human BMSC, to IBMX in standard adipogenic assays highlights species-associated differences. Micro-pellets manufactured from oACh were more effective than micro-pellets manufactured from oBMSC in the repair of osteochondral defects in sheep. While oBMSC can be driven to form cartilage-like tissue in vitro, the effective use of these cells in cartilage repair will depend on the successful mitigation of hypertrophy and tissue integration. Supplementary information The online version contains supplementary material available at 10.1186/s13287-020-02045-3.
Collapse
Affiliation(s)
- K Futrega
- Centre for Biomedical Technologies (CBT), Queensland University of Technology (QUT), Brisbane, Queensland, Australia.,National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, Maryland, USA.,Translational Research Institute (TRI), Brisbane, Queensland, Australia
| | - E Music
- Translational Research Institute (TRI), Brisbane, Queensland, Australia.,School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - P G Robey
- National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - S Gronthos
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - R Crawford
- Centre for Biomedical Technologies (CBT), Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - S Saifzadeh
- Centre for Biomedical Technologies (CBT), Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - T J Klein
- Centre for Biomedical Technologies (CBT), Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - M R Doran
- Centre for Biomedical Technologies (CBT), Queensland University of Technology (QUT), Brisbane, Queensland, Australia. .,National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, Maryland, USA. .,Translational Research Institute (TRI), Brisbane, Queensland, Australia. .,School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Queensland, Australia. .,Mater Research Institute - University of Queensland (UQ), Translational Research Institute (TRI), Brisbane, Queensland, Australia.
| |
Collapse
|
40
|
Peltzer J, Lund K, Goriot ME, Grosbot M, Lataillade JJ, Mauduit P, Banzet S. Interferon-γ and Hypoxia Priming Have Limited Effect on the miRNA Landscape of Human Mesenchymal Stromal Cells-Derived Extracellular Vesicles. Front Cell Dev Biol 2020; 8:581436. [PMID: 33384991 PMCID: PMC7769832 DOI: 10.3389/fcell.2020.581436] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/05/2020] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stromal cell (MSC)-based cell therapy has received great interest in regenerative medicine. Priming the cells during the culture phase can improve their efficacy and/or survival after injection. The literature suggests that MSC extracellular vesicles (EV) can recapitulate a substantial part of the beneficial effects of the cells they originate from, and that micro-RNAs (miRNAs) are important players in EV biological action. Here, our aim was to determine if two classical priming methods of MSC, interferon-gamma (IFNγ) and hypoxia (HYP), could modify their EV miRNA content. Human bone marrow MSCs (BM-MSCs) from five healthy donors were cultured with IFNγ or in HYP or in control (CONT) conditions. The conditioned media were collected after 48 h in serum-free condition and EV were isolated by ultracentrifugation. Total RNA was isolated, pools of CONT, IFN, and HYP cDNA were prepared, and a miRNA profiling was performed using RT-qPCR. Then, miRNAs were selected based on their detectability and measured on each individual EV sample. Priming had no effect on EV amount or size distribution. A set of 81 miRNAs was detected in at least one of the pools of EVs. They were measured on each individual sample; 41 miRNAs were detected in all samples. The principal component analysis (PCA) failed to discriminate the groups. HYP induced a significant decrease in EV hsa-miR-34a-3p content and IFN induced a significant increase in five miRNAs (hsa-miR-25-3p, hsa-miR-106a-5p, hsa-miR-126-3p, hsa-miR-451a, and hsa-miR-665). Taken together, we found only limited alterations in the miRNA landscape of MSC EV with a high inter-individual variability.
Collapse
Affiliation(s)
- Juliette Peltzer
- Institut de Recherche Biomédicale des Armées, Clamart, France.,UMR-MD-1197, INSERM, Université Paris 11, Ministère de la défense, Villejuif, France
| | - Kyle Lund
- Institut de Recherche Biomédicale des Armées, Clamart, France
| | - Marie-Emmanuelle Goriot
- Institut de Recherche Biomédicale des Armées, Clamart, France.,UMR-MD-1197, INSERM, Université Paris 11, Ministère de la défense, Villejuif, France
| | - Marion Grosbot
- Institut de Recherche Biomédicale des Armées, Clamart, France.,UMR-MD-1197, INSERM, Université Paris 11, Ministère de la défense, Villejuif, France
| | - Jean-Jacques Lataillade
- Institut de Recherche Biomédicale des Armées, Clamart, France.,UMR-MD-1197, INSERM, Université Paris 11, Ministère de la défense, Villejuif, France
| | - Philippe Mauduit
- UMR-MD-1197, INSERM, Université Paris 11, Ministère de la défense, Villejuif, France
| | - Sébastien Banzet
- Institut de Recherche Biomédicale des Armées, Clamart, France.,UMR-MD-1197, INSERM, Université Paris 11, Ministère de la défense, Villejuif, France
| |
Collapse
|
41
|
Is There a Relationship Between Bony Fusion After Anterior Cervical Discectomy and Fusion and Heterotopic Ossification After Cervical Disc Arthroplasty in Hybrid Surgery? Spine (Phila Pa 1976) 2020; 45:E1653-E1660. [PMID: 32925690 DOI: 10.1097/brs.0000000000003687] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Retrospective analysis. OBJECTIVE The aim of this study was to investigate the relationship between bony fusion after anterior cervical discectomy and fusion (ACDF) and heterotopic ossification (HO) after cervical disc arthroplasty (CDA) in hybrid surgery (HS). SUMMARY OF BACKGROUND DATA The mechanism of postoperative bone formation still remains unknown. It is considered a risk factor in CDA but is essential for a solid union in ACDF. With HS, we could directly study the mechanism and relationship of different forms of postoperative bone formation. METHODS Clinical data of 91 patients who had undergone consecutive two-level HS between January 2011 and January 2018 and with a minimum of 2-year follow-up was analyzed. HO was assessed based on McAfee's classifications, whereas fusion success was evaluated according the Food and Drug Administration approved criteria. Clinical outcomes and radiographic parameters were collected and used for the relevant comparisons. RESULTS HO was identified in 48.4% of patients (44/91). The fusion rates of patients in the HO group and the non-HO group at 3, 6, and 12 months postoperatively, and the final follow-up were 81.8% and 19.1%, 95.4% and 74.5%, 95.4% and 85.1%, and 97.7% and 93.6%, respectively. The fusion rates were significantly higher at 3 and 6 months after operation in the HO group than in the non-HO group (P < 0.05). Patients in both groups had significant improvements across all clinical outcomes at final follow-up. CONCLUSION There was a significant relationship between bony fusion and occurrence of HO after HS, suggesting that both bony fusion and HO are reflections of individual osteogenic capacity. However, a reliable predictor of postoperative bone formation is needed in the future to guarantee a solid bony fusion after ACDF and to further take full advantage of the motion-preserving from CDA. LEVEL OF EVIDENCE 3.
Collapse
|
42
|
Bahsoun S, Coopman K, Akam EC. Quantitative assessment of the impact of cryopreservation on human bone marrow-derived mesenchymal stem cells: up to 24 h post-thaw and beyond. Stem Cell Res Ther 2020; 11:540. [PMID: 33317625 PMCID: PMC7734731 DOI: 10.1186/s13287-020-02054-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/27/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The effects of cryopreservation on human bone marrow-derived mesenchymal stem cells (hBM-MSCs) are still ill-defined. In this study, a quantitative approach was adopted to measure several post-thaw cell attributes in order to provide an accurate reflection of the freezing and thawing impact. METHODS Fresh and cryopreserved passage-matched cells from three different donors were discretely analysed and compared for their viability, apoptosis level, phenotypic marker expression, metabolic activity, adhesion potential, proliferation rate, colony-forming unit ability (CFUF) and differentiation potentials. RESULTS The results of this study show that cryopreservation reduces cell viability, increases apoptosis level and impairs hBM-MSC metabolic activity and adhesion potential in the first 4 h after thawing. At 24 h post-thaw, cell viability recovered, and apoptosis level dropped but metabolic activity and adhesion potential remained lower than fresh cells. This suggests that a 24-h period is not enough for a full recovery. Beyond 24 h post-thaw, the observed effects are variable for the three cell lines. While no difference is observed in the pre- and post-cryopreservation proliferation rate, cryopreservation reduced the CFUF ability of two of the cell lines and variably affected the adipogenic and osteogenic differentiation potentials of the three cell lines. CONCLUSION The data collected in this study clearly show that fresh and cryopreserved hBM-MSCs are different, and these differences will inevitably introduce variabilities to the product and process development and subsequently imply financial losses. In order to avoid product divergence pre- and post-cryopreservation, effective strategies to mitigate freezing effects must be developed and implemented.
Collapse
Affiliation(s)
- Soukaina Bahsoun
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK.
| | - Karen Coopman
- Centre for Biological Engineering, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| | - Elizabeth C Akam
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| |
Collapse
|
43
|
De Luna A, Otahal A, Nehrer S. Mesenchymal Stromal Cell-Derived Extracellular Vesicles - Silver Linings for Cartilage Regeneration? Front Cell Dev Biol 2020; 8:593386. [PMID: 33363147 PMCID: PMC7758223 DOI: 10.3389/fcell.2020.593386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/19/2020] [Indexed: 01/15/2023] Open
Abstract
As the world's population is aging, the incidence of the degenerative disease Osteoarthritis (OA) is increasing. Current treatment options of OA focus on the alleviation of the symptoms including pain and inflammation rather than on restoration of the articular cartilage. Cell-based therapies including the application of mesenchymal stromal cells (MSCs) have been a promising tool for cartilage regeneration approaches. Due to their immunomodulatory properties, their differentiation potential into cells of the mesodermal lineage as well as the plurality of sources from which they can be isolated, MSCs have been applied in a vast number of studies focusing on the establishment of new treatment options for Osteoarthritis. Despite promising outcomes in vitro and in vivo, applications of MSCs are connected with teratoma formation, limited lifespan of differentiated cells as well as rejection of the cells after transplantation, highlighting the need for new cell free approaches harboring the beneficial properties of MSCs. It has been demonstrated that the regenerative potential of MSCs is mediated by the release of paracrine factors rather than by differentiation into cells of the desired tissue. Besides soluble factors, extracellular vesicles are the major component of a cell's secretome. They represent novel mechanisms by which (pathogenic) signals can be communicated between cell types as they deliver bioactive molecules (nucleic acids, proteins, lipids) from the cell of origin to the target cell leading to specific biological processes upon uptake. This review will give an overview about extracellular vesicles including general characteristics, isolation methods and characterization approaches. Furthermore, the role of MSC-derived extracellular vesicles in in vitro and in vivo studies for cartilage regeneration will be summarized with special focus on transported miRNA which either favored the progression of OA or protected the cartilage from degradation. In addition, studies will be reviewed investigating the impact of MSC-derived extracellular vesicles on inflammatory arthritis. As extracellular vesicles are present in all body fluids, their application as potential biomarkers for OA will also be discussed in this review. Finally, studies exploring the combination of MSC-derived extracellular vesicles with biomaterials for tissue engineering approaches are summarized.
Collapse
Affiliation(s)
- Andrea De Luna
- Center for Regenerative Medicine, Department for Health Sciences, Medicine and Research, Danube University Krems, Krems an der Donau, Austria
| | | | | |
Collapse
|
44
|
Ofiteru AM, Becheru DF, Gharbia S, Balta C, Herman H, Mladin B, Ionita M, Hermenean A, Burns JS. Qualifying Osteogenic Potency Assay Metrics for Human Multipotent Stromal Cells: TGF-β2 a Telling Eligible Biomarker. Cells 2020; 9:E2559. [PMID: 33260388 PMCID: PMC7760953 DOI: 10.3390/cells9122559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/18/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023] Open
Abstract
Potency assays are critical for regenerative medicine, addressing the known challenge of functional heterogeneity among human multipotent stromal cells (hMSC). Necessary laboratory cell expansion allows analysis before implantation in the patient. Levels of induction of five signature gene biomarkers, ALPL, COL1A2, DCN, ELN and RUNX2, constituted a previously reported proof-of-principle osteogenic potency assay. We tested assay modification to enhance reproducibility using six consistent bone marrow derived hBM-MSC and explored applicability to three adipose tissue derived hAT-MSC. Using a potent proprietary osteogenic induction factor, the GUSB/YWAHZ reference gene pair provided real time PCR consistency. The novel assay conditions supported the concept that genes encoding extracellular matrix proteins one week after osteogenic induction were informative. Nonetheless, relatively low induction of COL1A2 and ELN encouraged search for additional biomarkers. TGFB2 mRNA induction, important for osteogenic commitment, was readily quantifiable in both hBM-MSC and hAT-MSC. Combined with DCN, TGFB2 mRNA induction data provided discriminatory power for resolving donor-specific heterogeneity. Histomorphometric decorin and TGF-β2 protein expression patterns in eight-week heterotopic bone implants also discriminated the two non-bone-forming hMSC. We highlight progress towards prompt osteogenic potency assays, needed by current clinical trials to accelerate improved intervention with enhanced stem cell therapy for serious bone fractures.
Collapse
Affiliation(s)
- Augustin M. Ofiteru
- Faculty of Medical Engineering, University Politehnica of Bucharest, Gh Polizu 1-7, 011061 Bucharest, Romania; (D.F.B.); (M.I.)
| | - Diana F. Becheru
- Faculty of Medical Engineering, University Politehnica of Bucharest, Gh Polizu 1-7, 011061 Bucharest, Romania; (D.F.B.); (M.I.)
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gh Polizu 1-7, 011061 Bucharest, Romania
| | - Sami Gharbia
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania; (S.G.); (C.B.); (H.H.); (B.M.); (A.H.)
| | - Cornel Balta
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania; (S.G.); (C.B.); (H.H.); (B.M.); (A.H.)
| | - Hildegard Herman
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania; (S.G.); (C.B.); (H.H.); (B.M.); (A.H.)
| | - Bianca Mladin
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania; (S.G.); (C.B.); (H.H.); (B.M.); (A.H.)
| | - Mariana Ionita
- Faculty of Medical Engineering, University Politehnica of Bucharest, Gh Polizu 1-7, 011061 Bucharest, Romania; (D.F.B.); (M.I.)
| | - Anca Hermenean
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania; (S.G.); (C.B.); (H.H.); (B.M.); (A.H.)
| | - Jorge S. Burns
- Faculty of Medical Engineering, University Politehnica of Bucharest, Gh Polizu 1-7, 011061 Bucharest, Romania; (D.F.B.); (M.I.)
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
45
|
Mohamed-Ahmed S, Yassin MA, Rashad A, Espedal H, Idris SB, Finne-Wistrand A, Mustafa K, Vindenes H, Fristad I. Comparison of bone regenerative capacity of donor-matched human adipose-derived and bone marrow mesenchymal stem cells. Cell Tissue Res 2020; 383:1061-1075. [PMID: 33242173 PMCID: PMC7960590 DOI: 10.1007/s00441-020-03315-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 09/28/2020] [Indexed: 12/22/2022]
Abstract
Adipose-derived stem cells (ASC) have been used as an alternative to bone marrow mesenchymal stem cells (BMSC) for bone tissue engineering. However, the efficacy of ASC in bone regeneration in comparison with BMSC remains debatable, since inconsistent results have been reported. Comparing ASC with BMSC obtained from different individuals might contribute to this inconsistency in results. Therefore, this study aimed to compare the bone regenerative capacity of donor-matched human ASC and BMSC seeded onto poly(l-lactide-co-ε-caprolactone) scaffolds using calvarial bone defects in nude rats. First, donor-matched ASC and BMSC were seeded onto the co-polymer scaffolds to evaluate their in vitro osteogenic differentiation. Seeded scaffolds and scaffolds without cells (control) were then implanted in calvarial defects in nude rats. The expression of osteogenesis-related genes was examined after 4 weeks. Cellular activity was investigated after 4 and 12 weeks. Bone formation was evaluated radiographically and histologically after 4, 12, and 24 weeks. In vitro, ASC and BMSC demonstrated mineralization. However, BMSC showed higher alkaline phosphatase activity than ASC. In vivo, human osteogenesis–related genes Runx2 and collagen type I were expressed in defects with scaffold/cells. Defects with scaffold/BMSC had higher cellular activity than defects with scaffold/ASC. Moreover, bone formation in defects with scaffold/BMSC was greater than in defects with scaffold/ASC, especially at the early time-point. These results suggest that although ASC have the potential to regenerate bone, the rate of bone regeneration with ASC may be slower than with BMSC. Accordingly, BMSC are more suitable for bone regenerative applications.
Collapse
Affiliation(s)
- Samih Mohamed-Ahmed
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway.
| | - Mohammed A Yassin
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Ahmad Rashad
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Heidi Espedal
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Shaza B Idris
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Anna Finne-Wistrand
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Kamal Mustafa
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Hallvard Vindenes
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway.,Department for Plastic, Hand and Reconstructive Surgery, National Fire Damage Center, Bergen, Norway
| | - Inge Fristad
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
46
|
Yang JW, Seo Y, Shin TH, Ahn JS, Oh SJ, Shin YY, Kang MJ, Lee BC, Lee S, Kang KS, Hur J, Kim YS, Kim TY, Kim HS. Extracellular Vesicles from SOD3-Transduced Stem Cells Exhibit Improved Immunomodulatory Abilities in the Murine Dermatitis Model. Antioxidants (Basel) 2020; 9:E1165. [PMID: 33238520 PMCID: PMC7700433 DOI: 10.3390/antiox9111165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/10/2020] [Accepted: 11/19/2020] [Indexed: 12/28/2022] Open
Abstract
The immunoregulatory abilities of mesenchymal stem cells (MSCs) have been investigated in various autoimmune and allergic diseases. However, the therapeutic benefits observed in preclinical settings have not been reproducible in clinical trials. This discrepancy is due to insufficient efficacy of MSCs in harsh microenvironments, as well as batch-dependent variability in potency. Therefore, to achieve more beneficial and uniform outcomes, novel strategies are required to potentiate the therapeutic effect of MSCs. One of simple strategies to augment cellular function is genetic manipulation. Several studies showed that transduction of antioxidant enzyme into cells can increase anti-inflammatory effects. Therefore, we evaluated the immunoregulatory abilities of MSCs introduced with extracellular superoxide dismutase 3 (SOD3) in the present study. SOD3-overexpressed MSCs (SOD3-MSCs) reduced the symptoms of murine model of atopic dermatitis (AD)-like inflammation, as well as the differentiation and activation of various immune cells involved in AD progression. Interestingly, extracellular vesicles (EVs) isolated from SOD3-MSCs delivered SOD3 protein. EVs carrying SOD3 also exerted improved therapeutic efficacy, as observed in their parent cells. These results suggest that MSCs transduced with SOD3, an antioxidant enzyme, as well as EVs isolated from modified cells, might be developed as a promising cell-based therapeutics for inflammatory disorders.
Collapse
Affiliation(s)
- Ji Won Yang
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (J.W.Y.); (J.-S.A.); (S.-J.O.); (Y.Y.S.)
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea; (Y.S.); (M.-J.K.)
| | - Yoojin Seo
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea; (Y.S.); (M.-J.K.)
| | - Tae-Hoon Shin
- Translational Stem Cell Biology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (T.-H.S.); (B.-C.L.)
| | - Ji-Su Ahn
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (J.W.Y.); (J.-S.A.); (S.-J.O.); (Y.Y.S.)
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea; (Y.S.); (M.-J.K.)
| | - Su-Jeong Oh
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (J.W.Y.); (J.-S.A.); (S.-J.O.); (Y.Y.S.)
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea; (Y.S.); (M.-J.K.)
| | - Ye Young Shin
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (J.W.Y.); (J.-S.A.); (S.-J.O.); (Y.Y.S.)
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea; (Y.S.); (M.-J.K.)
| | - Min-Jung Kang
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea; (Y.S.); (M.-J.K.)
| | - Byung-Chul Lee
- Translational Stem Cell Biology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (T.-H.S.); (B.-C.L.)
| | - Seunghee Lee
- Institute for Stem Cell and Regenerative Medicine in Kangstem Biotech, Biomedical Science Building, Seoul National University, Seoul 08826, Korea; (S.L.); (K.-S.K.)
| | - Kyung-Sun Kang
- Institute for Stem Cell and Regenerative Medicine in Kangstem Biotech, Biomedical Science Building, Seoul National University, Seoul 08826, Korea; (S.L.); (K.-S.K.)
- Adult Stem Cell Research Center and Research, Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Jin Hur
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan 50612, Korea;
| | - Yeon-Soo Kim
- Graduate School of New Drug Discovery & Development, Chungnam National University, Daejeon 34134, Korea;
| | - Tae-Yoon Kim
- Department of Dermatology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Hyung-Sik Kim
- Department of Life Science in Dentistry, School of Dentistry, Pusan National University, Yangsan 50612, Korea; (J.W.Y.); (J.-S.A.); (S.-J.O.); (Y.Y.S.)
- Dental and Life Science Institute, Pusan National University, Yangsan 50612, Korea; (Y.S.); (M.-J.K.)
| |
Collapse
|
47
|
Vasilevich AS, Vermeulen S, Kamphuis M, Roumans N, Eroumé S, Hebels DGAJ, van de Peppel J, Reihs R, Beijer NRM, Carlier A, Carpenter AE, Singh S, de Boer J. On the correlation between material-induced cell shape and phenotypical response of human mesenchymal stem cells. Sci Rep 2020; 10:18988. [PMID: 33149200 PMCID: PMC7642380 DOI: 10.1038/s41598-020-76019-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/13/2020] [Indexed: 12/21/2022] Open
Abstract
Learning rules by which cell shape impacts cell function would enable control of cell physiology and fate in medical applications, particularly, on the interface of cells and material of the implants. We defined the phenotypic response of human bone marrow-derived mesenchymal stem cells (hMSCs) to 2176 randomly generated surface topographies by probing basic functions such as migration, proliferation, protein synthesis, apoptosis, and differentiation using quantitative image analysis. Clustering the surfaces into 28 archetypical cell shapes, we found a very strict correlation between cell shape and physiological response and selected seven cell shapes to describe the molecular mechanism leading to phenotypic diversity. Transcriptomics analysis revealed a tight link between cell shape, molecular signatures, and phenotype. For instance, proliferation is strongly reduced in cells with limited spreading, resulting in down-regulation of genes involved in the G2/M cycle and subsequent quiescence, whereas cells with large filopodia are related to activation of early response genes and inhibition of the osteogenic process. In this paper we were aiming to identify a universal set of genes that regulate the material-induced phenotypical response of human mesenchymal stem cells. This will allow designing implants that can actively regulate cellular, molecular signalling through cell shape. Here we are proposing an approach to tackle this question.
Collapse
Affiliation(s)
- Aliaksei S Vasilevich
- BIS-Biointerface Science in Regenerative Medicine, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Steven Vermeulen
- BIS-Biointerface Science in Regenerative Medicine, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Marloes Kamphuis
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Nadia Roumans
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Said Eroumé
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Dennie G A J Hebels
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Jeroen van de Peppel
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Rika Reihs
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Nick R M Beijer
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Aurélie Carlier
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Anne E Carpenter
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Shantanu Singh
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jan de Boer
- BIS-Biointerface Science in Regenerative Medicine, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
48
|
Kumar A, Ghosh Kadamb A, Ghosh Kadamb K. Mesenchymal or Maintenance Stem Cell & Understanding Their Role in Osteoarthritis of the Knee Joint: A Review Article. THE ARCHIVES OF BONE AND JOINT SURGERY 2020; 8:560-569. [PMID: 33088856 DOI: 10.22038/abjs.2020.42536.2155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mesenchymal Stem Cell (MSC) therapy in osteoarthritis has been hailed as a promising treatment for osteoarthritis due to their unlimited potential of healing and regeneration. Existing literature regarding their proper name, optimal sources, mechanisms of action, dosage, and route of administration, efficacy, and safety is debatable. This index review article has tried to connect these puzzling pieces of available information and brought clarity on some of these crucial issues. The author believes that Maintenance Stem Cells (MSC) may be a more suitable term than mesenchymal stem cell or medicinal signaling cells as their origin might not be limited to mesodermal tissue. Also, they have been shown capable of self-renewal, differentiation, and maintaining a cascade of healing & possibly regeneration at the implanted site. Only a small percentage of implanted MSC survive and rest undergo apoptosis after releasing growth factors, cytokines, and extracellular vesicles. These surviving MSC become active due to conformational changes induced by anti-environment stimuli and undergo limited self-renewal, proliferation, and differentiation, but only a few of them might incorporate into the host tissues. These cells generate & maintain a momentum of series of regenerative activities to improve the function of joint, stabilize or possibly enhance the cartilage quality. More randomized studies with long term follow-up are required to bring clarity on their ideal source, expansion, culture technique, optimum dosage, and route of administration and long-term safety issues.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Orthopaedics, Saudi German Hospital, Dubai, UAE
| | | | | |
Collapse
|
49
|
Zhang C, Wang J, Xie Y, Wang L, Yang L, Yu J, Miyamoto A, Sun F. Development of FGF-2-loaded electrospun waterborne polyurethane fibrous membranes for bone regeneration. Regen Biomater 2020; 8:rbaa046. [PMID: 33732492 PMCID: PMC7947599 DOI: 10.1093/rb/rbaa046] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/06/2020] [Accepted: 09/11/2020] [Indexed: 12/24/2022] Open
Abstract
Guided bone regeneration (GBR) membrane has been used to improve functional outcomes for periodontal regeneration. However, few studies have focused on the biomimetic membrane mimicking the vascularization of the periodontal membrane. This study aimed to fabricate waterborne polyurethane (WPU) fibrous membranes loaded fibroblast growth factor-2 (FGF-2) via emulsion electrospinning, which can promote regeneration of periodontal tissue via the vascularization of the biomimetic GBR membrane. A biodegradable WPU was synthesized by using lysine and dimethylpropionic acid as chain extenders according to the rule of green chemical synthesis technology. The WPU fibers with FGF-2 was fabricated via emulsion electrospinning. The results confirmed that controlled properties of the fibrous membrane had been achieved with controlled degradation, suitable mechanical properties and sustained release of the factor. The immunohistochemical expression of angiogenic-related factors was positive, meaning that FGF-2 loaded in fibers can significantly promote cell vascularization. The fiber scaffold loaded FGF-2 has the potential to be used as a functional GBR membrane to promote the formation of extraosseous blood vessels during periodontal repairing.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, P.R. China
| | - Jianxiong Wang
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, P.R. China
| | - Yujie Xie
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, P.R. China
| | - Li Wang
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, P.R. China
| | - Lishi Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, P.R. China
| | - Jihua Yu
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, P.R. China
| | - Akira Miyamoto
- Faculty of Rehabilitation, Department of Physical Therapy, Kobe International University, Kobe, Japan
| | - Fuhua Sun
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, P.R. China
- Correspondence address. Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Taiping Street 25, Luzhou 646000, P.R. China. Tel.: +81-18428397607; E-mail:
| |
Collapse
|
50
|
Lee J, Cha H, Park TH, Park JH. Enhanced osteogenic differentiation of human mesenchymal stem cells by direct delivery of Cbfβ protein. Biotechnol Bioeng 2020; 117:2897-2910. [PMID: 32510167 DOI: 10.1002/bit.27453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/25/2020] [Accepted: 06/04/2020] [Indexed: 12/20/2022]
Abstract
Core binding factor β (Cbfβ) is a non-DNA binding cofactor of Runx2 that potentiates DNA binding. Previously, it has been reported that Cbfβ plays an essential role in osteogenic differentiation and skeletal development by inhibition adipogenesis. Here, we delivered the recombinant Cbfβ protein into human mesenchymal stem cells (MSCs) and triggered osteogenic lineage commitment. The efficient delivery of Cbfβ was achieved by fusing 30Kc19 protein, which is a cell-penetrating protein derived from the silkworm. After the production of the recombinant Cbfβ-30Kc19 protein in the Escherichia coli expression system, and confirmation of its intracellular delivery, MSCs were treated with the Cbfβ-30Kc19 once or twice up to 300 µg/ml. By investigating the upregulation of osteoblast-specific genes and phenotypical changes, such as calcium mineralization, we demonstrated that Cbfβ-30Kc19 efficiently induced osteogenic differentiation in MSCs. At the same time, Cbfβ-30Kc19 suppressed adipocyte formation and downregulated the expression of adipocyte-specific genes. Our results demonstrate that the intracellularly delivered Cbfβ-30Kc19 enhances osteogenesis in MSCs, whereas it suppresses adipogenesis by altering the transcriptional regulatory network involved in osteoblast-adipocyte lineage commitment. Cbfβ-30Kc19 holds great potential for the treatment of bone-related diseases, such as osteoporosis, by allowing transcriptional regulation in MSCs, and overcoming the limitations of current therapies.
Collapse
Affiliation(s)
- Jaeyoung Lee
- Department of Medical Biomaterials Engineering, Kangwon National University, Chuncheon-si, Gangwon-do, Republic of Korea
| | - Hyeonjin Cha
- Department of Medical Biomaterials Engineering, Kangwon National University, Chuncheon-si, Gangwon-do, Republic of Korea
| | - Tai Hyun Park
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
| | - Ju Hyun Park
- Department of Medical Biomaterials Engineering, Kangwon National University, Chuncheon-si, Gangwon-do, Republic of Korea
| |
Collapse
|