1
|
Bergman M, Manco M, Satman I, Chan J, Schmidt MI, Sesti G, Vanessa Fiorentino T, Abdul-Ghani M, Jagannathan R, Kumar Thyparambil Aravindakshan P, Gabriel R, Mohan V, Buysschaert M, Bennakhi A, Pascal Kengne A, Dorcely B, Nilsson PM, Tuomi T, Battelino T, Hussain A, Ceriello A, Tuomilehto J. International Diabetes Federation Position Statement on the 1-hour post-load plasma glucose for the diagnosis of intermediate hyperglycaemia and type 2 diabetes. Diabetes Res Clin Pract 2024; 209:111589. [PMID: 38458916 DOI: 10.1016/j.diabres.2024.111589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Many individuals with intermediate hyperglycaemia (IH), including impaired fasting glycaemia (IFG) and impaired glucose tolerance (IGT), as presently defined, will progress to type 2 diabetes (T2D). There is confirmatory evidence that T2D can be prevented by lifestyle modification and/or medications, in people with IGT diagnosed by 2-h plasma glucose (PG) during a 75-gram oral glucose tolerance test (OGTT). Over the last 40 years, a wealth of epidemiological data has confirmed the superior value of 1-h plasma glucose (PG) over fasting PG (FPG), glycated haemoglobin (HbA1c) and 2-h PG in populations of different ethnicity, sex and age in predicting diabetes and associated complications including death. Given the relentlessly rising prevalence of diabetes, a more sensitive, practical method is needed to detect people with IH and T2D for early prevention or treatment in the often lengthy trajectory to T2D and its complications. The International Diabetes Federation (IDF) Position Statement reviews findings that the 1-h post-load PG ≥ 155 mg/dL (8.6 mmol/L) in people with normal glucose tolerance (NGT) during an OGTT is highly predictive for detecting progression to T2D, micro- and macrovascular complications, obstructive sleep apnoea, cystic fibrosis-related diabetes mellitus, metabolic dysfunction-associated steatotic liver disease, and mortality in individuals with risk factors. The 1-h PG of 209 mg/dL (11.6 mmol/L) is also diagnostic of T2D. Importantly, the 1-h PG cut points for diagnosing IH and T2D can be detected earlier than the recommended 2-h PG thresholds. Taken together, the 1-h PG provides an opportunity to avoid misclassification of glycaemic status if FPG or HbA1c alone are used. The 1-h PG also allows early detection of high-risk people for intervention to prevent progression to T2D which will benefit the sizeable and growing population of individuals at increased risk of T2D. Using a 1-h OGTT, subsequent to screening with a non-laboratory diabetes risk tool, and intervening early will favourably impact the global diabetes epidemic. Health services should consider developing a policy for screening for IH based on local human and technical resources. People with a 1-h PG ≥ 155 mg/dL (8.6 mmol/L) are considered to have IH and should be prescribed lifestyle intervention and referred to a diabetes prevention program. People with a 1-h PG ≥ 209 mg/dL (11.6 mmol/L) are considered to have T2D and should have a repeat test to confirm the diagnosis of T2D and then referred for further evaluation and treatment. The substantive data presented in the Position Statement provides strong evidence for redefining current diagnostic criteria for IH and T2D by adding the 1-h PG.
Collapse
Affiliation(s)
- Michael Bergman
- NYU Grossman School of Medicine, Departments of Medicine and of Population Health, Division of Endocrinology, Diabetes and Metabolism, VA New York Harbor Healthcare System, New York, NY, USA.
| | - Melania Manco
- Predictive and Preventive Medicine Research Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Ilhan Satman
- Istanbul University Faculty of Medicine, Department of Internal Medicine, Division of Endocrinology and Metabolism, Istanbul, Turkey
| | - Juliana Chan
- The Chinese University of Hong Kong, Faculty of Medicine, Department of Medicine and Therapeutics, Hong Kong Institute of Diabetes and Obesity, Hong Kong, China
| | - Maria Inês Schmidt
- Postgraduate Program in Epidemiology, School of Medicine and Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Giorgio Sesti
- Department of Clinical and Molecular Medicine, University of Rome-Sapienza, 00189 Rome, Italy
| | - Teresa Vanessa Fiorentino
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Muhammad Abdul-Ghani
- Division of Diabetes, University of Texas Health Science Center at San Antonio, San Antonio Texas, USA
| | - Ram Jagannathan
- Hubert Department of Global Health Rollins, School of Public Health, Emory University, Atlanta, GA, USA
| | | | - Rafael Gabriel
- Department of International Health, National School of Public Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Viswanathan Mohan
- Dr. Mohan's Diabetes Specialities Centre and Madras Diabetes Research Foundation, Chennai, India
| | - Martin Buysschaert
- Department of Endocrinology and Diabetology, Université Catholique de Louvain, University, Clinic Saint-Luc, Brussels, Belgium
| | - Abdullah Bennakhi
- Dasman Diabetes Institute Office of Regulatory Affairs, Ethics Review Committee, Kuwait
| | - Andre Pascal Kengne
- South African Medical Research Council, Francie Van Zijl Dr, Parow Valley, Cape Town, 7501, South Africa
| | - Brenda Dorcely
- NYU Grossman School of Medicine, Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, New York, NY, USA
| | - Peter M Nilsson
- Department of Clinical Sciences and Lund University Diabetes Centre, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Tiinamaija Tuomi
- Folkhälsan Research Center, Helsinki, Finland; Abdominal Center, Endocrinology, Helsinki University Central Hospital, Research Program for Diabetes and Obesity, Center of Helsinki, Helsinki, Finland
| | | | - Akhtar Hussain
- Faculty of Health Sciences, Nord University, Bodø, Norway; Faculty of Medicine, Federal University of Ceará (FAMED-UFC), Brazil; International Diabetes Federation (IDF), Brussels, Belgium; Diabetes in Asia Study Group, Post Box: 752, Doha-Qatar; Centre for Global Health Research, Diabetic Association of Bangladesh, Dhaka, Bangladesh
| | | | - Jaakko Tuomilehto
- Department of International Health, National School of Public Health, Instituto de Salud Carlos III, Madrid, Spain; Public Health Promotion Unit, Finnish Institute for Health and Welfare, Helsinki, Finland; Department of Public Health, University of Helsinki, Helsinki, Finland; Saudi Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
2
|
Lin C, Li ZL, Cai XL, Hu SY, Lv F, Yang WJ, Ji LN. Indirect comparison of efficacy and safety of chiglitazar and thiazolidinedione in patients with type 2 diabetes: A meta-analysis. World J Diabetes 2023; 14:1573-1584. [PMID: 37970134 PMCID: PMC10642417 DOI: 10.4239/wjd.v14.i10.1573] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/22/2023] [Accepted: 08/17/2023] [Indexed: 10/09/2023] Open
Abstract
BACKGROUND Chiglitazar is an emerging pan-agonist of all peroxisome proliferator activated receptors (PPAR)-α, δ and γ, and has therapeutic potential for type 2 diabetes (T2D). However, to date, no clinical studies or meta-analyses have compared the efficacy and safety of chiglitazar and traditional PPAR-γ agonist thiazolidinediones (TZDs). A meta-analysis concerning this topic is therefore required. AIM To compare the efficacy and safety of chiglitazar and TZD in patients with T2D. METHODS PubMed, Medline, Embase, the Cochrane Central Register of Controlled Trials, Reference Citation Analysis and Clinicaltrial.gov websites were searched from August 1994 to March 2022. Randomized controlled trials (RCTs) of chiglitazar or TZD vs placebo in patients with T2D were included. Indirect comparisons and sensitivity analyses were implemented to evaluate multiple efficacy and safety endpoints of interest. RESULTS We included 93 RCTs that compared TZD with placebo and one that compared chiglitazar with placebo. For efficacy endpoints, the augmented dose of chig-litazar resulted in greater reductions in hemoglobin (Hb)A1c [weighted mean difference (WMD) = -0.15%, 95% confidence interval (CI): -0.27 to -0.04%], triglycerides (WMD = -0.17 mmol/L, 95%CI: -0.24 to -0.11 mmol/L) and alanine aminotransferase (WMD = -5.25 U/L, 95%CI: -8.50 to -1.99 U/L), and a greater increase in homeostasis model assessment-β (HOMA-β) (WMD = 17.75, 95%CI: 10.73-24.77) when compared with TZD treatment. For safety endpoints, the risks of hypoglycemia, edema, bone fractures, upper respiratory tract infection, urinary tract infection, and weight gain were all comparable between the augmented dose of chiglitazar and TZD. In patients with baseline HbA1c ≥ 8.5%, body mass index ≥ 30 kg/m2 or diabetes duration < 10 years, the HbA1c reduction and HOMA-β increase were more conspicuous for the augmented dose of chiglitazar compared with TZD. CONCLUSION Augmented dose of chiglitazar, a pan-activator of PPARs, may serve as an antidiabetic agent with preferable glycemic and lipid control, better β-cell function preserving capacity, and does not increase the risk of safety concerns when compared with TZD.
Collapse
Affiliation(s)
- Chu Lin
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing 100044, China
| | - Zong-Lin Li
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing 100044, China
| | - Xiao-Ling Cai
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing 100044, China
| | - Sui-Yuan Hu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing 100044, China
| | - Fang Lv
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing 100044, China
| | - Wen-Jia Yang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing 100044, China
| | - Li-Nong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
3
|
Banimfreg BH, Shamayleh A, Alshraideh H, Semreen MH, Soares NC. Untargeted approach to investigating the metabolomics profile of type 2 diabetes emiratis. J Proteomics 2022; 269:104718. [PMID: 36100153 DOI: 10.1016/j.jprot.2022.104718] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/28/2022] [Accepted: 08/20/2022] [Indexed: 12/12/2022]
Abstract
Type 2 Diabetes (T2D) is expected to be the seventh most significant cause of death worldwide by 2030. Although research into its mechanism has received the attention it deserves, our understanding of T2D is still limited. This case-control study employs untargeted metabolomics to explore novel T2D plasma biomarkers in the Emirati population. Ninety-two UAE nationals were included in the cohort, with fifty T2D and forty-two non-T2D profiles. Participants were then stratified into three groups based on metabolic profiles, clinically verified diabetic status, and current HbA1c values: namely controlled diabetics, uncontrolled diabetics and prediabetics, and non-diabetics. The study identified fifteen significant differentially abundant metabolites between the uncontrolled diabetics group and the prediabetics or controlled diabetics group. Interestingly, some metabolites essential for the corticosteroid and thyroid signaling pathways were found to be significantly elevated in poorly controlled T2D, including cortisol, glycocholic acid, bile acids, thyroxine, and the tryptophan metabolite, 5-hydroxyindoleacetic acid. These findings align with those from prior western cohorts and suggest an intriguing linkage between T2D glycemic control and thyroid and adrenal signaling that may provide new diagnostic and prognostic indicators. RESEARCH SIGNIFICANCE: This study investigates the underlooked metabolomic role and correlation with T2D in the UAE population. The report indicates fifteen significant differentially abundant metabolites between on diabetics, uncontrolled diabetics and or controlled diabetics or prediabetics. This panel of metabolites such as thyroxine and corticosteroids should be considered further as potential diagnostic or prognostic biomarkers for T2D in the region.
Collapse
Affiliation(s)
- Bayan Hassan Banimfreg
- College of Engineering, Department of Industrial Engineering, American University of Sharjah, United Arab Emirates
| | - Abdulrahim Shamayleh
- College of Engineering, Department of Industrial Engineering, American University of Sharjah, United Arab Emirates
| | - Hussam Alshraideh
- College of Engineering, Department of Industrial Engineering, American University of Sharjah, United Arab Emirates
| | - Mohammad Harb Semreen
- College of Pharmacy, Department of Medicinal Chemistry, University of Sharjah, United Arab Emirates; Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Nelson C Soares
- College of Pharmacy, Department of Medicinal Chemistry, University of Sharjah, United Arab Emirates; Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.
| |
Collapse
|
4
|
Swislocki AL. Glucose Trajectory: More than Changing Glucose Tolerance with Age? Metab Syndr Relat Disord 2022; 20:313-320. [DOI: 10.1089/met.2021.0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Arthur L.M. Swislocki
- Medical Service, VA Northern California Health Care System (612/111), Martinez, California, USA
- Division of Endocrinology and Metabolism, Department of Internal Medicine, UC Davis School of Medicine, Sacramento, California, USA
| |
Collapse
|
5
|
Suneja S, Gangopadhyay S, Saini V, Dawar R, Kaur C. Emerging Diabetic Novel Biomarkers of the 21st Century. ANNALS OF THE NATIONAL ACADEMY OF MEDICAL SCIENCES (INDIA) 2021. [DOI: 10.1055/s-0041-1726613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AbstractDiabetes is a growing epidemic with estimated prevalence of infected to reach ~592 million by the year 2035. An effective way to approach is to detect the disease at a very early stage to reduce the complications and improve lifestyle management. Although several traditional biomarkers including glucated hemoglobin, glucated albumin, fructosamine, and 1,5-anhydroglucitol have helped in ease of diagnosis, there is lack of sensitivity and specificity and are inaccurate in certain clinical settings. Thus, search for new and effective biomarkers is a continuous process with an aim of accurate and timely diagnosis. Several novel biomarkers have surged in the present century that are helpful in timely detection of the disease condition. Although it is accepted that a single biomarker will have its inherent limitations, combining several markers will help to identify individuals at high risk of developing prediabetes and eventually its progression to frank diabetes. This review describes the novel biomarkers of the 21st century, both in type 1 and type 2 diabetes mellitus, and their present potential for assessing risk stratification due to insulin resistance that will pave the way for improved clinical outcome.
Collapse
Affiliation(s)
- Shilpa Suneja
- Department of Biochemistry, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| | - Sukanya Gangopadhyay
- Department of Biochemistry, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| | - Vandana Saini
- Department of Biochemistry, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| | - Rajni Dawar
- Department of Biochemistry, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| | - Charanjeet Kaur
- Department of Biochemistry, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| |
Collapse
|
6
|
Darmayanti S, Lesmana R, Meiliana A, Abdulah R. Genomics, Proteomics and Metabolomics Approaches for Predicting Diabetic Nephropathy in Type 2 Diabetes Mellitus Patients. Curr Diabetes Rev 2021; 17:e123120189796. [PMID: 33393899 DOI: 10.2174/1573399817666210101105253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND There is a continuous rise in the prevalence of type 2 diabetes mellitus (T2DM) worldwide and most patients are unaware of the presence of this chronic disease at the early stages. T2DM is associated with complications related to long-term damage and failure of multiple organ systems caused by vascular changes associated with glycated end products, oxidative stress, mild inflammation, and neovascularization. Among the most frequent complications of T2DM observed in about 20-40% of T2DM patients is diabetes nephropathy (DN). METHODS A literature search was made in view of highlighting the novel applications of genomics, proteomics and metabolomics, as the new prospective strategy for predicting DN in T2DM patients. RESULTS The complexity of DN requires a comprehensive and unbiased approach to investigate the main causes of disease and identify the most important mechanisms underlying its development. With the help of evolving throughput technology, rapidly evolving information can now be applied to clinical practice. DISCUSSION DN is also the leading cause of end-stage renal disease and comorbidity independent of T2DM. In terms of the comorbidity level, DN has many phenotypes; therefore, timely diagnosis is required to prevent these complications. Currently, urine albumin-to-creatinine ratio and estimated glomerular filtration rate (eGFR) are gold standards for assessing glomerular damage and changes in renal function. However, GFR estimation based on creatinine is limited to hyperfiltration status; therefore, this makes albuminuria and eGFR indicators less reliable for early-stage diagnosis of DN. CONCLUSION The combination of genomics, proteomics, and metabolomics assays as suitable biological systems can provide new and deeper insights into the pathogenesis of diabetes, as well as discover prospects for developing suitable and targeted interventions.
Collapse
Affiliation(s)
- Siska Darmayanti
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Ronny Lesmana
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Anna Meiliana
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Rizky Abdulah
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| |
Collapse
|
7
|
Bergman M, Jagannathan R, Sesti G. The contribution of unrecognized factors to the diabetes epidemic. Diabetes Metab Res Rev 2020; 36:e3315. [PMID: 32223051 DOI: 10.1002/dmrr.3315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/03/2020] [Accepted: 03/13/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Michael Bergman
- NYU School of Medicine, NYU Diabetes Prevention Program, Endocrinology, Diabetes, Metabolism, VA New York Harbor Healthcare System, New York, New York, USA
| | | | - Giorgio Sesti
- Department of Clinical and Molecular Medicine, University of Rome Sapienza, Rome, Italy
| |
Collapse
|
8
|
Mengen E, Uçaktürk SA. Evaluation of the relationship between the one-hour plasma glucose concentration and beta-cell functions and cardiometabolic parameters during oral glucose tolerance test in obese children and adolescents. J Pediatr Endocrinol Metab 2020; 33:767-775. [PMID: 32447335 DOI: 10.1515/jpem-2020-0016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/19/2020] [Indexed: 11/15/2022]
Abstract
Background In this study, we aimed to evaluate the relationship between the 1-h plasma glucose (PG) level in the oral glucose tolerance test (OGTT) and conventional glycemic parameters, indices evaluating beta-cell functions, and cardiometabolic risk factors. Methods The records of 532 obese patients who were followed up in the Pediatric Endocrinology Polyclinic and who underwent standard OGTT were evaluated retrospectively. All patients were divided into two groups according to OGTT data as the 1-h plasma glucose concentration <155 mg/dL (n=329) and ≥155 mg/dL (n=203). Patients with normal glucose tolerance (NGT) were divided into two groups according to the 1-h PG level, as 218 patients with NGT 1 h-low (<155 mg/dL) and 53 patients with high NGT 1 h-high (≥155 mg/dL). Results There was a statistically significant difference between the lipid profiles of individuals with NGT 1 h-low (<155 mg/dL) and individuals with NGT 1 h-high (≥155 mg/dL) (p<0.001). Total cholesterol, LDL cholesterol, and triglyceride levels were higher, while HDL cholesterol levels were lower in individuals with NGT 1 h-high (≥155 mg/dL). The indices evaluating beta-cell functions were significantly higher in individuals with NGT 1 h-low (<155 mg/dL). Conclusion As a result, a plasma glucose concentration above or equal to 155 mg/dL at 1 h during an OGTT is associated with a worse clinical phenotype characterized by changes in insulin sensitivity and β-cell function. Therefore, this threshold value can predict the progression of prediabetes in obese young people with NGT.
Collapse
Affiliation(s)
- Eda Mengen
- Department of Pediatric Endocrinology, Ankara City Hospital, Children's Hospital, Ankara, Turkey
| | - Seyit Ahmet Uçaktürk
- Department of Pediatric Endocrinology, Ankara City Hospital, Children's Hospital, Ankara, Turkey
| |
Collapse
|
9
|
Bergman M, Manco M, Sesti G, Dankner R, Pareek M, Jagannathan R, Chetrit A, Abdul-Ghani M, Buysschaert M, Olsen MH, Nilsson PM, Medina JL, Roth J, Groop L, Del Prato S, Raz I, Ceriello A. Petition to replace current OGTT criteria for diagnosing prediabetes with the 1-hour post-load plasma glucose ≥ 155 mg/dl (8.6 mmol/L). Diabetes Res Clin Pract 2018; 146:18-33. [PMID: 30273707 DOI: 10.1016/j.diabres.2018.09.017] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 02/08/2023]
Abstract
Many individuals with prediabetes, as presently defined, will progress to diabetes (T2D) despite the considerable benefit of lifestyle modification. Therefore, it is paramount to screen individuals at increased risk with a more sensitive method capable of identifying prediabetes at an even earlier time point in the lengthy trajectory to T2D. This petition reviews findings demonstrating that the 1-hour (1-h) postload plasma glucose (PG) ≥ 155 mg/dl (8.6 mmol/L) in those with normal glucose tolerance (NGT) during an oral glucose tolerance test (OGTT) is highly predictive for detecting progression to T2D, micro- and macrovascular complications and mortality in individuals at increased risk. Furthermore, the STOP DIABETES Study documented effective interventions that reduce the future risk of T2D in those with NGT and a 1-h PG ≥ 155 mg/dl (8·6 mmol/L). The 1-h OGTT represents a valuable opportunity to extend the proven benefit of diabetes prevention to the sizeable and growing population of individuals at increased risk of progression to T2D. The substantial evidence provided in this petition strongly supports redefining current diagnostic criteria for prediabetes with the elevated 1-h PG level. The authors therefore advocate a 1-h OGTT to detect prediabetes and hence, thwart the global diabetes epidemic.
Collapse
Affiliation(s)
- Michael Bergman
- NYU School of Medicine, Department of Medicine and of Population Health, Division of Endocrinology and Metabolism, NYU Langone Diabetes Prevention Program, New York, NY, USA.
| | - Melania Manco
- Research Unit for Multifactorial Diseases and Complex Phenotypes, Bambino Gesù Children Hospital, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), Rome, Italy
| | - Giorgio Sesti
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Rachel Dankner
- The Feinstein Institute for Medical Research, Manhasset, North Shore, NY, USA; Unit for Cardiovascular Epidemiology, The Gertner Institute for Epidemiology and Health Policy Research, Sheba Medical Center, Tel Hashomer, Israel; Sackler Faculty of Medicine, School of Public Health, Department of Epidemiology and Preventive Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | - Manan Pareek
- Centre for Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital, University of Southern Denmark, Denmark; Cardiology Section, Department of Internal Medicine, Holbaek Hospital, Holbaek, Denmark
| | - Ram Jagannathan
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, 18, Atlanta, GA, USA
| | - Angela Chetrit
- Unit for Cardiovascular Epidemiology, The Gertner Institute for Epidemiology and Health Policy Research, Sheba Medical Center, Tel Hashomer, Israel
| | - Muhammad Abdul-Ghani
- Division of Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Martin Buysschaert
- Department of Endocrinology and Diabetology, Université Catholique de Louvain, University, Clinic Saint-Luc, Brussels, Belgium
| | - Michael H Olsen
- Centre for Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital, University of Southern Denmark, Denmark; Cardiology Section, Department of Internal Medicine, Holbaek Hospital, Holbaek, Denmark
| | - Peter M Nilsson
- Department of Clinical Sciences and Lund University Diabetes Centre, Lund University, Skåne University Hospital, Malmö, Sweden
| | | | - Jesse Roth
- The Feinstein Institute for Medical Research, Manhasset, North Shore, NY, USA
| | - Leif Groop
- Lund University, Lund University Diabetes Centre, Malmö, Sweden
| | - Stefano Del Prato
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Itamar Raz
- Diabetes Unit at Hadassah University Hospital, Hadassah Center for the Prevention of Diabetes, Diabetes Clinical Research Center, Jerusalem, Israel
| | - Antonio Ceriello
- Institut d'Investigacions Biomèdiques August Pi I Sunyer and Centro de Investigación Biomedica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain; Department of Cardiovascular and Metabolic Diseases, Istituto Ricerca Cura Carattere Scientifico Multimedica, Sesto, San Giovanni, MI, Italy
| |
Collapse
|
10
|
Bergman M, Jagannathan R, Buysschaert M, Pareek M, Olsen MH, Nilsson PM, Medina JL, Roth J, Chetrit A, Groop L, Dankner R. Lessons learned from the 1-hour post-load glucose level during OGTT: Current screening recommendations for dysglycaemia should be revised. Diabetes Metab Res Rev 2018; 34:e2992. [PMID: 29460410 DOI: 10.1002/dmrr.2992] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/14/2018] [Accepted: 02/02/2018] [Indexed: 02/06/2023]
Abstract
This perspective covers a novel area of research describing the inadequacies of current approaches for diagnosing dysglycaemia and proposes that the 1-hour post-load glucose level during the 75-g oral glucose tolerance test may serve as a novel biomarker to detect dysglycaemia earlier than currently recommended screening criteria for glucose disorders. Considerable evidence suggests that a 1-hour post-load plasma glucose value ≥155 mg/dl (8.6 mmol/L) may identify individuals with reduced β-cell function prior to progressing to prediabetes and diabetes and is highly predictive of those likely to progress to diabetes more than the HbA1c or 2-hour post-load glucose values. An elevated 1-hour post-load glucose level was a better predictor of type 2 diabetes than isolated 2-hour post-load levels in Indian, Japanese, and Israeli and Nordic populations. Furthermore, epidemiological studies have shown that a 1-hour PG ≥155 mg/dl (8.6 mmol/L) predicted progression to diabetes as well as increased risk for microvascular disease and mortality when the 2-hour level was <140 mg/dl (7.8 mmol/L). The risk of myocardial infarction or fatal ischemic heart disease was also greater among subjects with elevated 1-hour glucose levels as were risks of retinopathy and peripheral vascular complications in a Swedish cohort. The authors believe that the considerable evidence base supports redefining current screening and diagnostic recommendations with the 1-hour post-load level. Measurement of the 1-hour PG level would increase the likelihood of identifying a larger, high-risk group with the additional practical advantage of potentially replacing the conventional 2-hour oral glucose tolerance test making it more acceptable in a clinical setting.
Collapse
Affiliation(s)
- Michael Bergman
- Division of Endocrinology and Metabolism, Department of Medicine and of Population Health, School of Medicine, NYU Langone Diabetes Prevention Program, New York, NY, USA
| | - Ram Jagannathan
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Martin Buysschaert
- Department of Endocrinology and Diabetology, Université Catholique de Louvain, University Clinic Saint-Luc, Brussels, Belgium
| | - Manan Pareek
- Centre for Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital, University of Southern Denmark, Odense, Denmark
- Cardiology Section, Department of Internal Medicine, Holbaek Hospital, Holbaek, Denmark
| | - Michael H Olsen
- Centre for Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital, University of Southern Denmark, Odense, Denmark
- Cardiology Section, Department of Internal Medicine, Holbaek Hospital, Holbaek, Denmark
| | - Peter M Nilsson
- Department of Clinical Sciences and Lund University Diabetes Centre, Lund University, Skåne University Hospital, Malmö, Sweden
| | | | - Jesse Roth
- The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Angela Chetrit
- Unit for Cardiovascular Epidemiology, The Gertner Institute for Epidemiology and Health Policy Research, Sheba Medical Center, Tel Hashomer, Israel
| | - Leif Groop
- Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Rachel Dankner
- The Feinstein Institute for Medical Research, Manhasset, NY, USA
- Unit for Cardiovascular Epidemiology, The Gertner Institute for Epidemiology and Health Policy Research, Sheba Medical Center, Tel Hashomer, Israel
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
11
|
Bergman M, Jagannathan R, Buysschaert M, Medina JL, Sevick MA, Katz K, Dorcely B, Roth J, Chetrit A, Dankner R. Reducing the prevalence of dysglycemia: is the time ripe to test the effectiveness of intervention in high-risk individuals with elevated 1 h post-load glucose levels? Endocrine 2017; 55:697-701. [PMID: 28124259 DOI: 10.1007/s12020-017-1236-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/17/2017] [Indexed: 02/07/2023]
Abstract
Identifying the earliest time point on the prediabetic continuum is critical to avoid progressive deterioration in β-cell function. Progressively rising glucose levels even within the "normal range" occur considerably late in the evolution to diabetes thus presenting an important opportunity for earlier diagnosis, treatment, and possible reversal. An elevated 1 h postprandial glucose level, not detected by current diagnostic standards, may provide an opportunity for the early identification of those at risk. When the 1 h post-load glucose level is elevated, lifestyle intervention may have the greatest benefit for preserving β-cell function and prevent further progression to prediabetes and diabetes. In view of the considerable consistent epidemiologic data in large disparate populations supporting the predictive capacity of the1 h post-load value for predicting progression to diabetes and mortality, the time is therefore ripe to evaluate this hypothesis in a large, prospective multicenter randomized trial with lifestyle intervention.
Collapse
Affiliation(s)
- Michael Bergman
- NYU School of Medicine, Department of Medicine, Division of Endocrinology and Metabolism, NYU Langone Diabetes Prevention Program, New York, NY, 10016, USA.
| | - Ram Jagannathan
- NYU School of Medicine, Department of Population Health, Division of Health Behavior Change, New York, NY, 10016, USA
| | - Martin Buysschaert
- Department of Endocrinology and Diabetology, Université Catholique de Louvain, University Clinic Saint-Luc, Brussels, Belgium
| | | | - Mary Ann Sevick
- NYU School of Medicine, Department of Population Health, Division of Health Behavior Change, New York, NY, 10016, USA
| | - Karin Katz
- NYU School of Medicine, Department of Medicine, Division of Endocrinology and Metabolism, NYU Langone Diabetes Prevention Program, New York, NY, 10016, USA
| | - Brenda Dorcely
- NYU School of Medicine, Department of Medicine, Division of Endocrinology and Metabolism, NYU Langone Diabetes Prevention Program, New York, NY, 10016, USA
| | - Jesse Roth
- The Feinstein Institute for Medical Research, Manhasset, North Shore, New York, 11030, USA
| | - Angela Chetrit
- Unit for Cardiovascular Epidemiology, The Gertner Institute for Epidemiology and Health Policy Research, Sheba Medical Center, Tel Hashomer, 52621, Israel
| | - Rachel Dankner
- The Feinstein Institute for Medical Research, Manhasset, North Shore, New York, 11030, USA
- Unit for Cardiovascular Epidemiology, The Gertner Institute for Epidemiology and Health Policy Research, Sheba Medical Center, Tel Hashomer, 52621, Israel
- Sackler Faculty of Medicine, School of Public Health, Department of Epidemiology and Preventive Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
| |
Collapse
|
12
|
Dorcely B, Katz K, Jagannathan R, Chiang SS, Oluwadare B, Goldberg IJ, Bergman M. Novel biomarkers for prediabetes, diabetes, and associated complications. Diabetes Metab Syndr Obes 2017; 10:345-361. [PMID: 28860833 PMCID: PMC5565252 DOI: 10.2147/dmso.s100074] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The number of individuals with prediabetes is expected to grow substantially and estimated to globally affect 482 million people by 2040. Therefore, effective methods for diagnosing prediabetes will be required to reduce the risk of progressing to diabetes and its complications. The current biomarkers, glycated hemoglobin (HbA1c), fructosamine, and glycated albumin have limitations including moderate sensitivity and specificity and are inaccurate in certain clinical conditions. Therefore, identification of additional biomarkers is being explored recognizing that any single biomarker will also likely have inherent limitations. Therefore, combining several biomarkers may more precisely identify those at high risk for developing prediabetes and subsequent progression to diabetes. This review describes recently identified biomarkers and their potential utility for addressing the burgeoning epidemic of dysglycemic disorders.
Collapse
Affiliation(s)
- Brenda Dorcely
- New York University School of Medicine, Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, NYU Langone Medical Center, New York, NY
| | - Karin Katz
- New York University School of Medicine, Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, NYU Langone Medical Center, New York, NY
| | - Ram Jagannathan
- Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Stephanie S Chiang
- New York University School of Medicine, Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, NYU Langone Medical Center, New York, NY
| | - Babajide Oluwadare
- New York University School of Medicine, Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, NYU Langone Medical Center, New York, NY
| | - Ira J Goldberg
- New York University School of Medicine, Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, NYU Langone Medical Center, New York, NY
| | - Michael Bergman
- New York University School of Medicine, Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, NYU Langone Medical Center, New York, NY
- Correspondence: Michael Bergman, New York University School of Medicine, Division of Endocrinology, Diabetes and Metabolism, NYU Langone Medical Center, 550 1st Avenue, Suite 5E, New York, NY 10016, USA, Tel +1 212 481 1350, Fax +1 212 481 1355, Email
| |
Collapse
|
13
|
Jagannathan R, Sevick MA, Fink D, Dankner R, Chetrit A, Roth J, Buysschaert M, Bergman M. The 1-hour post-load glucose level is more effective than HbA1c for screening dysglycemia. Acta Diabetol 2016; 53:543-50. [PMID: 26794497 DOI: 10.1007/s00592-015-0829-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/11/2015] [Indexed: 12/12/2022]
Abstract
AIM To assess the performance of HbA1c and the 1-h plasma glucose (PG ≥ 155 mg/dl; 8.6 mmol/l) in identifying dysglycemia based on the oral glucose tolerance test (OGTT) from a real-world clinical care setting. METHODS This was a diagnostic test accuracy study. For this analysis, we tested the HbA1c diagnostic criteria advocated by the American Diabetes Association (ADA 5.7-6.4 %) and International Expert Committee (IEC 6.0-6.4 %) against conventional OGTT criteria. We also tested the utility of 1-h PG ≥ mg/dl; 8.6 mmol/l. Prediabetes was defined according to ADA-OGTT guidelines. Spearman correlation tests were used to determine the relationships between HbA1c, 1-h PG with fasting, 2-h PG and indices of insulin sensitivity and β-cell function. The levels of agreement between diagnostic methods were ascertained using Cohen's kappa coefficient (Κ). Receiver operating characteristic (ROC) curve was used to analyze the performance of the HbA1c and 1-h PG test in identifying prediabetes considering OGTT as reference diagnostic criteria. The diagnostic properties of different HbA1c thresholds were contrasted by determining sensitivity, specificity and likelihood ratios (LR). RESULTS Of the 212 high-risk individuals, 70 (33 %) were identified with prediabetes, and 1-h PG showed a stronger association with 2-h PG, insulin sensitivity index, and β-cell function than HbA1c (P < 0.05). Furthermore, the level of agreement between 1-h PG ≥ 155 mg/dl (8.6 mmol/l) and the OGTT (Κ[95 % CI]: 0.40[0.28-0.53]) diagnostic test was stronger than that of ADA-HbA1c criteria 0.1[0.03-0.16] and IEC criteria (0.17[0.04-0.30]). The ROC (AUC[95 % CI]) for HbA1c and 1-h PG were 0.65[0.57-0.73] and 0.79[0.72-0.85], respectively. Importantly, 1-h PG ≥ 155 mg/dl (8.6 mmol/l) showed good sensitivity (74.3 % [62.4-84.0]) and specificity 69.7 % [61.5-77.1]) with a LR of 2.45. The ability of 1-h PG to discriminate prediabetes was better than that of HbA1c (∆AUC: -0.14; Z value: 2.5683; P = 0.01022). CONCLUSION In a real-world clinical practice setting, the 1-h PG ≥ 155 mg/dl (8.6 mmol/l) is superior for detecting high-risk individuals compared with HbA1c. Furthermore, HbA1c is a less precise correlate of insulin sensitivity and β-cell function than the 1-h PG and correlates poorly with the 2-h PG during the OGTT.
Collapse
Affiliation(s)
- Ram Jagannathan
- NYU School of Medicine, Department of Population Health, Center for Healthful Behavior Change, New York, NY, USA
| | - Mary Ann Sevick
- NYU School of Medicine, Department of Population Health, Center for Healthful Behavior Change, New York, NY, USA
| | - Dorothy Fink
- NYU School of Medicine, Department of Medicine, Division of Endocrinology and Metabolism, NYU Langone Diabetes Prevention Program, 530 First Avenue, Schwartz East, Suite 5E, New York, NY, 10016, USA
| | - Rachel Dankner
- Unit for Cardiovascular Epidemiology, The Gertner Institute for Epidemiology and Health Policy Research, Sheba Medical Center, Tel Hashomer, 52621, Israel
- The Feinstein Institute for Medical Research, Manhasset, North Shore, NY, 11030, USA
- Sackler Faculty of Medicine, School of Public Health, Department of Epidemiology and Preventive Medicine, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Angela Chetrit
- Unit for Cardiovascular Epidemiology, The Gertner Institute for Epidemiology and Health Policy Research, Sheba Medical Center, Tel Hashomer, 52621, Israel
| | - Jesse Roth
- The Feinstein Institute for Medical Research, Manhasset, North Shore, NY, 11030, USA
| | - Martin Buysschaert
- Service d'Endocrinologie et Nutrition Cliniques Universitaires St-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Michael Bergman
- NYU School of Medicine, Department of Medicine, Division of Endocrinology and Metabolism, NYU Langone Diabetes Prevention Program, 530 First Avenue, Schwartz East, Suite 5E, New York, NY, 10016, USA.
| |
Collapse
|