For: | Turkmen K, Karagoz A, Kucuk A. Sirtuins as novel players in the pathogenesis of diabetes mellitus. World J Diabetes 2014; 5(6): 894-900 [PMID: 25512793 DOI: 10.4239/wjd.v5.i6.894] |
---|---|
URL: | https://www.wjgnet.com/1948-9358/full/v5/i6/894.htm |
Number | Citing Articles |
1 |
Hong Zheng, Jinzi Wu, Zhen Jin, Liang-Jun Yan. Protein Modifications as Manifestations of Hyperglycemic Glucotoxicity in Diabetes and Its Complications. Biochemistry Insights 2016; 9: BCI.S36141 doi: 10.4137/BCI.S36141
|
2 |
Jianhua Liu, Yun Zhang, Min Liu, Feng Shi, Bo Cheng. AG1024, an IGF-1 receptor inhibitor, ameliorates renal injury in rats with diabetic nephropathy via the SOCS/JAK2/STAT pathway. Open Medicine 2023; 18(1) doi: 10.1515/med-2023-0683
|
3 |
Sandip K. Nandi, Rooban B. Nahomi, Peter S. Harris, Cole R. Michel, Kristofer S. Fritz, Ram H. Nagaraj. The absence of SIRT3 and SIRT5 promotes the acetylation of lens proteins and improves the chaperone activity of α-crystallin in mouse lenses. Experimental Eye Research 2019; 182: 1 doi: 10.1016/j.exer.2019.02.024
|
4 |
Aynaz Mihanfar, Mohammad Nouri, Leila Roshangar, Mohammad Hassan Khadem-Ansari. Ameliorative effects of fisetin in letrozole-induced rat model of polycystic ovary syndrome. The Journal of Steroid Biochemistry and Molecular Biology 2021; 213: 105954 doi: 10.1016/j.jsbmb.2021.105954
|
5 |
Mrityunjay Singh, Mitul Srivastava, Sharad R. Wakode, Shailendra Asthana. Elucidation of Structural Determinants Delineates the Residues Playing Key Roles in Differential Dynamics and Selective Inhibition of Sirt1–3. Journal of Chemical Information and Modeling 2021; 61(3): 1105 doi: 10.1021/acs.jcim.0c01193
|
6 |
Ana Arpón, Fermín I. Milagro, Omar Ramos-Lopez, M. Luisa Mansego, José Luis Santos, José-Ignacio Riezu-Boj, J. Alfredo Martínez. Epigenome-wide association study in peripheral white blood cells involving insulin resistance. Scientific Reports 2019; 9(1) doi: 10.1038/s41598-019-38980-2
|
7 |
Marwa Mohammed Ibrahim Mohammed Khalil, Heba E. Kasem, Shaimaa Elsayed Ramadan Genena. Association of Insulin receptor (INR) gene rs2252673 and Sirtuin1 rs7069102 polymorphisms with diabetic nephropathy in patients with type 2 diabetes mellitus. Human Gene 2022; 33: 201078 doi: 10.1016/j.humgen.2022.201078
|
8 |
Xiao-peng Zheng, Qing Nie, Jing Feng, Xiao-yan Fan, Yue-lei Jin, Guang Chen, Ji-wei Du. Kidney-targeted baicalin-lysozyme conjugate ameliorates renal fibrosis in rats with diabetic nephropathy induced by streptozotocin. BMC Nephrology 2020; 21(1) doi: 10.1186/s12882-020-01833-6
|
9 |
Maša Pintarič, Tomaž Langerholc. Probiotic Mechanisms Affecting Glucose Homeostasis: A Scoping Review. Life 2022; 12(8): 1187 doi: 10.3390/life12081187
|
10 |
Raúl A. Salazar-González, Eneida Turiján-Espinoza, David W. Hein, Rosa C. Milán-Segovia, Edith E. Uresti-Rivera, Diana P. Portales-Pérez. Expression and genotype-dependent catalytic activity of N-acetyltransferase 2 (NAT2) in human peripheral blood mononuclear cells and its modulation by Sirtuin 1. Biochemical Pharmacology 2018; 156: 340 doi: 10.1016/j.bcp.2018.08.034
|
11 |
Patricia González, Pedro Lozano, Gaspar Ros, Francisco Solano. Hyperglycemia and Oxidative Stress: An Integral, Updated and Critical Overview of Their Metabolic Interconnections. International Journal of Molecular Sciences 2023; 24(11): 9352 doi: 10.3390/ijms24119352
|
12 |
Leila Khalili, Beitullah Alipour, Mohammad Asghari Jafarabadi, Tohid Hassanalilou, Mehran Mesgari Abbasi, Ismail Faraji. RETRACTED ARTICLE: Probiotic assisted weight management as a main factor for glycemic control in patients with type 2 diabetes: a randomized controlled trial. Diabetology & Metabolic Syndrome 2019; 11(1) doi: 10.1186/s13098-019-0400-7
|
13 |
Zahra Arab Sadeghabadi, Mitra Nourbakhsh, Parvin Pasalar, Solaleh Emamgholipour, Abolfazl Golestani, Bagher Larijani, Maryam Razzaghy-Azar. Reduced gene expression of sirtuins and active AMPK levels in children and adolescents with obesity and insulin resistance. Obesity Research & Clinical Practice 2018; 12(2): 167 doi: 10.1016/j.orcp.2017.10.004
|
14 |
Kultigin Turkmen. Sirtuin Biology in Cancer and Metabolic Disease. 2021; : 61 doi: 10.1016/B978-0-12-822467-0.00014-0
|
15 |
Nimisha Lingappa, Harvey N Mayrovitz . Role of Sirtuins in Diabetes and Age-Related Processes. Cureus 2022; doi: 10.7759/cureus.28774
|
16 |
Robert N. Mahon, Richard Hafner. Immune Cell Regulatory Pathways Unexplored as Host-Directed Therapeutic Targets forMycobacterium tuberculosis: An Opportunity to Apply Precision Medicine Innovations to Infectious Diseases. Clinical Infectious Diseases 2015; 61(suppl 3): S200 doi: 10.1093/cid/civ621
|
17 |
Wenjun Yu, Beilei Gao, Na Li, Jiaxing Wang, Cuiting Qiu, Guoyong Zhang, Min Liu, Rongqing Zhang, Congye Li, Gang Ji, Yingmei Zhang. Sirt3 deficiency exacerbates diabetic cardiac dysfunction: Role of Foxo3A-Parkin-mediated mitophagy. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2017; 1863(8): 1973 doi: 10.1016/j.bbadis.2016.10.021
|
18 |
Vemana Gowd, Qingzheng Kang, Qi Wang, Qiang Wang, Feng Chen, Ka-Wing Cheng. Resveratrol: Evidence for Its Nephroprotective Effect in Diabetic Nephropathy. Advances in Nutrition 2020; 11(6): 1555 doi: 10.1093/advances/nmaa075
|
19 |
Manisha J. Oza, Yogesh A. Kulkarni. Biochanin A improves insulin sensitivity and controls hyperglycemia in type 2 diabetes. Biomedicine & Pharmacotherapy 2018; 107: 1119 doi: 10.1016/j.biopha.2018.08.073
|
20 |
Sourbh Suren Garg, Jeena Gupta. Polyol pathway and redox balance in diabetes. Pharmacological Research 2022; 182: 106326 doi: 10.1016/j.phrs.2022.106326
|
21 |
Catherine Y Cheng, Julia Böhme, Amit Singhal. Metabolic energy sensors as targets for designing host-directed therapies for tuberculosis. Journal of Leukocyte Biology 2018; 103(2): 215 doi: 10.1189/jlb.4MR0617-226R
|
22 |
Jasvinder Singh Bhatti, Gurjit Kaur Bhatti, P. Hemachandra Reddy. Mitochondrial dysfunction and oxidative stress in metabolic disorders — A step towards mitochondria based therapeutic strategies. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2017; 1863(5): 1066 doi: 10.1016/j.bbadis.2016.11.010
|
23 |
Abhinav Kanwal, Liston Augustine Dsouza. Sirtuins and diabetes: optimizing the sweetness in the blood. Translational Medicine Communications 2019; 4(1) doi: 10.1186/s41231-019-0034-7
|
24 |
Sandeep Sundriyal, Sébastien Moniot, Zimam Mahmud, Shang Yao, Paolo Di Fruscia, Christopher R. Reynolds, David T. Dexter, Michael J. E. Sternberg, Eric W.-F. Lam, Clemens Steegborn, Matthew J. Fuchter. Thienopyrimidinone Based Sirtuin-2 (SIRT2)-Selective Inhibitors Bind in the Ligand Induced Selectivity Pocket. Journal of Medicinal Chemistry 2017; 60(5): 1928 doi: 10.1021/acs.jmedchem.6b01690
|
25 |
Takahisa Murofushi, Hiromasa Tsuda, Yoshikazu Mikami, Yoko Yamaguchi, Naoto Suzuki. CAY10591, a SIRT1 activator, suppresses cell growth, invasion, and migration in gingival epithelial carcinoma cells. Journal of Oral Science 2017; 59(3): 415 doi: 10.2334/josnusd.16-0696
|
26 |
Z. Çalışkan, T. Mutlu, M. Güven, M. Tunçdemir, M. Niyazioğlu, Y. Hacioglu, Y. Dincer. SIRT6 expression and oxidative DNA damage in individuals with prediabetes and type 2 diabetes mellitus. Gene 2018; 642: 542 doi: 10.1016/j.gene.2017.11.071
|
27 |
Karina-Alexandra Cojocaru, Ionut Luchian, Ancuta Goriuc, Lucian-Mihai Antoci, Cristian-Gabriel Ciobanu, Roxana Popescu, Cristiana-Elena Vlad, Mihaela Blaj, Liliana Georgeta Foia. Mitochondrial Dysfunction, Oxidative Stress, and Therapeutic Strategies in Diabetes, Obesity, and Cardiovascular Disease. Antioxidants 2023; 12(3): 658 doi: 10.3390/antiox12030658
|
28 |
Homer S. Black. Oxidative Stress and ROS Link Diabetes and Cancer. Journal of Molecular Pathology 2024; 5(1): 96 doi: 10.3390/jmp5010007
|
29 |
Navya Malladi, Devidas Lahamge, Balaji Sanjay Somwanshi, Vikas Tiwari, Kajal Deshmukh, Jagdish Kumar Balani, Samhita Chakraborty, Md Jahangir Alam, Sanjay K. Banerjee. Paricalcitol attenuates oxidative stress and inflammatory response in the liver of NAFLD rats by regulating FOXO3a and NFκB acetylation. Cellular Signalling 2024; 121: 111299 doi: 10.1016/j.cellsig.2024.111299
|
30 |
Sathyanarayanan Gopalakrishnan, Swaminathan Venkatraman. Prediction of influential proteins and enzymes of certain diseases using a directed unimodular hypergraph. Mathematical Biosciences and Engineering 2023; 21(1): 325 doi: 10.3934/mbe.2024015
|
31 |
Zahra Arab Sadeghabadi, Nasrin Ziamajidi, Roghayeh Abbasalipourkabir, Roohollah Mohseni. Garlic (Allium sativum) increases SIRT1 and SIRT2 gene expressions in the kidney and liver tissues of STZ- and STZ+niacinamide-induced diabetic rats. Journal of Basic and Clinical Physiology and Pharmacology 2018; 29(5): 463 doi: 10.1515/jbcpp-2017-0079
|
32 |
Saras Saraswathi, Sara Al-Khawaga, Naser Elkum, Khalid Hussain. A Systematic Review of Childhood Diabetes Research in the Middle East Region. Frontiers in Endocrinology 2019; 10 doi: 10.3389/fendo.2019.00805
|
33 |
Omolola R. Oyenihi, Ayodeji B. Oyenihi, Anne A. Adeyanju, Oluwafemi O. Oguntibeju. Antidiabetic Effects of Resveratrol: The Way Forward in Its Clinical Utility. Journal of Diabetes Research 2016; 2016: 1 doi: 10.1155/2016/9737483
|
34 |
Liang‐jun Yan. Redox imbalance stress in diabetes mellitus: Role of the polyol pathway. Animal Models and Experimental Medicine 2018; 1(1): 7 doi: 10.1002/ame2.12001
|
35 |
Gabriela Elisa Hirsch, Thiago Gomes Heck. Inflammation, oxidative stress and altered heat shock response in type 2 diabetes: the basis for new pharmacological and non-pharmacological interventions. Archives of Physiology and Biochemistry 2022; 128(2): 411 doi: 10.1080/13813455.2019.1687522
|
36 |
Homer S. Black. A Synopsis of the Associations of Oxidative Stress, ROS, and Antioxidants with Diabetes Mellitus. Antioxidants 2022; 11(10): 2003 doi: 10.3390/antiox11102003
|
37 |
Jinzi Wu, Zhen Jin, Liang-Jun Yan. Redox imbalance and mitochondrial abnormalities in the diabetic lung. Redox Biology 2017; 11: 51 doi: 10.1016/j.redox.2016.11.003
|
38 |
Meysam Zarezadeh, Vali Musazadeh, Amir Hossein Faghfouri, Bahareh Sarmadi, Parsa Jamilian, Parmida Jamilian, Helda Tutunchi, Parvin Dehghan. Probiotic therapy, a novel and efficient adjuvant approach to improve glycemic status: An umbrella meta-analysis. Pharmacological Research 2022; 183: 106397 doi: 10.1016/j.phrs.2022.106397
|
39 |
Manisha Sonthalia, Bhramar Sinha Roy, Divya Chandrawanshi, Goutham V. Ganesh, Ravichandran Jayasuriya, Sundhar Mohandas, Senthilkumar Rajagopal, Kunka Mohanram Ramkumar. Histone deacetylase inhibitors as antidiabetic agents: Advances and opportunities. European Journal of Pharmacology 2022; 935: 175328 doi: 10.1016/j.ejphar.2022.175328
|
40 |
Katarzyna Zgutka, Marta Tkacz, Marta Grabowska, Wioletta Mikołajek-Bedner, Maciej Tarnowski. Sirtuins and Their Implications in the Physiopathology of Gestational Diabetes Mellitus. Pharmaceuticals 2025; 18(1): 41 doi: 10.3390/ph18010041
|
41 |
Xiaoting Luo, Jinzi Wu, Siqun Jing, Liang-Jun Yan. Hyperglycemic Stress and Carbon Stress in Diabetic Glucotoxicity. Aging and disease 2016; 7(1): 90 doi: 10.14336/AD.2015.0702
|
42 |
Mingming Zhang, Jie Lin, Shanjie Wang, Zheng Cheng, Jianqiang Hu, Tingting Wang, Wanrong Man, Tao Yin, Wenyi Guo, Erhe Gao, Russel J. Reiter, Haichang Wang, Dongdong Sun. Melatonin protects against diabetic cardiomyopathy through Mst1/Sirt3 signaling. Journal of Pineal Research 2017; 63(2) doi: 10.1111/jpi.12418
|
43 |
Tingjuan Ni, Na Lin, Xingxiao Huang, Wenqiang Lu, Zhenzhu Sun, Jie Zhang, Hui Lin, Jufang Chi, Hangyuan Guo. Icariin Ameliorates Diabetic Cardiomyopathy Through Apelin/Sirt3 Signalling to Improve Mitochondrial Dysfunction. Frontiers in Pharmacology 2020; 11 doi: 10.3389/fphar.2020.00256
|
44 |
Guang Chen, Xiao-yan Fan, Xiao-peng Zheng, Yue-lei Jin, Ying Liu, Shuang-chun Liu. Human umbilical cord-derived mesenchymal stem cells ameliorate insulin resistance via PTEN-mediated crosstalk between the PI3K/Akt and Erk/MAPKs signaling pathways in the skeletal muscles of db/db mice. Stem Cell Research & Therapy 2020; 11(1) doi: 10.1186/s13287-020-01865-7
|
45 |
Pervin Ozkan Kurtgoz, Suleyman Karakose, Cigdem Damla Cetinkaya, Edip Erkus, Ibrahim Guney. Evaluation of sirtuin 1 (SIRT1) levels in autosomal dominant polycystic kidney disease. International Urology and Nephrology 2022; 54(1): 131 doi: 10.1007/s11255-021-02862-2
|
46 |
Nasim Abedimanesh, Somayyeh Asghari, Kosar Mohammadnejad, Zahra Daneshvar, Soudeh Rahmani, Samaneh Shokoohi, Amir Hasan Farzaneh, Seyed Hojjat Hosseini, Iraj Jafari Anarkooli, Maryam Noubarani, Sina Andalib, Mohammad Reza Eskandari, Behrooz Motlagh. The anti-diabetic effects of betanin in streptozotocin-induced diabetic rats through modulating AMPK/SIRT1/NF-κB signaling pathway. Nutrition & Metabolism 2021; 18(1) doi: 10.1186/s12986-021-00621-9
|
47 |
Amarjot Kaur Grewal, Nirmal Singh, Thakur Gurjeet Singh. Effects of resveratrol postconditioning on cerebral ischemia in mice: role of the sirtuin-1 pathway. Canadian Journal of Physiology and Pharmacology 2019; 97(11): 1094 doi: 10.1139/cjpp-2019-0188
|
48 |
Jinzi Wu, Xiaoting Luo, Nopporn Thangthaeng, Nathalie Sumien, Zhenglan Chen, Margaret A. Rutledge, Siqun Jing, Michael J. Forster, Liang-Jun Yan. Pancreatic mitochondrial complex I exhibits aberrant hyperactivity in diabetes. Biochemistry and Biophysics Reports 2017; 11: 119 doi: 10.1016/j.bbrep.2017.07.007
|
49 |
Hatice Iskender, Eda Dokumacioglu, Tugba Mazlum Sen, Imran Ince, Yalcin Kanbay, Sinan Saral. The effect of hesperidin and quercetin on oxidative stress, NF-κB and SIRT1 levels in a STZ-induced experimental diabetes model. Biomedicine & Pharmacotherapy 2017; 90: 500 doi: 10.1016/j.biopha.2017.03.102
|
50 |
Frédéric Nicolas Daussin, Alexane Cuillerier, Julianne Touron, Samir Bensaid, Bruno Melo, Ali Al Rewashdy, Goutham Vasam, Keir J. Menzies, Mary-Ellen Harper, Elsa Heyman, Yan Burelle. Dietary Cocoa Flavanols Enhance Mitochondrial Function in Skeletal Muscle and Modify Whole-Body Metabolism in Healthy Mice. Nutrients 2021; 13(10): 3466 doi: 10.3390/nu13103466
|
51 |
|
52 |
J.S. Bhatti, S. Kumar, M. Vijayan, G.K. Bhatti, P.H. Reddy. Molecular Biology of Aging. Progress in Molecular Biology and Translational Science 2017; 146: 13 doi: 10.1016/bs.pmbts.2016.12.012
|
53 |
Keiichiro Matoba, Yusuke Takeda, Yosuke Nagai, Tamotsu Yokota, Kazunori Utsunomiya, Rimei Nishimura. Targeting Redox Imbalance as an Approach for Diabetic Kidney Disease. Biomedicines 2020; 8(2): 40 doi: 10.3390/biomedicines8020040
|
54 |
Duojun Qiu, Shan Song, Yuhan Wang, Yawei Bian, Ming Wu, Haijiang Wu, Yonghong Shi, Huijun Duan. NAD(P)H: quinone oxidoreductase 1 attenuates oxidative stress and apoptosis by regulating Sirt1 in diabetic nephropathy. Journal of Translational Medicine 2022; 20(1) doi: 10.1186/s12967-021-03197-3
|
55 |
Bin Wang, Jinyu Li, Mi Bao, Runji Chen, Haiyan Li, Binger Lu, Meixin Chen, Danmei Huang, Yanmei Zhang, Fenfei Gao, Ganggang Shi, Antonello Lorenzini. Melatonin Attenuates Diabetic Myocardial Microvascular Injury through Activating the AMPK/SIRT1 Signaling Pathway. Oxidative Medicine and Cellular Longevity 2021; 2021(1) doi: 10.1155/2021/8882130
|