Copyright
©The Author(s) 2026.
World J Gastrointest Oncol. Feb 15, 2026; 18(2): 114981
Published online Feb 15, 2026. doi: 10.4251/wjgo.v18.i2.114981
Published online Feb 15, 2026. doi: 10.4251/wjgo.v18.i2.114981
Table 1 Multiple data types included in high-quality multimodal radiomics research
| Multimodal imaging technology | Ref. |
| Enhanced CT and MRI | Lemore et al[21], 2025 |
| PET-CT and MRI | Pan et al[22], 2024 |
| CT and MRI | Zeng et al[23], 2023 |
| Enhanced CT and MRI | Ren et al[24], 2021 |
| 18F-FDG PET and MRI | V Giannini et al[25], 2019 |
| CT and clinical data | Mahootiha et al[26], 2024 |
| FDG-PET and CT | Salehjahromi et al[27], 2024 |
| Enhanced CT, HE stained section and clinical data | Xiao et al[28], 2024 |
- Citation: Zhao ZX. Radiomics-based model for predicting neoadjuvant therapy response in esophageal cancer: Limitations and suggestions. World J Gastrointest Oncol 2026; 18(2): 114981
- URL: https://www.wjgnet.com/1948-5204/full/v18/i2/114981.htm
- DOI: https://dx.doi.org/10.4251/wjgo.v18.i2.114981
