Editorial
Copyright ©The Author(s) 2025.
World J Gastrointest Oncol. Jul 15, 2025; 17(7): 106610
Published online Jul 15, 2025. doi: 10.4251/wjgo.v17.i7.106610
Table 1 Summary of representative studies applying radiomics and machine learning in hepatocellular carcinoma
Ref.
Imaging modality
ML model/algorithm
Integrated features
Clinical application
Qi et al[2], 2024CTLogistic Regression with RadiomicsTexture featuresPredict response to immunotherapy
Molostova et al[3], 2024MRIRadiomics + binary classificationTexture + IntensityDifferentiate early HCC from regenerative/dysplastic nodes
Wang et al[4], 2025Multi-modal clinical dataEnsemble ML modelsClinical + Radiomics + GenomicsHCC diagnosis
Zhang et al[5], 2024CT + clinicalXGBoostRadiomics + clinicalPrognosis post-TACE
Şahin et al[6], 2025CTDeep learning (CNN)Imaging onlyDetect HCC from CT
Yin et al[7], 2025CTResNet-based Deep learningImaging + clinicalPredict prognosis after combination therapy
Shen et al[9], 2024Clinical + imagingSHAP-integrated ML modelsMulti-modalPredict prognosis for advanced HCC
Cai et al[10], 2024Radiomics + RNA-SeqSurvival analysis + MLRadiomics + transcriptomicsPredict survival
Lou et al[11], 2024Clinical + imagingML-based nomogramAccessible clinical indicatorsPredict prognosis