Copyright
©The Author(s) 2025.
World J Gastrointest Oncol. Jul 15, 2025; 17(7): 106610
Published online Jul 15, 2025. doi: 10.4251/wjgo.v17.i7.106610
Published online Jul 15, 2025. doi: 10.4251/wjgo.v17.i7.106610
Table 1 Summary of representative studies applying radiomics and machine learning in hepatocellular carcinoma
Ref. | Imaging modality | ML model/algorithm | Integrated features | Clinical application |
Qi et al[2], 2024 | CT | Logistic Regression with Radiomics | Texture features | Predict response to immunotherapy |
Molostova et al[3], 2024 | MRI | Radiomics + binary classification | Texture + Intensity | Differentiate early HCC from regenerative/dysplastic nodes |
Wang et al[4], 2025 | Multi-modal clinical data | Ensemble ML models | Clinical + Radiomics + Genomics | HCC diagnosis |
Zhang et al[5], 2024 | CT + clinical | XGBoost | Radiomics + clinical | Prognosis post-TACE |
Şahin et al[6], 2025 | CT | Deep learning (CNN) | Imaging only | Detect HCC from CT |
Yin et al[7], 2025 | CT | ResNet-based Deep learning | Imaging + clinical | Predict prognosis after combination therapy |
Shen et al[9], 2024 | Clinical + imaging | SHAP-integrated ML models | Multi-modal | Predict prognosis for advanced HCC |
Cai et al[10], 2024 | Radiomics + RNA-Seq | Survival analysis + ML | Radiomics + transcriptomics | Predict survival |
Lou et al[11], 2024 | Clinical + imaging | ML-based nomogram | Accessible clinical indicators | Predict prognosis |
- Citation: Feng N, Wang K, Jiao Y. Integrating radiomics and machine learning for the diagnosis and prognosis of hepatocellular carcinoma. World J Gastrointest Oncol 2025; 17(7): 106610
- URL: https://www.wjgnet.com/1948-5204/full/v17/i7/106610.htm
- DOI: https://dx.doi.org/10.4251/wjgo.v17.i7.106610