Copyright
©The Author(s) 2025.
World J Gastrointest Oncol. May 15, 2025; 17(5): 103804
Published online May 15, 2025. doi: 10.4251/wjgo.v17.i5.103804
Published online May 15, 2025. doi: 10.4251/wjgo.v17.i5.103804
Table 1 Extracted characteristics of the included articles
| Ref. | Country | Data source | Samples | Pre-processing | Feature selection | Survival | Data types | Machine learning algorithms | Validation | Evaluation | Hyperparameter tuning |
| Rahman et al[19] (2021) | United Kingdom | NOGCA (2012-2018) | 2931 | Yes | Yes | OS | Clinical | RF | Internal | AUC, C-index, Brier-score, Calibration | No |
| Chen et al[20] (2019) | China | TANRICTCGA | 134 | Yes | Yes | OS, DFS | Clinical, molecular | SVM | Internal | C-index, AUC | Yes |
| Tian et al[21] (2024) | China | Zhongshan Hospital | 1120 | Yes | No | OS, DFS | Clinical, image | DL | Internal, external | C-index, AUC | Yes |
| Islam et al[29] (2024) | United States | Fujian Medical University Union Hospital | 135 | Yes | Yes | OS | Image | RF, SVM, KNN, NB | Internal | AUC, accuracy,sensitivity, specificity, F1-score | Yes |
| Chen et al[22] (2024) | China | TCGA | Not reported | Yes | Yes | OS | Clinical, molecular | Multiple machine earning | External | C-Index, AUC, calibration | Yes |
| Kuwayama et al[30] (2023) | Japan | Chiba Cancer Center (2007-2016) | 1687 | Yes | Yes | OS | Clinical | LR, GB, DL, RF | Internal | AUC, accuracy | No |
| Zeng et al[27] (2024) | China | SEER (2000-2019) | 11076 | Yes | Yes | OS | Clinical | RF, DL | Internal, external | C-Index, AUC, Brier-score, Calibration | Yes |
| Wu et al[25] (2024) | China | SEER | 11414 | Yes | Yes | OS | Clinical | DL, RF LR | Internal, external | C-Index, AUC, calibration, decision curve analysis | Yes |
| Li et al[26] (2022) | China | Nanfang Hospital (2004-2016) | 695 | Yes | Yes | OS, DFS | Clinical | SVM | Internal, external | AUC | No |
| Aznar-Gimeno et al[32] (2024) | Spain | 16 general hospitals (2023-2012) | 1246 | Yes | Yes | OS | Clinical, molecular | RF, XGboost, DL, SVM | External | Index, Brier-score | Yes |
| Jiang et al[34] (2022) | China | Nanfang Hospital (2005-2012) | 510 | No | No | DFS | Clinical CT | DL | Internal, external | C-index, AUC, Brier-score, Calibration | Yes |
| Li et al[28] (2024) | China | TCGA | 325 | Yes | Yes | OS | Clinical, molecular | Multiple machine learning | External | C-index, AUC, Calibration | Yes |
| Liao et al[33] (2024) | China | SEER (2000–2019) | 775 | Yes | Yes | CSS | Clinical | Multiple machine learning | Internal | AUC, Calibration | Yes |
| Wei et al[23] (2022) | China | TCGA | 357 | Yes | Yes | OS | Clinical, molecular, image | MultiDeepCox-SC | External | C-index, AUC | Yes |
| Afrash et al[31] (2023) | Iran | Ayatollah Talleghani Hospital (2010-2017) | 974 | Yes | Yes | OS | Clinical | XGBoost, HGB, SVM | Internal | Accuracy, specificity, sensitivity, AUC, F1-score | Yes |
| Zeng et al[27] (2023) | China | SEER (2000-2019) | 14177 | Yes | Yes | OS | Clinical | RF, DL | Internal | C-index, AUC, Brier-score, Calibration, IBS | Yes |
Table 2 Classification of the features of the included articles
| Characteristics | Categories | Number (n) | ||
| OS | CSS | DFS | ||
| Dataset sources | Hospitals | 6 | - | 3 |
| SEER | 3 | 1 | - | |
| TCGA | 4 | - | 1 | |
| NOGCA | 1 | - | - | |
| TANRIC | 1 | - | 1 | |
| Dataset privacy | Public | 8 | 1 | 1 |
| Private | 6 | - | 3 | |
| Data source | Single | 6 | 1 | 1 |
| Multiple | 8 | - | 3 | |
| Preprocessing | Yes | 14 | 1 | 3 |
| No | - | - | 1 | |
| Feature selection | Yes | 13 | 1 | 2 |
| No | 1 | - | 2 | |
| Models | One | 5 | - | 4 |
| Two or more | 9 | 1 | - | |
| Models type | GB | 1 | - | - |
| HGB | 1 | - | - | |
| KNN | 1 | - | - | |
| LR | 2 | - | - | |
| NB | 1 | - | - | |
| RF | 6 | - | - | |
| SVM | 5 | - | 2 | |
| XGboost | 2 | - | - | |
| DL | 6 | - | 2 | |
| MultiDeepCox-SC | 1 | - | - | |
| Ensemble learning | 2 | 1 | - | |
| Validation | Internal | 14 | 1 | 3 |
| External | 8 | - | 2 | |
| Evaluation | C-index | 10 | - | 3 |
| AUC | 13 | 1 | 4 | |
| Calibration | 6 | 1 | 1 | |
| Brier-score | 4 | - | 1 | |
| Accuracy | 3 | - | - | |
| Specificity | 2 | - | - | |
| Sensitivity | 2 | - | - | |
| F1-score | 2 | - | - | |
| IBS | 1 | - | - | |
| Data types | Clinical | 7 | 1 | 1 |
| Image | 1 | - | - | |
| Clinical + Image | 1 | - | 2 | |
| Clinical + Molecular | 4 | - | 1 | |
| Clinical + Molecular + Image | 1 | - | - |
Table 3 Risk of bias and applicability assessment of included articles based on the Prediction Model Risk of Bias Assessment Tool criteria
| Ref. | Risk of bias | Concern regarding applicability | Overall | ||||||
| Participant | Predictors | Outcomes | Analysis | Participant | Predictors | Outcomes | Risk of bias | Concern regarding applicability | |
| Rahman et al[19] (2021) | Low | Low | Low | Low | Low | Moderate | Low | Low | Moderate |
| Chen et al[20] (2019) | Low | Low | Moderate | Low | Low | Low | Moderate | Moderate | Moderate |
| Tian et al[21] (2024) | Low | Low | Low | High | Moderate | Low | Low | High | Moderate |
| Islam et al[29] (2024) | Low | Low | Low | Low | Low | Low | Low | Low | Low |
| Chen et al[22] (2024) | High | Low | Low | High | Moderate | Low | Low | High | Moderate |
| Kuwayama et al[30] (2023) | Low | Low | Low | Moderate | Moderate | Low | Low | Moderate | Moderate |
| Zeng et al[27] (2024) | Low | Low | Low | Low | Low | Low | Low | Low | Low |
| Wu et al[25] (2024) | Moderate | Low | Low | Low | Moderate | Moderate | Low | Moderate | Moderate |
| Li et al[26] (2022) | Low | Low | Low | Low | Moderate | Low | Low | Low | Low |
| Aznar-Gimeno et al[32] (2024) | Low | Low | Low | Low | Moderate | Moderate | Low | Low | Moderate |
| Jiang et al[34] (2022) | Low | Low | Low | High | Low | Low | Low | High | Low |
| Li et al[28] (2024) | Low | Low | Low | Low | Low | Low | Low | Low | Low |
| Liao et al[33] (2024) | Low | Low | Low | Moderate | Low | Moderate | Low | Moderate | Moderate |
| Wei et al[23] (2022) | Low | Low | Low | Low | Low | Low | Low | Low | Low |
| Afrash et al[31] (2023) | Moderate | Low | Low | Moderate | Low | Moderate | Low | Moderate | Moderate |
| Zeng et al[27] (2023) | Low | Low | Low | Low | Moderate | Low | Low | Low | Moderate |
Table 4 Classification of the used evaluation indicators into types of survival from the lowest to the highest
| Evaluation method | OS | CSS | DFS | |||
| Min (%) | Max (%) | Min (%) | Max (%) | Min (%) | Max (%) | |
| AUC | 66.90 | 98.00 | 92.00 | 96.00 | 71.00 | 85.60 |
| C-index | 63.00 | 0.84.00 | - | - | 65.40 | 71.00 |
| Brier-score | 13.70 | 0.25.00 | - | - | - | - |
| Accuracy | 89.10 | 0.92.00 | - | - | - | - |
| Specificity | 87.15 | 0.90.00 | - | - | - | - |
| Sensitivity | 89.42 | 0.94.00 | - | - | - | - |
| F1-score | 90.80 | 92.00 | - | - | - | - |
| IBS | 14.20 | 15.10 | - | - | - | - |
Table 5 Predictive variables for survival types extracted from the articles
| Selected features | Number (n) | Percentage (%) |
| Age | 7 | 87.5 |
| Stage | 7 | 87.5 |
| Grade | 6 | 75.0 |
| Treatment modality | 6 | 75.0 |
| Primary tumor site | 5 | 62.5 |
| Sex | 4 | 50.0 |
| Tumor size | 4 | 50.0 |
| Race | 3 | 37.5 |
| Histopathology type | 3 | 37.5 |
| Marital status | 3 | 37.5 |
| Positive lymph node numbers | 2 | 25.0 |
| Lymph node metastasis | 2 | 25.0 |
| Metastasis status | 2 | 25.0 |
| Regional nodes examined | 1 | 12.5 |
| Lymph node dissection | 1 | 12.5 |
| ASA grade | 1 | 12.5 |
| History of other cancers | 1 | 12.5 |
| Blood markers | 1 | 12.5 |
| Lauren type | 1 | 12.5 |
| Lymphovascular invasion | 1 | 12.5 |
| Months from diagnosis to treatment | 1 | 12.5 |
| Body weight | 1 | 12.5 |
- Citation: Wang HN, An JH, Wang FQ, Hu WQ, Zong L. Predicting gastric cancer survival using machine learning: A systematic review. World J Gastrointest Oncol 2025; 17(5): 103804
- URL: https://www.wjgnet.com/1948-5204/full/v17/i5/103804.htm
- DOI: https://dx.doi.org/10.4251/wjgo.v17.i5.103804
