Retrospective Study
Copyright ©The Author(s) 2025.
World J Gastrointest Oncol. Jan 15, 2025; 17(1): 96439
Published online Jan 15, 2025. doi: 10.4251/wjgo.v17.i1.96439
Table 1 Binary logistic regression analysis for microvascular invasion prediction
Variables
β
SE
Wald
df
P value
OR (95%CI)
Tumor maximum diameter-0.0740.5880.01610.9000.929 (0.293-2.942)
Pseudocapsule2.0930.63910.73310.0018.111 (2.318-28.373)
Tumor blood vessels2.0510.7886.77510.0097.775 (1.660-36.421)
Cystic degeneration or necrosis0.0980.6770.02110.8851.103 (0.293-4.4155)
Table 2 The dominant texture features selected after microvascular invasion dimensionality reduction
T2WI
AP
VP
DP
Multiparametric
GrSkewnessZ_ShrtREmpZ_LngREmphPerc.01% 3DAP-S (0, 1, 0) SumAverg
135dr_GLevNonUZ_FractionZ_FractionS (0, 0, 1) InvDfMomAP-Horzl_Fraction
45dgr_GLevNonUZ_LngREmphS (1, 0, 0) SumAvergGrMeanAP-Horzl_ShrtREmp
Horzl_GLevNonU45dgr_ShrtREmpS (0, 0, 1) SumAvergZ_LngREmphAP-Horzl_LngREmph
Z_RLNonUniS (0, 0, 1) InvDfMomS (1, 1, 0) SumAvergZ_ShrtREmpAP-S (0, 0, 1) InvDfMom
135dr_ShrtREmpS (0, 0, 1) SumAvergVertl_RLNonUniS (1, -1, 0) SumAvergVP- 45dgr_RLNonUni
Horzl_FractionSkewness 3D135dr_RLNonUniS (1, -1, 0) SumVarncVP-Vertl_RLNonUni
135dr_RLNonUniGrSkewnessZ_ShrtREmpZ_FractionVP-S (0, 0, 1) SumAverg
Z_GLevNonU45dgr_FractionPerc.10% 3DS (0, 1, 0) SumVarncVP-Z_ShrtREmp
Vertl_GLevNonUKurtosis 3DS (0, 1, 0) SumAvergPerc.10% 3DVP-Z_LngREmph
Table 3 Hepatocellular carcinoma microvascular invasion prediction results from artificial neural network models constructed on different features, n (%)
Sequence
MCR (n = 97)
Sensitivity (%)
Specificity (%)
AUC (95%CI)
T2WI25 (25.77)80.7065.000.729
AP19 (19.59)100.0052.500.762
VP24 (24.74)70.1782.500.763
DP23 (23.71)70.1785.000.776
AP + VP17 (17.53)94.7365.000.799
1Combined13 (13.40)80.7097.500.891