Copyright
        ©The Author(s) 2025.
    
    
        World J Gastrointest Oncol. Jan 15, 2025; 17(1): 96439
Published online Jan 15, 2025. doi: 10.4251/wjgo.v17.i1.96439
Published online Jan 15, 2025. doi: 10.4251/wjgo.v17.i1.96439
            Table 1 Binary logistic regression analysis for microvascular invasion prediction
        
    | Variables | β | SE | Wald | df | P value | OR (95%CI) | 
| Tumor maximum diameter | -0.074 | 0.588 | 0.016 | 1 | 0.900 | 0.929 (0.293-2.942) | 
| Pseudocapsule | 2.093 | 0.639 | 10.733 | 1 | 0.001 | 8.111 (2.318-28.373) | 
| Tumor blood vessels | 2.051 | 0.788 | 6.775 | 1 | 0.009 | 7.775 (1.660-36.421) | 
| Cystic degeneration or necrosis | 0.098 | 0.677 | 0.021 | 1 | 0.885 | 1.103 (0.293-4.4155) | 
            Table 2 The dominant texture features selected after microvascular invasion dimensionality reduction
        
    | T2WI | AP | VP | DP | Multiparametric | 
| GrSkewness | Z_ShrtREmp | Z_LngREmph | Perc.01% 3D | AP-S (0, 1, 0) SumAverg | 
| 135dr_GLevNonU | Z_Fraction | Z_Fraction | S (0, 0, 1) InvDfMom | AP-Horzl_Fraction | 
| 45dgr_GLevNonU | Z_LngREmph | S (1, 0, 0) SumAverg | GrMean | AP-Horzl_ShrtREmp | 
| Horzl_GLevNonU | 45dgr_ShrtREmp | S (0, 0, 1) SumAverg | Z_LngREmph | AP-Horzl_LngREmph | 
| Z_RLNonUni | S (0, 0, 1) InvDfMom | S (1, 1, 0) SumAverg | Z_ShrtREmp | AP-S (0, 0, 1) InvDfMom | 
| 135dr_ShrtREmp | S (0, 0, 1) SumAverg | Vertl_RLNonUni | S (1, -1, 0) SumAverg | VP- 45dgr_RLNonUni | 
| Horzl_Fraction | Skewness 3D | 135dr_RLNonUni | S (1, -1, 0) SumVarnc | VP-Vertl_RLNonUni | 
| 135dr_RLNonUni | GrSkewness | Z_ShrtREmp | Z_Fraction | VP-S (0, 0, 1) SumAverg | 
| Z_GLevNonU | 45dgr_Fraction | Perc.10% 3D | S (0, 1, 0) SumVarnc | VP-Z_ShrtREmp | 
| Vertl_GLevNonU | Kurtosis 3D | S (0, 1, 0) SumAverg | Perc.10% 3D | VP-Z_LngREmph | 
            Table 3 Hepatocellular carcinoma microvascular invasion prediction results from artificial neural network models constructed on different features, n (%)
        
    | Sequence | MCR (n = 97) | Sensitivity (%) | Specificity (%) | AUC (95%CI) | 
| T2WI | 25 (25.77) | 80.70 | 65.00 | 0.729 | 
| AP | 19 (19.59) | 100.00 | 52.50 | 0.762 | 
| VP | 24 (24.74) | 70.17 | 82.50 | 0.763 | 
| DP | 23 (23.71) | 70.17 | 85.00 | 0.776 | 
| AP + VP | 17 (17.53) | 94.73 | 65.00 | 0.799 | 
| 1Combined | 13 (13.40) | 80.70 | 97.50 | 0.891 | 
- Citation: Nong HY, Cen YY, Lu SJ, Huang RS, Chen Q, Huang LF, Huang JN, Wei X, Liu MR, Li L, Ding K. Predictive value of a constructed artificial neural network model for microvascular invasion in hepatocellular carcinoma: A retrospective study. World J Gastrointest Oncol 2025; 17(1): 96439
- URL: https://www.wjgnet.com/1948-5204/full/v17/i1/96439.htm
- DOI: https://dx.doi.org/10.4251/wjgo.v17.i1.96439

 
         
                         
                 
                 
                 
                 
                 
                         
                         
                        