Copyright
©The Author(s) 2024.
World J Gastrointest Oncol. Mar 15, 2024; 16(3): 857-874
Published online Mar 15, 2024. doi: 10.4251/wjgo.v16.i3.857
Published online Mar 15, 2024. doi: 10.4251/wjgo.v16.i3.857
Table 1 Characteristic baseline of patients in sets
Variables | Total set (n = 190) | Training set (n = 106) | Internal test set (n = 47) | External test set (n = 37) | P value |
VETC (%) | 0.986 | ||||
Positive | 94 (49) | 53 (50) | 23 (49) | 18 (49) | |
Negative | 96 (51) | 53 (50) | 24 (51) | 19 (51) | |
Age (median, IQR) | 57 (51, 66) | 58.5 (51, 65.75) | 56 (51.5, 67.5) | 57 (50, 64) | 0.708 |
Sex (%) | 0.555 | ||||
Male | 153 (81) | 83 (78) | 38 (81) | 32 (86) | |
Female | 37 (19) | 23 (22) | 9 (19) | 5 (14) | |
Hepatitis (%) | 0.799 | ||||
HBV or/and HCV | 171 (90) | 96 (91) | 41 (87) | 34 (92) | |
Negative | 19 (10) | 10 (9) | 6 (13) | 3 (8) | |
Cirrhosis (%) | 0.008 | ||||
Present | 158 (83) | 85 (80) | 36 (77) | 37 (100) | |
Absent | 32 (17) | 21 (20) | 11 (23) | 0 (0) | |
ALT (median, IQR) | 32 (19, 51.75) | 28 (18, 49) | 40 (22.5, 63) | 33 (22, 45) | 0.094 |
AST (median, IQR) | 37 (25, 61.5) | 36.5 (23.25, 1.75) | 49 (28.5, 78) | 30 (24, 46) | 0.041 |
GGT (median, IQR) | 59.25 (31, 131.25) | 61.75 (30, 127) | 76 (38.5, 143.5) | 49 (27, 98) | 0.157 |
AFP (median, IQR) | 49.06 (5.54, 9.25) | 62.74 (6.62, 9.25) | 56.78 (5.87, 16.5) | 34.74 (5.22, 798) | 0.516 |
Main tumor size (median, IQR) | 5.7 (3.2, 9.28) | 6.05 (3.02, 9.3) | 6.9 (3.45, 11.15) | 4.11 (3.2, 6.5) | 0.098 |
Multiplicity (%) | 0.037 | ||||
≥ 2 | 46 (24) | 29 (27) | 14 (30) | 3 (8) | |
1 | 144 (76) | 77 (73) | 33 (70) | 34 (92) | |
Single lobe involvement (%) | 0.064 | ||||
Present | 141 (74) | 74 (70) | 34 (72) | 33 (89) | |
Absent | 49 (26) | 32 (30) | 13 (28) | 4 (11) | |
Intratumor hemorrhage (%) | 0.179 | ||||
Present | 12 (6) | 9 (8) | 3 (6) | 0 (0) | |
Absent | 178 (94) | 97 (92) | 44 (94) | 37 (100) | |
Intratumor necrosis (%) | 0.131 | ||||
Present | 95 (50) | 57 (54) | 25 (53) | 13 (35) | |
Absent | 95 (50) | 49 (46) | 22 (47) | 24 (65) | |
Arterial phase hyper enhancement (%) | 0.701 | ||||
Present | 179 (94) | 101 (95) | 44 (94) | 34 (92) | |
Absent | 11 (6) | 5 (5) | 3 (6) | 3 (8) | |
Well defined capsule (%) | 0.143 | ||||
Present | 140 (74) | 75 (71) | 33 (70) | 32 (86) | |
Absent | 50 (26) | 31 (29) | 14 (30) | 5 (14) | |
Washout (%) | 0.249 | ||||
Present | 187 (98) | 105 (99) | 45 (96) | 37 (100) | |
Absent | 3 (2) | 1 (1) | 2 (4) | 0 (0) | |
Non-smooth tumor margin (%) | 0.435 | ||||
Present | 116 (61) | 69 (65) | 26 (55) | 21 (57) | |
Absent | 74 (39) | 37 (35) | 21 (45) | 16 (43) |
Table 2 Univariable and Multivariable logistic regression for upstaging in the training set
Variables | VETC- (n = 53) | VETC+ (n = 53) | Univariate analysis | Multivariate analysis | ||
OR | P value | OR | P value | |||
Age, median (IQR) | 63 (50, 67) | 55 (51, 62) | 0.997 | 0.096 | ||
Sex (%) | 1.344 | 0.637 | ||||
Male | 40 (75) | 43 (81) | ||||
Female | 13 (25) | 10 (19) | ||||
Hepatitis (%) | 1.133 | 0.74 | ||||
HBV or/and HCV | 47 (89) | 49 (92) | ||||
Negative | 6 (11) | 4 (8) | ||||
Cirrhosis (%) | 0.669 | 0.626 | ||||
Present | 44 (83) | 41 (77) | ||||
Absent | 9 (17) | 12 (23) | ||||
ALT, median (IQR) | 23 (15, 38) | 36 (20, 52) | 1.010 | 0.011 | 1.001 | 0.738 |
AST, median (IQR) | 29 (21, 50) | 40 (28, 68) | 0.989 | 0.022 | 0.991 | 0.450 |
GGT, median (IQR) | 39 (27, 87) | 100 (40, 185) | 1.000 | 0.001 | 1.000 | 0.209 |
AFP, median (IQR) | 62.23 (5.48, 446.4) | 78.51 (8.05, 8213) | 0.999 | 0.076 | ||
Main tumor size, median (IQR) | 4.1 (2.4, 6.5) | 8.9 (5.6, 10.8) | 2.815 | < 0.001 | 1.873 | < 0.001 |
Multiplicity (%) | 0.799 | 0.009 | 0.907 | 0.660 | ||
≥ 2 | 8 (15) | 21 (40) | ||||
1 | 45 (85) | 32 (60) | ||||
Single lobe involvement (%) | 0.620 | < 0.001 | 0.952 | 0.617 | ||
Present | 46 (87) | 28 (53) | ||||
Absent | 7 (13) | 25 (47) | ||||
Intratumor hemorrhage (%) | 0.609 | 1 | ||||
Present | 4 (8) | 5 (9) | ||||
Absent | 49 (92) | 48 (91) | ||||
Intratumor necrosis (%) | 0.850 | < 0.001 | 7.947 | < 0.001 | ||
Present | 13 (25) | 44 (83) | ||||
Absent | 40 (75) | 9 (17) | ||||
Arterial phase hyperenhancement (%) | 1.112 | 0.363 | ||||
Present | 49 (92) | 52 (98) | ||||
Absent | 4 (8) | 1 (2) | ||||
Well defined capsule (%) | 1.018 | 1 | ||||
Present | 38 (72) | 37 (70) | ||||
Absent | 15 (28) | 16 (30) | ||||
Washout (%) | 1.815 | 1 | ||||
Present | 52 (98) | 53 (100) | ||||
Absent | 1 (2) | 0 (0) | ||||
Non-smooth tumor margin (%) | 1.717 | 0.014 | 1.109 | 0.881 | ||
Present | 28 (53) | 41 (77) | ||||
Absent | 25 (47) | 12 (23) |
Table 3 Selected radiomics features in intratumoral, peritumoral, and combined radiomics models on the training set
Intratumoral radiomics model | Peritumoral radiomics model | Combined radiomics model |
Original_GLDM_DependenceEntropy | Original_shape_Sphericity | Original_GLDM_DependenceEntropy1 |
Lbp-3D-k_GLRLM_ShortRunHighGrayLevelEmphasis | Lbp-2D_firstorder_InterquartileRange | Original_GLRLM_RunLengthNonUniformity1 |
Lbp-3D-k_GLDM_SmallDependenceEmphasis | Lbp-3D-k_firstorder_Minimum | Wavelet-HHH_GLCM_SumEntropy1 |
Original_GLRLM_RunLengthNonUniformity | Wavelet-HHH_GLCM_SumEntropy | Wavelet-HHH_GLCM_SumEntropy2 |
Wavelet-HHH_GLCM_SumEntropy | Original_GLRLM_RunVariance | Original_GLRLM_RunVariance2 |
Lbp-3D-k_firstorder_Kurtosis | Wavelet-LHL_firstorder_Variance | Logarithm_firstorder_InterquartileRange1 |
Wavelet-HLH_GLRLM_GrayLevelNonUniformityNormalized | Lbp-3D-m1_firstorder_Skewness | Wavelet-LHL_firstorder_Variance2 |
Squareroot_firstorder_Minimum | Logarithm_firstorder_10Percentile | Wavelet-HHH_GLCM_MCC1 |
Wavelet-LLH_GLCM_Imc2 | Squareroot_firstorder_10Percentile | Lbp-3D-k_firstorder_Kurtosis1 |
Wavelet-LHL_GLCM_MaximumProbability | Wavelet-HLL_firstorder_Kurtosis | Wavelet-HHH_firstorder_Kurtosis2 |
Wavelet-HLH_GLCM_MaximumProbability | Lbp-3D-m1_firstorder_Skewness2 | |
Wavelet-HLH_GLRLM_GrayLevelNonUniformityNormalized_V11 | ||
Logarithm_firstorder_90Percentile2 |
Table 4 Performance of logistic regression, support vector machine, decision tree, and random forest in the combined radiomics for predicting vessels encapsulating tumor clusters
Set | ML model | AUC (95%CI) | Accuracy | Sensitivity | Specificity | PPV | NPV |
Training | |||||||
LR | 0.825 (0.747-0.903) | 0.726 | 0.736 | 0.717 | 0.722 | 0.731 | |
SVM | 0.874 (0.805-0.943) | 0.764 | 0.792 | 0.736 | 0.745 | 0.765 | |
DT | 0.862 (0.794-0.930) | 0.820 | 0.811 | 0.830 | 0.827 | 0.815 | |
RF | 1 (1.000-1.000) | 1 | 1 | 1 | 1 | 1 | |
Internal test | |||||||
LR | 0.788 (0.649-0.927) | 0.745 | 0.783 | 0.708 | 0.720 | 0.773 | |
SVM | 0.766 (0.629-0.903) | 0.681 | 0.739 | 0.625 | 0.654 | 0.714 | |
DT | 0.698 (0.556-0.840) | 0.659 | 0.696 | 0.625 | 0.640 | 0.682 | |
RF | 0.723 (0.577-0.869) | 0.702 | 0.739 | 0.667 | 0.667 | 0.696 | |
External test | |||||||
LR | 0.680 (0.498-0.862) | 0.676 | 0.500 | 0.842 | 0.750 | 0.640 | |
SVM | 0.632 (0.438-0.826) | 0.676 | 0.500 | 0.842 | 0.75 | 0.640 | |
DT | 0.667 (0.482-0.852) | 0.676 | 0.500 | 0.842 | 0.750 | 0.640 | |
RF | 0.614 (0.428-0.800) | 0.568 | 0.444 | 0.684 | 0.571 | 0.565 |
Table 5 Performance evaluation of the logistic regression models on the training set and the two test sets
Set | Model | AUC (95%CI) | Accuracy | Sensitivity | Specificity | PPV | NPV |
Training | |||||||
Intratumoral radiomics | 0.772 (0.684-0.860) | 0.689 | 0.736 | 0.642 | 0.673 | 0.708 | |
Peritumoral radiomics | 0.823 (0.745-0.901) | 0.745 | 0.774 | 0.717 | 0.732 | 0.760 | |
Combined radiomics | 0.825 (0.747-0.903) | 0.726 | 0.736 | 0.717 | 0.722 | 0.731 | |
Internal test | |||||||
Intratumoral radiomics | 0.768 (0.628-0.908) | 0.638 | 0.696 | 0.583 | 0.615 | 0.667 | |
Peritumoral radiomics | 0.757 (0.615-0.899) | 0.702 | 0.783 | 0.625 | 0.750 | 0.667 | |
Combined radiomics | 0.788 (0.649-0.927) | 0.745 | 0.783 | 0.708 | 0.720 | 0.773 | |
External test | |||||||
Intratumoral radiomics | 0.673 (0.495-0.851) | 0.568 | 0.556 | 0.579 | 0.556 | 0.579 | |
Peritumoral radiomics | 0.605 (0.418-0.792) | 0.568 | 0.389 | 0.737 | 0.560 | 0.583 | |
Combined radiomics | 0.680 (0.498-0.862) | 0.676 | 0.500 | 0.842 | 0.750 | 0.640 |
Table 6 Diagnostic performance of the clinical-radiological feature, combined radiomics, and radiomics nomogram models
Set | Model | AUC (95%CI) | Accuracy | Sensitivity | Specificity | PPV | NPV |
Training | |||||||
Clinical-radiological feature | 0.833 (0.753-0.913) | 0.792 | 0.830 | 0.754 | 0.737 | 0.776 | |
Combined radiomics | 0.825 (0.747-0.903) | 0.726 | 0.736 | 0.717 | 0.722 | 0.731 | |
Radiomics nomogram | 0.859 (0.787-0.931) | 0.792 | 0.830 | 0.754 | 0.772 | 0.816 | |
Internal test | |||||||
Clinical-radiological feature | 0.781 (0.644-0.918) | 0.744 | 0.782 | 0.708 | 0.720 | 0.773 | |
Combined radiomics | 0.788 (0.649-0.927) | 0.745 | 0.783 | 0.709 | 0.720 | 0.773 | |
Radiomics nomogram | 0.848 (0.726-0.970) | 0.787 | 0.826 | 0.750 | 0.760 | 0.818 | |
External test | |||||||
Clinical-radiological feature | 0.684 (0.498-0.862) | 0.676 | 0.500 | 0.842 | 0.750 | 0.64 | |
Combined radiomics | 0.680 (0.502-0.866) | 0.676 | 0.500 | 0.842 | 0.750 | 0.640 | |
Radiomics nomogram | 0.757 (0.592-0.922) | 0.729 | 0.611 | 0.842 | 0.750 | 0.783 |
- Citation: Zhang C, Zhong H, Zhao F, Ma ZY, Dai ZJ, Pang GD. Preoperatively predicting vessels encapsulating tumor clusters in hepatocellular carcinoma: Machine learning model based on contrast-enhanced computed tomography. World J Gastrointest Oncol 2024; 16(3): 857-874
- URL: https://www.wjgnet.com/1948-5204/full/v16/i3/857.htm
- DOI: https://dx.doi.org/10.4251/wjgo.v16.i3.857