Retrospective Study
Copyright ©The Author(s) 2024.
World J Gastrointest Oncol. Mar 15, 2024; 16(3): 819-832
Published online Mar 15, 2024. doi: 10.4251/wjgo.v16.i3.819
Table 1 Clinical features and baseline characteristics of patients in the cohorts
Variable
Training cohort
P value
Validation cohort
P value
Poor
Well/moderate
Poor
Well/moderate
Age (yr)59.41 ± 11.2663.38 ± 11.070.07258.12 ± 9.6361.95 ± 11.790.148
CEA (ng/mL)16.65 ± 30.5620.94 ± 61.370.31924.13 ± 51.8420.94 ± 75.570.446
CA199 (U/mL)55.95 ± 101.6441.13 ± 115.480.17428.74 ± 36.8526.32 ± 58.410.349
Size (cm)4.26 ± 1.904.65 ± 1.590.2524.24 ± 2.234.88 ± 1.850.067
Gender0.9630.777
    Male18 (56.25)110 (58.51)9 (52.94)47 (60.26)
    Female14 (43.75)78 (41.49)8 (47.06)31 (39.74)
Location0.240.947
    Left11 (34.38)43 (22.87)4 (23.53)15 (19.23)
    Right21 (65.62)145 (77.13)13 (76.47)63 (80.77)
T stage0.4960.343
    T1Null4 (2.13)Null2 (2.56)
    T24 (12.50)22 (11.70)1 (5.88)8 (10.26)
    T322 (68.75)142 (75.53)11 (64.71)58 (74.36)
    T46 (18.75)20 (10.64)5 (29.41)10 (12.82)
N stage< 0.0010.047
    N09 (28.12)96 (51.06)6 (35.29)43 (55.13)
    N16 (18.75)56 (29.79)5 (29.41)26 (33.33)
    N217 (53.12)36 (19.15)6 (35.29)9 (11.54)
Circumference0.0210.702
    ≤ 1/26 (18.75)79 (42.02)8 (47.06)30 (38.46)
    > 1/226 (81.25)109 (57.98)9 (52.94)48 (61.54)
Neural invasion0.0330.81
    Absent12 (37.50)112 (59.57)8 (47.06)42 (53.85)
    Present20 (62.50)76 (40.43)9 (52.94)36 (46.15)
Vascular invasion0.0140.177
    Absent11 (34.38)112 (59.57)8 (47.06)53 (67.95)
    Present21 (65.62)76 (40.43)9 (52.94)25 (32.05)
Table 2 Comparative analysis of machine learning modeling of radiomics

AUC
95%CI
Sensitivity
Specificity
Accuracy
PPV
PPV
Training cohort
    LR0.7370.656-0.8180.5270.8750.5770.9610.239
    SVM0.9860.973-0.9990.9471.0000.9551.0000.762
    KNN0.8800.835-0.9240.6491.0000.7001.0000.327
    RF1.0000.999-1.0000.9891.0000.9911.0000.941
    ET1.0001.000-1.0001.0001.0001.0001.0001.000
    XGBoost1.0001.000-1.0001.0001.0001.0001.0001.000
    LightGBM0.9720.953-0.9920.9100.9690.9180.9940.646
    MLP0.7960.723-0.8690.6600.8120.6820.9540.289
Validation cohort
    LR0.7280.586-0.8700.6920.7650.5770.9310.351
    SVM0.6840.527-0.8410.7560.5880.9550.8940.345
    KNN0.6290.485-0.7720.6281.0000.7000.8750.256
    RF0.5970.442-0.7520.8720.4170.9910.8500.333
    ET0.6200.497-0.7430.4231.0001.0000.9430.250
    XGBoost0.5940.430-0.7580.8080.4711.0000.8750.348
    LightGBM0.6010.464-0.7390.3720.8820.9180.9350.234
    MLP0.7350.604-0.8660.6410.8240.6820.9430.333
Table 3 The prediction performance of the three models in the training group and the test group
Model
Training cohort
Validation cohort
AUC
95%CI
Sensitivity
Specificity
AUC
95%CI
Sensitivity
Specificity
clinical 0.7510.661-0.8420.6600.7190.6760.525-0.8270.7310.647
Radiomics0.7960.723-0.8690.6600.8120.7350.604-0.8660.6410.824
Radiomics-clinical model0.8620.796-0.9270.7770.8120.7610.635-0.8870.7050.765