Copyright
©The Author(s) 2024.
World J Gastrointest Oncol. Oct 15, 2024; 16(10): 4115-4128
Published online Oct 15, 2024. doi: 10.4251/wjgo.v16.i10.4115
Published online Oct 15, 2024. doi: 10.4251/wjgo.v16.i10.4115
Table 1 Comparison of clinical characteristics between responders and non-responders, n (%)
| Characteristics | Responders (n = 15) | Non-responders (n = 45) | P value |
| Age (years), average (mean ± SD) | 57.53 (12.710) | 58.64 (11.682) | 0.756 |
| Sex | 0.856 | ||
| Male | 12 (80.0) | 35 (77.8) | |
| Female | 3 (20.0) | 10 (22.2) | |
| Treatment cycles | 0.579 | ||
| 2 | 2 (13.3) | 8 (17.8) | |
| 3 | 9 (60.0) | 20 (44.4) | |
| 4 + | 4 (26.7) | 17 (37.8) | |
| Differentiation | 0.526 | ||
| High | 1 (6.7) | 1 (2.2) | |
| Moderate | 5 (33.3) | 11 (24.4) | |
| Poor | 9 (60.0) | 33 (73.3) | |
| Primary tumor location | 0.977 | ||
| Cardia | 3 (20.0) | 8 (17.8) | |
| Body | 6 (40.0) | 16 (35.6) | |
| Antrum | 4 (26.7) | 14 (31.1) | |
| Horn | 2 (13.3) | 7 (15.6) | |
| PD-L1(22C3) CPS | 0.237 | ||
| ≥ 5 | 10 (66.7) | 26 (57.8) | |
| < 5 | 5 (33.3) | 19 (42.2) | |
| CEA, median (IQR) | 2.84 (0.93-17.84) | 4.15 (1.75-9.52) | 0.706 |
| CA199, median (IQR) | 9.08 (3.85-28.89) | 16.23 (8.37-37.61) | 0.264 |
| T stage | 0.004 | ||
| 1 | 4 (26.7) | 0 (0) | |
| 2 | 1 (6.7) | 4 (8.9) | |
| 3 | 3 (20.0) | 18 (40.0) | |
| 4 | 7 (46.7) | 23 (51.1) | |
| N stage | 0.044 | ||
| 0 | 0 (0) | 1 (2.2) | |
| 1 | 11 (73.3) | 18 (40.0) | |
| 2 | 4 (26.7) | 18 (40.0) | |
| 3 | 0 (0) | 8 (17.8) |
Table 2 Baseline characteristics of enrolled advanced gastric cancer patients in the training cohort and test cohorts, n (%)
| Characteristics | Total (n = 60) | Training (n = 42) | Test (n = 18) | P value |
| Age (years), average (mean ± SD) | 58.37 (11.846) | 58.26 (11.847) | 58.6 (12.186) | 0.918 |
| Sex | 0.945 | |||
| Male | 47 (78.3) | 33 (78.6) | 14 (77.8) | |
| Female | 13 (21.7) | 9 (21.4) | 4 (22.2) | |
| Treatment cycles | 0.201 | |||
| 2 | 10 (16.7) | 5 (11.9) | 5 (27.8) | |
| 3 | 29 (48.3) | 23 (54.8) | 6 (33.3) | |
| 4 + | 21 (35) | 14 (33.3) | 7 (38.9) | |
| Differentiation | 0.642 | |||
| High | 2 (3.3) | 2 (4.8) | 0 (0.0) | |
| Moderate | 16 (26.7) | 11 (26.2) | 5 (27.8) | |
| Poor | 42 (70) | 29 (69.0) | 13 (72.2) | |
| Primary tumor location | 0.467 | |||
| Cardia | 11 (18.3) | 9 (21.4) | 2 (11.1) | |
| Body | 22 (36.7) | 13 (31.0) | 9 (50.0) | |
| Antrum | 18 (30.0) | 14 (33.3) | 4 (22.2) | |
| Horn | 9 (15.0) | 6 (14.3) | 3 (16.7) | |
| PD-L1(22C3) CPS | 0.767 | |||
| ≥ 5 | 36 (60.0) | 24 (57.1) | 12 (66.7) | |
| < 5 | 24 (40.0) | 18 (42.9) | 6 (33.3) | |
| CEA, median (IQR) | 3.54 (1.41-11.09) | 3.51 (1.49-11.74) | 4.75 (2.10-7.89) | 0.959 |
| CA199, median (IQR) | 14.63 (7.36-33.39) | 16.37 (7.59-36.25) | 11.13 (4.92-26.16) | 0.948 |
| T stage | 0.456 | |||
| 1 | 4 (6.7) | 4 (9.5) | 0 (0) | |
| 2 | 5 (8.3) | 4 (9.5) | 1 (5.6) | |
| 3 | 21 (35.0) | 13 (30.9) | 8 (44.4) | |
| 4 | 30 (50.0) | 21 (50.0) | 9 (50.0) | |
| N stage | 0.344 | |||
| 0 | 1 (1.7) | 0 (0) | 1 (5.6) | |
| 1 | 29 (48.3) | 22 (52.4) | 7 (38.9) | |
| 2 | 22 (36.7) | 14 (33.3) | 8 (44.4) | |
| 3 | 8 (13.3) | 6 (14.3) | 2 (11.1) |
Table 3 Comparison of radiomic models based on various machine learning methods
| Radiomic model | Accuracy | AUC | 95%CI | Sensitivity | Specificity | PPV | NPV | |
| LR | Train | 0.976 | 1 | 1.0000-1.0000 | 0.909 | 1 | 1 | 0.969 |
| Test | 0.778 | 0.786 | 0.4783-1.0000 | 0.5 | 0.857 | 0.5 | 0.857 | |
| SVM | Train | 0.976 | 1 | 1.0000-1.0000 | 0.909 | 1 | 1 | 0.969 |
| Test | 0.722 | 0.75 | 0.4478-1.0000 | 0.5 | 0.786 | 0.4 | 0.846 | |
| KNN | Train | 0.81 | 0.897 | 0.8034-0.9913 | 0.545 | 0.903 | 0.667 | 0.848 |
| Test | 0.778 | 0.821 | 0.6369-1.0000 | 0.5 | 0.857 | 0.5 | 0.857 | |
| RF | Train | 0.976 | 1 | 1.0000-1.0000 | 0.909 | 1 | 1 | 0.969 |
| Test | 0.833 | 0.679 | 0.2120-1.0000 | 0.25 | 1 | 1 | 0.824 | |
| Extra trees | Train | 0.976 | 1 | 1.0000-1.0000 | 0.909 | 1 | 1 | 0.969 |
| Test | 0.722 | 0.616 | 0.2080-1.0000 | 0.25 | 0.857 | 0.333 | 0.8 | |
| XGBoost | Train | 0.976 | 1 | 1.0000-1.0000 | 0.909 | 1 | 1 | 0.969 |
| Test | 0.833 | 0.75 | 0.4352-1.0000 | 0.25 | 1 | 1 | 0.824 | |
| MLP | Train | 0.952 | 0.997 | 0.9889-1.0000 | 0.909 | 0.968 | 0.909 | 0.968 |
| Test | 0.722 | 0.768 | 0.4914-1.0000 | 0.5 | 0.786 | 0.4 | 0.846 |
Table 4 Comparison of clinical models based on various machine learning methods
| Clinical model | Accuracy | AUC | 95%CI | Sensitivity | Specificity | PPV | NPV | |
| LR | Train | 0.81 | 0.837 | 0.6807-0.9938 | 0.636 | 0.871 | 0.636 | 0.871 |
| Test | 0.278 | 0.482 | 0.1362-0.8281 | 0.75 | 0.143 | 0.2 | 0.667 | |
| SVM | Train | 0.238 | 0.151 | 0.0000-0.3234 | 0.909 | 0 | 0.244 | 0 |
| Test | 0.444 | 0.571 | 0.2439-0.8990 | 0.75 | 0.357 | 0.25 | 0.833 | |
| KNN | Train | 0.786 | 0.787 | 0.6543-0.9205 | 0.182 | 1 | 1 | 0.775 |
| Test | 0.722 | 0.607 | 0.3612-0.8531 | 0.25 | 0.857 | 0.333 | 0.8 | |
| RF | Train | 0.929 | 0.993 | 0.9763-1.0000 | 0.818 | 0.968 | 0.9 | 0.937 |
| Test | 0.556 | 0.688 | 0.4253-0.9497 | 0.75 | 0.5 | 0.3 | 0.875 | |
| Extra trees | Train | 0.976 | 0.999 | 0.9945-1.0000 | 0.909 | 1 | 1 | 0.969 |
| Test | 0.611 | 0.589 | 0.2299-0.9487 | 0.5 | 0.643 | 0.286 | 0.818 | |
| XGBoost | Train | 0.857 | 0.937 | 0.8683-1.0000 | 0.818 | 0.871 | 0.692 | 0.931 |
| Test | 0.667 | 0.696 | 0.4403-0.9526 | 0.5 | 0.714 | 0.333 | 0.833 | |
| MLP | Train | 0.833 | 0.82 | 0.6535-0.9858 | 0.727 | 0.871 | 0.667 | 0.9 |
| Test | 0.722 | 0.429 | 0.0520-0.8052 | 0 | 0.929 | 0 | 0.765 |
- Citation: Zhang J, Wang Q, Guo TH, Gao W, Yu YM, Wang RF, Yu HL, Chen JJ, Sun LL, Zhang BY, Wang HJ. Computed tomography-based radiomic model for the prediction of neoadjuvant immunochemotherapy response in patients with advanced gastric cancer. World J Gastrointest Oncol 2024; 16(10): 4115-4128
- URL: https://www.wjgnet.com/1948-5204/full/v16/i10/4115.htm
- DOI: https://dx.doi.org/10.4251/wjgo.v16.i10.4115
