Editorial Open Access
Copyright ©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Gastrointest Oncol. Mar 15, 2024; 16(3): 577-582
Published online Mar 15, 2024. doi: 10.4251/wjgo.v16.i3.577
Neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio: Markers predicting immune-checkpoint inhibitor efficacy and immune-related adverse events
Qiu-Yu Jiang, Ru-Yi Xue, Department of Gastroenterology and Hepatology, Zhongshan Hospital, Shanghai Institute of Liver Disease, Fudan University, Shanghai 200032, China
Ru-Yi Xue, Department of Gastroenterology and Hepatology, Shanghai Baoshan District Wusong Central Hospital (Zhongshan Hospital Wusong Branch, Fudan University), Shanghai 200940, China
ORCID number: Qiu-Yu Jiang (0000-0003-2874-8152); Ru-Yi Xue (0000-0002-5710-0091).
Author contributions: Jiang QY wrote the original draft; Xue RY conceptualized and revised the manuscript.
Conflict-of-interest statement: The authors declare no conflict of interest.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Ru-Yi Xue, MD, PhD, Chief Physician, Department of Gastroenterology and Hepatology, Zhongshan Hospital, Shanghai Institute of Liver Disease, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China. xue.ruyi@zs-hospital.sh.cn
Received: November 1, 2023
Peer-review started: November 1, 2023
First decision: December 6, 2023
Revised: December 14, 2023
Accepted: January 18, 2024
Article in press: January 18, 2024
Published online: March 15, 2024
Processing time: 131 Days and 21.1 Hours

Abstract

We conducted a comprehensive review of existing prediction models pertaining to the efficacy of immune-checkpoint inhibitor (ICI) and the occurrence of immune-related adverse events (irAEs). The predictive potential of neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) in determining ICI effectiveness has been extensively investigated, while limited research has been conducted on predicting irAEs. Furthermore, the combined model incorporating NLR and PLR, either with each other or in conjunction with additional markers such as carcinoembryonic antigen, exhibits superior predictive capabilities compared to individual markers alone. NLR and PLR are promising markers for clinical applications. Forthcoming models ought to incorporate established efficacious models and newly identified ones, thereby constituting a multifactor composite model. Furthermore, efforts should be made to explore effective clinical application approaches that enhance the predictive accuracy and efficiency.

Key Words: Neutrophil-to-lymphocyte ratio; Platelet-to-lymphocyte ratio; Immune-checkpoint inhibitor; Immune-related adverse event

Core Tip: The negative correlation between high baseline neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) and the effectiveness of immune-checkpoint inhibitor (ICI) treatment has been confirmed in non-small cell lung cancer, melanoma, and hepatocellular carcinoma. However, there is a scarcity of studies investigating the prediction of immune-related adverse events (irAEs) occurrence. By incorporating NLR and PLR with other potential risk factors, it is possible to enhance the predictive accuracy of both ICI response and irAEs occurrence through the development of joint prediction models. This approach can aid in the selection of appropriate candidates for ICIs.



INTRODUCTION

Monoclonal antibodies targeting immune checkpoints, commonly known as immune-checkpoint inhibitors (ICIs), have significantly transformed cancer therapy and are now widely used in cancer treatment. Despite the notable advancements in patient outcomes across various cancer types, it is important to acknowledge that only a minority of patients receiving ICI therapies experience a sustained response. Among patients with melanoma, a malignancy known for its high responsiveness to ICI, a significant proportion, ranging from 60% to 70%, fail to exhibit an objective response to anti-PD-1 therapy. Furthermore, within the subset of responders, approximately 20% to 30% eventually encounter tumor relapse and progression[1,2].

Despite the considerable advantages that ICIs have provided to patients, the excessive activation of the immune system to enhance antitumor immunity can have both positive and negative consequences. One such consequence is the emergence of immune-related adverse events (irAEs), which are frequently observed in individuals undergoing ICI treatment[3,4]. Studies have shown that approximately 30%-60% of patients experience irAEs, with around 10%-20% experiencing more severe irAEs (grade three or four)[3-5]. The majority of irAEs primarily affect the colon, liver, lungs, pituitary gland, thyroid, and skin, although there have been rare instances of adverse events involving the heart, nervous system, and other organs[6].

The occurrence and intensity of irAEs vary among different immune checkpoint therapies. Anti-PD-1 therapy was demonstrated to be safer compared to anti-CTLA-4 therapy. In patients diagnosed with melanoma, administration of ICIs before any other treatment resulted in grade three or four irAEs in 27.3% of patients using anti-CTLA-4 and 16.3% of patients using anti-PD-1[7]. Combination of both anti-CTLA-4 and anti-PD-1 for advanced melanoma significantly increased both the frequency and severity of irAEs, showing a high-grade irAEs rate of 55%among patients[7]. In addition to variations in the frequency and severity of irAEs, the administration of ICIs also leads to irAEs that exhibit differences in terms of organ manifestation. Specifically, anti-CTLA-4 therapy is associated with a higher incidence of hypophysitis and more severe cases of colitis, whereas anti-PD-1 therapy is linked to a greater occurrence of pneumonitis, thyroiditis, and nephritis[3,6].

PREDICTION MODELS OF ICI EFFICACY AND IRAES OCCURANCE

The identification of predictive biomarkers is imperative in order to discern patients who may experience favorable outcomes or adverse events as a result of ICI. There are many predictive models of immunotherapy reactivity. Several biomarkers related to the tumor microenvironment, such as PD-L1, CD8+ T cell infiltration, and microsatellite instability, have been utilized in clinical settings to identify appropriate candidates for immunotherapy[8,9]. However, their sensitivities and specificities vary and lack uniformity. Currently, diverse immune cell-associated signatures have been developed to enhance the prognostication of immunotherapy effectiveness. According to the TIGER database, the signatures T cell-inflamed GEP[10], CAF[11], TAM M2[11], IFNG[11], CD8[11], CD274[11], TLS[12], TLS-melanoma[12], T cell dysfunction[11], T cell exclusion[11] and MDSC[11] exhibited an overall aera under curve (AUC) of 0.6632, 0.6059, 0.5928, 0.5806, 0.6594, 0.6140, 0.6495, 0.6586, and 0.6078, respectively. Despite their recognition, these signatures still do not demonstrate satisfactory predictive efficacy. Future investigations could potentially explore the identification of additional signatures or the recombination of existing models using diverse detection methods to further enhance efficiency. As an example, our previous research[13] has successfully developed a novel immunohistochemistry model that incorporated three activated CD4+ memory T cell-related genes (CD36, BATF2, and MYB) along with traditional biomarkers CD8 and PD-L1. This combined model has demonstrated enhanced predictive capability (AUC = 0.821) in the context of immunotherapy for gastric cancer patients.

In contrast, studies of signatures linked to irAEs are relatively lacking. Previous retrospective series have identified various clinical characteristics, germline and somatic genetic features, microbiome composition, and circulating biomarkers that are associated with an increased risk of developing irAEs. Specifically, factors such as pre-existing autoimmune disease[14-18], sex and body mass index[19-22], response to ICI[5,23-28], circulating cytokines and immune cells[19,29-31], inherited genetic variants[32,33], and microbiome[34-36] have been previously implicated in the prediction of irAEs.

PREDICTION MODELS BASED ON NEUTROPHIL-TO-LYMPHOCYTE RATIO AND PLATELET-TO-LYMPHOCYTE RATIO

In the latest edition of the World Journal of Gastrointestinal Oncology, Dharmapuri et al[37] presented a noteworthy retrospective study titled "Baseline neutrophil-lymphocyte ratio and platelet-lymphocyte ratio as potential predictors of immune treatment-related toxicity in hepatocellular carcinoma". This study involved the analysis of 361 patients who received ICI monotherapy or combination therapy for hepatocellular carcinoma (HCC) between 2016 and 2020. The patients' basic clinical characteristics, neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), steroid usage, presence of underlying diseases, and treatment regimens were examined. The researchers made the discovery that NLR and PLR can be used as predictive indicators for immune treatment related toxicity in HCC. It was found that high baseline NLR (> 5) and PLR (> 300) are associated with a decreased incidence of grade ≥ 2 irAEs, while lower baseline NLR (< 5) and PLR (< 300) may serve as predictive biomarkers [odds ratio (OR) = 0.26; P = 0.011] for the occurrence of irAEs in HCC patients undergoing treatment with ICIs. Similarly, it has been reported that within a cohort of 470 patients with diverse solid tumors who underwent ICI therapy, higher baseline ALC (> 2.6 k/μL) (adjusted OR: 4.30), absolute monocyte count (> 0.29 k/μL; adjusted OR: 2.34), and platelet count (> 145 k/μL) (adjusted OR: 2.23) were found to be associated with a higher incidence of irAEs[18]. The NLR and PLR have also been reported to predict prognosis in various fatal diseases such as gastric cancer[38], non-small cell lung cancer (NSCLC)[39], colorectal cancer[40], and acute myocardial infarction[41] in previous studies. Furthermore, these markers have proven to be valuable in the prediction of ICI response[42-46] and irAEs[47], encompassing NSCLC and HCC. Consequently, they have gained extensive utilization as indicators of inflammation for the anticipation of immunotherapy response and irAEs.

The present research not only examined the individual predictive capabilities of NLR and PLR, but also investigated their collective predictive abilities, as well as their combined predictive abilities when used in conjunction with other indicators. Chen et al[48] found that NLR combined with carcinoembryonic antigen demonstrated superior predictive efficacy in determining the effectiveness of immunotherapy at either week 6 or 12 post-treatment in patients with NSCLC, compared to NLR alone. Similarly, Kartolo et al[49] proposed that combining NLR with PLR resulted in improved prediction of overall survival (OS) or progression-free survival in patients with melanoma and NSCLC who were undergoing anti-PD-1 therapy, surpassing the predictive capabilities of either indicator used independently. The study conducted by Lu et al[50] revealed that the combination of PLR and NLR demonstrated superior predictive ability for OS in stage III/IV NSCLC patients undergoing immunotherapy, compared to PLR alone. However, there is currently no identified composite model that incorporates these two factors along with other predictors to forecast the risk of irAEs. This presents a promising avenue for future research.

CONCLUSION

Considering the prevailing research trend in the current literature, which involves the development of integrated models for multiple risk factors, it is plausible to combine markers such as NLR and PLR, which have been independently linked to prognosis or irAEs in patients undergoing immunotherapy, with other recently identified or pre-existing markers. This amalgamation can be employed to enhance the effectiveness and precision of individual predictions, while also facilitating the selection of the most suitable model for clinical translation, in comparison to previous prediction models. Gaining insight into the fundamental mechanisms of inflammatory markers, such as NLR and PLR, as prognostic indicators, also enables the enhancement and fine-tuning of the model to effectively tackle prevailing obstacles related to immune therapy response rates and frequent adverse reactions. Furthermore, as highlighted by the author, it is imperative to conduct prospective large-scale cohort studies to authenticate the predictive efficacy of models integrating markers like NLR and PLR, and to propose appropriate detection techniques that are applicable in clinical settings, thereby expediting the translation of these findings into practical clinical applications.

Footnotes

Provenance and peer review: Invited article; Externally peer reviewed.

Peer-review model: Single blind

Specialty type: Oncology

Country/Territory of origin: China

Peer-review report’s scientific quality classification

Grade A (Excellent): 0

Grade B (Very good): 0

Grade C (Good): C

Grade D (Fair): 0

Grade E (Poor): 0

P-Reviewer: Adam CA, Romania S-Editor: Lin C L-Editor: A P-Editor: Zhao S

References
1.  Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, Patnaik A, Aggarwal C, Gubens M, Horn L, Carcereny E, Ahn MJ, Felip E, Lee JS, Hellmann MD, Hamid O, Goldman JW, Soria JC, Dolled-Filhart M, Rutledge RZ, Zhang J, Lunceford JK, Rangwala R, Lubiniecki GM, Roach C, Emancipator K, Gandhi L; KEYNOTE-001 Investigators. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 2015;372:2018-2028.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 4095]  [Cited by in F6Publishing: 4655]  [Article Influence: 517.2]  [Reference Citation Analysis (0)]
2.  Ott PA, Bang YJ, Piha-Paul SA, Razak ARA, Bennouna J, Soria JC, Rugo HS, Cohen RB, O'Neil BH, Mehnert JM, Lopez J, Doi T, van Brummelen EMJ, Cristescu R, Yang P, Emancipator K, Stein K, Ayers M, Joe AK, Lunceford JK. T-Cell-Inflamed Gene-Expression Profile, Programmed Death Ligand 1 Expression, and Tumor Mutational Burden Predict Efficacy in Patients Treated With Pembrolizumab Across 20 Cancers: KEYNOTE-028. J Clin Oncol. 2019;37:318-327.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 388]  [Cited by in F6Publishing: 597]  [Article Influence: 99.5]  [Reference Citation Analysis (0)]
3.  Martins F, Sofiya L, Sykiotis GP, Lamine F, Maillard M, Fraga M, Shabafrouz K, Ribi C, Cairoli A, Guex-Crosier Y, Kuntzer T, Michielin O, Peters S, Coukos G, Spertini F, Thompson JA, Obeid M. Adverse effects of immune-checkpoint inhibitors: epidemiology, management and surveillance. Nat Rev Clin Oncol. 2019;16:563-580.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 690]  [Cited by in F6Publishing: 1246]  [Article Influence: 249.2]  [Reference Citation Analysis (0)]
4.  Bajwa R, Cheema A, Khan T, Amirpour A, Paul A, Chaughtai S, Patel S, Patel T, Bramson J, Gupta V, Levitt M, Asif A, Hossain MA. Adverse Effects of Immune Checkpoint Inhibitors (Programmed Death-1 Inhibitors and Cytotoxic T-Lymphocyte-Associated Protein-4 Inhibitors): Results of a Retrospective Study. J Clin Med Res. 2019;11:225-236.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 96]  [Cited by in F6Publishing: 128]  [Article Influence: 25.6]  [Reference Citation Analysis (0)]
5.  Das S, Johnson DB. Immune-related adverse events and anti-tumor efficacy of immune checkpoint inhibitors. J Immunother Cancer. 2019;7:306.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 702]  [Cited by in F6Publishing: 658]  [Article Influence: 131.6]  [Reference Citation Analysis (0)]
6.  Postow MA, Sidlow R, Hellmann MD. Immune-Related Adverse Events Associated with Immune Checkpoint Blockade. N Engl J Med. 2018;378:158-168.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 2308]  [Cited by in F6Publishing: 2812]  [Article Influence: 468.7]  [Reference Citation Analysis (0)]
7.  Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, Schadendorf D, Dummer R, Smylie M, Rutkowski P, Ferrucci PF, Hill A, Wagstaff J, Carlino MS, Haanen JB, Maio M, Marquez-Rodas I, McArthur GA, Ascierto PA, Long GV, Callahan MK, Postow MA, Grossmann K, Sznol M, Dreno B, Bastholt L, Yang A, Rollin LM, Horak C, Hodi FS, Wolchok JD. Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. N Engl J Med. 2015;373:23-34.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 6070]  [Cited by in F6Publishing: 5940]  [Article Influence: 660.0]  [Reference Citation Analysis (0)]
8.  He Y, Zhang X, Jia K, Dziadziuszko R, Zhao S, Deng J, Wang H, Hirsch FR, Zhou C. OX40 and OX40L protein expression of tumor infiltrating lymphocytes in non-small cell lung cancer and its role in clinical outcome and relationships with other immune biomarkers. Transl Lung Cancer Res. 2019;8:352-366.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 21]  [Cited by in F6Publishing: 24]  [Article Influence: 4.8]  [Reference Citation Analysis (0)]
9.  Joshi SS, Badgwell BD. Current treatment and recent progress in gastric cancer. CA Cancer J Clin. 2021;71:264-279.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 382]  [Cited by in F6Publishing: 854]  [Article Influence: 284.7]  [Reference Citation Analysis (0)]
10.  Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A, Kaufman DR, Albright A, Cheng JD, Kang SP, Shankaran V, Piha-Paul SA, Yearley J, Seiwert TY, Ribas A, McClanahan TK. IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest. 2017;127:2930-2940.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1686]  [Cited by in F6Publishing: 2434]  [Article Influence: 347.7]  [Reference Citation Analysis (0)]
11.  Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X, Li Z, Traugh N, Bu X, Li B, Liu J, Freeman GJ, Brown MA, Wucherpfennig KW, Liu XS. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat Med. 2018;24:1550-1558.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1184]  [Cited by in F6Publishing: 2876]  [Article Influence: 479.3]  [Reference Citation Analysis (0)]
12.  Cabrita R, Lauss M, Sanna A, Donia M, Skaarup Larsen M, Mitra S, Johansson I, Phung B, Harbst K, Vallon-Christersson J, van Schoiack A, Lövgren K, Warren S, Jirström K, Olsson H, Pietras K, Ingvar C, Isaksson K, Schadendorf D, Schmidt H, Bastholt L, Carneiro A, Wargo JA, Svane IM, Jönsson G. Author Correction: Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature. 2020;580:E1.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 17]  [Cited by in F6Publishing: 35]  [Article Influence: 8.8]  [Reference Citation Analysis (0)]
13.  Jiang Q, Chen Z, Meng F, Zhang H, Chen H, Xue J, Shen X, Liu T, Dong L, Zhang S, Xue R. CD36-BATF2\MYB Axis Predicts Anti-PD-1 Immunotherapy Response in Gastric Cancer. Int J Biol Sci. 2023;19:4476-4492.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in F6Publishing: 7]  [Reference Citation Analysis (0)]
14.  van der Kooij MK, Suijkerbuijk KPM, Aarts MJB, van den Berkmortel FWPJ, Blank CU, Boers-Sonderen MJ, van Breeschoten J, van den Eertwegh AJM, de Groot JWB, Haanen JBAG, Hospers GAP, Piersma D, van Rijn RS, Ten Tije AJ, van der Veldt AAM, Vreugdenhil G, van Zeijl MCT, Wouters MWJM, Dekkers OM, Kapiteijn E. Safety and Efficacy of Checkpoint Inhibition in Patients With Melanoma and Preexisting Autoimmune Disease : A Cohort Study. Ann Intern Med. 2021;174:641-648.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 22]  [Cited by in F6Publishing: 43]  [Article Influence: 14.3]  [Reference Citation Analysis (0)]
15.  Fountzilas E, Lampaki S, Koliou GA, Koumarianou A, Levva S, Vagionas A, Christopoulou A, Laloysis A, Psyrri A, Binas I, Mountzios G, Kentepozidis N, Kotsakis A, Saloustros E, Boutis A, Nikolaidi A, Fountzilas G, Georgoulias V, Chrysanthidis M, Kotteas E, Vo H, Tsiatas M, Res E, Linardou H, Daoussis D, Bompolaki I, Andreadou A, Papaxoinis G, Spyratos D, Gogas H, Syrigos KN, Bafaloukos D. Real-world safety and efficacy data of immunotherapy in patients with cancer and autoimmune disease: the experience of the Hellenic Cooperative Oncology Group. Cancer Immunol Immunother. 2022;71:327-337.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 8]  [Cited by in F6Publishing: 18]  [Article Influence: 6.0]  [Reference Citation Analysis (0)]
16.  Alexander S, Swami U, Kaur A, Gao Y, Fatima M, Ginn MM, Stein JE, Grivas P, Zakharia Y, Singh N. Safety of immune checkpoint inhibitors in patients with cancer and pre-existing autoimmune disease. Ann Transl Med. 2021;9:1033.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 7]  [Cited by in F6Publishing: 22]  [Article Influence: 7.3]  [Reference Citation Analysis (0)]
17.  Abu-Sbeih H, Faleck DM, Ricciuti B, Mendelsohn RB, Naqash AR, Cohen JV, Sellers MC, Balaji A, Ben-Betzalel G, Hajir I, Zhang J, Awad MM, Leonardi GC, Johnson DB, Pinato DJ, Owen DH, Weiss SA, Lamberti G, Lythgoe MP, Manuzzi L, Arnold C, Qiao W, Naidoo J, Markel G, Powell N, Yeung SJ, Sharon E, Dougan M, Wang Y. Immune Checkpoint Inhibitor Therapy in Patients With Preexisting Inflammatory Bowel Disease. J Clin Oncol. 2020;38:576-583.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 89]  [Cited by in F6Publishing: 127]  [Article Influence: 31.8]  [Reference Citation Analysis (0)]
18.  Michailidou D, Khaki AR, Morelli MP, Diamantopoulos L, Singh N, Grivas P. Association of blood biomarkers and autoimmunity with immune related adverse events in patients with cancer treated with immune checkpoint inhibitors. Sci Rep. 2021;11:9029.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 9]  [Cited by in F6Publishing: 36]  [Article Influence: 12.0]  [Reference Citation Analysis (0)]
19.  Valpione S, Pasquali S, Campana LG, Piccin L, Mocellin S, Pigozzo J, Chiarion-Sileni V. Sex and interleukin-6 are prognostic factors for autoimmune toxicity following treatment with anti-CTLA4 blockade. J Transl Med. 2018;16:94.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 81]  [Cited by in F6Publishing: 127]  [Article Influence: 21.2]  [Reference Citation Analysis (0)]
20.  Guzman-Prado Y, Ben Shimol J, Samson O. Body mass index and immune-related adverse events in patients on immune checkpoint inhibitor therapies: a systematic review and meta-analysis. Cancer Immunol Immunother. 2021;70:89-100.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 18]  [Cited by in F6Publishing: 31]  [Article Influence: 7.8]  [Reference Citation Analysis (0)]
21.  Shah KP, Song H, Ye F, Moslehi JJ, Balko JM, Salem JE, Johnson DB. Demographic Factors Associated with Toxicity in Patients Treated with Anti-Programmed Cell Death-1 Therapy. Cancer Immunol Res. 2020;8:851-855.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 27]  [Cited by in F6Publishing: 31]  [Article Influence: 7.8]  [Reference Citation Analysis (0)]
22.  Young AC, Quach HT, Song H, Davis EJ, Moslehi JJ, Ye F, Williams GR, Johnson DB. Impact of body composition on outcomes from anti-PD1 +/- anti-CTLA-4 treatment in melanoma. J Immunother Cancer. 2020;8.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 61]  [Cited by in F6Publishing: 61]  [Article Influence: 15.3]  [Reference Citation Analysis (0)]
23.  Di Giacomo AM, Grimaldi AM, Ascierto PA, Queirolo P, Del Vecchio M, Ridolfi R, De Rosa F, De Galitiis F, Testori A, Cognetti F, Bernengo MG, Savoia P, Guida M, Strippoli S, Galli L, Mandala M, Parmiani G, Rinaldi G, Aglietta M, Chiarion-Sileni V. Correlation between efficacy and toxicity in pts with pretreated advanced melanoma treated within the Italian cohort of the ipilimumab expanded access programme (EAP). J Clin Oncol. 2013;31.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 7]  [Cited by in F6Publishing: 7]  [Article Influence: 0.6]  [Reference Citation Analysis (0)]
24.  Xing P, Zhang F, Wang G, Xu Y, Li C, Wang S, Guo Y, Cai S, Wang Y, Li J. Incidence rates of immune-related adverse events and their correlation with response in advanced solid tumours treated with NIVO or NIVO+IPI: a systematic review and meta-analysis. J Immunother Cancer. 2019;7:341.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 82]  [Cited by in F6Publishing: 115]  [Article Influence: 23.0]  [Reference Citation Analysis (0)]
25.  Jing Y, Liu J, Ye Y, Pan L, Deng H, Wang Y, Yang Y, Diao L, Lin SH, Mills GB, Zhuang G, Xue X, Han L. Multi-omics prediction of immune-related adverse events during checkpoint immunotherapy. Nat Commun. 2020;11:4946.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 56]  [Cited by in F6Publishing: 112]  [Article Influence: 28.0]  [Reference Citation Analysis (0)]
26.  Haratani K, Hayashi H, Chiba Y, Kudo K, Yonesaka K, Kato R, Kaneda H, Hasegawa Y, Tanaka K, Takeda M, Nakagawa K. Association of Immune-Related Adverse Events With Nivolumab Efficacy in Non-Small-Cell Lung Cancer. JAMA Oncol. 2018;4:374-378.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 531]  [Cited by in F6Publishing: 695]  [Article Influence: 139.0]  [Reference Citation Analysis (0)]
27.  Wang Y, Abu-Sbeih H, Mao E, Ali N, Ali FS, Qiao W, Lum P, Raju G, Shuttlesworth G, Stroehlein J, Diab A. Immune-checkpoint inhibitor-induced diarrhea and colitis in patients with advanced malignancies: retrospective review at MD Anderson. J Immunother Cancer. 2018;6:37.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 120]  [Cited by in F6Publishing: 171]  [Article Influence: 28.5]  [Reference Citation Analysis (0)]
28.  Bomze D, Hasan Ali O, Bate A, Flatz L. Association Between Immune-Related Adverse Events During Anti-PD-1 Therapy and Tumor Mutational Burden. JAMA Oncol. 2019;5:1633-1635.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 62]  [Cited by in F6Publishing: 96]  [Article Influence: 19.2]  [Reference Citation Analysis (0)]
29.  Tyan K, Baginska J, Brainard M, Giobbie-Hurder A, Severgnini M, Manos M, Haq R, Buchbinder EI, Ott PA, Hodi FS, Rahma OE. Cytokine changes during immune-related adverse events and corticosteroid treatment in melanoma patients receiving immune checkpoint inhibitors. Cancer Immunol Immunother. 2021;70:2209-2221.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 15]  [Cited by in F6Publishing: 13]  [Article Influence: 4.3]  [Reference Citation Analysis (0)]
30.  Lim SY, Lee JH, Gide TN, Menzies AM, Guminski A, Carlino MS, Breen EJ, Yang JYH, Ghazanfar S, Kefford RF, Scolyer RA, Long GV, Rizos H. Circulating Cytokines Predict Immune-Related Toxicity in Melanoma Patients Receiving Anti-PD-1-Based Immunotherapy. Clin Cancer Res. 2019;25:1557-1563.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 147]  [Cited by in F6Publishing: 242]  [Article Influence: 40.3]  [Reference Citation Analysis (0)]
31.  Tarhini AA, Zahoor H, Lin Y, Malhotra U, Sander C, Butterfield LH, Kirkwood JM. Baseline circulating IL-17 predicts toxicity while TGF-β1 and IL-10 are prognostic of relapse in ipilimumab neoadjuvant therapy of melanoma. J Immunother Cancer. 2015;3:39.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 216]  [Cited by in F6Publishing: 267]  [Article Influence: 29.7]  [Reference Citation Analysis (0)]
32.  Bins S, Basak EA, El Bouazzaoui S, Koolen SLW, Oomen-de Hoop E, van der Leest CH, van der Veldt AAM, Sleijfer S, Debets R, van Schaik RHN, Aerts JGJV, Mathijssen RHJ. Association between single-nucleotide polymorphisms and adverse events in nivolumab-treated non-small cell lung cancer patients. Br J Cancer. 2018;118:1296-1301.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 30]  [Cited by in F6Publishing: 47]  [Article Influence: 7.8]  [Reference Citation Analysis (0)]
33.  Queirolo P, Dozin B, Morabito A, Banelli B, Carosio R, Fontana V, Ferrucci PF, Martinoli C, Cocorocchio E, Ascierto PA, Madonna G, Simeone E, De Galitiis F, Antonini Cappellini GC, Marchetti P, Guida M, Tommasi S, Ghilardi L, Merelli B, Fava P, Osella-Abate S, Guidoboni M, Romani M, Ferone D, Spagnolo F, Pistillo MP; Italian Melanoma Intergroup (IMI). CTLA-4 gene variant -1661A>G may predict the onset of endocrine adverse events in metastatic melanoma patients treated with ipilimumab. Eur J Cancer. 2018;97:59-61.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 12]  [Cited by in F6Publishing: 20]  [Article Influence: 3.3]  [Reference Citation Analysis (0)]
34.  Dubin K, Callahan MK, Ren B, Khanin R, Viale A, Ling L, No D, Gobourne A, Littmann E, Huttenhower C, Pamer EG, Wolchok JD. Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis. Nat Commun. 2016;7:10391.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 560]  [Cited by in F6Publishing: 712]  [Article Influence: 89.0]  [Reference Citation Analysis (0)]
35.  Andrews MC, Duong CPM, Gopalakrishnan V, Iebba V, Chen WS, Derosa L, Khan MAW, Cogdill AP, White MG, Wong MC, Ferrere G, Fluckiger A, Roberti MP, Opolon P, Alou MT, Yonekura S, Roh W, Spencer CN, Curbelo IF, Vence L, Reuben A, Johnson S, Arora R, Morad G, Lastrapes M, Baruch EN, Little L, Gumbs C, Cooper ZA, Prieto PA, Wani K, Lazar AJ, Tetzlaff MT, Hudgens CW, Callahan MK, Adamow M, Postow MA, Ariyan CE, Gaudreau PO, Nezi L, Raoult D, Mihalcioiu C, Elkrief A, Pezo RC, Haydu LE, Simon JM, Tawbi HA, McQuade J, Hwu P, Hwu WJ, Amaria RN, Burton EM, Woodman SE, Watowich S, Diab A, Patel SP, Glitza IC, Wong MK, Zhao L, Zhang J, Ajami NJ, Petrosino J, Jenq RR, Davies MA, Gershenwald JE, Futreal PA, Sharma P, Allison JP, Routy B, Zitvogel L, Wargo JA. Gut microbiota signatures are associated with toxicity to combined CTLA-4 and PD-1 blockade. Nat Med. 2021;27:1432-1441.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 218]  [Cited by in F6Publishing: 236]  [Article Influence: 78.7]  [Reference Citation Analysis (0)]
36.  McCulloch JA, Davar D, Rodrigues RR, Badger JH, Fang JR, Cole AM, Balaji AK, Vetizou M, Prescott SM, Fernandes MR, Costa RGF, Yuan W, Salcedo R, Bahadiroglu E, Roy S, DeBlasio RN, Morrison RM, Chauvin JM, Ding Q, Zidi B, Lowin A, Chakka S, Gao W, Pagliano O, Ernst SJ, Rose A, Newman NK, Morgun A, Zarour HM, Trinchieri G, Dzutsev AK. Intestinal microbiota signatures of clinical response and immune-related adverse events in melanoma patients treated with anti-PD-1. Nat Med. 2022;28:545-556.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 202]  [Cited by in F6Publishing: 192]  [Article Influence: 96.0]  [Reference Citation Analysis (0)]
37.  Dharmapuri S, Özbek U, Jethra H, Jun T, Marron TU, Saeed A, Huang YH, Muzaffar M, Pinter M, Balcar L, Fulgenzi C, Amara S, Weinmann A, Personeni N, Scheiner B, Pressiani T, Navaid M, Bengsch B, Paul S, Khan U, Bettinger D, Nishida N, Mohamed YI, Vogel A, Gampa A, Korolewicz J, Cammarota A, Kaseb A, Galle PR, Pillai A, Wang YH, Cortellini A, Kudo M, D'Alessio A, Rimassa L, Pinato DJ, Ang C. Baseline neutrophil-lymphocyte ratio and platelet-lymphocyte ratio appear predictive of immune treatment related toxicity in hepatocellular carcinoma. World J Gastrointest Oncol. 2023;15:1900-1912.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in CrossRef: 5]  [Reference Citation Analysis (0)]
38.  Fang T, Wang Y, Yin X, Zhai Z, Zhang Y, Yang Y, You Q, Li Z, Ma Y, Li C, Song H, Shi H, Yu X, Gao H, Sun Y, Xie R, Xue Y. Diagnostic Sensitivity of NLR and PLR in Early Diagnosis of Gastric Cancer. J Immunol Res. 2020;2020:9146042.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 30]  [Cited by in F6Publishing: 79]  [Article Influence: 19.8]  [Reference Citation Analysis (0)]
39.  Mandaliya H, Jones M, Oldmeadow C, Nordman II. Prognostic biomarkers in stage IV non-small cell lung cancer (NSCLC): neutrophil to lymphocyte ratio (NLR), lymphocyte to monocyte ratio (LMR), platelet to lymphocyte ratio (PLR) and advanced lung cancer inflammation index (ALI). Transl Lung Cancer Res. 2019;8:886-894.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 82]  [Cited by in F6Publishing: 194]  [Article Influence: 38.8]  [Reference Citation Analysis (0)]
40.  Kang Y, Zhu X, Lin Z, Zeng M, Shi P, Cao Y, Chen F. Compare the Diagnostic and Prognostic Value of MLR, NLR and PLR in CRC Patients. Clin Lab. 2021;67.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 3]  [Cited by in F6Publishing: 22]  [Article Influence: 7.3]  [Reference Citation Analysis (0)]
41.  Liu J, Ao W, Zhou J, Luo P, Wang Q, Xiang D. The correlation between PLR-NLR and prognosis in acute myocardial infarction. Am J Transl Res. 2021;13:4892-4899.  [PubMed]  [DOI]  [Cited in This Article: ]
42.  Diem S, Schmid S, Krapf M, Flatz L, Born D, Jochum W, Templeton AJ, Früh M. Neutrophil-to-Lymphocyte ratio (NLR) and Platelet-to-Lymphocyte ratio (PLR) as prognostic markers in patients with non-small cell lung cancer (NSCLC) treated with nivolumab. Lung Cancer. 2017;111:176-181.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 355]  [Cited by in F6Publishing: 426]  [Article Influence: 60.9]  [Reference Citation Analysis (0)]
43.  Platini H, Ferdinand E, Kohar K, Prayogo SA, Amirah S, Komariah M, Maulana S. Neutrophil-to-Lymphocyte Ratio and Platelet-to-Lymphocyte Ratio as Prognostic Markers for Advanced Non-Small-Cell Lung Cancer Treated with Immunotherapy: A Systematic Review and Meta-Analysis. Medicina (Kaunas). 2022;58.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 34]  [Cited by in F6Publishing: 22]  [Article Influence: 11.0]  [Reference Citation Analysis (0)]
44.  Wu M, Liu J, Wu S, Wu H, Yu J, Meng X. Systemic Immune Activation and Responses of Irradiation to Different Metastatic Sites Combined With Immunotherapy in Advanced Non-Small Cell Lung Cancer. Front Immunol. 2021;12:803247.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 4]  [Cited by in F6Publishing: 21]  [Article Influence: 10.5]  [Reference Citation Analysis (0)]
45.  Wu YL, Fulgenzi CAM, D'Alessio A, Cheon J, Nishida N, Saeed A, Wietharn B, Cammarota A, Pressiani T, Personeni N, Pinter M, Scheiner B, Balcar L, Huang YH, Phen S, Naqash AR, Vivaldi C, Salani F, Masi G, Bettinger D, Vogel A, Schönlein M, von Felden J, Schulze K, Wege H, Galle PR, Kudo M, Rimassa L, Singal AG, Sharma R, Cortellini A, Gaillard VE, Chon HJ, Pinato DJ, Ang C. Neutrophil-to-Lymphocyte and Platelet-to-Lymphocyte Ratios as Prognostic Biomarkers in Unresectable Hepatocellular Carcinoma Treated with Atezolizumab plus Bevacizumab. Cancers (Basel). 2022;14.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 27]  [Cited by in F6Publishing: 25]  [Article Influence: 12.5]  [Reference Citation Analysis (0)]
46.  Muhammed A, Fulgenzi CAM, Dharmapuri S, Pinter M, Balcar L, Scheiner B, Marron TU, Jun T, Saeed A, Hildebrand H, Muzaffar M, Navaid M, Naqash AR, Gampa A, Ozbek U, Lin JY, Perone Y, Vincenzi B, Silletta M, Pillai A, Wang Y, Khan U, Huang YH, Bettinger D, Abugabal YI, Kaseb A, Pressiani T, Personeni N, Rimassa L, Nishida N, Di Tommaso L, Kudo M, Vogel A, Mauri FA, Cortellini A, Sharma R, D'Alessio A, Ang C, Pinato DJ. The Systemic Inflammatory Response Identifies Patients with Adverse Clinical Outcome from Immunotherapy in Hepatocellular Carcinoma. Cancers (Basel). 2021;14.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 3]  [Cited by in F6Publishing: 37]  [Article Influence: 12.3]  [Reference Citation Analysis (0)]
47.  Pavan A, Calvetti L, Dal Maso A, Attili I, Del Bianco P, Pasello G, Guarneri V, Aprile G, Conte P, Bonanno L. Peripheral Blood Markers Identify Risk of Immune-Related Toxicity in Advanced Non-Small Cell Lung Cancer Treated with Immune-Checkpoint Inhibitors. Oncologist. 2019;24:1128-1136.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 80]  [Cited by in F6Publishing: 143]  [Article Influence: 28.6]  [Reference Citation Analysis (0)]
48.  Chen Y, Wen S, Xia J, Du X, Wu Y, Pan B, Zhu W, Shen B. Association of Dynamic Changes in Peripheral Blood Indexes With Response to PD-1 Inhibitor-Based Combination Therapy and Survival Among Patients With Advanced Non-Small Cell Lung Cancer. Front Immunol. 2021;12:672271.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 5]  [Cited by in F6Publishing: 16]  [Article Influence: 5.3]  [Reference Citation Analysis (0)]
49.  Kartolo A, Holstead R, Khalid S, Emack J, Hopman W, Robinson A, Baetz T. Serum neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio in prognosticating immunotherapy efficacy. Immunotherapy. 2020;12:785-798.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 12]  [Cited by in F6Publishing: 19]  [Article Influence: 4.8]  [Reference Citation Analysis (0)]
50.  Lu X, Wan J, Shi H. Platelet-to-lymphocyte and neutrophil-to-lymphocyte ratios are associated with the efficacy of immunotherapy in stage III/IV non-small cell lung cancer. Oncol Lett. 2022;24:266.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]