1
|
Gu J, Zhang S, Lin D, Wang W, Cheng J, Zheng Q, Wang H, Tan L. Suppressing SENP1 inhibits esophageal squamous carcinoma cell growth via SIRT6 SUMOylation. Cell Oncol (Dordr) 2025; 48:67-81. [PMID: 38954215 PMCID: PMC11850494 DOI: 10.1007/s13402-024-00956-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2024] [Indexed: 07/04/2024] Open
Abstract
PURPOSE Esophageal squamous cell carcinoma (ESCC) is a prevalent tumor in the gastrointestinal tract, but our understanding of the molecular mechanisms underlying ESCC remains incomplete. Existing studies indicate that SUMO specific peptidase 1 (SENP1) plays a crucial role in the development and progression of various malignant tumors through diverse molecular mechanisms. However, the functional mechanism and clinical implications of SENP1 in the progression of ESCC remain unclear. METHODS Bulk RNA-Sequencing (RNA-seq) was used to compare potential genes in the esophageal tissues of mice with ESCC to the control group. The up-regulated SENP1 was selected. The protein level of SENP1 in ESCC patient samples was analyzed by immunohistochemistry and western blot. The potential prognostic value of SENP1 on overall survival of ESCC patients was examined using tissue microarray analysis and the Kaplan-Meier method. The biological function was confirmed through in vitro and in vivo knockdown approaches of SENP1. The role of SENP1 in cell cycle progression and apoptosis of ESCC cells was analyzed by flow cytometry and western blot. The downstream signaling pathways regulated by SENP1 were investigated via using RNA-Seq. SENP1-associated proteins were identified through immunoprecipitation. Overexpression of Sirtuin 6 (SIRT6) wildtype and mutant was performed to investigate the regulatory role of SENP1 in ESCC progression in vitro. RESULTS Our study discovered that SENP1 was upregulated in ESCC tissues and served as a novel prognostic factor. Moreover, SENP1 enhanced cell proliferation and migration of ESCC cell lines in vitro, as well as promoted tumor growth in vivo. Thymidine kinase 1 (TK1), Geminin (GMNN), cyclin dependent kinase 1(CDK1), and cyclin A2 (CCNA2) were identified as downstream genes of SENP1. Mechanistically, SENP1 deSUMOylated SIRT6 and subsequently inhibited SIRT6-mediated histone 3 lysine 56 (H3K56) deacetylation on those downstream genes. SIRT6 SUMOylation mutant (4KR) rescued the growth inhibition upon SENP1 depletion. CONCLUSIONS SENP1 promotes the malignant progression of ESCC by inhibiting the deacetylase activity of SIRT6 pathway through deSUMOylation. Our findings suggest that SENP1 may serve as a valuable biomarker for prognosis and a target for therapeutic intervention in ESCC.
Collapse
Affiliation(s)
- Jianmin Gu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shaoyuan Zhang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Dong Lin
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, China
| | - Wenhan Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jinke Cheng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Quan Zheng
- Center for Singl-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Hao Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Lijie Tan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
2
|
Qi Y, Cao J, Jiang M, Lin Y, Li W, Li B. HSP27/IL-6 axis promotes OSCC chemoresistance, invasion and migration by orchestrating macrophages via a positive feedback loop. Cell Biol Toxicol 2025; 41:36. [PMID: 39873845 PMCID: PMC11775009 DOI: 10.1007/s10565-024-09983-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/21/2024] [Indexed: 01/30/2025]
Abstract
Novel strategies to disrupt tumor progression have emerged from studying the interactions between tumor cells and tumor-associated macrophages (TAMs). However, the molecular mechanisms of interactions between tumor cells and TAMs underlying oral squamous cell carcinoma (OSCC) progression have not been fully elucidated. This study explored the molecular mechanism of the HSP27/IL-6 axis in OSCC chemoresistance, invasion, and migration. Here, we demonstrated the higher expression of HSP27 in OSCC cells. Paracrine HSP27 from OSCC cells enhanced chemoresistance, invasion, migration, and EMT in OSCC by inducing M2 polarization and IL-6 secretion in TAMs. HSP27 and IL-6 established a positive feedback loop between OSCC cells and M2 TAMs. TAMs-derived IL-6 orchestrated OSCC stemness and chemoresistance through upregulating β-catenin and CD44, and enhanced OSCC invasion, migration, and EMT via autocrine HSP27/TLR4 signaling. Collectively, HSP27/IL-6 axis facilitates OSCC chemoresistance, invasion, and migration by orchestrating macrophages through a positive feedback loop. We identify the regulatory mechanism underlying the interaction and crosstalk between OSCC cells and TAMs mediated by the HSP27/IL-6 axis. Targeting the HSP27/IL-6 axis could be a promising treatment strategy for OSCC patients, potentially controlling disease progression and improving prognosis and recurrence outcomes.
Collapse
Affiliation(s)
- Ying Qi
- Department of Oral Anatomy and Physiology, Hospital of Stomatology, Jilin Provincial Key Laboratory of Oral Biomedical Engineering, Jilin University, Changchun, 130021, China
| | - Juan Cao
- Department of Oral Anatomy and Physiology, Hospital of Stomatology, Jilin Provincial Key Laboratory of Oral Biomedical Engineering, Jilin University, Changchun, 130021, China
| | - Mingjing Jiang
- Department of Oral Anatomy and Physiology, Hospital of Stomatology, Jilin Provincial Key Laboratory of Oral Biomedical Engineering, Jilin University, Changchun, 130021, China
| | - Ying Lin
- Department of Oral Anatomy and Physiology, Hospital of Stomatology, Jilin Provincial Key Laboratory of Oral Biomedical Engineering, Jilin University, Changchun, 130021, China
| | - Weibo Li
- Department of Oral Anatomy and Physiology, Hospital of Stomatology, Jilin Provincial Key Laboratory of Oral Biomedical Engineering, Jilin University, Changchun, 130021, China
| | - Bo Li
- Department of Oral Anatomy and Physiology, Hospital of Stomatology, Jilin Provincial Key Laboratory of Oral Biomedical Engineering, Jilin University, Changchun, 130021, China.
| |
Collapse
|
3
|
Wu N, Cai J, Jiang J, Lin Y, Wang X, Zhang W, Kang M, Zhang P. Biomarkers of lymph node metastasis in esophageal cancer. Front Immunol 2024; 15:1457612. [PMID: 39399490 PMCID: PMC11466839 DOI: 10.3389/fimmu.2024.1457612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/12/2024] [Indexed: 10/15/2024] Open
Abstract
Esophageal cancer (EC) is among the most aggressive malignancies, ranking as the seventh most prevalent malignant tumor worldwide. Lymph node metastasis (LNM) indicates localized spread of cancer and often correlates with a poorer prognosis, emphasizing the necessity for neoadjuvant systemic therapy before surgery. However, accurate identification of LNM in EC presents challenges due to the lack of satisfactory diagnostic techniques. Imaging techniques, including ultrasound and computerized tomography scans, have low sensitivity and accuracy in assessing LNM. Additionally, the existing serological detection lacks precise biomarkers. The intricate and not fully understood molecular processes involved in LNM of EC contribute to current detective limitations. Recent research has shown potential in using various molecules, circulating tumor cells (CTCs), and changes in the microbiota to identify LNM in individuals with EC. Through summarizing potential biomarkers associated with LNM in EC and organizing the underlying mechanisms involved, this review aims to provide insights that facilitate biomarker development, enhance our understanding of the underlying mechanisms, and ultimately address the diagnostic challenges of LNM in clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mingqiang Kang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital,
Fuzhou, China
| | - Peipei Zhang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital,
Fuzhou, China
| |
Collapse
|
4
|
Zhao YX, Zhao HP, Zhao MY, Yu Y, Qi X, Wang JH, Lv J. Latest insights into the global epidemiological features, screening, early diagnosis and prognosis prediction of esophageal squamous cell carcinoma. World J Gastroenterol 2024; 30:2638-2656. [PMID: 38855150 PMCID: PMC11154680 DOI: 10.3748/wjg.v30.i20.2638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/26/2024] [Accepted: 05/13/2024] [Indexed: 05/27/2024] Open
Abstract
As a highly invasive carcinoma, esophageal cancer (EC) was the eighth most prevalent malignancy and the sixth leading cause of cancer-related death worldwide in 2020. Esophageal squamous cell carcinoma (ESCC) is the major histological subtype of EC, and its incidence and mortality rates are decreasing globally. Due to the lack of specific early symptoms, ESCC patients are usually diagnosed with advanced-stage disease with a poor prognosis, and the incidence and mortality rates are still high in many countries, especially in China. Therefore, enormous challenges still exist in the management of ESCC, and novel strategies are urgently needed to further decrease the incidence and mortality rates of ESCC. Although the key molecular mechanisms underlying ESCC pathogenesis have not been fully elucidated, certain promising biomarkers are being investigated to facilitate clinical decision-making. With the advent and advancement of high-throughput technologies, such as genomics, proteomics and metabolomics, valuable biomarkers with high sensitivity, specificity and stability could be identified for ESCC. Herein, we aimed to determine the epidemiological features of ESCC in different regions of the world, especially in China, and focused on novel molecular biomarkers associated with ESCC screening, early diagnosis and prognosis prediction.
Collapse
Affiliation(s)
- Yi-Xin Zhao
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - He-Ping Zhao
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - Meng-Yao Zhao
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - Yan Yu
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - Xi Qi
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| | - Ji-Han Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, Shaanxi Province, China
| | - Jing Lv
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, Shaanxi Province, China
| |
Collapse
|
5
|
Zhou H, Deng N, Li Y, Hu X, Yu X, Jia S, Zheng C, Gao S, Wu H, Li K. Distinctive tumorigenic significance and innovative oncology targets of SUMOylation. Theranostics 2024; 14:3127-3149. [PMID: 38855173 PMCID: PMC11155398 DOI: 10.7150/thno.97162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/13/2024] [Indexed: 06/11/2024] Open
Abstract
Protein SUMOylation, a post-translational modification, intricately regulates diverse biological processes including gene expression, cell cycle progression, signaling pathway transduction, DNA damage response, and RNA metabolism. This modification contributes to the acquisition of tumorigenicity and the maintenance of cancer hallmarks. In malignancies, protein SUMOylation is triggered by various cellular stresses, promoting tumor initiation and progression. This augmentation is orchestrated through its specific regulatory mechanisms and characteristic biological functions. This review focuses on elucidating the fundamental regulatory mechanisms and pathological functions of the SUMO pathway in tumor pathogenesis and malignant evolution, with particular emphasis on the tumorigenic potential of SUMOylation. Furthermore, we underscore the potential therapeutic benefits of targeting the SUMO pathway, paving the way for innovative anti-tumor strategies by perturbing this dynamic and reversible modifying process.
Collapse
Affiliation(s)
- Heng Zhou
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China; Key Laboratory of Molecular Pathology and Epidemiology of Gastric Cancer in the Universities of Liaoning Province, Shenyang, Liaoning 110001, China
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Na Deng
- Department of Hematology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yanshu Li
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC and Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, China Medical University, Shenyang, Liaoning 110122, China
| | - Xiaoyun Hu
- Scientific Experimental Center, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Xue Yu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China; Key Laboratory of Molecular Pathology and Epidemiology of Gastric Cancer in the Universities of Liaoning Province, Shenyang, Liaoning 110001, China
| | - Shiheng Jia
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China; Key Laboratory of Molecular Pathology and Epidemiology of Gastric Cancer in the Universities of Liaoning Province, Shenyang, Liaoning 110001, China
| | - Chen Zheng
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China; Key Laboratory of Molecular Pathology and Epidemiology of Gastric Cancer in the Universities of Liaoning Province, Shenyang, Liaoning 110001, China
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Shan Gao
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Huizhe Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
- Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation; Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, Liaoning 110122, China
- Shenyang Kangwei Medical Laboratory Analysis Co. LTD, Liaoning Province, China
| | - Kai Li
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China; Key Laboratory of Molecular Pathology and Epidemiology of Gastric Cancer in the Universities of Liaoning Province, Shenyang, Liaoning 110001, China
| |
Collapse
|
6
|
Nakamura ET, Park A, Pereira MA, Kikawa D, Tustumi F. Prognosis value of heat-shock proteins in esophageal and esophagogastric cancer: A systematic review and meta-analysis. World J Gastrointest Oncol 2024; 16:1578-1595. [PMID: 38660660 PMCID: PMC11037039 DOI: 10.4251/wjgo.v16.i4.1578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/24/2023] [Accepted: 01/23/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Heat shock proteins (HSPs) are molecular chaperones that play an important role in cellular protection against stress events and have been reported to be overexpressed in many cancers. The prognostic significance of HSPs and their regulatory factors, such as heat shock factor 1 (HSF1) and CHIP, are poorly understood. AIM To investigate the relationship between HSP expression and prognosis in esophageal and esophagogastric cancer. METHODS A systematic review was conducted in accordance with PRISMA recommendations (PROSPERO: CRD42022370653), on Embase, PubMed, Cochrane, and LILACS. Cohort, case-control, and cross-sectional studies of patients with esophagus or esophagogastric cancer were included. HSP-positive patients were compared with HSP-negative, and the endpoints analyzed were lymph node metastasis, tumor depth, distant metastasis, and overall survival (OS). HSPs were stratified according to the HSP family, and the summary risk difference (RD) was calculated using a random-effect model. RESULTS The final selection comprised 27 studies, including esophageal squamous cell carcinoma (21), esophagogastric adenocarcinoma (5), and mixed neoplasms (1). The pooled sample size was 3465 patients. HSP40 and 60 were associated with a higher 3-year OS [HSP40: RD = 0.22; 95% confidence interval (CI): 0.09-0.35; HSP60: RD = 0.33; 95%CI: 0.17-0.50], while HSF1 was associated with a poor 3-year OS (RD = -0.22; 95%CI: -0.32 to -0.12). The other HSP families were not associated with long-term survival. HSF1 was associated with a higher probability of lymph node metastasis (RD = -0.16; 95%CI: -0.29 to -0.04). HSP40 was associated with a lower probability of lymph node dissemination (RD = 0.18; 95%CI: 0.03-0.33). The expression of other HSP families was not significantly related to tumor depth and lymph node or distant metastasis. CONCLUSION The expression levels of certain families of HSP, such as HSP40 and 60 and HSF1, are associated with long-term survival and lymph node dissemination in patients with esophageal and esophagogastric cancer.
Collapse
Affiliation(s)
- Eric Toshiyuki Nakamura
- Department of Gastroenterology, Instituto do Câncer, Hospital das Clínicas da Universidade de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246000, Brazil
- Department of Scientific Initiation, Universidade Mogi das Cruzes, São Paulo 08780911, Brazil
| | - Amanda Park
- Department of Evidence-Based Medicine, Centro Universitário Lusíada, Centre for Evidence-Based Medicine, Centro Universitário Lusíada (UNILUS), Santos, Brazil
| | - Marina Alessandra Pereira
- Department of Gastroenterology, Instituto do Câncer, Hospital das Clínicas da Universidade de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246000, Brazil
| | - Daniel Kikawa
- Department of Scientific Initiation, Universidade Mogi das Cruzes, São Paulo 08780911, Brazil
| | - Francisco Tustumi
- Department of Gastroenterology, Instituto do Câncer, Hospital das Clínicas da Universidade de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246000, Brazil
- Department of Surgery, Hospital Israelita Albert Einstein, São Paulo 05652900, Brazil
| |
Collapse
|
7
|
Song G, Shang C, Zhu Y, Xiu Z, Li Y, Yang X, Ge C, Han J, Jin N, Li Y, Li X, Fang J. Apoptin Inhibits Glycolysis and Regulates Autophagy by Targeting Pyruvate Kinase M2 (PKM2) in Lung Cancer A549 Cells. Curr Cancer Drug Targets 2024; 24:411-424. [PMID: 36284386 PMCID: PMC10964080 DOI: 10.2174/1568009623666221025150239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/10/2022] [Accepted: 09/22/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Pyruvate kinase M2 (PKM2) is a key enzyme in aerobic glycolysis and plays an important role in tumor energy metabolism and tumor growth. Ad-apoptin, a recombinant oncolytic adenovirus, can stably express apoptin in tumor cells and selectively causes cell death in tumor cells. OBJECTIVE The relationship between the anti-tumor function of apoptin, including apoptosis and autophagy activation, and the energy metabolism of tumor cells has not been clarified. METHODS In this study, we used the A549 lung cancer cell line to analyze the mechanism of PKM2 involvement in apoptin-mediated cell death in tumor cells. PKM2 expression in lung cancer cells was detected by Western blot and qRT-PCR. In the PKM2 knockdown and over-expression experiments, A549 lung cancer cells were treated with Ad-apoptin, and cell viability was determined by the CCK-8 assay and crystal violet staining. Glycolysis was investigated using glucose consumption and lactate production experiments. Moreover, the effects of Ad-apoptin on autophagy and apoptosis were analyzed by immunofluorescence using the Annexin v-mCherry staining and by western blot for c-PARP, p62, and LC3-II proteins. Immunoprecipitation analysis was used to investigate the interaction between apoptin and PKM2. In addition, following PKM2 knockdown and overexpression, the expression levels of p-AMPK, p-mTOR, p-ULK1, and p-4E-BP1 proteins in Ad-apoptin treated tumor cells were analyzed by western blot to investigate the mechanism of apoptin effect on the energy metabolism of tumor cells. The in vivo antitumor mechanism of apoptin was analyzed by xenograft tumor inhibition experiment in nude mice and immunohistochemistry of tumors' tissue. RESULTS As a result, apoptin could target PKM2, inhibit glycolysis and cell proliferation in A549 cells, and promote autophagy and apoptosis in A549 cells by regulating the PKM2/AMPK/mTOR pathway. CONCLUSION This study confirmed the necessary role of Ad-apoptin in the energy metabolism of A549 cells.
Collapse
Affiliation(s)
- Gaojie Song
- Medical College, Jiujiang University, Jiujiang, 332000, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130117, China
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, 130122, China
| | - Chao Shang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130117, China
| | - Yilong Zhu
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, 130122, China
| | - Zhiru Xiu
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, 130122, China
| | - Yaru Li
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, 130122, China
| | - Xia Yang
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, 130122, China
| | - Chenchen Ge
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, 130122, China
| | - Jicheng Han
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, 130122, China
| | - Ningyi Jin
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130117, China
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, 130122, China
| | - Yiquan Li
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, 130122, China
| | - Xiao Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130117, China
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, 130122, China
| | - Jinbo Fang
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, 130122, China
| |
Collapse
|
8
|
Gu Y, Fang Y, Wu X, Xu T, Hu T, Xu Y, Ma P, Wang Q, Shu Y. The emerging roles of SUMOylation in the tumor microenvironment and therapeutic implications. Exp Hematol Oncol 2023; 12:58. [PMID: 37415251 PMCID: PMC10324244 DOI: 10.1186/s40164-023-00420-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023] Open
Abstract
Tumor initiation, progression, and response to therapies depend to a great extent on interactions between malignant cells and the tumor microenvironment (TME), which denotes the cancerous/non-cancerous cells, cytokines, chemokines, and various other factors around tumors. Cancer cells as well as stroma cells can not only obtain adaption to the TME but also sculpt their microenvironment through a series of signaling pathways. The post-translational modification (PTM) of eukaryotic cells by small ubiquitin-related modifier (SUMO) proteins is now recognized as a key flexible pathway. Proteins involved in tumorigenesis guiding several biological processes including chromatin organization, DNA repair, transcription, protein trafficking, and signal conduction rely on SUMOylation. The purpose of this review is to explore the role that SUMOylation plays in the TME formation and reprogramming, emphasize the importance of targeting SUMOylation to intervene in the TME and discuss the potential of SUMOylation inhibitors (SUMOi) in ameliorating tumor prognosis.
Collapse
Affiliation(s)
- Yunru Gu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029 Nanjing, People’s Republic of China
| | - Yuan Fang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029 Nanjing, People’s Republic of China
| | - Xi Wu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029 Nanjing, People’s Republic of China
| | - Tingting Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029 Nanjing, People’s Republic of China
| | - Tong Hu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029 Nanjing, People’s Republic of China
| | - Yangyue Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029 Nanjing, People’s Republic of China
| | - Pei Ma
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029 Nanjing, People’s Republic of China
| | - Qiang Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui Province People’s Republic of China
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, 210029 Nanjing, People’s Republic of China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
Zou Y, Shi H, Liu N, Wang H, Song X, Liu B. Mechanistic insights into heat shock protein 27, a potential therapeutic target for cardiovascular diseases. Front Cardiovasc Med 2023; 10:1195464. [PMID: 37252119 PMCID: PMC10219228 DOI: 10.3389/fcvm.2023.1195464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023] Open
Abstract
Heat shock protein 27 (HSP27) is a small chaperone protein that is overexpressed in a variety of cellular stress states. It is involved in regulating proteostasis and protecting cells from multiple sources of stress injury by stabilizing protein conformation and promoting the refolding of misfolded proteins. Previous studies have confirmed that HSP27 is involved in the development of cardiovascular diseases and plays an important regulatory role in this process. Herein, we comprehensively and systematically summarize the involvement of HSP27 and its phosphorylated form in pathophysiological processes, including oxidative stress, inflammatory responses, and apoptosis, and further explore the potential mechanisms and possible roles of HSP27 in the diagnosis and treatment of cardiovascular diseases. Targeting HSP27 is a promising future strategy for the treatment of cardiovascular diseases.
Collapse
|
10
|
Tustumi F, Agareno GA, Galletti RP, da Silva RBR, Quintas JG, Sesconetto LDA, Szor DJ, Wolosker N. The Role of the Heat-Shock Proteins in Esophagogastric Cancer. Cells 2022; 11:2664. [PMID: 36078072 PMCID: PMC9454628 DOI: 10.3390/cells11172664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 01/05/2023] Open
Abstract
Heat-shock proteins (HSPs) are a family of proteins that have received considerable attention over the last several years. They have been classified into six prominent families: high-molecular-mass HSP, 90, 70, 60, 40, and small heat shock proteins. HSPs participate in protein folding, stability, and maturation of several proteins during stress, such as in heat, oxidative stress, fever, and inflammation. Due to the immunogenic host's role in the combat against cancer cells and the role of the inflammation in the cancer control or progression, abnormal expression of these proteins has been associated with many types of cancer, including esophagogastric cancer. This study aims to review all the evidence concerning the role of HSPs in the pathogenesis and prognosis of esophagogastric cancer and their potential role in future treatment options. This narrative review gathers scientific evidence concerning HSPs in relation to esophagus and gastric cancer. All esophagogastric cancer subtypes are included. The role of HSPs in carcinogenesis, prognostication, and therapy for esophagogastric cancer are discussed. The main topics covered are premalignant conditions for gastric cancer atrophic gastritis, Barrett esophagus, and some viral infections such as human papillomavirus (HPV) and Epstein-Barr virus (EBV). HSPs represent new perspectives on the development, prognostication, and treatment of esophagogastric cancer.
Collapse
Affiliation(s)
- Francisco Tustumi
- Department of Gastroenterology, Universidade de São Paulo, Av. Dr. Enéas Carvalho de Aguiar, 255, São Paulo 05403-000, SP, Brazil
- Department of Surgery, Hospital Israelita Albert Einstein, Av. Albert Einstein, 627, São Paulo 05652-900, SP, Brazil
| | - Gabriel Andrade Agareno
- Department of Surgery, Hospital Israelita Albert Einstein, Av. Albert Einstein, 627, São Paulo 05652-900, SP, Brazil
| | - Ricardo Purchio Galletti
- Department of Surgery, Hospital Israelita Albert Einstein, Av. Albert Einstein, 627, São Paulo 05652-900, SP, Brazil
| | - Rafael Benjamim Rosa da Silva
- Department of Surgery, Hospital Israelita Albert Einstein, Av. Albert Einstein, 627, São Paulo 05652-900, SP, Brazil
| | - Julia Grams Quintas
- Department of Surgery, Hospital Israelita Albert Einstein, Av. Albert Einstein, 627, São Paulo 05652-900, SP, Brazil
| | - Lucas de Abreu Sesconetto
- Department of Surgery, Hospital Israelita Albert Einstein, Av. Albert Einstein, 627, São Paulo 05652-900, SP, Brazil
| | - Daniel José Szor
- Department of Gastroenterology, Universidade de São Paulo, Av. Dr. Enéas Carvalho de Aguiar, 255, São Paulo 05403-000, SP, Brazil
- Department of Surgery, Hospital Israelita Albert Einstein, Av. Albert Einstein, 627, São Paulo 05652-900, SP, Brazil
| | - Nelson Wolosker
- Department of Surgery, Hospital Israelita Albert Einstein, Av. Albert Einstein, 627, São Paulo 05652-900, SP, Brazil
| |
Collapse
|
11
|
Zheng S, Liang Y, Li L, Tan Y, Liu Q, Liu T, Lu X. Revisiting the Old Data of Heat Shock Protein 27 Expression in Squamous Cell Carcinoma: Enigmatic HSP27, More Than Heat Shock. Cells 2022; 11:1665. [PMID: 35626702 PMCID: PMC9139513 DOI: 10.3390/cells11101665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/30/2022] Open
Abstract
Initially discovered to be induced by heat shock, heat shock protein 27 (HSP27, also called HSPB1), a member of the small HSP family, can help cells better withstand or avoid heat shock damage. After years of studies, HSP27 was gradually found to be extensively engaged in various physiological or pathophysiological activities. Herein, revisiting the previously published data concerning HSP27, we conducted a critical review of the literature regarding its role in squamous cell carcinoma (SCC) from the perspective of clinicopathological and prognostic significance, excluding studies conducted on adenocarcinoma, which is very different from SCC, to understand the enigmatic role of HSP27 in the tumorigenesis of SCC, including normal mucosa, dysplasia, intraepithelial neoplasm, carcinoma in situ and invasive SCC.
Collapse
Affiliation(s)
- Shutao Zheng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China; (S.Z.); (Y.T.); (Q.L.)
| | - Yan Liang
- Department of Pathology, Basic Medicine College, Xinjiang Medical University, Urumqi 830017, China;
| | - Lu Li
- Department of Clinical Laboratory, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China; (L.L.); (T.L.)
| | - Yiyi Tan
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China; (S.Z.); (Y.T.); (Q.L.)
| | - Qing Liu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China; (S.Z.); (Y.T.); (Q.L.)
| | - Tao Liu
- Department of Clinical Laboratory, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China; (L.L.); (T.L.)
| | - Xiaomei Lu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China; (S.Z.); (Y.T.); (Q.L.)
| |
Collapse
|
12
|
Yang L, Zheng S, Liu Q, Liu T, Zhang Q, Han X, Tuerxun A, Lu X. Plasma‑derived exosomal pyruvate kinase isoenzyme type M2 accelerates the proliferation and motility of oesophageal squamous cell carcinoma cells. Oncol Rep 2021; 46:216. [PMID: 34396437 PMCID: PMC8377463 DOI: 10.3892/or.2021.8167] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/17/2021] [Indexed: 01/15/2023] Open
Abstract
Exosomal pyruvate kinase isoenzyme type M2 (PKM2) has been found to play a key role in the progression of human hepatocarcinoma. However, exosomal PKM2 (especially plasma‑derived exosomal PKM2), in patients with oesophageal squamous cell carcinoma (ESCC) has not been well defined. In the present study, plasma‑derived exosomes were isolated from healthy controls and patients with ESCC, and identified by transmission electronic microscopy, western blotting, nano‑flow cytometry, nanoparticle tracking and phagocytosis analysis; exosomal PKM2 was detected by western blotting and ELISA. In addition, changes in cellular proliferation and motility in recipient cells (Eca109) were assessed using Cell Counting Kit‑8, colony formation, wound‑healing and Transwell assays. The PKM2 content was higher in exosomes from patients with ESCC than in those from healthy donors. Furthermore, exosomes from patients with ESCC enhanced the proliferation and motility of ESCC cells in vitro. Notably, PKM2 was found to be transferred by exosomes, and was able to act by activating STAT3. To verify the association between PKM2 and STAT3, immunohistochemistry was employed to analyse the protein levels of PKM2 and pSTAT3Tyr705. These data revealed that PKM2 and pSTAT3Tyr705 were upregulated and associated with overall survival in patients with ESCC. Therefore, the present study highlights that exosomes from patients with ESCC enhance the migration and invasiveness of ESCC cells by transferring PKM2.
Collapse
Affiliation(s)
- Lifei Yang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830054, P.R. China
- First Department of Lung Cancer Chemotherapy, Cancer Hospital Affiliated with Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 83000, P.R. China
| | - Shutao Zheng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830054, P.R. China
| | - Qing Liu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830054, P.R. China
| | - Tao Liu
- Department of Clinical Laboratory, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 83000, P.R. China
| | - Qiqi Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830054, P.R. China
| | - Xiujuan Han
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830054, P.R. China
| | - Aerziguli Tuerxun
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830054, P.R. China
| | - Xiaomei Lu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830054, P.R. China
- XinJiang Branch of Key Laboratory of Cancer Immunotherapy and Radiotherapy, Chinese Academy of Medical Sciences, Urumqi, Xinjiang Uygur Autonomous Region 83000, P.R. China
| |
Collapse
|
13
|
Li X, Meng Y. Construction of a SUMOylation regulator-based prognostic model in low-grade glioma. J Cell Mol Med 2021; 25:5434-5442. [PMID: 33951297 PMCID: PMC8184686 DOI: 10.1111/jcmm.16553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/23/2022] Open
Abstract
Low‐grade glioma (LGG) is an intracranial malignant tumour that mainly originates from astrocytes and oligodendrocytes. SUMOylation is one of the post‐translational modifications but studies of SUMOylation in LGG is quite limited. Transcriptome data, single nucleotide variant (SNV) data and clinical data of LGG were derived from public databases. The differences between the expression of SUMOylation regulators in LGG and normal brain tissue were analysed. Cox regression was used to construct a prognostic model in the training cohort. Kaplan‐Meier survival curves and ROC curves were plotted in the training and the validation cohort to evaluate the effectiveness of the prognostic model. GO and KEGG analyses were applied to preliminarily analyse the biological functions. Compared with normal brain tissue, SENP1 and SENP7 were up‐regulated and SENP5 was down‐regulated in LGG. SUMOylation regulators may be involved in functions such as mRNA splicing, DNA replication, ATPase activity and spliceosome. One prognostic model was established based on the 4 SUMOylation regulator‐related signatures (RFWD3, MPHOSPH9, WRN and NUP155), which had a good predictive ability for overall survival. This study is expected to provide targets for the diagnosis and treatment of low‐grade glioma.
Collapse
Affiliation(s)
- Xiaozhi Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yutong Meng
- Department of Stomatology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
14
|
Edkins AL, Boshoff A. General Structural and Functional Features of Molecular Chaperones. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1340:11-73. [PMID: 34569020 DOI: 10.1007/978-3-030-78397-6_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Molecular chaperones are a group of structurally diverse and highly conserved ubiquitous proteins. They play crucial roles in facilitating the correct folding of proteins in vivo by preventing protein aggregation or facilitating the appropriate folding and assembly of proteins. Heat shock proteins form the major class of molecular chaperones that are responsible for protein folding events in the cell. This is achieved by ATP-dependent (folding machines) or ATP-independent mechanisms (holders). Heat shock proteins are induced by a variety of stresses, besides heat shock. The large and varied heat shock protein class is categorised into several subfamilies based on their sizes in kDa namely, small Hsps (HSPB), J domain proteins (Hsp40/DNAJ), Hsp60 (HSPD/E; Chaperonins), Hsp70 (HSPA), Hsp90 (HSPC), and Hsp100. Heat shock proteins are localised to different compartments in the cell to carry out tasks specific to their environment. Most heat shock proteins form large oligomeric structures, and their functions are usually regulated by a variety of cochaperones and cofactors. Heat shock proteins do not function in isolation but are rather part of the chaperone network in the cell. The general structural and functional features of the major heat shock protein families are discussed, including their roles in human disease. Their function is particularly important in disease due to increased stress in the cell. Vector-borne parasites affecting human health encounter stress during transmission between invertebrate vectors and mammalian hosts. Members of the main classes of heat shock proteins are all represented in Plasmodium falciparum, the causative agent of cerebral malaria, and they play specific functions in differentiation, cytoprotection, signal transduction, and virulence.
Collapse
Affiliation(s)
- Adrienne Lesley Edkins
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown, South Africa.
- Rhodes University, Makhanda/Grahamstown, South Africa.
| | - Aileen Boshoff
- Rhodes University, Makhanda/Grahamstown, South Africa.
- Biotechnology Innovation Centre, Rhodes University, Makhanda/Grahamstown, South Africa.
| |
Collapse
|