1
|
Wang X, Li X, Yuan S, Gu Z, An Z, Xu Q, Cao B, Song Y, Tang C. Regulation of placental development and function by ubiquitination. Mol Med 2025; 31:202. [PMID: 40410732 DOI: 10.1186/s10020-025-01268-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 05/15/2025] [Indexed: 05/25/2025] Open
Abstract
The proper distribution of nutrients and metabolites between the mother and fetus is one important factor for successful pregnancy. As a bridge, the placenta plays a key role in sensing the nutritional needs of the fetus, coordinating the maternal nutrition supply, and enhancing its nutritional transport capabilities. Imperfect placental development can lead to pregnancy-related disorders such as preeclampsia, recurrent miscarriage, and/or fetal growth restriction, posing risks to both mother and child in the short and long term. However, current understanding of the human placenta remains as a "black box", and its developmental control mechanisms for adaptive pregnant regulation still needs to be elucidated. As one form of post-translational modification (PTM), ubiquitination plays an important role in regulating cellular functions and is regarded as a valuable drug target. Particularly, ubiquitination related to placenta development has been discovered in recent years. Placental development processes closely associated with pregnant complications, such as blastocyst implantation, syncytiotrophoblast cell differentiation, and immune barrier maintenance, have been reported to be affected by ubiquitination. However, the diagnosis and intervention of pregnancy diseases also urgently need to be improved. Thus, aiming to comprehensive summarize and further exploring the molecular mechanism, target and regulatory mechanism of pregnancy complications, we have herein reviewed genes and pathways regulating pregnancy progress and diseases and focusing on ubiquitin-related physiological process in placenta.
Collapse
Affiliation(s)
- Xue Wang
- National Clinical Research Center for Child Health, Children's Hospital Zhejiang University School of Medicine, Hangzhou, China
- Institute of Developmental Biology and Molecular Medicine, Fudan University, Shanghai, China
| | - Xiaoqing Li
- Department of Pathophysiology, Medical School of Nantong University, Nantong, 226001, China
| | - Shanshan Yuan
- Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Zhiju Gu
- Institute of Developmental Biology and Molecular Medicine, Fudan University, Shanghai, China
| | - Zihao An
- National Clinical Research Center for Child Health, Children's Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Xu
- National Clinical Research Center for Child Health, Children's Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Bin Cao
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yanhua Song
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Chao Tang
- National Clinical Research Center for Child Health, Children's Hospital Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
2
|
Shen C, Wang X, Gu L, Cui X, Zhu W, Wang Y, Zhang X, Chen X. USP41 plays carcinogenic roles in human cutaneous melanoma through PI3K/Akt signaling pathway. Arch Dermatol Res 2025; 317:768. [PMID: 40392309 DOI: 10.1007/s00403-025-04114-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/18/2025] [Accepted: 02/25/2025] [Indexed: 05/22/2025]
Abstract
Cutaneous melanoma is a malignant tumor with a high mortality rate. Ubiquitin-specific protease 41 (USP41) has recently been reported to be overexpressed in various malignancies. However, its role in melanoma remains unclear. Gene Expression Profiling Interactive Analysis (GEPIA) was used to perform pan-cancer analysis using data from the the Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) databases. Melanoma tissue microarray (TMA), clinical patient tissues, and cells were used to explore USP41 expression profiles by immunohistochemistry (IHC), RT-qPCR or Western blotting. Small interfering RNAs (siRNAs) were used to knock down USP41 in melanoma cells. Cell proliferation, migration, and invasion were assessed using CCK-8, EdU staining, wound healing, and transwell assays, respectively. Cell apoptosis was detected by flow cytometry and TUNEL staining. GEPIA revealed that USP41 is highly expressed in most human cancers, including melanoma. USP41 is overexpressed in melanoma tumor tissues and cells. IHC showed that USP41 was positively stained in melanoma tissues and was significantly correlated with the TNM stage of melanoma. USP41 knockdown inhibited cell proliferation, migration, and invasion while promoting cell apoptosis and inhibiting phosphorylated PI3K, AKT, and mTOR in the PI3K/AKT signaling pathway. The results indicate that USP41 may play a carcinogenic role in melanoma partly via the PI3K/AKT signaling pathway, suggesting that USP41 may be an effective therapeutic target for the treatments of cutaneous melanoma.
Collapse
Affiliation(s)
- Congcong Shen
- Department of Dermatology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, China
| | - Xin Wang
- Department of Dermatology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, China
| | - Lixiong Gu
- Department of Dermatology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, China
| | - Xiaomei Cui
- Department of Dermatology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, China
| | - Wenyan Zhu
- Department of Dermatology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, China
| | - Yixiao Wang
- Department of Dermatology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, China
| | - Xin Zhang
- Department of Dermatology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, China
| | - Xiaodong Chen
- Department of Dermatology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, China.
| |
Collapse
|
3
|
Chen Y, Zhang J, Yang J, Zhao J, Guo X, Zhang J, Gan J, Zhao W, Chen S, Zhang X, Lin Y, Jin J. Exploring the cancerous nexus: the pivotal and diverse roles of USP39 in cancer development. Discov Oncol 2025; 16:715. [PMID: 40347416 PMCID: PMC12065690 DOI: 10.1007/s12672-025-02480-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 04/24/2025] [Indexed: 05/12/2025] Open
Abstract
The ubiquitin-proteasome system enables post-transcriptional protein modification and is a major pathway for the degradation of most of them in eukaryotic cells. Among these, the ubiquitin-specific protease (USP) family is the most extensively studied. As an important member of the USP family, ubiquitin-specific protease 39 (USP39) plays an essential role in RNA splicing and protein regulation. This review comprehensively summarizes the structural characteristics and molecular functions of USP39, emphasizing its pivotal role in the regulation of cellular processes. Dysregulation of USP39 is closely associated with the progression of various cancers through mechanisms such as immune evasion, modulation of oncogenic signaling pathways, and altered RNA splicing. These processes impact key aspects of cancer biology, including proliferation, metastasis, and therapy resistance, underscoring the broad implications of USP39 in tumor progression. Recent studies position USP39 as a promising target for cancer treatment. Future research should explore its upstream regulatory networks, develop small-molecule inhibitors, and evaluate its potential for precision oncology. This review integrates the latest insight into USP39, providing a foundation for its clinical application in cancer therapy.
Collapse
Affiliation(s)
- Yujing Chen
- School of Pharmacy, Guilin Medical University, Guangxi, 541199, Guilin, People's Republic of China
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China
| | - Jingyi Zhang
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China
- Institute of Integrated Traditional Chinese and Western Medicine, Jining Medical University, Jining, Shandong, China
| | - Jinfeng Yang
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China
| | - Jiawei Zhao
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China
- Guangxi Health Commission Key Laboratory of Tumor Immunology and Receptor-Targeted Drug Basic Research, Guilin Medical University, Guilin, Guangxi, China
| | - Xiaotong Guo
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China
- Guangxi Health Commission Key Laboratory of Tumor Immunology and Receptor-Targeted Drug Basic Research, Guilin Medical University, Guilin, Guangxi, China
| | - Juzheng Zhang
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China
- Guangxi Health Commission Key Laboratory of Tumor Immunology and Receptor-Targeted Drug Basic Research, Guilin Medical University, Guilin, Guangxi, China
| | - Jinfeng Gan
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China
- Guangxi Health Commission Key Laboratory of Tumor Immunology and Receptor-Targeted Drug Basic Research, Guilin Medical University, Guilin, Guangxi, China
| | - Weijia Zhao
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China
- Guangxi Health Commission Key Laboratory of Tumor Immunology and Receptor-Targeted Drug Basic Research, Guilin Medical University, Guilin, Guangxi, China
| | - Siqi Chen
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China
- Department of Oral Bioscience, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Xinwen Zhang
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China
| | - Yi Lin
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China.
- Department of Ultrasound, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China.
| | - Jiamin Jin
- School of Pharmacy, Guilin Medical University, Guangxi, 541199, Guilin, People's Republic of China.
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China.
- Guangxi Health Commission Key Laboratory of Tumor Immunology and Receptor-Targeted Drug Basic Research, Guilin Medical University, Guilin, Guangxi, China.
- Department of Ultrasound, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China.
| |
Collapse
|
4
|
Yan W, Xiang S, Feng J, Zu X. Role of ubiquitin-specific proteases in programmed cell death of breast cancer cells. Genes Dis 2025; 12:101341. [PMID: 40083330 PMCID: PMC11904532 DOI: 10.1016/j.gendis.2024.101341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/26/2024] [Accepted: 04/11/2024] [Indexed: 03/16/2025] Open
Abstract
Breast cancer (BC) is the most common malignant tumor and the leading cause of cancer-related deaths among women worldwide. Great progress has been recently achieved in controlling breast cancer; however, mortality from breast cancer remains a substantial challenge, and new treatment mechanisms are being actively sought. Programmed cell death (PCD) is associated with the progression and treatment of many types of human cancers. PCD can be divided into multiple pathways including autophagy, apoptosis, mitotic catastrophe, necroptosis, ferroptosis, pyroptosis, and anoikis. Ubiquitination is a post-translational modification process in which ubiquitin, a 76-amino acid protein, is coupled to the lysine residues of other proteins. Ubiquitination is involved in many physiological events and promotes cancer development and progression. This review elaborates the role of ubiquitin-specific protease (USP) in programmed cell death, which is common in breast cancer cells, and lays the foundation for tumor diagnosis and targeted therapy.
Collapse
Affiliation(s)
| | | | - Jianbo Feng
- The First Affiliated Hospital, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001 Hunan, China
| | - Xuyu Zu
- The First Affiliated Hospital, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001 Hunan, China
| |
Collapse
|
5
|
Zhang W, Xu Y, Fang Y, Li M, Li D, Guo H, Li H, He J, Miao L. Ubiquitination in lipid metabolism reprogramming: implications for pediatric solid tumors. Front Immunol 2025; 16:1554311. [PMID: 40370434 PMCID: PMC12075147 DOI: 10.3389/fimmu.2025.1554311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 04/07/2025] [Indexed: 05/16/2025] Open
Abstract
Pediatric solid tumors represent a significant subset of childhood cancers, accounting for approximately 60% of new diagnoses. Despite advancements in therapeutic strategies, survival rates remain markedly disparate between high-income and resource-limited settings, underscoring the urgent need for novel and effective treatments. Lipid metabolic reprogramming is a fundamental hallmark of cancer, driving tumor progression, therapeutic resistance, and immune evasion through enhanced fatty acid uptake, increased de novo lipid synthesis, and activated fatty acid β-oxidation (FAO). Ubiquitination, a dynamic post-translational modification mediated by the ubiquitin-proteasome system (UPS), plays a crucial role in regulating lipid metabolism by modulating the stability and activity of key metabolic enzymes and transporters involved in cholesterol and fatty acid pathways. This review comprehensively examines the complex interplay between ubiquitination and lipid metabolic reprogramming in pediatric solid tumors. It delineates the mechanisms by which ubiquitination influences cholesterol biosynthesis, uptake, efflux, and fatty acid synthesis and oxidation, thereby facilitating tumor growth and survival. Furthermore, the review identifies potential UPS-mediated therapeutic targets and explores the feasibility of integrating ubiquitination-based strategies with existing treatments. By targeting the UPS to disrupt lipid metabolism pathways, novel therapeutic avenues may emerge to enhance treatment efficacy and overcome resistance in pediatric oncology. This synthesis of current knowledge aims to provide a foundation for the development of innovative, precision medicine approaches to improve clinical outcomes for children afflicted with solid tumors.
Collapse
Affiliation(s)
- Weixin Zhang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Yile Xu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Yingjin Fang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, China
| | - Meng Li
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Di Li
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Huiqin Guo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Hang Li
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Lei Miao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Zhang L, Liu S, Zhao Q, Liu X, Zhang Q, Liu M, Zhao W. The role of ubiquitination and deubiquitination in the pathogenesis of non-alcoholic fatty liver disease. Front Immunol 2025; 16:1535362. [PMID: 40292292 PMCID: PMC12021615 DOI: 10.3389/fimmu.2025.1535362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/19/2025] [Indexed: 04/30/2025] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases and is closely associated with metabolic abnormalities. The causes of NAFLD are exceedingly complicated, and it is known that a variety of signaling pathways, endoplasmic reticulum stress, and mitochondrial dysfunction play a role in the pathogenesis of NAFLD. Recent studies have shown that ubiquitination and deubiquitination are involved in the regulation of the NAFLD pathophysiology. Protein ubiquitination is a dynamic and diverse post-translational alteration that affects various cellular biological processes. Numerous disorders, including NAFLD, exhibit imbalances in ubiquitination and deubiquitination. To highlight the significance of this post-translational modification in the pathogenesis of NAFLD and to aid in the development of new therapeutic approaches for the disease, we will discuss the role of enzymes involved in the processes of ubiquitination and deubiquitination, specifically E3 ubiquitin ligases and deubiquitinating enzymes that are important in the regulation of NAFLD.
Collapse
Affiliation(s)
- Lihui Zhang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan, China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, Henan, China
| | - Sutong Liu
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan, China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, Henan, China
| | - Qing Zhao
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaoyan Liu
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Qiang Zhang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Minghao Liu
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan, China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, Henan, China
| | - Wenxiao Zhao
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan, China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, Henan, China
| |
Collapse
|
7
|
Guo Y, Lin Z, Zhou Z, Zhang W, Mao S, Shan Z, Wu P, Yao X. Oncogenic and immunological functions of USP35 in pan-cancer and its potential as a biomarker in kidney clear cell carcinoma. BMC Cancer 2025; 25:617. [PMID: 40188027 PMCID: PMC11972461 DOI: 10.1186/s12885-025-13964-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 03/18/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Ubiquitin-specific protease 35 (USP35) has gained attention as a regulator in cancer progression. However, its specific role in kidney clear cell carcinoma (KIRC) remains unclear. METHODS USP35 expression in KIRC tumor and normal tissues was evaluated using TCGA data. Correlations between USP35 expression, clinical parameters, and survival outcomes were examined. Functional enrichment analyses were performed to explore the pathways associated with USP35 expression. Immune-related analyses were conducted to assess the effect of USP35 on immune cell recruitment and neoantigen presentation. Drug sensitivity analyses were used to identify potential therapeutic agents targeting USP35. RESULTS USP35 was significantly overexpressed in KIRC tumor tissues compared to normal tissues, and its high expression correlated with advanced disease stages and poor survival outcomes. Gene set enrichment analysis revealed that high USP35 expression was associated with oncogenic pathways, including glycerophospholipid and linoleic acid metabolism, while low expression linked to nitrogen and purine metabolism. USP35 also modulated immune responses, affecting immune cell recruitment and neoantigen presentation, suggesting a role in immune evasion. Drug sensitivity analysis showed that high USP35 expression correlated with increased sensitivity to paclitaxel, bosutinib, and lapatinib. In vitro knockdown of USP35 significantly reduced KIRC cell proliferation, migration, and epithelial-mesenchymal transition (EMT), further supporting its role in tumor progression. CONCLUSION USP35 is overexpressed in KIRC and associated with poor prognosis, likely promoting tumor progression through oncogenic pathways and immune modulation. Its correlation with drug sensitivity positions USP35 as a potential therapeutic target, warranting further investigation into its mechanistic functions and therapeutic applications.
Collapse
MESH Headings
- Humans
- Carcinoma, Renal Cell/immunology
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/pathology
- Carcinoma, Renal Cell/mortality
- Carcinoma, Renal Cell/drug therapy
- Carcinoma, Renal Cell/metabolism
- Kidney Neoplasms/immunology
- Kidney Neoplasms/genetics
- Kidney Neoplasms/pathology
- Kidney Neoplasms/mortality
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/drug therapy
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Ubiquitin-Specific Proteases/genetics
- Ubiquitin-Specific Proteases/metabolism
- Gene Expression Regulation, Neoplastic
- Prognosis
- Cell Line, Tumor
- Cell Proliferation
- Epithelial-Mesenchymal Transition
Collapse
Affiliation(s)
- Yadong Guo
- Department of Urology, School of Medicine, Shanghai Tenth People'S Hospital, Tongji University, Shanghai, China
- Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Ziyou Lin
- School of Medicine, Tongji University, Shanghai, 200092, China
| | - Zijing Zhou
- Laboratory of Ruijin Hospitalaffiliated to, Wuxi Branchaq, Shanghai Jiaotong University School of Medicine, Wuxi, Jiangsu, China
| | - Wentao Zhang
- Department of Urology, School of Medicine, Shanghai Tenth People'S Hospital, Tongji University, Shanghai, China
- Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Shiyu Mao
- Department of Urology, School of Medicine, Shanghai Tenth People'S Hospital, Tongji University, Shanghai, China
- Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Zezhi Shan
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
| | - Pengfei Wu
- Department of Urology, School of Medicine, Shanghai Tenth People'S Hospital, Tongji University, Shanghai, China.
- Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, China.
| | - Xudong Yao
- Department of Urology, School of Medicine, Shanghai Tenth People'S Hospital, Tongji University, Shanghai, China.
- Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
8
|
Shi M, Shen N, Liu X, Yu J, Shen X, Chen Y, Xia Y, Chen L. Exosome-transmitted HSPA9 facilitates bortezomib resistance by targeting TRIP13/USP1 signaling in multiple myeloma. Cell Commun Signal 2025; 23:152. [PMID: 40140922 PMCID: PMC11948694 DOI: 10.1186/s12964-025-02158-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Resistance to the proteasome inhibitor bortezomib (BTZ) poses a formidable therapeutic challenge in multiple myeloma (MM). Our study aims to analyze the mechanism by which exosomes heat shock 70 kDa protein 9 (HSPA9) secreted by BTZ-resistant MM cells disseminate resistance to BTZ-sensitive MM cells. METHODS The serum exosomes were identified by nanoparticle tracking analysis and transmission electron microscopy. Liquid chromatography-mass spectrometry and public databases were performed to screen exosomes HSPA9. Cell counting kit-8, western blotting and colony formation assay were used to detected the role of HSPA9 protein in vitro. Co-immunoprecipitation, immunofluorescence and protein truncation test experiments were used to determine the regulatory network of the HSPA9-USP1-TRIP13 complex. Optical imaging in vivo and xenograft mouse models were performed to investigate that exosomes HSPA9 promoted MM proliferation and BTZ resistance. RESULTS We demonstrated that HSPA9 was highly expressed in serum exosomes and BTZ-resistant MM patients. Knockdown of HSPA9 significantly suppressed tumorigenesis and reversed BTZ resistance in vitro. As a downstream molecular of HSPA9, thyroid hormone receptor-interacting protein 13 (TRIP13) was also highly expressed in BTZ-resistant MM patients. Mechanistically, the carboxyl-terminal peptide-binding domain of HSPA9, provides a platform for recruiting the deubiquitinating enzyme ubiquitin-specific peptidase 1 (USP1), which prevents TRIP13 protein degradation. The HSPA9-USP1-TRIP13 complex exhibits stability in the cytoplasm, and its inhibition remarkably enhances BTZ resistance in vito. CONCLUSION Our findings propose a pioneering molecular regulatory network in which MM-cell-derived exosomes HSPA9 transmitted BTZ resistance through the USP1/TRIP13 signaling pathway. This research highlights exosomes HSPA9 as a promising target to overcome MM BTZ resistance.
Collapse
Affiliation(s)
- Min Shi
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Na Shen
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Xiangyu Liu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Jiapei Yu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Xuxing Shen
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Ying Chen
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Yuan Xia
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Lijuan Chen
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.
| |
Collapse
|
9
|
Li D, Ma Q. Ubiquitin-specific protease: an emerging key player in cardiomyopathy. Cell Commun Signal 2025; 23:143. [PMID: 40102846 PMCID: PMC11921692 DOI: 10.1186/s12964-025-02123-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/23/2025] [Indexed: 03/20/2025] Open
Abstract
Protein quality control (PQC) plays a vital role in maintaining normal heart function, as cardiomyocytes are relatively sensitive to misfolded or damaged proteins, which tend to accumulate under pathological conditions. Ubiquitin-specific protease (USP) is the largest deubiquitinating enzyme family and a key component of the ubiquitin proteasome system (UPS), which is a non-lysosomal protein degradation machinery to mediate PQC in cells. USPs regulate the stability or activity of the target proteins that involve intracellular signaling, transcriptional control of inflammation, antioxidation, and cell growth. Recent studies demonstrate that the USPs can regulate fibrosis, lipid metabolism, glucose homeostasis, hypertrophic response, post-ischemic recovery and cell death such as apoptosis and ferroptosis in cardiomyocytes. Since myocardial cell loss is an important component of cardiomyopathy, therefore, these findings suggest that the UPSs play emerging roles in cardiomyopathy. This review briefly summarizes recent literature on the regulatory roles of USPs in the occurrence and development of cardiomyopathy, giving us new insights into the molecular mechanisms of USPs in different cardiomyopathy and potential preventive strategies for cardiomyopathy.
Collapse
Affiliation(s)
- Danlei Li
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan Province, China
| | - Qilin Ma
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan Province, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan Province, China.
| |
Collapse
|
10
|
Fang S, Wang Z, Xu J, Xu M, Zhou J, Zhang Y, Xue C. USP37-stabilized SALL4 promotes the keloid formation by PI3K/AKT pathway. Sci Rep 2025; 15:7553. [PMID: 40038378 PMCID: PMC11880302 DOI: 10.1038/s41598-025-91776-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/24/2025] [Indexed: 03/06/2025] Open
Abstract
Spalt-like transcription factor 4 (SALL4) plays a vital role in the progression of many human diseases. However, the role and mechanism of SALL4 regulates in keloid formation remain unclear. The mRNA levels of SALL4 and ubiquitin-specific peptidase 37 (USP37) in keloid tissues and keloid fibroblasts were determined by quantitative real-time PCR. Western blot was performed to measure the protein levels of SALL4, USP4/10/37, collagen-related markers, and PI3K/AKT-related markers. The growth, invasion and migration of keloid fibroblasts were determined using CCK8 assay, EdU assay, flow cytometry, transwell assay and wound healing assay. Cell glycolysis was assessed by detecting glucose consumption and lactate production. The interaction between USP37 and SALL4 was confirmed by co-immunoprecipitation assay. SALL4 had increased expression in keloid tissues and keloid fibroblasts. Silencing of SALL4 inhibited the growth, invasion, migration, extracellular matrix (ECM) accumulate and glycolysis of keloid fibroblast, while its overexpression had the opposite effects. In terms of mechanism, USP37 stabilized SALL4 expression through deubiquitinating. Functional experiments suggested that SALL4 overexpression reversed the inhibitory effect of USP37 knockdown on keloid fibroblast functions. Moreover, USP37/SALL4 axis could increase the activity of PI3K/AKT pathway, and PI3K pathway inhibitor LY294002 abolished SALL4-mediated the promoting on keloid fibroblast functions. USP37-activated SALL4 might enhance keloid fibroblast growth, invasion, migration, ECM accumulation and glycolysis via activating PI3K/AKT pathway.
Collapse
Affiliation(s)
- Shuo Fang
- Department of Plastic Surgery, The First Affiliated Hospital of Navy Medical University, Shanghai City, 200000, P.R. China
| | - Zishuo Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai City, 200000, P.R. China
| | - Jianguo Xu
- Department of Plastic Surgery, The First Affiliated Hospital of Navy Medical University, Shanghai City, 200000, P.R. China
| | - Miao Xu
- Department of Plastic Surgery, PLA Naval medical center, Shanghai City, 200000, P.R. China
| | - Jiesong Zhou
- Department of Plastic Surgery, The First Affiliated Hospital of Navy Medical University, Shanghai City, 200000, P.R. China
| | - Yuntong Zhang
- Department of Orthopedics and Trauma, The First Affiliated Hospital of Navy Medical University, Shanghai City, 200000, P.R. China.
| | - Chunyu Xue
- Department of Plastic Surgery, The First Affiliated Hospital of Navy Medical University, Shanghai City, 200000, P.R. China.
| |
Collapse
|
11
|
Ma Y, Jia R, Chen S, Ma J, Yin L, Pan X, He Y, Wu T, Zhao Z, Ma L, Wu S, Wang H, Liang G, Huang S, Sun X. Ubiquitin-Proteasome System in Periodontitis: Mechanisms and Clinical Implications. Cell Prolif 2025; 58:e13781. [PMID: 39626954 PMCID: PMC11882760 DOI: 10.1111/cpr.13781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/18/2024] [Accepted: 11/09/2024] [Indexed: 01/03/2025] Open
Abstract
The progression of periodontitis, a bacteria-driven inflammatory and bone-destructive disease, involves myriad cellular and molecular mechanisms. Protein regulation significantly influences the pathogenesis and management of periodontitis. However, research regarding its regulatory role in periodontitis remains relatively limited. The ubiquitin-proteasome system (UPS), which mainly involves ubiquitination by E3 ubiquitin ligases (E3s) and deubiquitination by deubiquitinating enzymes (DUBs), is the primary intracellular and non-lysosomal mechanism of protein degradation. Recent studies have provided compelling evidence to support the involvement of UPS in periodontitis progression. Increasing evidence indicated that E3s, such as CUL3, Nedd4-2, Synoviolin, FBXL19, PDLIM2, TRIMs and TRAFs, modulate inflammatory responses and bone resorption in periodontitis through multiple classical signalling pathways, including NLRP3, GSDMD, NF-κB, Wnt/β-catenin and Nrf2. Meanwhile, DUBs, including OTUD1, A20, CYLD, UCH-L1 and USPs, also broadly modulate periodontitis progression by regulating signalling pathways such as NF-κB, Wnt/β-catenin, NLRP3, and BMP2. Therefore, the modulation of E3s and DUBs has proven to be an effective therapy against periodontitis. This review provides a comprehensive overview of the regulatory role of ubiquitinating and deubiquitinating enzymes in periodontitis progression and the underlying mechanisms. Finally, we summarise several chemical and genetic methods that regulate UPS enzymes and pave the way for the development of targeted therapies for periodontitis.
Collapse
Affiliation(s)
- Yilin Ma
- Institute of Stomatology, School and Hospital of StomatologyWenzhou Medical UniversityWenzhouChina
| | - Ruiwei Jia
- Institute of Stomatology, School and Hospital of StomatologyWenzhou Medical UniversityWenzhouChina
| | - Shuhong Chen
- Institute of Stomatology, School and Hospital of StomatologyWenzhou Medical UniversityWenzhouChina
| | - Jun Ma
- Institute of Stomatology, School and Hospital of StomatologyWenzhou Medical UniversityWenzhouChina
| | - Lei Yin
- Institute of Stomatology, School and Hospital of StomatologyWenzhou Medical UniversityWenzhouChina
| | - Xingbei Pan
- Institute of Stomatology, School and Hospital of StomatologyWenzhou Medical UniversityWenzhouChina
| | - Yunuo He
- Institute of Stomatology, School and Hospital of StomatologyWenzhou Medical UniversityWenzhouChina
| | - Tong Wu
- Institute of Stomatology, School and Hospital of StomatologyWenzhou Medical UniversityWenzhouChina
| | - Zheyu Zhao
- Institute of Stomatology, School and Hospital of StomatologyWenzhou Medical UniversityWenzhouChina
| | - Lulu Ma
- Institute of Stomatology, School and Hospital of StomatologyWenzhou Medical UniversityWenzhouChina
| | - Shengzhuang Wu
- Institute of Stomatology, School and Hospital of StomatologyHangzhou Medical CollegeZhejiangHangzhouChina
| | - Huining Wang
- Department of Periodontics, School and Hospital of StomatologyWenzhou Medical UniversityWenzhouChina
| | - Guang Liang
- Institute of Stomatology, School and Hospital of StomatologyHangzhou Medical CollegeZhejiangHangzhouChina
| | - Shengbin Huang
- Institute of Stomatology, School and Hospital of StomatologyWenzhou Medical UniversityWenzhouChina
- Department of Prosthodontics, School and Hospital of StomatologyWenzhou Medical UniversityWenzhouChina
| | - Xiaoyu Sun
- Institute of Stomatology, School and Hospital of StomatologyWenzhou Medical UniversityWenzhouChina
- Department of Periodontics, School and Hospital of StomatologyWenzhou Medical UniversityWenzhouChina
| |
Collapse
|
12
|
Wu L, Yu M, Liang H, Lin L, Li H, Chen G, Muhetaer H, Li J, Wu B, Jia X, Dang Y, Zheng G, Li C. SJB2-043, a USP1 Inhibitor, Suppresses A549 Cell Proliferation, Migration, and EMT via Modulation of PI3K/AKT/mTOR, MAPK, and Wnt Signaling Pathways. Curr Issues Mol Biol 2025; 47:155. [PMID: 40136409 PMCID: PMC11941171 DOI: 10.3390/cimb47030155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025] Open
Abstract
OBJECTIVE Non-small cell lung cancer (NSCLC) remains one of the most significant contributors to cancer-related mortality. This investigation explores the influence and underlying mechanisms of the USP1 inhibitor SJB2-043 on A549 cells, with the aim of advancing the development of anti-NSCLC therapeutics. METHODS Publicly available databases were utilized to assess USP1 expression and its association with the progression of NSCLC. Gene expression variations were ascertained through RNA sequencing, followed by the Kyoto Encyclopedia of Genes and Genomes and Gene Ontology pathway enrichment evaluations. Various doses of SJB2-043 were administered to A549 cells to evaluate its impact on cell multiplication, motility, apoptosis, and the cell cycle using CCK-8 assays, colony formation, wound healing, flow cytometry, and Western blotting (WB). RESULTS USP1 was found to be overexpressed in NSCLC specimens and linked to adverse prognosis. Treatment with SJB2-043 markedly inhibited A549 cell proliferation and migration, diminished clonogenic potential, and triggered apoptosis in a dose-dependent manner. Modifications in the cell cycle were observed, showing an elevated percentage of cells in the G2 phase while exhibiting a parallel decline in the G1 phase. WB examination demonstrated diminished protein levels of N-cadherin, CyclinB1, CDK1, C-myc, Bcl-2, p-ERK/ERK, p-p38/p38, p-JNK/JNK, p-AKT/AKT, and p-mTOR/mTOR, alongside an upregulation of E-cadherin, ZO-1, occludin, p53, Bax, p-β-catenin/β-catenin, and GSK3β. CONCLUSIONS SJB2-043 exerts a suppressive effect on A549 cell proliferation, migration, and epithelial-mesenchymal transition while enhancing apoptosis. These cellular effects appear to be mediated through the inhibition of the MAPK, Wnt/β-catenin, and PI3K/AKT/mTOR signaling cascades, in addition to modulation of the cell cycle.
Collapse
Affiliation(s)
- Lipeng Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou 510645, China
| | - Meng Yu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou 510645, China
| | - Huosheng Liang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Long Lin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou 510645, China
| | - Huajian Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou 510645, China
| | - Guangyang Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou 510645, China
| | - Halimulati Muhetaer
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou 510645, China
| | - Jingjing Li
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Bo Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou 510645, China
| | - Xuejing Jia
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yuanye Dang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou 510645, China
| | - Guodong Zheng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou 510645, China
| | - Chuwen Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou 510645, China
| |
Collapse
|
13
|
Bakkar M, Khalil S, Bhayekar K, Kushwaha ND, Samarbakhsh A, Dorandish S, Edwards H, Dou QP, Ge Y, Gavande NS. Ubiquitin-Specific Protease Inhibitors for Cancer Therapy: Recent Advances and Future Prospects. Biomolecules 2025; 15:240. [PMID: 40001543 PMCID: PMC11853158 DOI: 10.3390/biom15020240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Cancer management has traditionally depended on chemotherapy as the mainstay of treatment; however, recent advancements in targeted therapies and immunotherapies have offered new options. Ubiquitin-specific proteases (USPs) have emerged as promising therapeutic targets in cancer treatment due to their crucial roles in regulating protein homeostasis and various essential cellular processes. This review covers the following: (1) the structural and functional characteristics of USPs, highlighting their involvement in key cancer-related pathways, and (2) the discovery, chemical structures, mechanisms of action, and potential clinical implications of USP inhibitors in cancer therapy. Particular attention is given to the role of USP inhibitors in enhancing cancer immunotherapy, e.g., modulation of the tumor microenvironment, effect on regulatory T cell function, and influence on immune checkpoint pathways. Furthermore, this review summarizes the current progress and challenges of clinical trials involving USP inhibitors as cancer therapy. We also discuss the complexities of achieving target selectivity, the ongoing efforts to develop more specific and potent USP inhibitors, and the potential of USP inhibitors to overcome drug resistance and synergize with existing cancer treatments. We finally provide a perspective on future directions in targeting USPs, including the potential for personalized medicine based on specific gene mutations, underscoring their significant potential for enhancing cancer treatment. By elucidating their mechanisms of action, clinical progress, and potential future applications, we hope that this review could serve as a useful resource for both basic scientists and clinicians in the field of cancer therapeutics.
Collapse
Affiliation(s)
- Mohamad Bakkar
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences (EACPHS), Wayne State University, Detroit, MI 48201, USA; (M.B.); (K.B.); (N.D.K.); (A.S.); (S.D.)
- Division of Pediatric Hematology and Oncology, Children’s Hospital of Michigan, Detroit, MI 48201, USA
| | - Sara Khalil
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI 48201, USA; (S.K.); (Q.P.D.)
| | - Komal Bhayekar
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences (EACPHS), Wayne State University, Detroit, MI 48201, USA; (M.B.); (K.B.); (N.D.K.); (A.S.); (S.D.)
| | - Narva Deshwar Kushwaha
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences (EACPHS), Wayne State University, Detroit, MI 48201, USA; (M.B.); (K.B.); (N.D.K.); (A.S.); (S.D.)
| | - Amirreza Samarbakhsh
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences (EACPHS), Wayne State University, Detroit, MI 48201, USA; (M.B.); (K.B.); (N.D.K.); (A.S.); (S.D.)
| | - Sadaf Dorandish
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences (EACPHS), Wayne State University, Detroit, MI 48201, USA; (M.B.); (K.B.); (N.D.K.); (A.S.); (S.D.)
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA;
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute (KCI), Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Q. Ping Dou
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI 48201, USA; (S.K.); (Q.P.D.)
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA;
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute (KCI), Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Yubin Ge
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI 48201, USA; (S.K.); (Q.P.D.)
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA;
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute (KCI), Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Navnath S. Gavande
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences (EACPHS), Wayne State University, Detroit, MI 48201, USA; (M.B.); (K.B.); (N.D.K.); (A.S.); (S.D.)
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute (KCI), Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
14
|
Wang Z, Sun S, Huang L, Chen X, Xu H, Ma H, Xiao M, Wang L. METTL3/YTHDF1-mediated m 6A modification stabilizes USP12 to deubiquitinate FOXO3 and promote apoptosis in sepsis-induced myocardial dysfunction. Mol Immunol 2025; 177:17-31. [PMID: 39662205 DOI: 10.1016/j.molimm.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/18/2024] [Accepted: 12/01/2024] [Indexed: 12/13/2024]
Abstract
Sepsis-induced myocardial dysfunction (SIMD) is a life-threatening complication primarily driven by inflammation, yet its molecular mechanisms remain unclear. In this study, we identified significant upregulation of the m6A methyltransferase METTL3 (methyltransferase-like 3), the m6A reader protein YTHDF1 (YTH N6-methyladenosine RNA binding protein 1), as well as increased expression levels of USP12 (ubiquitin-specific peptidase 12), FOXO3 (forkhead box O3), and key molecules in the intrinsic apoptotic pathway, PUMA (p53 upregulated modulator of apoptosis) and BAX (Bcl-2-associated X), through proteomic profiling in an LPS (Lipopolysaccharide)-induced SIMD mouse model. In vitro and in vivo experiments demonstrated that METTL3 and YTHDF1 regulated USP12 mRNA expression and stability through m6A modification. Elevated USP12 interacted with FOXO3, preventing its ubiquitin-mediated degradation, which enhanced FOXO3 binding to the PUMA promoter, leading to upregulation of PUMA. PUMA upregulation initiated the intrinsic apoptotic pathway, activating downstream BAX, Apaf1 (apoptotic protease-activating factor 1), and Caspases, ultimately driving SIMD. Inhibition of METTL3 (with STM2457), YTHDF1 (with Ebselen), or PUMA (with CLZ-8) significantly suppressed intrinsic apoptosis and alleviated SIMD symptoms. These findings underscore the critical role of METTL3/YTHDF1-dependent m6A modification in modulating the USP12-FOXO3-PUMA-BAX-Apaf1-Caspases signaling axis in SIMD, and suggest that targeting this pathway may offer a potential therapeutic strategy for SIMD.
Collapse
Affiliation(s)
- Zhiping Wang
- Department of Critical Care Medicine, Affiliated Hospital of Nantong University, Nantong, China, Medical school of Nantong University, Nantong 226001, China; Nantong Fourth People's Hospital, Nantong 226005, China
| | - Simiao Sun
- Department of Critical Care Medicine, Affiliated Hospital of Nantong University, Nantong, China, Medical school of Nantong University, Nantong 226001, China
| | - Lili Huang
- Department of Critical Care Medicine, Affiliated Hospital of Nantong University, Nantong, China, Medical school of Nantong University, Nantong 226001, China
| | - Xinlong Chen
- Department of Critical Care Medicine, Affiliated Hospital of Nantong University, Nantong, China, Medical school of Nantong University, Nantong 226001, China
| | - Huifen Xu
- Department of Critical Care Medicine, Affiliated Hospital of Nantong University, Nantong, China, Medical school of Nantong University, Nantong 226001, China
| | - Hongwei Ma
- Department of Critical Care Medicine, Affiliated Hospital of Nantong University, Nantong, China, Medical school of Nantong University, Nantong 226001, China
| | - Mingbing Xiao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China; Department of Laboratory Medicine, Affiliated Hospital and Medical School of Nantong University, Nantong, Jiangsu, China.
| | - Linhua Wang
- Department of Critical Care Medicine, Affiliated Hospital of Nantong University, Nantong, China, Medical school of Nantong University, Nantong 226001, China.
| |
Collapse
|
15
|
Cao Y, Yu T, Zhu Z, Zhang Y, Sun S, Li N, Gu C, Yang Y. Exploring the landscape of post-translational modification in drug discovery. Pharmacol Ther 2025; 265:108749. [PMID: 39557344 DOI: 10.1016/j.pharmthera.2024.108749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/11/2024] [Accepted: 11/04/2024] [Indexed: 11/20/2024]
Abstract
Post-translational modifications (PTMs) play a crucial role in regulating protein function, and their dysregulation is frequently associated with various diseases. The emergence of epigenetic drugs targeting factors such as histone deacetylases (HDACs) and histone methyltransferase enhancers of zeste homolog 2 (EZH2) has led to a significant shift towards precision medicine, offering new possibilities to overcome the limitations of traditional therapeutics. In this review, we aim to systematically explore how small molecules modulate PTMs. We discuss the direct targeting of enzymes involved in PTM pathways, the modulation of substrate proteins, and the disruption of protein-enzyme interactions that govern PTM processes. Additionally, we delve into the emerging strategy of employing multifunctional molecules to precisely regulate the modification levels of proteins of interest (POIs). Furthermore, we examine the specific characteristics of these molecules, evaluating their therapeutic benefits and potential drawbacks. The goal of this review is to provide a comprehensive understanding of PTM-targeting strategies and their potential for personalized medicine, offering a forward-looking perspective on the evolution of precision therapeutics.
Collapse
Affiliation(s)
- Yuhao Cao
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, China; School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tianyi Yu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ziang Zhu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuanjiao Zhang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shanliang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Nianguang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Chunyan Gu
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, China; School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Ye Yang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
16
|
Urakov AL, Tyurin AV, Shchekin VS, Siddikov OA, Abdurakhmonov IR, Gabdrakhimova RA, Samorodov AV. Ubiquitylation in the development of somatic diseases: a mechanism of cellular regulation and a new therapeutic target. REVIEWS ON CLINICAL PHARMACOLOGY AND DRUG THERAPY 2024; 22:339-349. [DOI: 10.17816/rcf631847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
At the present stage of medical science, an increasing role in the pathogenesis of various groups of diseases is assigned to the mechanisms of epigenetic regulation and posttranslational modifications of proteins. One of these mechanisms is ubiquitylation, which is able to regulate the functional activity of proteins, their stability, and also influence the processes of cell death. Involvement in a large number of metabolic pathways and presently identified associations with oncological, cardiovascular, neurological, and inflammatory diseases makes ubiquitylation of the enzymes involved a promising target to develop new therapy options. In this review, we consider the effect of ubiquitination on the development of diseases of the cardiovascular, nervous systems, diabetes mellitus, as well as the development of possible treatment options.
Collapse
|
17
|
Wang Y, Zhang Y, Luo H, Wei W, Liu W, Wang W, Wu Y, Peng C, Ji Y, Zhang J, Zhu C, Bai W, Xia L, Lei H, Xu H, Yin L, Weng W, Yang L, Liu L, Zhou A, Wei Y, Zhu Q, Zhu W, Yang Y, Xu Z, Wu Y. Identification of USP2 as a novel target to induce degradation of KRAS in myeloma cells. Acta Pharm Sin B 2024; 14:5235-5248. [PMID: 39807309 PMCID: PMC11725127 DOI: 10.1016/j.apsb.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/12/2024] [Accepted: 07/25/2024] [Indexed: 01/16/2025] Open
Abstract
Inducing the degradation of KRAS represents a novel strategy to combat cancers with KRAS mutation. In this study, we identify ubiquitin-specific protease 2 (USP2) as a novel deubiquitinating enzyme of KRAS in multiple myeloma (MM). Specifically, we demonstrate that gambogic acid (GA) forms a covalent bond with the cysteine 284 residue of USP2 through an allosteric pocket, inhibiting its deubiquitinating activity. Inactivation or knockdown of USP2 leads to the degradation of KRAS, resulting in the suppression of MM cell proliferation in vitro and in vivo. Conversely, overexpressing USP2 stabilizes KRAS and partially abrogates GA-induced apoptosis in MM cells. Furthermore, elevated USP2 levels may be associated with poorer prognoses in MM patients. These findings highlight the potential of the USP2/KRAS axis as a therapeutic target in MM, suggesting that strategically inducing KRAS degradation via USP2 inhibition could be a promising approach for treating cancers with KRAS mutations.
Collapse
Affiliation(s)
- Yingying Wang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Youping Zhang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hao Luo
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Wei Wei
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Wanting Liu
- Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Weiwei Wang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yunzhao Wu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Cheng Peng
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yanjie Ji
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jianfang Zhang
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chujiao Zhu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wenhui Bai
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Li Xia
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hu Lei
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hanzhang Xu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Leimiao Yin
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wei Weng
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Li Yang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ligen Liu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Aiwu Zhou
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yueyue Wei
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qi Zhu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Weiliang Zhu
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yongqing Yang
- Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhijian Xu
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yingli Wu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
18
|
Xian Y, Ye J, Tang Y, Zhang N, Peng C, Huang W, He G. Deubiquitinases as novel therapeutic targets for diseases. MedComm (Beijing) 2024; 5:e70036. [PMID: 39678489 PMCID: PMC11645450 DOI: 10.1002/mco2.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024] Open
Abstract
Deubiquitinating enzymes (DUBs) regulate substrate ubiquitination by removing ubiquitin or cleaving within ubiquitin chains, thereby maintaining cellular homeostasis. Approximately 100 DUBs in humans counteract E3 ubiquitin ligases, finely balancing ubiquitination and deubiquitination processes to maintain cellular proteostasis and respond to various stimuli and stresses. Given their role in modulating ubiquitination levels of various substrates, DUBs are increasingly linked to human health and disease. Here, we review the DUB family, highlighting their distinctive structural characteristics and chain-type specificities. We show that DUB family members regulate key signaling pathways, such as NF-κB, PI3K/Akt/mTOR, and MAPK, and play crucial roles in tumorigenesis and other diseases (neurodegenerative disorders, cardiovascular diseases, inflammatory disorders, and developmental diseases), making them promising therapeutic targets Our review also discusses the challenges in developing DUB inhibitors and underscores the critical role of the DUBs in cellular signaling and cancer. This comprehensive analysis enhances our understanding of the complex biological functions of the DUBs and underscores their therapeutic potential.
Collapse
Affiliation(s)
- Yali Xian
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Jing Ye
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Yu Tang
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine ResourcesSchool of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine ResourcesSchool of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine ResourcesSchool of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Gu He
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
19
|
Roy A, Sharma S, Paul I, Ray S. Molecular hybridization assisted multi-technique approach for designing USP21 inhibitors to halt catalytic triad-mediated nucleophilic attack and suppress pancreatic ductal adenocarcinoma progression: A molecular dynamics study. Comput Biol Med 2024; 182:109096. [PMID: 39270458 DOI: 10.1016/j.compbiomed.2024.109096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 07/20/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
AIMS Pancreatic cancer, the 12th-most common cancer, globally, is highly challenging to treat due to its complex epigenetic, metabolic, and genomic characteristics. In pancreatic ductal adenocarcinoma, USP21 acts as an oncogene by stabilizing the long isoform of Transcription Factor 7, thereby activating the Wnt signaling pathway. This study aims to inhibit activation of this pathway through computer-aided drug discovery. Accordingly, four libraries of compounds were designed to target the USP21's catalytic domain (Cys221, His518, Asp534), responsible for its deubiquitinating activity. MAIN METHODS Utilizing an array of computer-aided drug design methodologies, such as molecular docking, virtual screening, principal component analysis, molecular dynamics simulation, and dynamic cross-correlation matrix, the structural and functional characteristics of the USP21-inhibitor complex were examined. Following the evaluation of the binding affinities, 20 potential ligands were selected, and the best ligand was subjected to additional molecular dynamics simulation study. KEY FINDINGS The results indicated that the ligand-bound USP21 exhibited reduced structural fluctuations compared to the unbound form, as evident from RMSD, RMSF, Rg, and SASA graphs. ADMET analysis of the top ligand showed promising pharmacokinetic and pharmacodynamic profiles, good bioavailability, and low toxicity. The stable conformations of the proposed drug when bound to their target cavities indicate a robust binding affinity of -9.3 kcal/mol. The drug exhibits an elevated pKi value of 6.82, a noteworthy pIC50 value of 5.972, and a pKd value of 6.023 proving its high affinity and inhibitory potential towards the target. SIGNIFICANCE In-vitro testing of the top compound (MOLHYB-0436) could lead to its use as a potential treatment for pancreatic cancer.
Collapse
Affiliation(s)
- Alankar Roy
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Sayan Sharma
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Ishani Paul
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Sujay Ray
- Amity Institute of Biotechnology, Amity University, Kolkata, India.
| |
Collapse
|
20
|
Zhou Y, Liao Y, Fan L, Wei X, Huang Q, Yang C, Feng W, Wu Y, Gao X, Shen X, Zhou J, Xia Z, Zhang Z. Lung-Targeted Lipid Nanoparticle-Delivered siUSP33 Attenuates SARS-CoV-2 Replication and Virulence by Promoting Envelope Degradation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406211. [PMID: 39301916 PMCID: PMC11558077 DOI: 10.1002/advs.202406211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/02/2024] [Indexed: 09/22/2024]
Abstract
As a structural protein of SARS-CoV-2, the envelope (E) protein not only plays a key role in the formation of viral particles, but also forms ion channels and has pathogenic functions, including triggering cell death and inflammatory responses. The stability of E proteins is controlled by the host ubiquitin-proteasome system. By screening human deubiquitinases, it is found that ubiquitin-specific protease 33 (USP33) can enhance the stability of E proteins depending on its deubiquitinase activity, thereby promoting viral replication. In the absence of USP33, E proteins are rapidly degraded, leading to a reduced viral load and inflammation. Using lipid nanoparticle (LNP) encapsulation of siUSP33 by adjusting the lipid components (ionizable cationic lipids), siUSP33 is successfully delivered to mouse lung tissues, rapidly reducing USP33 expression in the lungs and maintaining knockdown for at least 14 days, effectively suppressing viral replication and virulence. This method of delivery allows efficient targeting of the lungs and a response to acute infections without long-term USP33 deficiency. This research, based on the deubiquitination mechanism of USP33 on the E protein, demonstrates that LNP-mediated siRNA delivery targeting USP33 plays a role in antiviral and anti-inflammatory responses, offering a novel strategy for the prevention and treatment of SARS-CoV-2.
Collapse
Affiliation(s)
- Yuzheng Zhou
- Institute for HepatologyNational Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalThe Second Affiliated HospitalSchool of MedicineSouthern University of Science and TechnologyShenzhen518112China
| | - Yujie Liao
- Department of Cell BiologySchool of Life SciencesCentral South UniversityChangsha410083China
| | - Lujie Fan
- Institute for HepatologyNational Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalThe Second Affiliated HospitalSchool of MedicineSouthern University of Science and TechnologyShenzhen518112China
- Guangzhou LaboratoryGuangzhou510700China
| | - Xiafei Wei
- Institute for HepatologyNational Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalThe Second Affiliated HospitalSchool of MedicineSouthern University of Science and TechnologyShenzhen518112China
| | - Qiang Huang
- Institute for HepatologyNational Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalThe Second Affiliated HospitalSchool of MedicineSouthern University of Science and TechnologyShenzhen518112China
| | - Chuwei Yang
- Institute for HepatologyNational Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalThe Second Affiliated HospitalSchool of MedicineSouthern University of Science and TechnologyShenzhen518112China
| | - Wei Feng
- Institute for HepatologyNational Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalThe Second Affiliated HospitalSchool of MedicineSouthern University of Science and TechnologyShenzhen518112China
| | - Yezi Wu
- Institute for HepatologyNational Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalThe Second Affiliated HospitalSchool of MedicineSouthern University of Science and TechnologyShenzhen518112China
| | - Xiang Gao
- Institute for HepatologyNational Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalThe Second Affiliated HospitalSchool of MedicineSouthern University of Science and TechnologyShenzhen518112China
| | - Xiaotong Shen
- Institute for HepatologyNational Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalThe Second Affiliated HospitalSchool of MedicineSouthern University of Science and TechnologyShenzhen518112China
| | - Jian Zhou
- Institute for HepatologyNational Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalThe Second Affiliated HospitalSchool of MedicineSouthern University of Science and TechnologyShenzhen518112China
| | - Zanxian Xia
- Department of Cell BiologySchool of Life SciencesCentral South UniversityChangsha410083China
- Hunan Key Laboratory of Animal Models for Human DiseasesHunan Key Laboratory of Medical Genetics & Center for Medical GeneticsSchool of Life SciencesCentral South UniversityChangsha410013China
| | - Zheng Zhang
- Institute for HepatologyNational Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalThe Second Affiliated HospitalSchool of MedicineSouthern University of Science and TechnologyShenzhen518112China
- Shenzhen Research Center for Communicable Disease Diagnosis and TreatmentChinese Academy of Medical SciencesShenzhen518112China
| |
Collapse
|
21
|
Guo Y, Cai C, Zhang B, Tan B, Tang Q, Lei Z, Qi X, Chen J, Zheng X, Zi D, Li S, Tan J. Targeting USP11 regulation by a novel lithium-organic coordination compound improves neuropathologies and cognitive functions in Alzheimer transgenic mice. EMBO Mol Med 2024; 16:2856-2881. [PMID: 39394468 PMCID: PMC11555261 DOI: 10.1038/s44321-024-00146-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 10/13/2024] Open
Abstract
Alzheimer's Disease (AD), as the most common neurodegenerative disease worldwide, severely impairs patients' cognitive functions. Although its exact etiology remains unclear, the abnormal aggregations of misfolded β-amyloid peptide and tau protein are considered pivotal in its pathological progression. Recent studies identify ubiquitin-specific protease 11 (USP11) as the key regulator of tau deubiquitination, exacerbating tau aggregation and AD pathology. Thereby, inhibiting USP11 function, via either blocking USP11 activity or lowering USP11 protein level, may serve as an effective therapeutic strategy against AD. Our research introduces IsoLiPro, a unique lithium isobutyrate-L-proline coordination compound, effectively lowers USP11 protein level and enhances tau ubiquitination in vitro. Additionally, long-term oral administration of IsoLiPro dramatically reduces total and phosphorylated tau levels in AD transgenic mice. Moreover, IsoLiPro also significantly lessens β-amyloid deposition and synaptic damage, improving cognitive functions in these animal models. These results indicate that IsoLiPro, as a novel small-molecule USP11 inhibitor, can effectively alleviate AD-like pathologies and improve cognitive functions, offering promise as a potential multi-targeting therapeutic agent against AD.
Collapse
Affiliation(s)
- Yi Guo
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education; Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Chuanbin Cai
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education; Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Bingjie Zhang
- Anyu Biotechnology (Hangzhou) Co., Ltd., Hangzhou, 310000, Zhejiang, China
| | - Bo Tan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Qinmin Tang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education; Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Zhifeng Lei
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education; Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education; Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Jiang Chen
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education; Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, 550025, Guizhou, China
- Department of Pharmacy, School of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Xiaojiang Zheng
- Anyu Biotechnology (Hangzhou) Co., Ltd., Hangzhou, 310000, Zhejiang, China
| | - Dan Zi
- Department of Gynecology, Guizhou Provincial People's Hospital, Guiyang, 550025, Guizhou, China
| | - Song Li
- First Affiliated Hospital of Dalian Medical University, Dalian, 116021, Liaoning, China.
| | - Jun Tan
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education; Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, 550025, Guizhou, China.
- Anyu Biotechnology (Hangzhou) Co., Ltd., Hangzhou, 310000, Zhejiang, China.
- Institute of Translational Medicine; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang, China.
| |
Collapse
|
22
|
Guo H, Wei J, Zhang Y, Wang L, Wan J, Wang W, Gao L, Li J, Sun T, Ma L. Protein ubiquitination in ovarian cancer immunotherapy: The progress and therapeutic strategy. Genes Dis 2024; 11:101158. [PMID: 39253578 PMCID: PMC11382211 DOI: 10.1016/j.gendis.2023.101158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/04/2023] [Accepted: 10/10/2023] [Indexed: 09/11/2024] Open
Abstract
Ovarian cancer is a common cancer for females, and the incidence and mortality rates are on the rise. Many treatment strategies have been developed for ovarian cancer, including chemotherapy and immunotherapy, but they are often ineffective and prone to drug resistance. Protein ubiquitination is an important class of post-translation modifications that have been found to be associated with various human diseases and cancer development. Recent studies have revealed that protein ubiquitination is involved in the progression of ovarian cancer and plays an important role in the tumor immune process. Moreover, the combination of ubiquitinase/deubiquitinase inhibitors and cancer immunotherapy approaches can effectively reduce treatment resistance and improve treatment efficacy, which provides new ideas for cancer treatment. Herein, we review the role of protein ubiquitination in relation to ovarian cancer immunotherapy and recent advances in the use of ubiquitinase/deubiquitinase inhibitors in combination with cancer immunotherapy.
Collapse
Affiliation(s)
- Huiling Guo
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Clinical Laboratory of Henan Province, Zhengzhou, Henan 450052, China
| | - Jianwei Wei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yuyan Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Li Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Junhu Wan
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Clinical Laboratory of Henan Province, Zhengzhou, Henan 450052, China
| | - Weiwei Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Ling Gao
- Department of Gynecologic Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450052, China
| | - Jiajing Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Ting Sun
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Clinical Laboratory of Henan Province, Zhengzhou, Henan 450052, China
| | - Liwei Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Clinical Laboratory of Henan Province, Zhengzhou, Henan 450052, China
| |
Collapse
|
23
|
Shen K, Zhang Q. Literature review: nuclear factor kappa B (NF-κB) regulation in human cancers mediated by ubiquitin-specific proteases (USPs). ANNALS OF TRANSLATIONAL MEDICINE 2024; 12:90. [PMID: 39507445 PMCID: PMC11534757 DOI: 10.21037/atm-24-32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/28/2024] [Indexed: 11/08/2024]
Abstract
Background and Objective The nuclear factor kappa B (NF-κB) consists of a group of transcription factors of which its dysregulation is responsible for diseases such as inflammation and cancer. Ubiquitin-specific proteases (USPs) are the most prominent group among the deubiquitinases (DUBs). Their functions include control of protein stability and regulation of signaling transduction. The association between NF-κB activity and human cancer progression is evident. Still, the role of USPs in the NF-κB regulation in human cancers, especially prostate cancer, is not well understood. This review discusses on the role of USP-mediated regulation of the canonical NF-κB signaling pathway in human cancers and provides a prospect of future studies in prostate cancers. Methods Within the biomedical literature database, PubMed, our review team searched for keywords including USP, NF-κB signaling pathway, cancer, prostate cancer, and specific USPs such as USP1, USP2, USP3, etc. These keywords were used individually or in combinations. After screening, only mechanistic studies and articles reporting the subsequent changes in cellular behaviors were included for full-text review. Key Content and Findings Most USPs function primarily as DUBs to regulate the canonical NF-κB signaling pathway. The typical K48- and K63-linked DUB activities of USPs are the best understood. These USPs are positive and negative regulators of the NF-κB activity. However, their DUB activities against polyubiquitin chains with atypical linkages have not yet been extensively studied. Furthermore, some USPs can regulate the canonical NF-κB signaling pathway via ubiquitin-independent mechanisms. Conclusions In the regulation of the canonical NF-κB pathway, the USPs function primarily as DUBs, but they also regulate the p65/p50 by ubiquitin-independent mechanisms. Generally, in human cancer models, USP-mediated elevation and suppression of p65/p50 activity lead to more or less malignant cellular behaviors, respectively. Given the currently unbalanced focus on K48- and K63-linked DUB activities and the context-dependent function of USPs, future research of USP-mediated NF-κB regulation in human cancers should invest more in the DUB activities against the atypical polyubiquitin chains and test known mechanisms in different cancer models.
Collapse
Affiliation(s)
- Keyi Shen
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Qiuyang Zhang
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA
- Tulane Center for Aging, Tulane University, New Orleans, LA, USA
- Tulane Cancer Center and Louisiana Cancer Research Center, Tulane University, New Orleans, LA, USA
| |
Collapse
|
24
|
Thi Pham KH, Tran MH, Nam LB, Pham PTV, Nguyen TK. Structure, Inhibitors, and Biological Function in Nervous System and Cancer of Ubiquitin-Specific Protease 46. Bioinform Biol Insights 2024; 18:11779322241285982. [PMID: 39410943 PMCID: PMC11475357 DOI: 10.1177/11779322241285982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024] Open
Abstract
Deubiquitinating enzymes (DUBs) prevent ubiquitination by eliminating ubiquitin from their substrates. Deubiquitinating enzymes have important roles in a number of cell biology subfields that are highly relevant to diseases like neurodegeneration, cancer, autoimmune disorders, and long-term inflammation. Deubiquitinating enzymes feature a well-defined active site and, for the most part, catalytic cysteine, which makes them appealing targets for small-molecule drug development. Ubiquitin-specific protease 46 (USP46) is a member of the ubiquitin-specific protease family, the largest subfamily of DUBs. Over the past 10 years, some studies have steadily demonstrated the significance of USP46 in several biological processes, although it was identified later and early research progress was modest. Specifically, in the last few years, the carcinogenic properties of USP46 have become more apparent. In the current review, we provide a comprehensive overview of the current knowledge about USP46 including its characteristics, structure, inhibitors, function in diseases, especially in the nervous system, and the correlation of USP46 with cancers.
Collapse
Affiliation(s)
- Khanh Huyen Thi Pham
- Department of Pharmacy, School of Medicine and Pharmacy, The University of Danang, Danang City, Vietnam
- College of Pharmacy, Dongguk University, Seoul, Republic of Korea
| | - Manh Hung Tran
- Department of Pharmacy, School of Medicine and Pharmacy, The University of Danang, Danang City, Vietnam
| | - Le Ba Nam
- Faculty of Pharmacy, Thanh Do University, Hanoi City, Vietnam
| | - Phu Tran Vinh Pham
- Department of Biomedical Science, VN-UK Institute for Research and Executive Education, The University of Danang, Danang City, Vietnam
| | - Tan Khanh Nguyen
- Scientific Management Department, Dong A University, Danang City, Vietnam
| |
Collapse
|
25
|
Lu C, Cai Y, Wu S, Wang Y, Li JB, Xu G, Ma J. Deubiquitinating enzyme USP39 promotes the growth and metastasis of gastric cancer cells by modulating the degradation of RNA-binding protein RBM39. J Biol Chem 2024; 300:107751. [PMID: 39260689 PMCID: PMC11490714 DOI: 10.1016/j.jbc.2024.107751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/05/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024] Open
Abstract
It has been revealed recently that the RNA-binding motif protein RBM39 is highly expressed in several cancers, which results in poor patient survival. However, how RBM39 is regulated in gastric cancer cells is unknown. Here, affinity purification-mass spectrometry and a biochemical screening are employed to identify the RBM39-interacting proteins and the deubiquitinating enzymes that regulate the RBM39 protein level. Integration of the data obtained from these two approaches uncovers USP39 as the potential deubiquitinating enzyme that regulates RBM39 stability. Bioinformatic analysis discloses that USP39 is increased in gastric cancer tissues and its elevation shortens the duration of overall survival for gastric cancer patients. Biochemical experiments verify that USP39 and RBM39 interact with each other and highly colocalize in the nucleus. Expression of USP39 elevates while USP39 knockdown attenuates the RBM39 protein level and their interaction regulates this modulation and their colocalization. Mechanistic studies reveal that USP39 reduces the K48-linked polyubiquitin chains on RBM39, thus enhancing its stability and increasing the protein level by preventing its proteasomal degradation. USP39 overexpression promotes while its knockdown attenuates the growth, colony formation, migration, and invasion of gastric cancer cells. Interestingly, overexpression of RBM39 partially restores the impact of USP39 depletion, while RBM39 knockdown partially abolishes the effect of USP39 overexpression on the growth, colony formation, migration, and invasion of gastric cancer cells. Collectively, this work identifies the first DUB for RBM39 and elucidates the regulatory functions and the underlying mechanism, providing a possible alternative approach to suppressing RBM39 by inhibiting USP39 in cancer therapy.
Collapse
Affiliation(s)
- Chengpiao Lu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Yunxin Cai
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Shenglong Wu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Yuhong Wang
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jia-Bin Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu, China.
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, Jiangsu, China; Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China; MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China.
| | - Jingjing Ma
- Department of Pharmacy, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
26
|
Beretta GL, Costantino M, Mirra L, Pettinari P, Perego P. Deubiquitinases in Ovarian Cancer: Role in Drug Resistance and Tumor Aggressiveness. Int J Biol Sci 2024; 20:5208-5222. [PMID: 39430244 PMCID: PMC11489175 DOI: 10.7150/ijbs.100355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/05/2024] [Indexed: 10/22/2024] Open
Abstract
Ovarian cancer is a lethal disease due to late diagnosis and occurrence of drug resistance that limits the efficacy of platinum-based therapy. Drug resistance mechanisms include both tumor intrinsic and tumor microenvironment-related factors. A role for deubiquitinases (DUBs) is starting to emerge in ovarian cancer. DUBs are a large family of enzymes that remove ubiquitin from target proteins and participate in processes affecting drug resistance such as DNA damage repair and apoptosis. Besides, DUBs modulate the functions of T cell populations favoring an immune suppressed microenvironment. Three DUBs are proteasome-associated, whereas the large majority are not. Among the former DUBs, USP14 has been proposed to modulate transcription factors such as Bcl6 and BACH1. In addition, RPN11/PSMD14 interferes with various processes including epithelial mesenchymal transition, also favored by non-proteasomal DUBs such as USP1 by acting on Snail. Besides, USP8 by stabilizing HER family receptors can confer drug resistance. Overall, DUBs appear to be druggable, with several inhibitors under development. Based on DUBs biological role, DUBs targeting appears promising in view of combination strategies involving different therapeutic approaches. Here, we summarize the relevance of DUBs in ovarian carcinoma and provide insights into future challenges for the treatment of this disease.
Collapse
Affiliation(s)
| | | | | | | | - Paola Perego
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| |
Collapse
|
27
|
Yang J, Yang W, Hu Y, Tong L, Liu R, Liu L, Jiang B, Sun Z. Screening of genes co-associated with osteoporosis and chronic HBV infection based on bioinformatics analysis and machine learning. Front Immunol 2024; 15:1472354. [PMID: 39351238 PMCID: PMC11439653 DOI: 10.3389/fimmu.2024.1472354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024] Open
Abstract
Objective To identify HBV-related genes (HRGs) implicated in osteoporosis (OP) pathogenesis and develop a diagnostic model for early OP detection in chronic HBV infection (CBI) patients. Methods Five public sequencing datasets were collected from the GEO database. Gene differential expression and LASSO analyses identified genes linked to OP and CBI. Machine learning algorithms (random forests, support vector machines, and gradient boosting machines) further filtered these genes. The best diagnostic model was chosen based on accuracy and Kappa values. A nomogram model based on HRGs was constructed and assessed for reliability. OP patients were divided into two chronic HBV-related clusters using non-negative matrix factorization. Differential gene expression analysis, Gene Ontology, and KEGG enrichment analyses explored the roles of these genes in OP progression, using ssGSEA and GSVA. Differences in immune cell infiltration between clusters and the correlation between HRGs and immune cells were examined using ssGSEA and the Pearson method. Results Differential gene expression analysis of CBI and combined OP dataset identified 822 and 776 differentially expressed genes, respectively, with 43 genes intersecting. Following LASSO analysis and various machine learning recursive feature elimination algorithms, 16 HRGs were identified. The support vector machine emerged as the best predictive model based on accuracy and Kappa values, with AUC values of 0.92, 0.83, 0.74, and 0.7 for the training set, validation set, GSE7429, and GSE7158, respectively. The nomogram model exhibited AUC values of 0.91, 0.79, and 0.68 in the training set, GSE7429, and GSE7158, respectively. Non-negative matrix factorization divided OP patients into two clusters, revealing statistically significant differences in 11 types of immune cell infiltration between clusters. Finally, intersecting the HRGs obtained from LASSO analysis with the HRGs identified three genes. Conclusion This study successfully identified HRGs and developed an efficient diagnostic model based on HRGs, demonstrating high accuracy and strong predictive performance across multiple datasets. This research not only offers new insights into the complex relationship between OP and CBI but also establishes a foundation for the development of early diagnostic and personalized treatment strategies for chronic HBV-related OP.
Collapse
Affiliation(s)
- Jia Yang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Weiguang Yang
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yue Hu
- Clinical School of the Second People’s Hospital, Tianjin Medical University, Tianjin, China
| | - Linjian Tong
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Rui Liu
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Lice Liu
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Bei Jiang
- Clinical School of the Second People’s Hospital, Tianjin Medical University, Tianjin, China
| | - Zhiming Sun
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| |
Collapse
|
28
|
Roozitalab G, Abedi B, Imani S, Farghadani R, Jabbarzadeh Kaboli P. Comprehensive assessment of TECENTRIQ® and OPDIVO®: analyzing immunotherapy indications withdrawn in triple-negative breast cancer and hepatocellular carcinoma. Cancer Metastasis Rev 2024; 43:889-918. [PMID: 38409546 DOI: 10.1007/s10555-024-10174-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 02/05/2024] [Indexed: 02/28/2024]
Abstract
Atezolizumab (TECENTRIQ®) and nivolumab (OPDIVO®) are both immunotherapeutic indications targeting programmed cell death 1 ligand 1 (PD-L1) and programmed cell death 1 (PD-1), respectively. These inhibitors hold promise as therapies for triple-negative breast cancer (TNBC) and hepatocellular carcinoma (HCC) and have demonstrated encouraging results in reducing the progression and spread of tumors. However, due to their adverse effects and low response rates, the US Food and Drug Administration (FDA) has withdrawn the approval of atezolizumab in TNBC and nivolumab in HCC treatment. The withdrawals of atezolizumab and nivolumab have raised concerns regarding their effectiveness and the ability to predict treatment responses. Therefore, the current study aims to investigate the immunotherapy withdrawal of PD-1/PD-L1 inhibitors, specifically atezolizumab for TNBC and nivolumab for HCC. This study will examine both the structural and clinical aspects. This review provides detailed insights into the structure of the PD-1 receptor and its ligands, the interactions between PD-1 and PD-L1, and their interactions with the withdrawn antibodies (atezolizumab and nivolumab) as well as PD-1 and PD-L1 modifications. In addition, this review further assesses these antibodies in the context of TNBC and HCC. It seeks to elucidate the factors that contribute to diverse responses to PD-1/PD-L1 therapy in different types of cancer and propose approaches for predicting responses, mitigating the potential risks linked to therapy withdrawals, and optimizing patient outcomes. By better understanding the mechanisms underlying responses to PD-1/PD-L1 therapy and developing strategies to predict these responses, it is possible to create more efficient treatments for TNBC and HCC.
Collapse
Affiliation(s)
- Ghazaal Roozitalab
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Behnaz Abedi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Saber Imani
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, People's Republic of China
| | - Reyhaneh Farghadani
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| | - Parham Jabbarzadeh Kaboli
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung, 406, Taiwan.
| |
Collapse
|
29
|
Zhuang T, Zhang S, Liu D, Li Z, Li X, Li J, Yang P, Zhang C, Cui J, Fu M, Shen F, Yuan L, Zhang Z, Su P, Zhu J, Yang H. USP36 promotes tumorigenesis and tamoxifen resistance in breast cancer by deubiquitinating and stabilizing ERα. J Exp Clin Cancer Res 2024; 43:249. [PMID: 39215346 PMCID: PMC11365244 DOI: 10.1186/s13046-024-03160-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Breast cancer is the most prevalent cancer in women globally. Over-activated estrogen receptor (ER) α signaling is considered the main factor in luminal breast cancers, which can be effectively managed with selective estrogen receptor modulators (SERMs) like tamoxifen. However, approximately 30-40% of ER + breast cancer cases are recurrent after tamoxifen therapy. This implies that the treatment of breast cancer is still hindered by resistance to tamoxifen. Recent studies have suggested that post-translational modifications of ERα play a significant role in endocrine resistance. The stability of both ERα protein and its transcriptome is regulated by a balance between E3 ubiquitin ligases and deubiquitinases. According to the current knowledge, approximately 100 deubiquitinases are encoded in the human genome, but it remains unclear which deubiquitinases play a critical role in estrogen signaling and endocrine resistance. Thus, decoding the key deubiquitinases that significantly impact estrogen signaling, including the control of ERα expression and stability, is critical for the improvement of breast cancer therapeutics. METHODS We used several ER positive breast cancer cell lines, DUB siRNA library screening, xenograft models, endocrine-resistant (ERα-Y537S) model and performed immunoblotting, real time PCR, RNA sequencing, immunofluorescence, and luciferase activity assay to investigate the function of USP36 in breast cancer progression and tamoxifen resistance. RESULTS In this study, we identify Ubiquitin-specific peptidase 36 (USP36) as a key deubiquitinase involved in ERα signaling and the advancement of breast cancer by deubiquitinases siRNA library screening. In vitro and in vivo studies showed that USP36, but not its catalytically inactive mutant (C131A), could promote breast cancer progression through ERα signaling. Conversely, silencing USP36 inhibited tumorigenesis. In models resistant to endocrine therapy, silencing USP36 destabilized the resistant form of ERα (Y537S) and restored sensitivity to tamoxifen. Molecular studies indicated that USP36 inhibited K48-linked polyubiquitination of ERα and enhanced the ERα transcriptome. It is interesting to note that our results suggest USP36 as a novel biomarker for treatment of breast cancer. CONCLUSION Our study revealed the possibility that inhibiting USP36 combined with tamoxifen could provide a potential therapy for breast cancer.
Collapse
Affiliation(s)
- Ting Zhuang
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
| | - Shuqing Zhang
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
| | - Dongyi Liu
- Department of Anaesthesiology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong Province, P.R. China
- Department of General Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong Province, P.R. China
| | - Zhongbo Li
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
| | - Xin Li
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
| | - Jiaoyan Li
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
| | - Penghe Yang
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
| | - Chenmiao Zhang
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
| | - Jiayao Cui
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
| | - Mingxi Fu
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
| | - Fangyu Shen
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
| | - Lei Yuan
- School of International Education, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China
| | - Zhao Zhang
- The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, 450003, Henan Province, P.R. China
| | - Peng Su
- Department of Pathology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China.
| | - Jian Zhu
- Department of General Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong Province, P.R. China.
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110000, P.R. China.
| | - Huijie Yang
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China.
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, P.R. China.
| |
Collapse
|
30
|
van der Laan L, ten Voorde N, Mannens MMAM, Henneman P. Molecular signatures in Mendelian neurodevelopment: a focus on ubiquitination driven DNA methylation aberrations. Front Mol Neurosci 2024; 17:1446686. [PMID: 39135741 PMCID: PMC11317395 DOI: 10.3389/fnmol.2024.1446686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024] Open
Abstract
Mendelian disorders, arising from pathogenic variations within single genetic loci, often manifest as neurodevelopmental disorders (NDDs), affecting a significant portion of the pediatric population worldwide. These disorders are marked by atypical brain development, intellectual disabilities, and various associated phenotypic traits. Genetic testing aids in clinical diagnoses, but inconclusive results can prolong confirmation processes. Recent focus on epigenetic dysregulation has led to the discovery of DNA methylation signatures, or episignatures, associated with NDDs, accelerating diagnostic precision. Notably, TRIP12 and USP7, genes involved in the ubiquitination pathway, exhibit specific episignatures. Understanding the roles of these genes within the ubiquitination pathway sheds light on their potential influence on episignature formation. While TRIP12 acts as an E3 ligase, USP7 functions as a deubiquitinase, presenting contrasting roles within ubiquitination. Comparison of phenotypic traits in patients with pathogenic variations in these genes reveals both distinctions and commonalities, offering insights into underlying pathophysiological mechanisms. This review contextualizes the roles of TRIP12 and USP7 within the ubiquitination pathway, their influence on episignature formation, and the potential implications for NDD pathogenesis. Understanding these intricate relationships may unveil novel therapeutic targets and diagnostic strategies for NDDs.
Collapse
Affiliation(s)
- Liselot van der Laan
- Department of Human Genetics, Amsterdam UMC, Amsterdam, Netherlands
- Amsterdam Reproduction and Development, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Nicky ten Voorde
- Department of Human Genetics, Amsterdam UMC, Amsterdam, Netherlands
| | - Marcel M. A. M. Mannens
- Department of Human Genetics, Amsterdam UMC, Amsterdam, Netherlands
- Amsterdam Reproduction and Development, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Peter Henneman
- Department of Human Genetics, Amsterdam UMC, Amsterdam, Netherlands
- Amsterdam Reproduction and Development, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
31
|
Meng X, Chen H, Tan Z, Yan W, Liu Y, Lv J, Han M. USP53 Affects the Proliferation and Apoptosis of Breast Cancer Cells by Regulating the Ubiquitination Level of ZMYND11. Biol Proced Online 2024; 26:24. [PMID: 39044157 PMCID: PMC11264418 DOI: 10.1186/s12575-024-00251-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/05/2024] [Indexed: 07/25/2024] Open
Abstract
Breast cancer is the most common female malignancy worldwide. Ubiquitin-specific peptidase 53 (USP53) has been shown to exert cancer-suppressing functions in several solid tumors, but its role and the underlying mechanism in breast cancer has not been clearly elucidated. Therefore, we have carried out a series of detailed studies on this matter at the levels of bioinformatics, clinical tissue, cell function and animal model. We found that USP53 expression was downregulated in breast cancer specimens and was negatively correlated with the clinical stages. Gain- and loss-of-function experiments demonstrated USP53 inhibited proliferation, clonogenesis, cell cycle and xenograft growth, as well as induced apoptosis and mitochondrial damage of breast cancer cells. Co-immunoprecipitation data suggested that USP53 interacted with zinc finger MYND-type containing 11 (ZMYND11), and catalyzed its deubiquitination and stabilization. The 33-50 amino acid Cys-box domain was key for USP53 enzyme activity, but not essential for its binding with ZMYND11. The rescue experiments revealed that the anti-tumor role of USP53 in breast cancer cells was at least partially mediated by ZMYND11. Both USP53 and ZMYND11 were prognostic protective factors for breast cancer. USP53-ZMYND11 axis may be a good potential biomarker or therapeutic target for breast cancer, which can provide novel insights into the diagnosis, treatment and prognosis.
Collapse
Affiliation(s)
- Xiangchao Meng
- Breast Disease Diagnosis and Treatment Center, First Hospital of Qinhuangdao, Qinhuangdao, 066000, P. R. China
| | - Hongye Chen
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100000, P. R. China
| | - Zhihui Tan
- Breast Disease Diagnosis and Treatment Center, First Hospital of Qinhuangdao, Qinhuangdao, 066000, P. R. China
| | - Weitao Yan
- Breast Disease Diagnosis and Treatment Center, First Hospital of Qinhuangdao, Qinhuangdao, 066000, P. R. China
| | - Yinfeng Liu
- Breast Disease Diagnosis and Treatment Center, First Hospital of Qinhuangdao, Qinhuangdao, 066000, P. R. China
| | - Ji Lv
- Breast Disease Diagnosis and Treatment Center, First Hospital of Qinhuangdao, Qinhuangdao, 066000, P. R. China.
| | - Meng Han
- Breast Disease Diagnosis and Treatment Center, First Hospital of Qinhuangdao, Qinhuangdao, 066000, P. R. China.
| |
Collapse
|
32
|
Chen S, Zhuang H, Deng X, Wu Y, Chen M, Wang C, Chen X, Hong Z, Qiu C. USP6 and circCYFIP2 target oncoprotein GOLPH3 for deubiquitination and induce platinum resistance in colon cancer. Biochem Pharmacol 2024; 225:116274. [PMID: 38735445 DOI: 10.1016/j.bcp.2024.116274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/20/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
GOLPH3 has been identified as an oncoprotein, playing a crucial role on progression and chemoresistancein of colon adenocarcinoma (COAD). However, it is still unclear the regulation of GOLPH3 expression at protein level. We discovered ubiquitin-specific proteases 6 (USP6) directly regulated the deubiquitination of the GOLPH3 protein and enhanced its stability in COAD. Overexpression of USP6 promoted COAD cell viability, inhibited apoptosis, and accelerated the growth of transplanted tumors growth in vitro and in vivo by deubiquitinating GOLPH3. Additionally, circCYFIP2 showed high expression levels in DDP-resistant colon cancer cells, promoting the cell proliferation. Mechanically, circCYFIP2 binds to both GOLPH3 protein and USP6, strengthening the interaction between GOLPH3 and USP6, and consequently induced DDP resistance in vitro and in vivo. In conclusion, USP6 operates as a deubiquitinase, targeting the GOLPH3 protein in COAD and enhancing its stability. Meanwhile, circCYFIP2 is crucial for the deubiquitination of GOLPH3 protein mediated by USP6 and acts as a scaffold to confer platinum resistance. The discovery of circCYFIP2/USP6/GOLPH3 pathway offers a potential target for overcoming chemoresistance in COAD.
Collapse
Affiliation(s)
- Shaojian Chen
- Department of General Surgery, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Haibin Zhuang
- Department of General Surgery, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Xian Deng
- Department of General Surgery, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Yuze Wu
- Department of General Surgery, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Mingliang Chen
- Department of General Surgery, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Chunxiao Wang
- Department of General Surgery, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Xiaojing Chen
- Department of General Surgery, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian Province, China
| | - Zhongshi Hong
- Department of General Surgery, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian Province, China.
| | - Chengzhi Qiu
- Department of General Surgery, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian Province, China.
| |
Collapse
|
33
|
Tian W, Zhao J, Zhang X, Li P, Li X, Hong Y, Li S. RUNX1 regulates MCM2/CDC20 to promote COAD progression modified by deubiquitination of USP31. Sci Rep 2024; 14:13906. [PMID: 38886545 PMCID: PMC11183096 DOI: 10.1038/s41598-024-64726-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
Colon adenocarcinoma (COAD) is the second leading cause of cancer death, and there is still a lack of diagnostic biomarkers and therapeutic targets. In this study, bioinformatics analysis of the TCGA database was used to obtain RUNX1, a gene with prognostic value in COAD. RUNX1 plays an important role in many malignancies, and its molecular regulatory mechanisms in COAD remain to be fully understood. To explore the physiological role of RUNX1, we performed functional analyses, such as CCK-8, colony formation and migration assays. In addition, we investigated the underlying mechanisms using transcriptome sequencing and chromatin immunoprecipitation assays. RUNX1 is highly expressed in COAD patients and significantly correlates with survival. Silencing of RUNX1 significantly slowed down the proliferation and migratory capacity of COAD cells. Furthermore, we demonstrate that CDC20 and MCM2 may be target genes of RUNX1, and that RUNX1 may be physically linked to the deubiquitinating enzyme USP31, which mediates the upregulation of RUNX1 protein to promote transcriptional function. Our results may provide new insights into the mechanism of action of RUNX1 in COAD and reveal potential therapeutic targets for this disease.
Collapse
Affiliation(s)
- Wei Tian
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Dalian Medical University, Dalian, China
| | - Jingyuan Zhao
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xinyu Zhang
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Dalian Medical University, Dalian, China
| | - Pengfei Li
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Dalian Medical University, Dalian, China
| | - Xuening Li
- Dalian Medical University, Dalian, China
| | - Yuan Hong
- Clinical Laboratory Center, Dalian Municipal Central Hospital, Dalian, China.
| | - Shuai Li
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
34
|
Gu J, Chen C, He P, Du Y, Zhu B. Unraveling the Immune Regulatory Functions of USP5: Implications for Disease Therapy. Biomolecules 2024; 14:683. [PMID: 38927085 PMCID: PMC11201890 DOI: 10.3390/biom14060683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/30/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Ubiquitin-specific protease 5 (USP5) belongs to the ubiquitin-specific protease (USP) family, which uniquely recognizes unanchored polyubiquitin chains to maintain the homeostasis of monoubiquitin chains. USP5 participates in a wide range of cellular processes by specifically cleaving isopeptide bonds between ubiquitin and substrate proteins or ubiquitin itself. In the process of immune regulation, USP5 affects important cellular signaling pathways, such as NF-κB, Wnt/β-catenin, and IFN, by regulating ubiquitin-dependent protein degradation. These pathways play important roles in immune regulation and inflammatory responses. In addition, USP5 regulates the activity and function of immunomodulatory signaling pathways via the deubiquitination of key proteins, thereby affecting the activity of immune cells and the regulation of immune responses. In the present review, the structure and function of USP5, its role in immune regulation, and the mechanism by which USP5 affects the development of diseases by regulating immune signaling pathways are comprehensively overviewed. In addition, we also introduce the latest research progress of targeting USP5 in the treatment of related diseases, calling for an interdisciplinary approach to explore the therapeutic potential of targeting USP5 in immune regulation.
Collapse
Affiliation(s)
- Jinyi Gu
- Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730030, China; (J.G.); (P.H.); (Y.D.)
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou 730030, China
- Clinical Laboratory, Affiliated Hospital of Yunnan University, Kunming 650032, China
| | - Changshun Chen
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China;
- Department of Orthopedics and Trauma Surgery, Affiliated Hospital of Yunnan University, Kunming 650032, China
| | - Pu He
- Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730030, China; (J.G.); (P.H.); (Y.D.)
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou 730030, China
| | - Yunjie Du
- Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730030, China; (J.G.); (P.H.); (Y.D.)
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou 730030, China
| | - Bingdong Zhu
- Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730030, China; (J.G.); (P.H.); (Y.D.)
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou 730030, China
| |
Collapse
|
35
|
Fan L, You H, Jiang X, Niu Y, Chen Z, Wang H, Xu Y, Zhou P, Wei L, Jiang T, Deng D, Xue L, Peng Y, Xing W, Shao N. UCHL3 induces radiation resistance and acquisition of mesenchymal phenotypes by deubiquitinating POLD4 in glioma stem cells. Cell Mol Life Sci 2024; 81:247. [PMID: 38829550 PMCID: PMC11149539 DOI: 10.1007/s00018-024-05265-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND The high degree of intratumoral genomic heterogeneity is a major obstacle for glioblastoma (GBM) tumors, one of the most lethal human malignancies, and is thought to influence conventional therapeutic outcomes negatively. The proneural-to-mesenchymal transition (PMT) of glioma stem cells (GSCs) confers resistance to radiation therapy in glioblastoma patients. POLD4 is associated with cancer progression, while the mechanisms underlying PMT and tumor radiation resistance have remained elusive. METHOD Expression and prognosis of the POLD family were analyzed in TCGA, the Chinese Glioma Genome Atlas (CGGA) and GEO datasets. Tumorsphere formation and in vitro limiting dilution assay were performed to investigate the effect of UCHL3-POLD4 on GSC self-renewal. Apoptosis, TUNEL, cell cycle phase distribution, modification of the Single Cell Gel Electrophoresis (Comet), γ-H2AX immunofluorescence, and colony formation assays were conducted to evaluate the influence of UCHL3-POLD4 on GSC in ionizing radiation. Coimmunoprecipitation and GST pull-down assays were performed to identify POLD4 protein interactors. In vivo, intracranial xenograft mouse models were used to investigate the molecular effect of UCHL3, POLD4 or TCID on GCS. RESULT We determined that POLD4 was considerably upregulated in MES-GSCs and was associated with a meagre prognosis. Ubiquitin carboxyl terminal hydrolase L3 (UCHL3), a DUB enzyme in the UCH protease family, is a bona fide deubiquitinase of POLD4 in GSCs. UCHL3 interacted with, depolyubiquitinated, and stabilized POLD4. Both in vitro and in vivo assays indicated that targeted depletion of the UCHL3-POLD4 axis reduced GSC self-renewal and tumorigenic capacity and resistance to IR treatment by impairing homologous recombination (HR) and nonhomologous end joining (NHEJ). Additionally, we proved that the UCHL3 inhibitor TCID induced POLD4 degradation and can significantly enhance the therapeutic effect of IR in a gsc-derived in situ xenograft model. CONCLUSION These findings reveal a new signaling axis for GSC PMT regulation and highlight UCHL3-POLD4 as a potential therapeutic target in GBM. TCID, targeted for reducing the deubiquitinase activity of UCHL3, exhibited significant synergy against MES GSCs in combination with radiation.
Collapse
Affiliation(s)
- Ligang Fan
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China
| | - Hongtao You
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China
| | - Xiao Jiang
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China
| | - Yixuan Niu
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China
| | - Zhengxin Chen
- Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Huibo Wang
- Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Yuan Xu
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China
| | - Peng Zhou
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China
| | - Li Wei
- Department of Blood Transfusion, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China
| | - Tianwei Jiang
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China
| | - Danni Deng
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China
| | - Lian Xue
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China
| | - Ya Peng
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China
| | - Wei Xing
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou, China.
| | - Naiyuan Shao
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu Province, China.
| |
Collapse
|
36
|
Yang Y, Xie Q, Hu C, Xu J, Chen L, Li Y, Luo C. F-box proteins and gastric cancer: an update from functional and regulatory mechanism to therapeutic clinical prospects. Int J Med Sci 2024; 21:1575-1588. [PMID: 38903918 PMCID: PMC11186432 DOI: 10.7150/ijms.91584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/20/2024] [Indexed: 06/22/2024] Open
Abstract
Gastric cancer (GC) is a prevalent malignancy characterized by significant morbidity and mortality, yet its underlying pathogenesis remains elusive. The etiology of GC is multifaceted, involving the activation of oncogenes and the inactivation of antioncogenes. The ubiquitin-proteasome system (UPS), responsible for protein degradation and the regulation of physiological and pathological processes, emerges as a pivotal player in GC development. Specifically, the F-box protein (FBP), an integral component of the SKP1-Cullin1-F-box protein (SCF) E3 ligase complex within the UPS, has garnered attention for its prominent role in carcinogenesis, tumor progression, and drug resistance. Dysregulation of several FBPs has recently been observed in GC, underscoring their significance in disease progression. This comprehensive review aims to elucidate the distinctive characteristics of FBPs involved in GC, encompassing their impact on cell proliferation, apoptosis, invasive metastasis, and chemoresistance. Furthermore, we delve into the emerging role of FBPs as downstream target proteins of non-coding RNAs(ncRNAs) in the regulation of gastric carcinogenesis, outlining the potential utility of FBPs as direct therapeutic targets or advanced therapies for GC.
Collapse
Affiliation(s)
- Yanzhen Yang
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, 310022, China
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310005, China
| | - Qu Xie
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, 310022, China
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310005, China
| | - Can Hu
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310005, China
| | - Jingli Xu
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310005, China
| | - Lei Chen
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310005, China
| | - Yuan Li
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310005, China
| | - Cong Luo
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310005, China
| |
Collapse
|
37
|
Zhao T, He M, Zhu Z, Zhang T, Zheng W, Qin S, Gao M, Wang W, Chen Z, Han J, Liu L, Zhou B, Wang H, Zhang H, Xia G, Wang J, Wang F, Wang C. P62 promotes FSH-induced antral follicle formation by directing degradation of ubiquitinated WT1. Cell Mol Life Sci 2024; 81:221. [PMID: 38763964 PMCID: PMC11102895 DOI: 10.1007/s00018-024-05251-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/15/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024]
Abstract
In females, the pathophysiological mechanism of poor ovarian response (POR) is not fully understood. Considering the expression level of p62 was significantly reduced in the granulosa cells (GCs) of POR patients, this study focused on identifying the role of the selective autophagy receptor p62 in conducting the effect of follicle-stimulating hormone (FSH) on antral follicles (AFs) formation in female mice. The results showed that p62 in GCs was FSH responsive and that its level increased to a peak and then decreased time-dependently either in ovaries or in GCs after gonadotropin induction in vivo. GC-specific deletion of p62 resulted in subfertility, a significantly reduced number of AFs and irregular estrous cycles, which were same as pathophysiological symptom of POR. By conducting mass spectrum analysis, we found the ubiquitination of proteins was decreased, and autophagic flux was blocked in GCs. Specifically, the level of nonubiquitinated Wilms tumor 1 homolog (WT1), a transcription factor and negative controller of GC differentiation, increased steadily. Co-IP results showed that p62 deletion increased the level of ubiquitin-specific peptidase 5 (USP5), which blocked the ubiquitination of WT1. Furthermore, a joint analysis of RNA-seq and the spatial transcriptome sequencing data showed the expression of steroid metabolic genes and FSH receptors pivotal for GCs differentiation decreased unanimously. Accordingly, the accumulation of WT1 in GCs deficient of p62 decreased steroid hormone levels and reduced FSH responsiveness, while the availability of p62 in GCs simultaneously ensured the degradation of WT1 through the ubiquitin‒proteasome system and autophagolysosomal system. Therefore, p62 in GCs participates in GC differentiation and AF formation in FSH induction by dynamically controlling the degradation of WT1. The findings of the study contributes to further study the pathology of POR.
Collapse
Affiliation(s)
- Ting Zhao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Meina He
- College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou Province, 550025, China
| | - Zijian Zhu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Tuo Zhang
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou Province, 550025, China
| | - Wenying Zheng
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Shaogang Qin
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Meng Gao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Wenji Wang
- School of Life Science, Taizhou University, Taizhou, 318000, China
| | - Ziqi Chen
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jun Han
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Longping Liu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Bo Zhou
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Haibin Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, Fujian Province, 361005, China
| | - Hua Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Guoliang Xia
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, Yinchuan, 750021, China
| | - Jianbin Wang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Fengchao Wang
- Transgenic Animal Center, National Institute of Biological Sciences, Beijing, 102206, China
| | - Chao Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
- China Agricultural University, No.2 Yuan Ming Yuan West Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
38
|
Gao H, Xi Z, Dai J, Xue J, Guan X, Zhao L, Chen Z, Xing F. Drug resistance mechanisms and treatment strategies mediated by Ubiquitin-Specific Proteases (USPs) in cancers: new directions and therapeutic options. Mol Cancer 2024; 23:88. [PMID: 38702734 PMCID: PMC11067278 DOI: 10.1186/s12943-024-02005-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/16/2024] [Indexed: 05/06/2024] Open
Abstract
Drug resistance represents a significant obstacle in cancer treatment, underscoring the need for the discovery of novel therapeutic targets. Ubiquitin-specific proteases (USPs), a subclass of deubiquitinating enzymes, play a pivotal role in protein deubiquitination. As scientific research advances, USPs have been recognized as key regulators of drug resistance across a spectrum of treatment modalities, including chemotherapy, targeted therapy, immunotherapy, and radiotherapy. This comprehensive review examines the complex relationship between USPs and drug resistance mechanisms, focusing on specific treatment strategies and highlighting the influence of USPs on DNA damage repair, apoptosis, characteristics of cancer stem cells, immune evasion, and other crucial biological functions. Additionally, the review highlights the potential clinical significance of USP inhibitors as a means to counter drug resistance in cancer treatment. By inhibiting particular USP, cancer cells can become more susceptible to a variety of anti-cancer drugs. The integration of USP inhibitors with current anti-cancer therapies offers a promising strategy to circumvent drug resistance. Therefore, this review emphasizes the importance of USPs as viable therapeutic targets and offers insight into fruitful directions for future research and drug development. Targeting USPs presents an effective method to combat drug resistance across various cancer types, leading to enhanced treatment strategies and better patient outcomes.
Collapse
Affiliation(s)
- Hongli Gao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Zhuo Xi
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jingwei Dai
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jinqi Xue
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xin Guan
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Liang Zhao
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Zhiguang Chen
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Fei Xing
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
39
|
Foster BM, Wang Z, Schmidt CK. DoUBLing up: ubiquitin and ubiquitin-like proteases in genome stability. Biochem J 2024; 481:515-545. [PMID: 38572758 PMCID: PMC11088880 DOI: 10.1042/bcj20230284] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/05/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
Maintaining stability of the genome requires dedicated DNA repair and signalling processes that are essential for the faithful duplication and propagation of chromosomes. These DNA damage response (DDR) mechanisms counteract the potentially mutagenic impact of daily genotoxic stresses from both exogenous and endogenous sources. Inherent to these DNA repair pathways is the activity of protein factors that instigate repair processes in response to DNA lesions. The regulation, coordination, and orchestration of these DDR factors is carried out, in a large part, by post-translational modifications, such as phosphorylation, ubiquitylation, and modification with ubiquitin-like proteins (UBLs). The importance of ubiquitylation and UBLylation with SUMO in DNA repair is well established, with the modified targets and downstream signalling consequences relatively well characterised. However, the role of dedicated erasers for ubiquitin and UBLs, known as deubiquitylases (DUBs) and ubiquitin-like proteases (ULPs) respectively, in genome stability is less well established, particularly for emerging UBLs such as ISG15 and UFM1. In this review, we provide an overview of the known regulatory roles and mechanisms of DUBs and ULPs involved in genome stability pathways. Expanding our understanding of the molecular agents and mechanisms underlying the removal of ubiquitin and UBL modifications will be fundamental for progressing our knowledge of the DDR and likely provide new therapeutic avenues for relevant human diseases, such as cancer.
Collapse
Affiliation(s)
- Benjamin M. Foster
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, U.K
| | - Zijuan Wang
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, U.K
| | - Christine K. Schmidt
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, U.K
| |
Collapse
|
40
|
Li A, Wang S, Nie J, Xiao S, Xie X, Zhang Y, Tong W, Yao G, Liu N, Dan F, Shu Z, Liu J, Liu Z, Yang F. USP3 promotes osteosarcoma progression via deubiquitinating EPHA2 and activating the PI3K/AKT signaling pathway. Cell Death Dis 2024; 15:235. [PMID: 38531846 PMCID: PMC10965993 DOI: 10.1038/s41419-024-06624-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024]
Abstract
Ubiquitin-specific protease 3 (USP3) plays an important role in the progression of various tumors. However, the role of USP3 in osteosarcoma (OS) remains poorly understood. The aim of this study was to explore the biological function of USP3 in OS and the underlying molecular mechanism. We found that OS had higher USP3 expression compared with that of normal bone tissue, and high expression of USP3 was associated with poor prognosis in patients with OS. Overexpression of USP3 significantly increased OS cell proliferation, migration, and invasion. Mechanistically, USP3 led to the activation of the PI3K/AKT signaling pathway in OS by binding to EPHA2 and then reducing its protein degradation. Notably, the truncation mutant USP3-F2 (159-520) interacted with EPHA2, and amino acid 203 was found to play an important role in this process. And knockdown of EPHA2 expression reversed the pro-tumour effects of USP3-upregulating. Thus, our study indicates the USP3/EPHA2 axis may be a novel potential target for OS treatment.
Collapse
Affiliation(s)
- Anan Li
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute of Spine and Spinal Cord, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Shijiang Wang
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute of Spine and Spinal Cord, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jiangbo Nie
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute of Spine and Spinal Cord, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Shining Xiao
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute of Spine and Spinal Cord, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xinsheng Xie
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute of Spine and Spinal Cord, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yu Zhang
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute of Spine and Spinal Cord, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Weilai Tong
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute of Spine and Spinal Cord, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Geliang Yao
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute of Spine and Spinal Cord, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Ning Liu
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute of Spine and Spinal Cord, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Fan Dan
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute of Spine and Spinal Cord, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zhiguo Shu
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute of Spine and Spinal Cord, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jiaming Liu
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Institute of Spine and Spinal Cord, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zhili Liu
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- Institute of Spine and Spinal Cord, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| | - Feng Yang
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- Institute of Spine and Spinal Cord, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- Postdoctoral Innovation Practice Base, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
41
|
Zadi S, Javaid S, Atia-tul-Wahab, Zafar H, Awais M, Maslennikov I, Choudhary MI. Repurposing of US-FDA-approved drugs as negative modulators of ubiquitin specific protease-7 (USP7). Heliyon 2024; 10:e26345. [PMID: 38468948 PMCID: PMC10925992 DOI: 10.1016/j.heliyon.2024.e26345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 03/13/2024] Open
Abstract
Ubiquitin-specific protease7 (USP7) regulates the stability of the p53 tumor suppressor protein and several other proteins critical for tumor cell survival. Aberrant expression of USP7 facilitates human malignancies by altering the activity of proto-oncogenes/proteins, and tumor suppressor genes. Therefore, USP7 is a validated anti-cancer drug target. In this study, a drug repurposing approach was used to identify new hits against the USP7 enzyme. It is one of the most strategic approaches to find new uses for drugs in a cost- and time-effective way. Nuclear Magnetic Resonance-based screening of 172 drugs identified 11 compounds that bind to the catalytic domain of USP7 with dissociation constant (Kd) values in the range of 0.6-1.49 mM. These 11 compounds could thermally destabilize the USP7 enzyme by decreasing its melting temperature up to 9 °C. Molecular docking and simulation studies provided structural insights into the ligand-protein complexes, suggesting that these compounds bind to the putative substrate binding pocket of USP7, and interact with its catalytically important residues. Among the identified 11 hits, compound 6 (oxybutynin), 7 (ketotifen), 10 (pantoprazole sodium), and 11 (escitalopram) also showed anti-cancer activity with an effect on the expression of proto-oncogenes and tumor-suppressor gene at mRNA level in HCT116 cells. The compounds identified in this study can serve as potential leads for further studies.
Collapse
Affiliation(s)
- Seema Zadi
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center of Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Sumaira Javaid
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center of Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Atia-tul-Wahab
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center of Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Humaira Zafar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center of Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Awais
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center of Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | | | - M. Iqbal Choudhary
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center of Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, 22252, Saudi Arabia
| |
Collapse
|
42
|
Kim SB, Hwang S, Cha JY, Lee HJ. Programmed Death Ligand 1 Regulatory Crosstalk with Ubiquitination and Deubiquitination: Implications in Cancer Immunotherapy. Int J Mol Sci 2024; 25:2939. [PMID: 38474186 DOI: 10.3390/ijms25052939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Programmed death ligand 1 (PD-L1) plays a pivotal role in cancer immune evasion and is a critical target for cancer immunotherapy. This review focuses on the regulation of PD-L1 through the dynamic processes of ubiquitination and deubiquitination, which are crucial for its stability and function. Here, we explored the intricate mechanisms involving various E3 ubiquitin ligases and deubiquitinating enzymes (DUBs) that modulate PD-L1 expression in cancer cells. Specific ligases are discussed in detail, highlighting their roles in tagging PD-L1 for degradation. Furthermore, we discuss the actions of DUBs that stabilize PD-L1 by removing ubiquitin chains. The interplay of these enzymes not only dictates PD-L1 levels but also influences cancer progression and patient response to immunotherapies. Furthermore, we discuss the therapeutic implications of targeting these regulatory pathways and propose novel strategies to enhance the efficacy of PD-L1/PD-1-based therapies. Our review underscores the complexity of PD-L1 regulation and its significant impact on the tumor microenvironment and immunotherapy outcomes.
Collapse
Affiliation(s)
- Soon-Bin Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
| | - Soonjae Hwang
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Ji-Young Cha
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Ho-Jae Lee
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
43
|
Menendez JA, Cuyàs E, Encinar JA, Vander Steen T, Verdura S, Llop‐Hernández À, López J, Serrano‐Hervás E, Osuna S, Martin‐Castillo B, Lupu R. Fatty acid synthase (FASN) signalome: A molecular guide for precision oncology. Mol Oncol 2024; 18:479-516. [PMID: 38158755 PMCID: PMC10920094 DOI: 10.1002/1878-0261.13582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/27/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024] Open
Abstract
The initial excitement generated more than two decades ago by the discovery of drugs targeting fatty acid synthase (FASN)-catalyzed de novo lipogenesis for cancer therapy was short-lived. However, the advent of the first clinical-grade FASN inhibitor (TVB-2640; denifanstat), which is currently being studied in various phase II trials, and the exciting advances in understanding the FASN signalome are fueling a renewed interest in FASN-targeted strategies for the treatment and prevention of cancer. Here, we provide a detailed overview of how FASN can drive phenotypic plasticity and cell fate decisions, mitochondrial regulation of cell death, immune escape and organ-specific metastatic potential. We then present a variety of FASN-targeted therapeutic approaches that address the major challenges facing FASN therapy. These include limitations of current FASN inhibitors and the lack of precision tools to maximize the therapeutic potential of FASN inhibitors in the clinic. Rethinking the role of FASN as a signal transducer in cancer pathogenesis may provide molecularly driven strategies to optimize FASN as a long-awaited target for cancer therapeutics.
Collapse
Affiliation(s)
- Javier A. Menendez
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Elisabet Cuyàs
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Jose Antonio Encinar
- Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) and Molecular and Cell Biology Institute (IBMC)Miguel Hernández University (UMH)ElcheSpain
| | - Travis Vander Steen
- Division of Experimental Pathology, Department of Laboratory Medicine and PathologyMayo ClinicRochesterMNUSA
- Mayo Clinic Cancer CenterRochesterMNUSA
- Department of Biochemistry and Molecular Biology LaboratoryMayo Clinic LaboratoryRochesterMNUSA
| | - Sara Verdura
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Àngela Llop‐Hernández
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Júlia López
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Eila Serrano‐Hervás
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
- CompBioLab Group, Institut de Química Computacional i Catàlisi (IQCC) and Departament de QuímicaUniversitat de GironaGironaSpain
| | - Sílvia Osuna
- CompBioLab Group, Institut de Química Computacional i Catàlisi (IQCC) and Departament de QuímicaUniversitat de GironaGironaSpain
- ICREABarcelonaSpain
| | - Begoña Martin‐Castillo
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
- Unit of Clinical ResearchCatalan Institute of OncologyGironaSpain
| | - Ruth Lupu
- Division of Experimental Pathology, Department of Laboratory Medicine and PathologyMayo ClinicRochesterMNUSA
- Mayo Clinic Cancer CenterRochesterMNUSA
- Department of Biochemistry and Molecular Biology LaboratoryMayo Clinic LaboratoryRochesterMNUSA
| |
Collapse
|
44
|
Pei L, Zhao F, Zhang Y. USP43 impairs cisplatin sensitivity in epithelial ovarian cancer through HDAC2-dependent regulation of Wnt/β-catenin signaling pathway. Apoptosis 2024; 29:210-228. [PMID: 38087046 PMCID: PMC10830728 DOI: 10.1007/s10495-023-01873-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2023] [Indexed: 02/01/2024]
Abstract
Epithelial ovarian cancer (EOC) is the leading cause of cancer death all over the world. USP43 functions as a tumor promoter in various malignant cancers. Nevertheless, the biological roles and mechanisms of USP43 in EOC remain unknown. In this study, USP43 was highly expressed in EOC tissues and cells, and high expression of USP43 were associated with a poor prognosis of EOC. USP43 overexpression promoted EOC cell proliferation, enhanced the ability of migration and invasion, decreased cisplatin sensitivity and inhibited apoptosis. Knockdown of USP43 in vitro effectively retarded above malignant progression of EOC. In vivo xenograft tumors, silencing USP43 slowed tumor growth and enhanced cisplatin sensitivity. Mechanistically, USP43 inhibited HDAC2 degradation and enhanced HDAC2 protein stability through its deubiquitylation function. USP43 diminished the sensitivity of EOC cells to cisplatin through activation of the Wnt/β-catenin signaling pathway mediated by HDAC2. Taken together, the data in this study revealed the functions of USP43 in proliferation, migration, invasion, chemoresistance of EOC cells, and the mechanism of HDAC2-mediated Wnt/β-catenin signaling pathway. Thus, USP43 might serve as a potential target for the control of ovarian cancer progression.
Collapse
Affiliation(s)
- Lipeng Pei
- Department of Obstetrics and Gynecology, General Hospital of Northern Theater Command, Shenyang, People's Republic of China
| | - Feng Zhao
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, People's Republic of China
| | - Yi Zhang
- Department of Gynecology, The First Hospital of China Medical University, No. 155, Nanjing North Street, Shenyang, People's Republic of China.
| |
Collapse
|
45
|
Chen R, Zhang H, Li L, Li J, Xie J, Weng J, Tan H, Liu Y, Guo T, Wang M. Roles of ubiquitin-specific proteases in inflammatory diseases. Front Immunol 2024; 15:1258740. [PMID: 38322269 PMCID: PMC10844489 DOI: 10.3389/fimmu.2024.1258740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/02/2024] [Indexed: 02/08/2024] Open
Abstract
Ubiquitin-specific proteases (USPs), as one of the deubiquitinating enzymes (DUBs) families, regulate the fate of proteins and signaling pathway transduction by removing ubiquitin chains from the target proteins. USPs are essential for the modulation of a variety of physiological processes, such as DNA repair, cell metabolism and differentiation, epigenetic modulations as well as protein stability. Recently, extensive research has demonstrated that USPs exert a significant impact on innate and adaptive immune reactions, metabolic syndromes, inflammatory disorders, and infection via post-translational modification processes. This review summarizes the important roles of the USPs in the onset and progression of inflammatory diseases, including periodontitis, pneumonia, atherosclerosis, inflammatory bowel disease, sepsis, hepatitis, diabetes, and obesity. Moreover, we highlight a comprehensive overview of the pathogenesis of USPs in these inflammatory diseases as well as post-translational modifications in the inflammatory responses and pave the way for future prospect of targeted therapies in these inflammatory diseases.
Collapse
Affiliation(s)
- Rui Chen
- Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Stomatology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Hui Zhang
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
- College of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Linke Li
- Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Stomatology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Jinsheng Li
- College of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Jiang Xie
- Department of Pediatrics, Chengdu Third People's Hospital, Chengdu, Sichuan, China
| | - Jie Weng
- College of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Huan Tan
- Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Yanjun Liu
- Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Tailin Guo
- Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Mengyuan Wang
- Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Department of Stomatology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
46
|
Al-Balushi E, Al Marzouqi A, Tavoosi S, Baghsheikhi AH, Sadri A, Aliabadi LS, Salarabedi MM, Rahman SA, Al-Yateem N, Jarrahi AM, Halimi A, Ahmadvand M, Abdel-Rahman WM. Comprehensive analysis of the role of ubiquitin-specific peptidases in colorectal cancer: A systematic review. World J Gastrointest Oncol 2024; 16:197-213. [PMID: 38292842 PMCID: PMC10824112 DOI: 10.4251/wjgo.v16.i1.197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/05/2023] [Accepted: 12/07/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most frequent and the second most fatal cancer. The search for more effective drugs to treat this disease is ongoing. A better understanding of the mechanisms of CRC development and progression may reveal new therapeutic strategies. Ubiquitin-specific peptidases (USPs), the largest group of the deubiquitinase protein family, have long been implicated in various cancers. There have been numerous studies on the role of USPs in CRC; however, a comprehensive view of this role is lacking. AIM To provide a systematic review of the studies investigating the roles and functions of USPs in CRC. METHODS We systematically queried the MEDLINE (via PubMed), Scopus, and Web of Science databases. RESULTS Our study highlights the pivotal role of various USPs in several processes implicated in CRC: Regulation of the cell cycle, apoptosis, cancer stemness, epithelial-mesenchymal transition, metastasis, DNA repair, and drug resistance. The findings of this study suggest that USPs have great potential as drug targets and noninvasive biomarkers in CRC. The dysregulation of USPs in CRC contributes to drug resistance through multiple mechanisms. CONCLUSION Targeting specific USPs involved in drug resistance pathways could provide a novel therapeutic strategy for overcoming resistance to current treatment regimens in CRC.
Collapse
Affiliation(s)
- Eman Al-Balushi
- College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Amina Al Marzouqi
- College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Shima Tavoosi
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan 81746-73441, Iran
| | - Amir Hossein Baghsheikhi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran 11365/4435, Iran
| | - Arash Sadri
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Leyla Sharifi Aliabadi
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Mohammad-Mahdi Salarabedi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1983969411, Iran
| | - Syed Azizur Rahman
- College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Nabeel Al-Yateem
- Department of Nursing, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Alireza Mosavi Jarrahi
- Cancer Research Centre, Shahid Beheshti University of Medical Sciences, Tehran 1983969411, Iran
| | - Aram Halimi
- Cancer Research Centre, Shahid Beheshti University of Medical Sciences, Tehran 1983969411, Iran
| | - Mohammad Ahmadvand
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences , Tehran 1416634793, Iran
| | - Wael M Abdel-Rahman
- Department of Medical Laboratory Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
47
|
Xia G, Guo Y, Zhang J, Han M, Meng X, Lv J. An Overview of the Deubiquitinase USP53: A Promising Diagnostic Marker and Therapeutic Target. Curr Protein Pept Sci 2024; 25:708-718. [PMID: 39300775 DOI: 10.2174/0113892037292440240518194922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 09/22/2024]
Abstract
Ubiquitination and deubiquitination are important mechanisms to maintain normal physiological activities, and their disorders or imbalances can lead to various diseases. As a subgroup of deubiquitinases (DUBs), the ubiquitin-specific peptidase (USP) family is closely related to many biological processes. USP53, one of the family members, is widely expressed in human tissues and participates in a variety of life activities, such as cell apoptosis, nerve transmission, and bone remodeling. Mutations in the USP53 gene can cause cholestasis and deafness and may also be a potential cause of schizophrenia. Knockout of USP53 can alleviate neuropathic pain induced by chronic constriction injury. Loss of USP53 up-regulates RANKL expression, promotes the cytogenesis and functional activity of osteoclasts, and triggers osteodestructive diseases. USP53 plays a tumor-suppressive role in lung cancer, renal clear cell carcinoma, colorectal cancer, liver cancer, and esophageal cancer but reduces the radiosensitivity of cervical cancer and esophageal cancer to induce radioresistance. Through the in-depth combination of literature and bioinformatics, this review suggested that USP53 may be a good potential biomarker or therapeutic target for diseases.
Collapse
Affiliation(s)
- Guangce Xia
- First College of Clinical Medicine, Hebei North University, Zhangjiakou 075000, China
- First Hospital of Qinhuangdao Affiliated to Hebei North University, Qinhuangdao 066000, P.R. China
| | - Yulin Guo
- First College of Clinical Medicine, Hebei North University, Zhangjiakou 075000, China
- First Hospital of Qinhuangdao Affiliated to Hebei North University, Qinhuangdao 066000, P.R. China
| | - Jiajia Zhang
- First College of Clinical Medicine, Hebei North University, Zhangjiakou 075000, China
| | - Meng Han
- Breast Disease Diagnosis and Treatment Center, First Hospital of Qinhuangdao, Qinhuangdao, Hebei Province 066000, P.R. China
| | - Xiangchao Meng
- Breast Disease Diagnosis and Treatment Center, First Hospital of Qinhuangdao, Qinhuangdao, Hebei Province 066000, P.R. China
| | - Ji Lv
- Breast Disease Diagnosis and Treatment Center, First Hospital of Qinhuangdao, Qinhuangdao, Hebei Province 066000, P.R. China
| |
Collapse
|
48
|
Li A, Wang T, Zhou S, Han J, Wu W. USP17 regulates preeclampsia by modulating the NF-κB signaling pathway via deubiquitinating HDAC2. Placenta 2024; 145:9-18. [PMID: 38008034 DOI: 10.1016/j.placenta.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/28/2023]
Abstract
INTRODUCTION Ubiquitination is a significant post-translational modification engaged in diverse biological processes, such as cell differentiation, metastasis, and protein stability modulation. The dysregulation of ubiquitination and deubiquitination is inextricably linked to disease progression, including preeclampsia (PE). Ubiquitin-specific protease 17 (USP17), a prominent deubiquitinating enzyme that regulates ubiquitination modifications, performs multiple functions at the cellular level, whereas its role in PE remains elusive. In this study, we intended to probe the role of USP17 in PE and its underlying mechanisms. METHODS The USP17 level in the plasma of PE patients was detected through Elisa. Western blot and qRT-PCR were performed to measure the mRNA and protein level of USP17 in placental tissues. CCK-8, EdU, and transwell assays were conducted to evaluate the proliferation, migration, and invasion of trophoblast cells. The interaction between HDAC2 and USP17 or STAT1 were determined by co-immunoprecipitation and Western blot assays. The expression of NF-κB pathway related proteins was examined using Western blot. RESULTS USP17 was dramatically downregulated in PE patients. Overexpression of USP17 facilitated trophoblast proliferation, migration, and invasion. Moreover, histone deacetylase 2 (HDAC2) was validated as a substrate of USP17 deubiquitination, and USP17 upregulation enhanced HDAC2 protein level. Furthermore, HDAC2 could interact with and deacetylate Signal transducer and activator of transcription 1 (STAT1), resulting in the enhancement of STAT1 activity and inhibition of NF-κB signaling. DISCUSSION Our findings disclosed that USP17 augmented the proliferation and invasion of trophoblast by deubiquitinating HDAC2, which will contribute to novel prospective targets for diagnosing and treating PE.
Collapse
Affiliation(s)
- Aiping Li
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, Henan, China
| | - Ting Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, Henan, China.
| | - Shasha Zhou
- Department of Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, Henan, China
| | - Jingjing Han
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, Henan, China
| | - Wujia Wu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, Henan, China
| |
Collapse
|
49
|
Hao F, Li Y, Zhang Y, Han Y, Shang J, Gan L, Zheng J, Zhang C. Inhibition of USP1 ameliorates hypertensive nephropathy through regulating oxidative stress and ferroptosis: A precise treatment via SJB3-019A nanodelivery. Eur J Pharm Biopharm 2023; 193:187-197. [PMID: 37949326 DOI: 10.1016/j.ejpb.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/23/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Hypertensive nephropathy is second only to diabetes for the causation of chronic kidney disease worldwide. As the mortality and morbidity of hypertensive nephropathy keep increasing, it is important to elucidate its pathogenesis and develop new treatment strategies. In this study, an angiotensin II (Ang II)-induced renal cell system was established, and the expression of ubiquitin specific peptidase 1 (USP1) in human kidney (HK-2) cells was found to be regulated by Ang II treatment through quantitative RT-PCR and Western blot assay. The detection of glutathione peroxidase (GSH-Px), malondialdehyde (MDA) and lipid reactive oxygen species (ROS) levels revealed that interference with USP1 reversed Ang II-induced oxidative stress and ferroptosis, which was enhanced by overexpression of USP1. Subsequently, USP1 inhibitor SJB3-019A loaded in MIL-100 and PEGTK was modified to fabricate SJB3-019A@MIL-PEGTK nanoparticles, which was confirmed to exhibit excellent alleviation of hypertension-induced oxidative stress and ferroptosis in renal cells both in vitro and in vivo. Our study identified an important pathogenesis of hypertensive nephropathy and SJB3-019A@MIL-PEGTK nanoparticle was used to develop an effective clinical treatment for hypertensive nephropathy.
Collapse
Affiliation(s)
- Fangyi Hao
- Department 1, Nephrology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin 150000, China
| | - Ying Li
- Department 1, Nephrology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin 150000, China
| | - Yunzhu Zhang
- Department 1, Nephrology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin 150000, China
| | - Yangwenxuan Han
- Department 1, Nephrology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin 150000, China
| | - Jing Shang
- Department 1, Nephrology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin 150000, China
| | - Lu Gan
- Department 1, Nephrology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin 150000, China
| | - Jiaxin Zheng
- Department 2, Nephrology, Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150000, China.
| | - Chunjian Zhang
- Department 1, Nephrology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin 150000, China.
| |
Collapse
|
50
|
Pereira TO, Abbasi M, Oliveira RI, Guedes RA, Salvador JAR, Arrais JP. Artificial intelligence for prediction of biological activities and generation of molecular hits using stereochemical information. J Comput Aided Mol Des 2023; 37:791-806. [PMID: 37847342 PMCID: PMC10618333 DOI: 10.1007/s10822-023-00539-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 10/02/2023] [Indexed: 10/18/2023]
Abstract
In this work, we develop a method for generating targeted hit compounds by applying deep reinforcement learning and attention mechanisms to predict binding affinity against a biological target while considering stereochemical information. The novelty of this work is a deep model Predictor that can establish the relationship between chemical structures and their corresponding [Formula: see text] values. We thoroughly study the effect of different molecular descriptors such as ECFP4, ECFP6, SMILES and RDKFingerprint. Also, we demonstrated the importance of attention mechanisms to capture long-range dependencies in molecular sequences. Due to the importance of stereochemical information for the binding mechanism, this information was employed both in the prediction and generation processes. To identify the most promising hits, we apply the self-adaptive multi-objective optimization strategy. Moreover, to ensure the existence of stereochemical information, we consider all the possible enumerated stereoisomers to provide the most appropriate 3D structures. We evaluated this approach against the Ubiquitin-Specific Protease 7 (USP7) by generating putative inhibitors for this target. The predictor with SMILES notations as descriptor plus bidirectional recurrent neural network using attention mechanism has the best performance. Additionally, our methodology identify the regions of the generated molecules that are important for the interaction with the receptor's active site. Also, the obtained results demonstrate that it is possible to discover synthesizable molecules with high biological affinity for the target, containing the indication of their optimal stereochemical conformation.
Collapse
Affiliation(s)
- Tiago O Pereira
- Centre for Informatics and Systems, Department of Informatics Engineering, University of Coimbra, Coimbra, Portugal.
| | - Maryam Abbasi
- Centre for Informatics and Systems, Department of Informatics Engineering, University of Coimbra, Coimbra, Portugal
- Applied Research Institute, Polytechnic Institute of Coimbra, Coimbra, Portugal
- Research Centre for Natural Resources Environment and Society (CERNAS), Polytechnic Institute of Coimbra, Coimbra, Portugal
| | - Rita I Oliveira
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, Coimbra, Portugal
| | - Romina A Guedes
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, Coimbra, Portugal
| | - Jorge A R Salvador
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, Coimbra, Portugal
| | - Joel P Arrais
- Centre for Informatics and Systems, Department of Informatics Engineering, University of Coimbra, Coimbra, Portugal
| |
Collapse
|