1
|
Zheng C, Hei H, Zhai Y, Gong W, Zhang R, Zhang S. CAFs-released exosomal CREB1 promotes cell progression and immune evasion in thyroid cancer via the positive regulation of CCL20. Autoimmunity 2025; 58:2458324. [PMID: 39863628 DOI: 10.1080/08916934.2025.2458324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/10/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND Exosomes derived from cancer-associated fibroblasts (CAFs) can affect tumor microenvironment (TME) of thyroid cancer (TC). The cAMP response element binding protein 1 (CREB1) acts as a transcription factor to participate in cancer development. Currently, we aimed to explore the molecular mechanism of exosome-associated CREB1 and C-C motif chemokine ligand 20 (CCL20) in TC. METHODS The mRNA and protein levels were examined via RT-qPCR and western blot. Gene interaction was analyzed using ChIP and dual-luciferase reporter assays. Cell migration, invasion and proliferation were assessed by wound healing, transwell and EdU assays. Exosomes were characterized by morphology observation and western blot. The proliferation and apoptosis of CD8+ T cells were detected by immunofluorescence and flow cytometry. In vivo assays were performed by establishing xenograft models. RESULTS CREB1 was highly expressed in TC. CREB1 positively interacted with CCL20 in TC. CREB1 facilitated TC cell migration, invasion and proliferation via targeting CCL20. CCL20 expression was reduced by transferring CAFs-secreted exosomes sheltering CREB1 downregulation. Exosomal CREB1 knockdown receded cell progression and enhanced CD8+ T function by mediating CCL20. CAFs-associated exosomal CREB1 downregulation inhibited tumorigenesis through affecting CCL20. CONCLUSION CAFs-derived exosomes accelerated the malignant behaviors and immune evasion in TC by carrying CREB1 to up-regulate CCL20.
Collapse
Affiliation(s)
- Chen Zheng
- Department of Thyroid Head and Neck Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Hu Hei
- Department of Thyroid Head and Neck Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yifei Zhai
- Department of Thyroid Head and Neck Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Wenbo Gong
- Department of Thyroid Head and Neck Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Runfang Zhang
- Department of Thyroid Head and Neck Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Songtao Zhang
- Department of Thyroid Head and Neck Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
2
|
Das A, Sonar S, Dhar R, Subramaniyan V. Exosomes in melanoma: Future potential for clinical theranostics. Pathol Res Pract 2025; 269:155950. [PMID: 40179441 DOI: 10.1016/j.prp.2025.155950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/13/2025] [Accepted: 03/26/2025] [Indexed: 04/05/2025]
Abstract
Melanoma, an aggressive form of skin cancer, presents significant therapeutic challenges due to its resistance to conventional treatments and propensity for metastasis. Exosomes, nanoscale vesicles secreted by a wide variety of cells, have emerged as promising tools for developing novel melanoma therapies. Exosome-based therapeutic approaches offer several advantages, including inherent biocompatibility, low immunogenicity, and the ability to cross biological barriers. This review explores the therapeutic potential of exosomes in melanoma treatment, focusing on their multifaceted roles in modulating tumor cell behavior, enhancing anti-tumor immune responses, and serving as targeted drug delivery vehicles. We discuss various strategies employed to engineer exosomes for enhanced therapeutic efficacy, including loading them with chemotherapeutic agents, small interfering RNAs (siRNAs), microRNAs (miRNAs), and immunomodulatory molecules. Additionally, we highlight the potential of exosomes derived from diverse sources to enhance anti-cancer effects. Furthermore, we address the challenges and future directions in translating exosome-based therapies from bench to bedside, emphasizing the need for standardized isolation and manufacturing protocols, as well as rigorous preclinical and clinical evaluations to unlock the full therapeutic potential of exosomes in the fight against melanoma.
Collapse
Affiliation(s)
- Asmit Das
- Department of Oncology and Maxillofacial Pathology, Neuron Institute of Applied Research, Amravati, Maharashtra, India
| | - Swarup Sonar
- Department of Oncology and Maxillofacial Pathology, Neuron Institute of Applied Research, Amravati, Maharashtra, India
| | - Rajib Dhar
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Subang Jaya, Selangor 47500, Malaysia
| | - Vetriselvan Subramaniyan
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Subang Jaya, Selangor 47500, Malaysia.
| |
Collapse
|
3
|
Guo S, Zhang L, Ren J, Lu Z, Ma X, Liu X, Jin H, Li J. The roles of enhancer, especially super-enhancer-driven genes in tumor metabolism and immunity. Int J Biol Macromol 2025; 308:142414. [PMID: 40132720 DOI: 10.1016/j.ijbiomac.2025.142414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 03/27/2025]
Abstract
Abnormal metabolism is a characteristic of malignant tumors. Numerous factors play roles in the regulation of tumor metabolism. As epigenetic regulators, enhancers, especially the super-enhancers (SEs), serve as platforms for transcription factors that regulate the expression of metabolism-related enzymes or transporters at the gene level. In this study, we review the effects of enhancer/ SE-driven genes on tumor metabolism and immunity. Enhancers/SEs play regulatory roles in glucose metabolism (glycolysis, gluconeogenesis, tricarboxylic acid (TCA) cycle, pyruvate, and pentose phosphate pathway, lipid metabolism (cholesterol, fatty acid, phosphatide, and sphingolipid), and amino acid metabolism (glutamine, tryptophan, arginine, and cystine). By regulating tumor metabolism, enhancers and SEs can reprogram tumor microenvironment, especially the status of various immune cells. Therefore, interfering enhancers/SEs that regulate the tumor metabolism is likely to enhance the effectiveness of immunotherapy.
Collapse
Affiliation(s)
- Songyue Guo
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong, China; Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang 261053, Shandong, China
| | - Lu Zhang
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong, China; Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang 261053, Shandong, China
| | - Jiao Ren
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong, China; Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang 261053, Shandong, China
| | - Zhong Lu
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong, China
| | - Xiaolin Ma
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong, China
| | - Xinling Liu
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang 261053, Shandong, China.
| | - Hongchuan Jin
- Department of Medical Oncology, Cancer Center of Zhejiang University, Sir Run Run Shaw hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China.
| | - Jiaqiu Li
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong, China; Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang 261053, Shandong, China.
| |
Collapse
|
4
|
Poorva P, Mast J, Cao B, Shah MV, Pollok KE, Shen J. Killing the killers: Natural killer cell therapy targeting glioma stem cells in high-grade glioma. Mol Ther 2025:S1525-0016(25)00168-6. [PMID: 40040281 DOI: 10.1016/j.ymthe.2025.02.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/22/2025] [Accepted: 02/26/2025] [Indexed: 03/06/2025] Open
Abstract
High-grade gliomas (HGGs), including glioblastoma (GBM) in adults and diffuse intrinsic pontine glioma (DIPG) in children, are among the most aggressive and deadly brain tumors. A key factor in their resilience is the presence of glioma stem cells (GSCs), which drive tumor initiation, progression, and resistance to treatment. Targeting and eradicating GSCs holds potential for curing both GBM and DIPG. Natural killer (NK) cells, as part of the innate immune system, naturally recognize and destroy malignant cells. Recent advances in NK cell-based therapies, such as chimeric antigen receptor (CAR)-NK cells, NK cell engagers, and NK cell-derived exosomes, offer promising approaches for treating GBM and DIPG, particularly by addressing the persistence of GSCs. This review highlights these advancements, explores challenges such as the blood-brain barrier and the immunosuppressive tumor microenvironment, and proposes future directions for improving and clinically advancing these NK cell-based therapies for HGGs.
Collapse
Affiliation(s)
- Poorva Poorva
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - Jensen Mast
- Biochemistry Graduate Program, Indiana University, Bloomington, IN 47405, USA
| | - Bihui Cao
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - Mitesh V Shah
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Karen E Pollok
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
| | - Jia Shen
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA; Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
5
|
Huang C, Hu Q, Wang P, Xie M, Zhang Y, Li Z, Tang S, Zhang Y, Tian Z, Liu X, Hu Z, Liang D. Overexpression of NKG2D and IL24 in NK Cell-Derived Exosomes for Cancer Therapy. Int J Mol Sci 2025; 26:2098. [PMID: 40076725 PMCID: PMC11901126 DOI: 10.3390/ijms26052098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Natural killer (NK) cell-derived exosomes (NK-Exos) are emerging as a promising avenue in cancer immunotherapy due to their inherent tumor-targeting properties and their capacity to deliver therapeutic agents directly to malignant cells. This research delves into the boosted anti-tumor potency of NK-Exos that has been genetically enhanced to overexpress NKG2D, a vital activating receptor, along with interleukin-24 (IL24), a cytokine renowned for its selective suppressive impact on tumor cells. NKG2D facilitates the recognition of tumor cells by binding to stress-induced ligands, while IL24 induces apoptosis and modulates immune responses to enhance tumor destruction. The NK-Exos engineered to express both NKG2D and IL24 significantly enhanced tumor targeting and increased the apoptosis rate of tumor cells by 30% in A549 and by 20% in HELA at 48 h compared with non-modified NK-Exos, respectively. Furthermore, this enhancement also impacted cell proliferation, with inhibition rates increasing by 30%, 15%, and 15% in A549, HELA, and MCF-7 cells, respectively, and it reduced A549 cell migration by 10%. The integration of NKG2D and IL24 within NK-Exos confers a dual therapeutic mechanism, synergistically amplifying their efficacy in cancer treatment. The utility of NK-Exos co-expressing NKG2D and IL24 offers a novel approach to overcome the limitations of current therapies, providing prolonged tumor suppression and precise targeting of malignant cells and holding great promise for clinical application.
Collapse
Affiliation(s)
- Chujun Huang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China; (C.H.); (Q.H.); (P.W.); (M.X.); (Y.Z.); (Z.L.); (S.T.); (Y.Z.); (Z.T.); (X.L.)
| | - Qian Hu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China; (C.H.); (Q.H.); (P.W.); (M.X.); (Y.Z.); (Z.L.); (S.T.); (Y.Z.); (Z.T.); (X.L.)
| | - Peiyun Wang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China; (C.H.); (Q.H.); (P.W.); (M.X.); (Y.Z.); (Z.L.); (S.T.); (Y.Z.); (Z.T.); (X.L.)
| | - Mi Xie
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China; (C.H.); (Q.H.); (P.W.); (M.X.); (Y.Z.); (Z.L.); (S.T.); (Y.Z.); (Z.T.); (X.L.)
| | - Ying Zhang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China; (C.H.); (Q.H.); (P.W.); (M.X.); (Y.Z.); (Z.L.); (S.T.); (Y.Z.); (Z.T.); (X.L.)
| | - Zhixing Li
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China; (C.H.); (Q.H.); (P.W.); (M.X.); (Y.Z.); (Z.L.); (S.T.); (Y.Z.); (Z.T.); (X.L.)
| | - Shuqing Tang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China; (C.H.); (Q.H.); (P.W.); (M.X.); (Y.Z.); (Z.L.); (S.T.); (Y.Z.); (Z.T.); (X.L.)
| | - Yuxuan Zhang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China; (C.H.); (Q.H.); (P.W.); (M.X.); (Y.Z.); (Z.L.); (S.T.); (Y.Z.); (Z.T.); (X.L.)
| | - Zhixin Tian
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China; (C.H.); (Q.H.); (P.W.); (M.X.); (Y.Z.); (Z.L.); (S.T.); (Y.Z.); (Z.T.); (X.L.)
| | - Xionghao Liu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China; (C.H.); (Q.H.); (P.W.); (M.X.); (Y.Z.); (Z.L.); (S.T.); (Y.Z.); (Z.T.); (X.L.)
| | - Zhiqing Hu
- MOE Key Lab of Rare Pediatric Diseases & Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Desheng Liang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China; (C.H.); (Q.H.); (P.W.); (M.X.); (Y.Z.); (Z.L.); (S.T.); (Y.Z.); (Z.T.); (X.L.)
| |
Collapse
|
6
|
Gao C, Chen Y, Wen X, Han R, Qin Y, Li S, Tang R, Zhou W, Zhao J, Sun J, Li Z, Tan Z, Wang D, Zhou C. Plant-derived exosome-like nanoparticles in tissue repair and regeneration. J Mater Chem B 2025; 13:2254-2271. [PMID: 39817682 DOI: 10.1039/d4tb02394c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
This article reviews plant-derived exosome-like nanoparticles (ELNs), and highlights their potential in regenerative medicine. Various extraction techniques, including ultracentrifugation and ultrafiltration, and their impact on ELN purity and yield were discussed. Characterization methods such as microscopy and particle analysis are found to play crucial roles in defining ELN properties. This review is focused on exploring the therapeutic potential of ELNs in tissue repair, immune regulation, and antioxidant activities. Further research and optimization methods for extraction of ELNs to realize clinical potential applications are necessary.
Collapse
Affiliation(s)
- Canyu Gao
- College of Biomedical Engineering, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Yang Chen
- Center of Medical Product Technical Inspection, Chengdu, 610015, China
| | - Xingyue Wen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Ruiying Han
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yuxiang Qin
- College of Biomedical Engineering, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Sijie Li
- Department of Burn and Plastic Reconstructive Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rong Tang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Weikai Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Junyu Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jianxun Sun
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zhengyong Li
- Department of Burn and Plastic Reconstructive Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhen Tan
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| | - Deli Wang
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| | - Changchun Zhou
- College of Biomedical Engineering, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
7
|
Nie L, Ma J, Yu Y, Tao Y, Song Z, Li J. Exosomes as carriers to stimulate an anti-cancer immune response in immunotherapy and as predictive markers. Biochem Pharmacol 2025; 232:116699. [PMID: 39647605 DOI: 10.1016/j.bcp.2024.116699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
During this era of rapid advancements in cancer immunotherapy, the application of cell-released small vesicles that activate the immune system is of considerable interest. Exosomes are cell-derived nanovesicles that show great promise for the immunological treatment of cancer because of their immunogenicity and molecular transfer capacity. Recent technological advancements have enabled the identification of functional functions that exosome cargoes perform in controlling immune responses. Exosomes are originated specifically from immune cells and tumor cells and they show unique composition patterns directly related to the immunotherapy against cancer. Exosomes can also deliver their cargo to particular cells, which can affect the phenotypic and immune-regulatory functions of those cells. Exosomes can influence the course of cancer and have therapeutic benefits by taking part in several cellular processes; as a result, they have the dual properties of activating and restraining cancer. Exosomes have tremendous potential for cancer immunotherapy; they may develop into the most powerful cancer vaccines and carriers of targeted antigens and drugs. Comprehending the potential applications of exosomes in immune therapy is significant for regulating cancer progression. This review offers an analysis of the function of exosomes in immunotherapy, specifically as carriers that function as diagnostic indicators for immunological activation and trigger an anti-cancer immune response. Moreover, it summarizes the fundamental mechanism and possible therapeutic applications of exosome-based immunotherapy for human cancer.
Collapse
Affiliation(s)
- Lili Nie
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun, China
| | - Jingru Ma
- Department of Clinical Laboratory, the Second Hospital of Jilin University, Changchun, China
| | - Yang Yu
- Department of Emergency and Critical Care, the Second Hospital of Jilin University, Changchun, China
| | - Ying Tao
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhidu Song
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun, China
| | - Jian Li
- Department of Emergency and Critical Care, the Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
8
|
Zhou J, Gou YK, Guo D, Wang MY, Liu P. Roles of gastric cancer-derived exosomes in the occurrence of metastatic hepatocellular carcinoma. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 196:1-7. [PMID: 39884558 DOI: 10.1016/j.pbiomolbio.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/20/2024] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Gastric cancer (GC), particularly in East Asia, is among the most prevalent cancers with high mortality rates. According to recent epidemiological data, patients with GC account for over a quarter of all cancer incidences and approximately one third of cancer-related deaths in East Asia. Liver metastasis (LM) is not only a common form of GC distant metastasis but also poses a major challenge to the prognosis and treatment of patients with advanced GC. Increasing evidence has shown that the gut-liver axis plays a pivotal role in maintaining the stomach-liver-gut homeostasis. Exosomes are small secreted vesicles enriched with specific proteins, lipids, and nucleic acids. These vesicles exhibit significant activities in signal transmission to adjacent or distant cells in the gut-liver axis, as well as in remodeling the tumor microenvironment. Some research have pointed out that exosomes promote LM of various cancers. However, there still lack of complete and systematic review on how exosomes affect GC-LM. In this article, we present a comprehensive description to explore the role of GC-derived exosomes in the occurrence and development of metastatic hepatocellular carcinoma (HCC).
Collapse
Affiliation(s)
- Jie Zhou
- School of Medical Laboratory, Shandong Second Medical University, Weifang, Shandong, 261053, PR China; Department of Central Lab, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, 264200, PR China
| | - Yuan-Kun Gou
- School of Medical Laboratory, Shandong Second Medical University, Weifang, Shandong, 261053, PR China; Department of Central Lab, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, 264200, PR China
| | - Dong Guo
- Department of Central Lab, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, 264200, PR China
| | - Ming-Yi Wang
- School of Medical Laboratory, Shandong Second Medical University, Weifang, Shandong, 261053, PR China; Department of Central Lab, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, 264200, PR China.
| | - Peng Liu
- Department of Central Lab, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, 264200, PR China.
| |
Collapse
|
9
|
Suman S, Nevala WK, Leontovich AA, Jakub JW, Geng L, McLaughlin SA, Markovic SN. Melanoma-derived cytokines and extracellular vesicles are interlinked with macrophage immunosuppression. Front Mol Biosci 2025; 11:1522717. [PMID: 39911494 PMCID: PMC11794111 DOI: 10.3389/fmolb.2024.1522717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/13/2024] [Indexed: 02/07/2025] Open
Abstract
Cytokines play a crucial role in mediating cell communication within the tumor microenvironment (TME). Tumor-associated macrophages are particularly influential in the regulation of immunosuppressive cytokines, thereby supporting tumor metastasis. The upregulation of Th2 cytokines in cancer cells is recognized for its involvement in suppressing anticancer immunity. However, the association between these cytokines and tumor-secreted extracellular vesicles (EVs) remains poorly understood. Therefore, our objective was to investigate the connection between tumor-promoting macrophages and melanoma-derived EVs. The analysis from altered cytokine profile data showed that melanoma-derived EVs upregulate Th2 cytokine expression in naïve macrophages, thereby contributing to the promotion of tumor-supporting functions. Notably, many of these cytokines were also found to be upregulated in metastatic melanoma patients (n = 30) compared to healthy controls (n = 33). Overall, our findings suggest a strong connection between melanoma secretory EVs and the induction of tumor-associated macrophages that facilitates the development of an immunosuppressive TME, supporting melanoma metastasis through regulation at both local and systemic levels.
Collapse
Affiliation(s)
- Shankar Suman
- Department of Oncology, Mayo Clinic, Rochester, MN, United States
| | - Wendy K. Nevala
- Department of Oncology, Mayo Clinic, Rochester, MN, United States
| | - Alexey A. Leontovich
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, United States
| | - James W. Jakub
- Department of Surgery, Mayo Clinic, Jacksonville, FL, United States
| | - Liyi Geng
- Department of Oncology, Mayo Clinic, Rochester, MN, United States
| | | | | |
Collapse
|
10
|
Liu C, Yin Q, Wu Z, Li W, Huang J, Chen B, Yang Y, Zheng X, Zeng L, Wang J. Inflammation and Immune Escape in Ovarian Cancer: Pathways and Therapeutic Opportunities. J Inflamm Res 2025; 18:895-909. [PMID: 39867950 PMCID: PMC11762012 DOI: 10.2147/jir.s503479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/06/2025] [Indexed: 01/28/2025] Open
Abstract
Ovarian cancer (OC) remains one of the most lethal gynecological malignancies, largely due to its late-stage diagnosis and high recurrence rates. Chronic inflammation is a critical driver of OC progression, contributing to immune evasion, tumor growth, and metastasis. Inflammatory cytokines, including IL-6, TNF-α, and IL-8, as well as key signaling pathways such as nuclear factor kappa B (NF-kB) and signal transducer and activator of transcription 3 (STAT3), are upregulated in OC, promoting a tumor-promoting environment. The tumor microenvironment (TME) is characterized by immune cells like tumor-associated macrophages (TAMs) and regulatory T cells (Tregs), which suppress anti-tumor immune responses, facilitating immune evasion. Furthermore, OC cells utilize immune checkpoint pathways, including PD-1/PD-L1, to inhibit cytotoxic T cell activity. Targeting these inflammatory and immune evasion mechanisms offers promising therapeutic strategies. COX-2 inhibitors, Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway blockers, and NF-kB inhibitors have shown potential in preclinical studies, while immune checkpoint inhibitors targeting PD-1/PD-L1 and CTLA-4 have been explored with mixed results in OC. Additionally, emerging research on the microbiome and inflammation-related biomarkers, such as microRNAs (miRNAs) and exosomes, points to new opportunities for early detection and precision medicine. Future approaches to OC treatment must focus on personalized strategies that target the inflammatory TME, integrating anti-inflammatory therapies with immunotherapy to enhance patient outcomes. Continued research into the interplay between inflammation and immune evasion in OC is essential for developing effective, long-lasting treatments.
Collapse
Affiliation(s)
- Chunyan Liu
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, People’s Republic of China
| | - Qinan Yin
- Department of Radiation Oncology, First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, People’s Republic of China
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, People’s Republic of China
| | - Zhaoying Wu
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, People’s Republic of China
| | - Wenhui Li
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, People’s Republic of China
| | - Jun Huang
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, People’s Republic of China
| | - Bo Chen
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, People’s Republic of China
| | - Yanjun Yang
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, People’s Republic of China
| | - Xuewei Zheng
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, People’s Republic of China
| | - Li Zeng
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, People’s Republic of China
| | - Jingjing Wang
- Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, People’s Republic of China
| |
Collapse
|
11
|
Huang X, Tang Y. Unveiling the complex double-edged sword role of exosomes in nasopharyngeal carcinoma. PeerJ 2025; 13:e18783. [PMID: 39822977 PMCID: PMC11737332 DOI: 10.7717/peerj.18783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/09/2024] [Indexed: 01/19/2025] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignancy arising from the epithelium of the nasopharynx. Given its late diagnosis, NPC raises serious considerations in Southeast Asia. In addition to resistance to conventional treatment that combines chemotherapy and radiation, NPC has high rates of metastasis and frequent recurrence. Exosomes are small membrane vesicles at the nanoscale that transport physiologically active compounds from their source cell and have a crucial function in signal transmission and intercellular message exchange. The exosomes detected in the tissues of NPC patients have recently emerged as a potential non-invasive liquid biopsy biomarker that plays a role in controlling the tumor pathophysiology. Here, we take a look back at what we know so far about the complex double-edged sword role of exosomes in NPC. Exosomes could serve as biomarkers and therapeutic agents, as well as the molecular mechanisms by which they promote cell growth, angiogenesis, metastasis, immunosuppression, radiation resistance, and chemotherapy resistance in NPC. Furthermore, we go over some of the difficulties and restrictions associated with exosome use. It is anticipated that this article would provide the reference for the apply of exosomes in clinical practice.
Collapse
Affiliation(s)
- Xueyan Huang
- Department of Otorhinolaryngology Head and Neck Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Yuedi Tang
- Department of Otorhinolaryngology Head and Neck Surgery, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Huang M, Ji J, Xu X, Jin D, Wu T, Lin R, Huang Y, Qian J, Tan Z, Jiang F, Hu X, Xu W, Xiao M. Known and unknown: Exosome secretion in tumor microenvironment needs more exploration. Genes Dis 2025; 12:101175. [PMID: 39524543 PMCID: PMC11550746 DOI: 10.1016/j.gendis.2023.101175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/06/2023] [Accepted: 10/10/2023] [Indexed: 11/16/2024] Open
Abstract
Exosomes, extracellular vesicles originating from endosomes, were discovered in the late 1980s and their function in intercellular communication has since garnered considerable interest. Exosomes are lipid bilayer-coated vesicles that range in size from 30 to 150 nm and appear as sacs under the electron microscope. Exosome secretion is crucial for cell-to-cell contact in both normal physiology and the development and spread of tumors. Furthermore, cancer cells can secrete more exosomes than normal cells. Scientists believe that intercellular communication in the complex tissue environment of the human body is an important reason for cancer cell invasion and metastasis. For example, some particles containing regulatory molecules are secreted in the tumor microenvironment, including exosomes. Then the contents of exosomes can be released by donor cells into the environment and interact with recipient cells to promote the migration and invasion of tumor cells. Therefore, in this review, we summarized the biogenesis of exosome, as well as exosome cargo and related roles. More importantly, this review introduces and discusses the factors that have been reported to affect exosome secretion in tumors and highlights the important role of exosomes in tumors.
Collapse
Affiliation(s)
- Mengxiang Huang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Jie Ji
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Xuebing Xu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Dandan Jin
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Tong Wu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Renjie Lin
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Yuxuan Huang
- Clinical Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Jiawen Qian
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Zhonghua Tan
- Department of Nuclear Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Feng Jiang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| | - Xiaogang Hu
- Department of Respiratory Medicine, Rudong County People's Hospital, Nantong, Jiangsu 226400, China
| | - Weisong Xu
- Department of Gastroenterology, Affiliated Nantong Rehabilitation Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Mingbing Xiao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu 226001, China
| |
Collapse
|
13
|
Zeng Q, Zhang S, Leng N, Xing Y. Advancing tumor vaccines: Overcoming TME challenges, delivery strategies, and biomaterial-based vaccine for enhanced immunotherapy. Crit Rev Oncol Hematol 2025; 205:104576. [PMID: 39581246 DOI: 10.1016/j.critrevonc.2024.104576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/03/2024] [Accepted: 11/16/2024] [Indexed: 11/26/2024] Open
Abstract
Tumor vaccines, as an immunotherapeutic approach, harness the body's immune cells to provoke antitumor responses, which have shown promising efficacy in clinical settings. However, the immunosuppressive tumor microenvironment (TME) and the ineffective vaccine delivery systems hinder the progression of many vaccines beyond phase II trials. This article begins with a comprehensive review of the complex interactions between tumor vaccines and TME, summarizing the current state of vaccine clinical research. Subsequently, we review recent advancements in targeted vaccine delivery systems and explore biomaterial-based tumor vaccines as a strategy to improve the efficacy of both delivery systems and treatment. Finally, we have presented our perspectives on tumor vaccine development, aiming to advance the field towards the creation of more effective tumor vaccines.
Collapse
Affiliation(s)
- Qingsong Zeng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Shibo Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Ning Leng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Yingying Xing
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China.
| |
Collapse
|
14
|
Agrawal P, Olgun G, Singh A, Gopalan V, Hannenhalli S. Characterizing the pan-cancer role of exosomal miRNAs in metastasis across cancers. Comput Struct Biotechnol J 2024; 27:252-264. [PMID: 39866667 PMCID: PMC11763893 DOI: 10.1016/j.csbj.2024.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/28/2025] Open
Abstract
Exosomal microRNAs (exomiRs) play a critical role in intercellular communication, especially in cancer, where they regulate key cellular processes like proliferation, angiogenesis, and metastasis, highlighting their significance as potential diagnostic and therapeutic targets. Here, we aimed to characterize the role of exomiRs, derived from seven cancer types (four cell lines and three tumors), in influencing the pre-metastatic niche (PMN). In each cancer type we extracted high confidence exomiRs (LogFC >= 2 in exosomes relative to control), their experimentally validated targets, and the enriched pathways among those targets. We then selected the top100 high-confidence targets based on their frequency of appearance in the enriched pathways. We observed significantly higher GC content in exomiRs relative to genomic background. Gene Ontology analysis revealed both general cancer processes, such as wound healing and epithelial cell proliferation, as well as cancer-specific processes, such as "angiogenesis" in the kidney and "ossification" in the lung. ExomiR targets were enriched for cancer-specific tumor suppressor genes and downregulated in PMN formed in lungs compared to normal. Motif analysis showed high inter-cancer similarity among motifs enriched in exomiRs. Our analysis recapitulated exomiRs associated with M2 macrophage differentiation and chemoresistance, such as miR-21 and miR-222-3p, regulating signaling pathways like PTEN/PI3/Akt, NF-kB, etc. Additionally, Cox regression analysis in TCGA indicated that exomiR targets are significantly associated with better overall survival of patients. Lastly, support vector machine model using exomiR targets gene expression classified responders and non-responders to therapy with an AUROC ranging from 0.72 to 0.96, higher than previously reported gene signatures.
Collapse
Affiliation(s)
- Piyush Agrawal
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA
| | - Gulden Olgun
- Department of Computer Engineering, Hacettepe University, Ankara 06800, Turkey
| | - Arashdeep Singh
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA
| | - Vishaka Gopalan
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA
| | - Sridhar Hannenhalli
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
15
|
Wang J, Zhang H, Li J, Ni X, Yan W, Chen Y, Shi T. Exosome-derived proteins in gastric cancer progression, drug resistance, and immune response. Cell Mol Biol Lett 2024; 29:157. [PMID: 39719600 PMCID: PMC11667977 DOI: 10.1186/s11658-024-00676-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 12/09/2024] [Indexed: 12/26/2024] Open
Abstract
Gastric cancer (GC) represents a prevalent malignancy globally, often diagnosed at advanced stages owing to subtle early symptoms, resulting in a poor prognosis. Exosomes are extracellular nano-sized vesicles and are secreted by various cells. Mounting evidence indicates that exosomes contain a wide range of molecules, such as DNA, RNA, lipids, and proteins, and play crucial roles in multiple cancers including GC. Recently, with the rapid development of mass spectrometry-based detection technology, researchers have paid increasing attention to exosomal cargo proteins. In this review, we discussed the origin of exosomes and the diagnostic and prognostic roles of exosomal proteins in GC. Moreover, we summarized the biological functions of exosomal proteins in GC processes, such as proliferation, metastasis, drug resistance, stemness, immune response, angiogenesis, and traditional Chinese medicine therapy. In summary, this review synthesizes current advancements in exosomal proteins associated with GC, offering insights that could pave the way for novel diagnostic and therapeutic strategies for GC in the foreseeable future.
Collapse
Affiliation(s)
- Jiayu Wang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, 215000, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Huan Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, 215000, China
| | - Juntao Li
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiangyu Ni
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, 215000, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenying Yan
- Department of Bioinformatics, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, China.
- Center for Systems Biology, Soochow University, Suzhou, China.
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Suzhou, China.
| | - Yueqiu Chen
- Department of Cardiovascular Surgery of The First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College of Soochow University, Soochow University, Suzhou, 215007, China.
| | - Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, 215000, China.
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
16
|
Ahuja S, Zaheer S. The evolution of cancer immunotherapy: a comprehensive review of its history and current perspectives. KOREAN JOURNAL OF CLINICAL ONCOLOGY 2024; 20:51-73. [PMID: 39778508 PMCID: PMC11717579 DOI: 10.14216/kjco.24009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/24/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025]
Abstract
Cancer immunotherapy uses the body's immune system to combat cancer, marking a significant advancement in treatment. This review traces its evolution from the late 19th century to its current status. It began with William Coley's pioneering work using bacterial toxins to stimulate the immune system against cancer cells, establishing the foundational concept of immunotherapy. In the mid-20th century, cytokine therapies like interferons and interleukins emerged, demonstrating that altering the immune response could reduce tumors and highlighting the complex interplay between cancer and the immune system. The discovery of immune checkpoints, regulatory pathways that prevent autoimmunity but are exploited by cancer cells to evade detection, was a pivotal development. Another major breakthrough is CAR-T cell therapy, which involves modifying a patient's T cells to target cancer-specific antigens. This personalized treatment has shown remarkable success in certain blood cancers. Additionally, cancer vaccines aim to trigger immune responses against tumor-specific or associated antigens, and while challenging, ongoing research is improving their efficacy. The historical progression of cancer immunotherapy, from Coley's toxins to modern innovations like checkpoint inhibitors and CAR-T cell therapy, underscores its transformative impact on cancer treatment. As research delves deeper into the immune system's complexities, immunotherapy is poised to become even more crucial in oncology, offering renewed hope to patients globally.
Collapse
Affiliation(s)
- Sana Ahuja
- Department of Pathology, Safdarjung Hospital, Vardhman Mahavir Medical College, New Delhi, India
| | - Sufian Zaheer
- Department of Pathology, Safdarjung Hospital, Vardhman Mahavir Medical College, New Delhi, India
| |
Collapse
|
17
|
Sonar S. Decoding the mysteries of prostate cancer via cutting-edge liquid biopsy-based urine exosomes profiling. THE JOURNAL OF LIQUID BIOPSY 2024; 6:100162. [PMID: 40027312 PMCID: PMC11863813 DOI: 10.1016/j.jlb.2024.100162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 03/05/2025]
Abstract
Exosomes, a subset of extracellular vesicles (EVs), have emerged as crucial players in prostate cancer (PCa) diagnosis. It is involved in cell-to-cell communication. Exosomes cargo based tumor microenvironment (TME) cellular communication is a secret of cancer development and progression. PCa, the second most common cancer in men, holds early diagnostic challenges due to a lack of specific biomarkers. Recent studies have found that tumor-derived exosomes (TEXs) contribute to PCa progression by facilitating immune suppression, angiogenesis, and metastasis. These exosomes, detectable in serum, plasma, and urine, carry diagnostic biomarkers such as specific miRNAs and proteins. Urine-derived exosomes, with their distinct miRNAs, provide a non-invasive diagnostic tool. This method becomes cutting-edge liquid biopsy in PCa. Advanced techniques, such as including AI and nanoplatform-based sensors, improve the precision of exosome-based PCa diagnostics, offering enhanced detection and better treatment outcomes.
Collapse
Affiliation(s)
- Swarup Sonar
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, Tamil Nadu, India
| |
Collapse
|
18
|
Tan M, Cao G, Wang R, Cheng L, Huang W, Yin Y, Ma H, Ho SH, Wang Z, Zhu M, Ran H, Nie G, Wang H. Metal-ion-chelating phenylalanine nanostructures reverse immune dysfunction and sensitize breast tumour to immune checkpoint blockade. NATURE NANOTECHNOLOGY 2024; 19:1903-1913. [PMID: 39187583 DOI: 10.1038/s41565-024-01758-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 07/15/2024] [Indexed: 08/28/2024]
Abstract
An immunosuppressive tumour microenvironment strongly influences response rates in patients receiving immune checkpoint blockade-based cancer immunotherapies, such as programmed death-1 (PD-1) and programmed death-ligand 1 (PD-L1). Here we demonstrate that metal-ion-chelating L-phenylalanine nanostructures synergize with short-term starvation (STS) to remodel the immunosuppressive microenvironment of breast and colorectal tumours. These nanostructures modulate the electrophysiological behaviour of dendritic cells and activate them through the NLRP3 inflammasome and calcium-mediated nuclear factor-κB pathway. STS promotes the cellular uptake of nanostructures through amino acid transporters and plays a key role in dendritic cell maturation and tumour-specific cytotoxic T lymphocyte responses. This study demonstrates the potential role of metal-ion-chelating L-phenylalanine nanostructures in activating immune responses and the effect of STS treatment in improving nanomaterial-mediated cancer immunotherapy.
Collapse
Affiliation(s)
- Mixiao Tan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, People's Republic of China
- The Second Affiliated Hospital of Chongqing Medical University & Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing, People's Republic of China
| | - Guoliang Cao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, People's Republic of China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Rupeng Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Long Cheng
- The Second Affiliated Hospital of Chongqing Medical University & Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing, People's Republic of China
| | - Wenping Huang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, People's Republic of China
| | - Yue Yin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, People's Republic of China
| | - Haixia Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, People's Republic of China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Zhigang Wang
- The Second Affiliated Hospital of Chongqing Medical University & Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing, People's Republic of China
| | - Motao Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, People's Republic of China
| | - Haitao Ran
- The Second Affiliated Hospital of Chongqing Medical University & Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing, People's Republic of China.
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, People's Republic of China.
| | - Hai Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, People's Republic of China.
| |
Collapse
|
19
|
Jin K, Zhao D, Zhou J, Zhang X, Wang Y, Wu Z. Pulsed electromagnetic fields inhibit IL-37 to alleviate CD8 + T cell dysfunction and suppress cervical cancer progression. Apoptosis 2024; 29:2108-2127. [PMID: 39404933 DOI: 10.1007/s10495-024-02006-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2024] [Indexed: 11/10/2024]
Abstract
Pulsed electromagnetic field (PEMF) therapy is a potential non-invasive treatment to modulate immune responses and inhibit tumor growth. Cervical cancer (CC) is influenced by IL-37-mediated immune regulation, making PEMF therapy a potential strategy to impede CC progression. This study aimed to elucidate the effects of PEMF on IL-37 regulation and its molecular mechanisms in CC. CC cell-xenografted mouse models, including IL-37 transgenic (IL-37tg) mice, were used to assess tumor growth through in vivo fluorescence imaging and analyze CC cell apoptosis via flow cytometry. TCGA-CESC transcriptome and clinical data were analyzed to identify key inflammation and immune-related genes. CD8+ T cell models were stimulated with PEMF, and apoptosis, oxidative stress, and inflammatory factor expression were analyzed through RT-qPCR, Western blot, and flow cytometry. PEMF treatment significantly inhibited IL-37 expression (p < 0.05), promoted inflammatory factor release (TNF-α and IL-6), and activated oxidative stress, leading to increased CC cell apoptosis (p < 0.05). IL-37 interaction with SMAD3 impacted the p38/NF-κB signaling pathway, modulating CD8+ T cell activity and cytotoxicity. Co-culture of Hela cells with CD8+ T cells under PEMF treatment showed reduced proliferation (by 40%), migration, and invasion (p < 0.05). In vivo experiments with CC-bearing mice demonstrated that PEMF treatment downregulated IL-37 expression (p < 0.05), enhanced CD8+ T cell function, and inhibited tumor growth (p < 0.05). These molecular mechanisms were validated through RT-qPCR, Western blot, and immunohistochemistry. Thus, PEMF therapy inhibits CC progression by downregulating IL-37 and improving CD8+ T cell function via the SMAD3/p38/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Ke Jin
- Department of Oncology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Dan Zhao
- Department of Oncology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Jun Zhou
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xun Zhang
- Department of Obstetrics and Gynecology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 West 2nd Section, First Ring Road, Qingyang District, Chengdu, 610072, Sichuan Province, China
| | - Yujue Wang
- Department of Obstetrics and Gynecology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 West 2nd Section, First Ring Road, Qingyang District, Chengdu, 610072, Sichuan Province, China.
| | - Zhao Wu
- Department of Obstetrics and Gynecology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32 West 2nd Section, First Ring Road, Qingyang District, Chengdu, 610072, Sichuan Province, China.
| |
Collapse
|
20
|
Luo J, Zhang D, Pu Q, Wen Z, Wu X, Chai J, Chen L, Wang J, Chen G, Luo T, Yang C, Huang Y. Skeletal muscle-derived exosomes selectively coated miRNAs and participate in myoblast proliferation and differentiation mediated by miR-4331-3p. Int J Biol Macromol 2024; 281:136225. [PMID: 39368577 DOI: 10.1016/j.ijbiomac.2024.136225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
The phenotypic characteristics and meat quality of skeletal muscles are collectively determined by muscle cells and their intricate interactions with the extracellular microenvironment. In this study, we evaluated muscle fiber phenotypes in the longissimus dorsi (HC-L) and psoas major (HC-P) of Hechuan black pigs. The results revealed significant differences in muscle fiber diameter, density, and type (P < 0.05). Subsequently, co-culture experiments with myoblasts demonstrated that skeletal muscle-derived exosomes (SKM-Exos) promoted myoblast proliferation and differentiation with P-Exo exhibiting superior efficacy in promoting the augmentation of MyHCIIa fiber. Furthermore, SKM-Exos are inherently heterogeneous, and the microRNAs (miRNAs) present in SKM-Exos are selectively coated. Notably, the expression of miR-4331-3p was significantly higher in SKM-Exos than in the corresponding skeletal muscles. The expression of miR-4331-3p was significantly elevated in the SKM-Exos of HC-L compared to that of HC-P, and it interacted with differentially expressed genes between HC-L and HC-P. Moreover, miR-4331-3p enhanced myoblast proliferation and inhibited differentiation. Our findings offer valuable insights into the molecular processes that contribute to meat formation, including intricate cellular interactions.
Collapse
Affiliation(s)
- Jia Luo
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| | - Daiyu Zhang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Qiang Pu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zhenhao Wen
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Xiaoqian Wu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Jie Chai
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
| | - Li Chen
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
| | - Jingyong Wang
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
| | - Guanhua Chen
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Taorun Luo
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Changfeng Yang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Yongfu Huang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
21
|
Hsu CY, Ahmed AT, Bansal P, Hjazi A, Al-Hetty HRAK, Qasim MT, Sapaev I, Deorari M, Mustafa YF, Elawady A. MicroRNA-enriched exosome as dazzling dancer between cancer and immune cells. J Physiol Biochem 2024; 80:811-829. [PMID: 39316240 DOI: 10.1007/s13105-024-01050-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024]
Abstract
Exosomes are widely recognized for their roles in numerous biological processes and as intercellular communication mediators. Human cancerous and normal cells can both produce massive amounts of exosomes. They are extensively dispersed in tumor-modeling animals' pleural effusions, ascites, and plasma from people with cancer. Tumor cells interact with host cells by releasing exosomes, which allow them to interchange various biological components. Tumor growth, invasion, metastasis, and even tumorigenesis can all be facilitated by this delicate and complex system by modifying the nearby and remote surroundings. Due to the existence of significant levels of biomolecules like microRNA, exosomes can modulate the immune system's stimulation or repression, which in turn controls tumor growth. However, the role of microRNA in exosome-mediated communication between immunological and cancer cells is still poorly understood. This study aims to get the most recent information on the "yin and yang" of exosomal microRNA in the regulation of tumor immunity and immunotherapy, which will aid current cancer treatment and diagnostic techniques.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, Arizona 85004, USA
| | - Abdulrahman T Ahmed
- Department of Nursing, Al-Maarif University College, Ramadi, AL-Anbar Governorate, Iraq
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, 560069, Karnataka, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | | | - Maytham T Qasim
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar, 64001, Iraq
| | - Ibrokhim Sapaev
- Tashkent Institute of Irrigation and Agricultural Mechanization Engineers" National Research University, Tashkent, Uzbekistan
- School of Engineering, Central Asian University, Tashkent, 111221, Uzbekistan
- Western Caspian University, Scientific researcher, Baku, Azerbaijan
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Ahmed Elawady
- College of Technical Engineering, the Islamic University, Najaf, Iraq
- College of Technical Engineering, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
22
|
Zhu M, Gao Y, Zhu K, Yuan Y, Bai H, Meng L. Exosomal miRNA as biomarker in cancer diagnosis and prognosis: A review. Medicine (Baltimore) 2024; 103:e40082. [PMID: 39432619 PMCID: PMC11495718 DOI: 10.1097/md.0000000000040082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024] Open
Abstract
Exosomes, which are extracellular vesicles with a diameter ranging from 40 to 160 nm, are abundantly present in various body fluids. Exosomal microRNA (ex-miR), due to its exceptional sensitivity and specificity, has garnered significant attention. Notably, ex-miR is consistently detected in almost all bodily fluids, highlighting its potential as a reliable biomarker. This attribute of ex-miR has piqued considerable interest in its application as a diagnostic tool for the early detection, continuous monitoring, and prognosis evaluation of cancer. Given the critical role of exosomes and their cargo in cancer biology, this review explores the intricate processes of exosome biogenesis and uptake, their multifaceted roles in cancer development and progression, and the potential of ex-miRs as biomarkers for tumor diagnosis and prognosis.
Collapse
Affiliation(s)
- Mingliao Zhu
- Medical School of Shaoxing University, Yuecheng, Shaoxing, Zhejiang Province, People’s Republic of China
| | - Yuan Gao
- Department of Breast and Thyroid Surgery, Shaoxing People’s Hospital, The First Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang Province, People’s Republic of China
| | - Kaijun Zhu
- Medical School of Shaoxing University, Yuecheng, Shaoxing, Zhejiang Province, People’s Republic of China
| | - Ying Yuan
- Medical School of Shaoxing University, Yuecheng, Shaoxing, Zhejiang Province, People’s Republic of China
| | - Haoyang Bai
- Medical School of Shaoxing University, Yuecheng, Shaoxing, Zhejiang Province, People’s Republic of China
| | - Liwei Meng
- Department of Breast and Thyroid Surgery, Shaoxing People’s Hospital, The First Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang Province, People’s Republic of China
| |
Collapse
|
23
|
Abdul Manap AS, Ngwenya FM, Kalai Selvan M, Arni S, Hassan FH, Mohd Rudy AD, Abdul Razak NN. Lung cancer cell-derived exosomes: progress on pivotal role and its application in diagnostic and therapeutic potential. Front Oncol 2024; 14:1459178. [PMID: 39464709 PMCID: PMC11502357 DOI: 10.3389/fonc.2024.1459178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/24/2024] [Indexed: 10/29/2024] Open
Abstract
Lung cancer is frequently detected in an advanced stage and has an unfavourable prognosis. Conventional therapies are ineffective for the treatment of metastatic lung cancer. While certain molecular targets have been identified as having a positive response, the absence of appropriate drug carriers prevents their effective utilization. Lung cancer cell-derived exosomes (LCCDEs) have gained attention for their involvement in the development of cancer, as well as their potential for use in diagnosing, treating, and predicting the outcome of lung cancer. This is due to their biological roles and their inherent ability to transport biomolecules from the donor cells. Lung cancer-associated cell-derived extracellular vesicles (LCCDEVs) have the ability to enhance cell proliferation and metastasis, influence angiogenesis, regulate immune responses against tumours during the development of lung cancer, control drug resistance in lung cancer treatment, and are increasingly recognised as a crucial element in liquid biopsy evaluations for the detection of lung cancer. Therapeutic exosomes, which possess inherent intercellular communication capabilities, are increasingly recognised as effective vehicles for targeted drug delivery in precision medicine for tumours. This is due to their exceptional biocompatibility, minimal immunogenicity, low toxicity, prolonged circulation in the bloodstream, biodegradability, and ability to traverse different biological barriers. Currently, multiple studies are being conducted to create new means of diagnosing and predicting outcomes using LCCDEs, as well as to develop techniques for utilizing exosomes as effective carriers for medication delivery. This paper provides an overview of the current state of lung cancer and the wide range of applications of LCCDEs. The encouraging findings and technologies suggest that the utilization of LCCDEs holds promise for the clinical treatment of lung cancer patients.
Collapse
Affiliation(s)
- Aimi Syamima Abdul Manap
- Department of Biomedical Science, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | | | | | - Syarafina Arni
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Malaysia
| | | | | | | |
Collapse
|
24
|
Wen Z, Qin S, Huang H, Xia X, Zhang W, Wu W. Functional exosomes modified with chitosan effectively alleviate anthracycline-induced cardiotoxicity. Int J Biol Macromol 2024; 277:134495. [PMID: 39111472 DOI: 10.1016/j.ijbiomac.2024.134495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/14/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
Anthracyclines belong to a class of anti-tumor antibiotics, and their severe cardiotoxicity significantly limits their clinical use. Exosomes play key roles in intercellular communication, characterized by high biocompatibility and specific tissue and organ homing effects. In this study, doxorubicin, an anthracycline anticancer drug widely used in clinical chemotherapy, was selected as a model drug. To address the significant cardiotoxicity associated with doxorubicin, tumor exosomes are utilized as drug carriers. The homing effect of autologous exosomes enhances drug uptake by tumor cells and reduces cardiotoxicity. To enhance the stability of exosomes, improve therapeutic effectiveness, and reduce toxic side effects, chitosan was utilized to modify the surface of exosomes. Chitosan has a specific anti-tumor effect because it can target the CD44 receptor of tumor stem cells and interact with tumor cells through charge adsorption. Through in vitro cell experiments, in vivo pharmacokinetic experiments, and an in situ ectopic nude mouse tumor model, the study demonstrated that chitosan-modified tumor exosomes significantly alleviated the severe cardiotoxicity of doxorubicin, while also showing remarkable anti-tumor efficacy. This study introduces a novel approach to reduce the adverse side effects of anthracycline chemotherapeutic drugs and presents a highly promising nanocarrier delivery system.
Collapse
Affiliation(s)
- Zhiwei Wen
- School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Shuiling Qin
- School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Huajie Huang
- School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Xingle Xia
- School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Wei Zhang
- School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Wei Wu
- School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China.
| |
Collapse
|
25
|
Ye J, Li D, Jie Y, Luo H, Zhang W, Qiu C. Exosome-based nanoparticles and cancer immunotherapy. Biomed Pharmacother 2024; 179:117296. [PMID: 39167842 DOI: 10.1016/j.biopha.2024.117296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024] Open
Abstract
Over the past decades, cancer immunotherapy has encountered challenges such as immunogenicity, inefficiency, and cytotoxicity. Consequently, exosome-based cancer immunotherapy has gained rapid traction as a promising alternative. Exosomes, a type of extracellular vesicles (EVs) ranging from 50 to 150 nm, are self-originating and exhibit fewer side effects compared to traditional therapies. Exosome-based immunotherapy encompasses three significant areas: cancer vaccination, co-inhibitory checkpoints, and adoptive T-cell therapy. Each of these fields leverages the inherent advantages of exosomes, demonstrating substantial potential for individualized tumor therapy and precision medicine. This review aims to elucidate the reasons behind the promise of exosome-based nanoparticles as cancer therapies by examining their characteristics and summarizing the latest research advancements in cancer immunotherapy.
Collapse
Affiliation(s)
- Jiarong Ye
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, Jiangxi Province, 330000 China.
| | - Danni Li
- Second Clinical Medical School, Nanchang University, Jiangxi Province 330000, China
| | - Yiting Jie
- Second Clinical Medical School, Nanchang University, Jiangxi Province 330000, China
| | - Hongliang Luo
- Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Province 330000, China
| | - Wenjun Zhang
- Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Province 330000, China
| | - Cheng Qiu
- Gastrointestinal Surgery, Pingxiang People's Hospital, Jiangxi Province 330000, China.
| |
Collapse
|
26
|
LI YI, WANG TIANYI, DING HAORAN, ZHUANG SHIYONG, DAI XIAOBO, YAN BING. Exosomal microRNA let-7c-5p enhances cell malignant characteristics by inhibiting TAGLN in oral cancer. Oncol Res 2024; 32:1623-1635. [PMID: 39308508 PMCID: PMC11413824 DOI: 10.32604/or.2024.048191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/15/2024] [Indexed: 09/25/2024] Open
Abstract
Background Oral cancer, a malignancy that is prevalent worldwide, is often diagnosed at an advanced stage. MicroRNAs (miRNAs) in circulating exosomes have emerged as promising cancer biomarkers. The role of miRNA let-7c-5p in oral cancer remains underexplored, and its potential involvement in tumorigenesis warrants comprehensive investigation. Methods Serum samples from 30 patients with oral cancer and 20 healthy controls were used to isolate exosomes and quantify their RNA content. Isolation of the exosomes was confirmed through transmission electron microscopy. Quantitative PCR was used to assess the miRNA profiles. The effects of let-7c-5p and TAGLN overexpression on oral cancer cell viability, migration, and invasion were analyzed via CCK-8 and Transwell assays. Moreover, we conducted mRNA sequencing of exosomal RNA from exosomes overexpressing let-7c-5p to delineate the gene expression profile and identify potential let-7c-5p target genes. Results let-7c-5p was upregulated in serum-derived exosomes of patients with oral cancer. Overexpression of let-7c-5p in the TCA8113 and CAL-27 cell lines enhanced their proliferative, migratory, and invasive capacities, and overexpression of let-7c-5p cell-derived exosomes promoted oral cancer cell invasiveness. Exosomal mRNA sequencing revealed 2,551 differentially expressed genes between control cell-derived exosomes and overexpressed let-7c-5p cell-derived exosomes. We further identified TAGLN as a direct target of let-7c-5p, which has been implicated in modulating the oncogenic potential of oral cancer cells. Overexpression of TAGLN reverses the promoting role of let-7c-5p on oral cancer cells. Conclusion Our findings highlight the role of exosomal let-7c-5p in enhancing oral cancer cell aggressiveness by downregulating TAGLN expression, highlighting its potential as a diagnostic and therapeutic strategy.
Collapse
Affiliation(s)
- YI LI
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - TIANYI WANG
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - HAORAN DING
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - SHIYONG ZHUANG
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - XIAOBO DAI
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - BING YAN
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Frontier Innovation Center for Dental Medicine Plus, Chengdu, 610041, China
| |
Collapse
|
27
|
Zandberg DP, Hong CS, Swartz A, Hsieh R, Anderson J, Ferris RL, Diergaarde B, Whiteside TL. Small extracellular vesicles as biomarkers of response in recurrent/metastatic HNSCC patients treated with immunotherapy. BJC REPORTS 2024; 2:70. [PMID: 39281316 PMCID: PMC11390474 DOI: 10.1038/s44276-024-00096-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/12/2024] [Accepted: 08/28/2024] [Indexed: 09/18/2024]
Abstract
Background Biomarkers that effectively predict response to anti-PD-1 mAb therapy in cancer patients are an unmet need. We evaluated the utility of small extracellular vesicles (sEV) as biomarkers of response to immunotherapy in recurrent/metastatic (R/M) head and neck squamous cell carcinoma (HNSCC) patients. Methods Plasma sEV were isolated from 24 R/M HNSCC patients prior to immunotherapy initiation. sEV were separated by immune capture into T cell-derived CD3(+) and tumor-enriched CD3(-) subsets. Stimulatory and suppressive profiles of CD3(-) sEV were determined by on-bead flow cytometry. Differences were assessed using nonparametric tests. Multivariable Cox regression was used to evaluate the relationship with overall (OS) and progression free survival (PFS). Results CD3(-)CD44v3(+) sEV represented the majority of plasma sEV; the T-cell-derived CD3(+) fraction was significantly smaller. High CD3(+) sEV was associated with better OS and PFS. Total CD3(-)CD44v3(+) sEV was not associated with outcome. However, suppressive and stimulatory profiles were associated with OS; the suppressive/stimulatory ratio was associated with best response. Exploration of individual proteins on CD3(-) sEV showed that high PD-L1 and high CTLA-4 were associated with better outcomes. Conclusions Evaluation of the T cell-derived-CD3(+) and tumor-enriched CD3(-) plasma sEV subsets indicated their potential utility as biomarkers of response to immunotherapy.
Collapse
Affiliation(s)
| | - Chang-Sook Hong
- UPMC Hillman Cancer Center, Pittsburgh, PA USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | | | - Ronan Hsieh
- UPMC Hillman Cancer Center, Pittsburgh, PA USA
| | | | | | - Brenda Diergaarde
- UPMC Hillman Cancer Center, Pittsburgh, PA USA
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA USA
| | - Theresa L. Whiteside
- UPMC Hillman Cancer Center, Pittsburgh, PA USA
- Departments of Immunology and Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| |
Collapse
|
28
|
Wang X, Zhang H, XinZhang, Liu Y. Abscopal effect: from a rare phenomenon to a new frontier in cancer therapy. Biomark Res 2024; 12:98. [PMID: 39228005 PMCID: PMC11373306 DOI: 10.1186/s40364-024-00628-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/30/2024] [Indexed: 09/05/2024] Open
Abstract
Radiotherapy (RT) controls local lesions, meantime it has the capability to induce systemic response to inhibit distant, metastatic, non-radiated tumors, which is referred to as the "abscopal effect". It is widely recognized that radiotherapy can stimulate systemic immune response. This provides a compelling theoretical basis for the combination of immune therapy combined with radiotherapy(iRT). Indeed, this phenomenon has also been observed in clinical treatment, bringing significant clinical benefits to patients, and a series of basic studies are underway to amplify this effect. However, the molecular mechanisms of immune response induced by RT, determination of the optimal treatment regimen for iRT, and how to amplify the abscopal effect. In order to amplify and utilize this effect in clinical management, these key issues require to be well addressed; In this review, we comprehensively summarize the growing consensus and emphasize the emerging limitations of enhancing the abscopal effect with radiotherapy or immunotherapy. Finally, we discuss the prospects and barriers to the current clinical translational applications.
Collapse
Affiliation(s)
- Xueying Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- Clinical Research Center for Laryngopharyngeal and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China
| | - Haoyu Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- Clinical Research Center for Laryngopharyngeal and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China
| | - XinZhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
- Clinical Research Center for Laryngopharyngeal and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China.
| | - Yong Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
- Clinical Research Center for Laryngopharyngeal and Voice Disorders in Hunan Province, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China.
| |
Collapse
|
29
|
Shao M, Gao Y, Xu X, Chan DW, Du J. Exosomes: Key Factors in Ovarian Cancer Peritoneal Metastasis and Drug Resistance. Biomolecules 2024; 14:1099. [PMID: 39334866 PMCID: PMC11430201 DOI: 10.3390/biom14091099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Ovarian cancer remains a leading cause of death among gynecological cancers, largely due to its propensity for peritoneal metastasis and the development of drug resistance. This review concentrates on the molecular underpinnings of these two critical challenges. We delve into the role of exosomes, the nano-sized vesicles integral to cellular communication, in orchestrating the complex interactions within the tumor microenvironment that facilitate metastatic spread and thwart therapeutic efforts. Specifically, we explore how exosomes drive peritoneal metastasis by promoting epithelial-mesenchymal transition in peritoneal mesothelial cells, altering the extracellular matrix, and supporting angiogenesis, which collectively enable the dissemination of cancer cells across the peritoneal cavity. Furthermore, we dissect the mechanisms by which exosomes contribute to the emergence of drug resistance, including the sequestration and expulsion of chemotherapeutic agents, the horizontal transfer of drug resistance genes, and the modulation of critical DNA repair and apoptotic pathways. By shedding light on these exosome-mediated processes, we underscore the potential of exosomal pathways as novel therapeutic targets, offering hope for more effective interventions against ovarian cancer's relentless progression.
Collapse
Affiliation(s)
- Ming Shao
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
- Department of Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen 518172, China
| | - Yunran Gao
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Xiling Xu
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - David Wai Chan
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Juan Du
- Department of Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen 518172, China
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
30
|
Sun D, Altalbawy FMA, Yumashev A, Hjazi A, Menon SV, Kaur M, Deorari M, Abdulwahid AS, Shakir MN, Gabal BC. Shedding Light on the Role of Exosomal PD-L1 (ExoPD-L1) in Cancer Progression: an Update. Cell Biochem Biophys 2024; 82:1709-1720. [PMID: 38907940 DOI: 10.1007/s12013-024-01340-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2024] [Indexed: 06/24/2024]
Abstract
Exosomes are the primary category of extracellular vesicles (EVs), which are lipid-bilayer vesicles with biological activity spontaneously secreted from either normal or tansformed cells. They serve a crucial role for intercellular communication and affect extracellular environment and the immune system. Tumor-derived exosomes (TEXs) enclose high levels of immunosuppressive proteins, including programmed death-ligand 1 (PD-L1). PD-L1 and its receptor PD-1 act as crucial immune checkpoint molecules, thus facilitating tumor advancement by inhibiting immune responses. PDL-1 is abundantly present on tumor cells and interacts with PD-1 on activated T cells, resulting in T cell suppression and allowing immune evasion of cancer cells. Various FDA-approved monoclonal antibodies inhibiting the PD-1/PD-L1 interaction are commonly used to treat a diverse range of tumors. Although the achieved results are significant, some individuals have a poor reaction to PD-1/PD-L1 blocking. PD-L1-enriched TEXs may mimic the impact of cell-surface PD-L1, consequently potentiating tumor resistance to PD1/PD-L1 based therapy. In light of this, a strong correlation between circulating exosomal PD-L1 levels and response rate to anti-PD-1/PD-L1 antibody treatment has been evinced. This article inspects the function of exosomal PDL-1 in developing resistance to anti-PD-1/PD-L1 therapy for opening new avenues for overcoming tumor resistance to such modalities and development of more favored combination therapy.
Collapse
Affiliation(s)
- Dongmei Sun
- Siping City Central People's Hospital, Siping, Jilin, 136000, P. R. China
| | - Farag M A Altalbawy
- Department of Biochemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia.
| | - Alexey Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Soumya V Menon
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Mandeep Kaur
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Alzahraa S Abdulwahid
- Department of Medical Laboratories Technology, Al-Hadi University College, Baghdad, 10011, Iraq
| | - Maha Noori Shakir
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | - Baneen Chasib Gabal
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
31
|
Bhattacharya A, Chatterji U. Exosomal misfolded proteins released by cancer stem cells: dual functions in balancing protein homeostasis and orchestrating tumor progression. Discov Oncol 2024; 15:392. [PMID: 39215782 PMCID: PMC11365921 DOI: 10.1007/s12672-024-01262-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer stem cells (CSCs), the master regulators of tumor heterogeneity and progression, exert profound influence on cancer metastasis, via various secretory vesicles. Emerging from CSCs, the exosomes serve as pivotal mediators of intercellular communication within the tumor microenvironment, modulating invasion, angiogenesis, and immune responses. Moreover, CSC-derived exosomes play a central role in sculpting a dynamic landscape, contributing to the malignant phenotype. Amidst several exosomal cargoes, misfolded proteins have recently gained attention for their dual functions in maintaining protein homeostasis and promoting tumor progression. Disrupting these communication pathways could potentially prevent the maintenance and expansion of CSCs, overcome treatment resistance, and inhibit the supportive environment created by the tumor microenvironment, thereby improving the effectiveness of cancer therapies and reducing the risk of tumor recurrence and metastasis. Additionally, exosomes have also shown potential therapeutic applications, such as in drug delivery or as biomarkers for cancer diagnosis and prognosis. Therefore, comprehending the biology of exosomes derived from CSCs is a multifaceted area of research with implications in both basic sciences and clinical applications. This review explores the intricate interplay between exosomal misfolded proteins released by CSCs, the potent contributor in tumor heterogeneity, and their impact on cellular processes, shedding light on their role in cancer progression.
Collapse
Affiliation(s)
- Anuran Bhattacharya
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Urmi Chatterji
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India.
| |
Collapse
|
32
|
Agrawal P, Olgun G, Singh A, Gopalan V, Hannenhalli S. Characterizing the role of exosomal miRNAs in metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.20.608894. [PMID: 39372783 PMCID: PMC11451750 DOI: 10.1101/2024.08.20.608894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Background Exosomal microRNAs (exomiRs), transported via exosomes, play a pivotal role in intercellular communication. In cancer, exomiRs influence tumor progression by regulating key cellular processes such as proliferation, angiogenesis, and metastasis. Their role in mediating communication between cancer cells and the tumor microenvironment highlights their significance as potential diagnostic and therapeutic targets. Methodology In this study, we aimed to characterize the role of exomiRs in influencing the pre-metastatic niche (PMN). Across 7 tumor types, including 4 cell lines and three tumors, we extracted high confidence exomiRs (Log FC >= 2 in exosomes relative to control) and their targets (experimentally identified and targeted by at least 2 exomiRs). Subsequently, we identified enriched pathways and selected the top 100 high-confidence exomiR targets based on the frequency of their appearance in the enriched pathways. These top 100 targets were consistently used throughout the analysis. Results Cancer cell line and tumor derived ExomiRs have significantly higher GC content relative to genomic background. Pathway enriched among the top exomiR targets included general cancer-associated processes such as "wound healing" and "regulation of epithelial cell proliferation", as well as cancer-specific processes, such as "regulation of angiogenesis in kidney" (KIRC), "ossification" in lung (LUAD), and "positive regulation of cytokine production" in pancreatic cancer (PAAD). Similarly, 'Pathways in cancer' and 'MicroRNAs in cancer' ranked among the top 10 enriched KEGG pathways in all cancer types. ExomiR targets were not only enriched for cancer-specific tumor suppressor genes (TSG) but are also downregulated in pre-metastatic niche formed in lungs compared to normal lung. Motif analysis shows high similarity among motifs identified from exomiRs across cancer types. Our analysis recapitulates exomiRs associated with M2 macrophage differentiation and chemoresistance such as miR-21 and miR-222-3p, regulating signaling pathways such as PTEN/PI3/Akt, NF-κB, etc. Cox regression indicated that exomiR targets are significantly associated with overall survival of patients in TCGA. Lastly, a Support Vector Machine (SVM) model using exomiR target gene expression classified responders and non-responders to neoadjuvant chemotherapy with an AUROC of 0.96 (in LUAD), higher than other previously reported gene signatures. Conclusion Our study characterizes the pivotal role of exomiRs in shaping the PMN in diverse cancers, underscoring their diagnostic and therapeutic potential.
Collapse
Affiliation(s)
- Piyush Agrawal
- Department of Medical Research, SRM Medical College Hospital & Research Centre, SRMIST, Kattankulathur, Chennai, Tamil Nadu, India
| | - Gulden Olgun
- Department of Computer Engineering, Hacettepe University, 06800, Ankara, Turkey
| | - Arashdeep Singh
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA
| | - Vishaka Gopalan
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA
| | - Sridhar Hannenhalli
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
33
|
Li ZH, Liu XC, Wang D, Zhang ZL, Chen G, Yu ZL, Tian ZQ. Simultaneous detection of two subtypes of extracellular vesicles using ultrabright fluorescent nanosphere-based test strips. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024. [PMID: 39036899 DOI: 10.1039/d4ay00712c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
In recent years, the cargo profiles of extracellular vesicles (EVs), which were inherited from their parent cells, have emerged as a reliable biomarker for liquid biopsy (LB) in disease diagnosis, prognosis, and treatment monitoring. EVs secreted by different cells exhibit distinct characteristics, particularly in terms of disease diagnosis and prediction. However, currently available techniques for the quantitative analysis of EV cargoes, including enzyme-linked immunosorbent assay (ELISA), cannot specifically identify the cellular origin of EVs, thus seriously affecting the accuracy of EV-based liquid biopsy. In light of this, we here developed ultrabright fluorescent nanosphere (FNs)-based test strips which have the unique capability to specifically assess the levels of PD-L1-positive EVs (PD-L1+ EVs) derived from both tumor cells and immune cells in bodily fluids. The levels of PD-L1+ EV subpopulations in human saliva were quantified using the ultrabright fluorescent nanosphere-based test strips with more convenience and higher efficiency (detection time <30 min). Results demonstrated that the fluorescence intensity of the test line exhibited a good linear relationship respectively with the PD-L1 levels of tumor cell- (R2 = 0.993) and immune cell-derived EVs (R2 = 0.982) in human saliva. By assessing the levels of PD-L1+ EV subpopulations, our test strips hold immense potential for advancing the application of PD-L1+ EV subpopulation-based predictions in tumor diagnosis and prognosis evaluation. In summary, by integrating the benefits of FNs and lateral flow chromatography, we here provide a strategy to accurately measure the cargo levels of EVs originating from diverse cell sources in bodily fluids.
Collapse
Affiliation(s)
- Zhi-Hua Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Xing-Chi Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China.
| | - Dan Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Zhi-Ling Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Gang Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China.
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Zi-Li Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China.
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zhi-Quan Tian
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
- Key Laboratory of Environmental Engineering and Pollution Control on Plateau (Tibet Autonomous Region), School of Ecology and Environment, Tibet University, Lhasa 850000, China
| |
Collapse
|
34
|
Zhao G, Wang S, Nie G, Li N. Unlocking the power of nanomedicine: Cell membrane-derived biomimetic cancer nanovaccines for cancer treatment. MED 2024; 5:660-688. [PMID: 38582088 DOI: 10.1016/j.medj.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/26/2024] [Accepted: 03/14/2024] [Indexed: 04/08/2024]
Abstract
Over the past decades, nanomedicine researchers have dedicated their efforts to developing nanoscale platforms capable of more precisely delivering drug payloads to attack tumors. Cancer nanovaccines are exhibiting a distinctive capability in inducing tumor-specific antitumor responses. Nevertheless, there remain numerous challenges that must be addressed for cancer nanovaccines to evoke sufficient therapeutic effects. Cell membrane-derived nanovaccines are an emerging class of cancer vaccines that comprise a synthetic nanoscale core camouflaged by naturally derived cell membranes. The specific cell membrane has a biomimetic nanoformulation with several distinctive abilities, such as immune evasion, enhanced biocompatibility, and tumor targeting, typically associated with a source cell. Here, we discuss the advancements of cell membrane-derived nanovaccines and how these vaccines are used for cancer therapeutics. Translational endeavors are currently in progress, and additional research is also necessary to effectively address crucial areas of demand, thereby facilitating the future successful translation of these emerging vaccine platforms.
Collapse
Affiliation(s)
- Guo Zhao
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shuhang Wang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100000, China.
| | - Ning Li
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
35
|
Aghakhani A, Pezeshki PS, Rezaei N. The role of extracellular vesicles in immune cell exhaustion and resistance to immunotherapy. Expert Opin Investig Drugs 2024; 33:721-740. [PMID: 38795060 DOI: 10.1080/13543784.2024.2360209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/22/2024] [Indexed: 05/27/2024]
Abstract
INTRODUCTION Extracellular vesicles (EVs) are membrane-bound nanoparticles for intercellular communication. Subtypes of EVs, namely exosomes and microvesicles transfer diverse, bioactive cargo to their target cells and eventually interfere with immune responses. Despite being a promising approach, cancer immunotherapy currently faces several challenges including immune resistance. EVs secreted from various sources in the tumor microenvironment provoke immune cell exhaustion and lower the efficacy of immunological treatments, such as CAR T cells and immune checkpoint inhibitors. AREAS COVERED This article goes through the mechanisms of action of various types of EVs in inhibiting immune response and immunotherapies, and provides a comprehensive review of EV-based treatments. EXPERT OPINION By making use of the distinctive features of EVs, natural or modified EVs are innovatively utilized as novel cancer therapeutics. They are occasionally coupled with currently established treatments to overcome their inadequacies. Investigating the properties and interactions of EVs and EV-based treatments is crucial for determining future steps in cancer therapeutics.
Collapse
Affiliation(s)
- Ava Aghakhani
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Parmida Sadat Pezeshki
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Cheng HY, Su GL, Wu YX, Chen G, Yu ZL. Extracellular vesicles in anti-tumor drug resistance: Mechanisms and therapeutic prospects. J Pharm Anal 2024; 14:100920. [PMID: 39104866 PMCID: PMC11298875 DOI: 10.1016/j.jpha.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 08/07/2024] Open
Abstract
Drug resistance presents a significant challenge to achieving positive clinical outcomes in anti-tumor therapy. Prior research has illuminated reasons behind drug resistance, including increased drug efflux, alterations in drug targets, and abnormal activation of oncogenic pathways. However, there's a need for deeper investigation into the impact of drug-resistant cells on parental tumor cells and intricate crosstalk between tumor cells and the malignant tumor microenvironment (TME). Recent studies on extracellular vesicles (EVs) have provided valuable insights. EVs are membrane-bound particles secreted by all cells, mediating cell-to-cell communication. They contain functional cargoes like DNA, RNA, lipids, proteins, and metabolites from mother cells, delivered to other cells. Notably, EVs are increasingly recognized as regulators in the resistance to anti-cancer drugs. This review aims to summarize the mechanisms of EV-mediated anti-tumor drug resistance, covering therapeutic approaches like chemotherapy, targeted therapy, immunotherapy and even radiotherapy. Detecting EV-based biomarkers to predict drug resistance assists in bypassing anti-tumor drug resistance. Additionally, targeted inhibition of EV biogenesis and secretion emerges as a promising approach to counter drug resistance. We highlight the importance of conducting in-depth mechanistic research on EVs, their cargoes, and functional approaches specifically focusing on EV subpopulations. These efforts will significantly advance the development of strategies to overcome drug resistance in anti-tumor therapy.
Collapse
Affiliation(s)
- Hao-Yang Cheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Guang-Liang Su
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yu-Xuan Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Gang Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China
| | - Zi-Li Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| |
Collapse
|
37
|
Dong J, Chai X, Xue Y, Shen S, Chen Z, Wang Z, Yinwang E, Wang S, Chen L, Wu F, Li H, Chen Z, Xu J, Ye Z, Li X, Lu Q. ZIF-8-Encapsulated Pexidartinib Delivery via Targeted Peptide-Modified M1 Macrophages Attenuates MDSC-Mediated Immunosuppression in Osteosarcoma. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309038. [PMID: 38456768 DOI: 10.1002/smll.202309038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/31/2024] [Indexed: 03/09/2024]
Abstract
Adoptive cellular therapy is a promising strategy for cancer treatment. However, the effectiveness of this therapy is limited by its intricate and immunosuppressive tumor microenvironment. In this study, a targeted therapeutic strategy for macrophage loading of drugs is presented to enhance anti-tumor efficacy of macrophages. K7M2-target peptide (KTP) is used to modify macrophages to enhance their affinity for tumors. Pexidartinib-loaded ZIF-8 nanoparticles (P@ZIF-8) are loaded into macrophages to synergistically alleviate the immunosuppressive tumor microenvironment synergistically. Thus, the M1 macrophages decorated with KTP carried P@ZIF-8 and are named P@ZIF/M1-KTP. The tumor volumes in the P@ZIF/M1-KTP group are significantly smaller than those in the other groups, indicating that P@ZIF/M1-KTP exhibited enhanced anti-tumor efficacy. Mechanistically, an increased ratio of CD4+ T cells and a decreased ratio of MDSCs in the tumor tissues after treatment with P@ZIF/M1-KTP indicated that it can alleviate the immunosuppressive tumor microenvironment. RNA-seq further confirms the enhanced immune cell function. Consequently, P@ZIF/M1-KTP has great potential as a novel adoptive cellular therapeutic strategy for tumors.
Collapse
Affiliation(s)
- Jiabao Dong
- Huzhou Central Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, 313000, China
| | - Xupeng Chai
- Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, 310000, China
| | - Yucheng Xue
- Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, 310000, China
| | - Shiyun Shen
- Huzhou Central Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, 313000, China
| | - Zhuo Chen
- Huzhou Central Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, 313000, China
| | - Zetao Wang
- Huzhou Central Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, 313000, China
| | - Eloy Yinwang
- Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, 310000, China
| | - Shengdong Wang
- Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, 310000, China
| | - Liang Chen
- Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, 310000, China
| | - Fengfeng Wu
- Huzhou Central Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, 313000, China
| | - Hengyuan Li
- Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, 310000, China
| | - Zehao Chen
- Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, 310000, China
| | - Jianbin Xu
- Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, 310000, China
| | - Zhaoming Ye
- Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, 310000, China
| | - Xiongfeng Li
- Huzhou Central Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, 313000, China
| | - Qian Lu
- Huzhou Central Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, 313000, China
| |
Collapse
|
38
|
Javdani-Mallak A, Salahshoori I. Environmental pollutants and exosomes: A new paradigm in environmental health and disease. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171774. [PMID: 38508246 DOI: 10.1016/j.scitotenv.2024.171774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/16/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
This study investigates the intricate interplay between environmental pollutants and exosomes, shedding light on a novel paradigm in environmental health and disease. Cellular stress, induced by environmental toxicants or disease, significantly impacts the production and composition of exosomes, crucial mediators of intercellular communication. The heat shock response (HSR) and unfolded protein response (UPR) pathways, activated during cellular stress, profoundly influence exosome generation, cargo sorting, and function, shaping intercellular communication and stress responses. Environmental pollutants, particularly lipophilic ones, directly interact with exosome lipid bilayers, potentially affecting membrane stability, release, and cellular uptake. The study reveals that exposure to environmental contaminants induces significant changes in exosomal proteins, miRNAs, and lipids, impacting cellular function and health. Understanding the impact of environmental pollutants on exosomal cargo holds promise for biomarkers of exposure, enabling non-invasive sample collection and real-time insights into ongoing cellular responses. This research explores the potential of exosomal biomarkers for early detection of health effects, assessing treatment efficacy, and population-wide screening. Overcoming challenges requires advanced isolation techniques, standardized protocols, and machine learning for data analysis. Integration with omics technologies enhances comprehensive molecular analysis, offering a holistic understanding of the complex regulatory network influenced by environmental pollutants. The study underscores the capability of exosomes in circulation as promising biomarkers for assessing environmental exposure and systemic health effects, contributing to advancements in environmental health research and disease prevention.
Collapse
Affiliation(s)
- Afsaneh Javdani-Mallak
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Iman Salahshoori
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran; Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
39
|
Chen X. From immune equilibrium to tumor ecodynamics. Front Oncol 2024; 14:1335533. [PMID: 38807760 PMCID: PMC11131381 DOI: 10.3389/fonc.2024.1335533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/01/2024] [Indexed: 05/30/2024] Open
Abstract
Objectives There is no theory to quantitatively describe the complex tumor ecosystem. At the same time, cancer immunotherapy is considered a revolution in oncology, but the methods used to describe tumors and the criteria used to evaluate efficacy are not keeping pace. The purpose of this study is to establish a new theory for quantitatively describing the tumor ecosystem, innovating the methods of tumor characterization, and establishing new efficacy evaluation criteria for cancer immunotherapy. Methods Based on the mathematization of immune equilibrium theory and the establishment of immunodynamics in a previous study, the method of reverse immunodynamics was used, namely, the immune braking force was regarded as the tumor ecological force and the immune force was regarded as the tumor ecological braking force, and the concept of momentum in physics was applied to the tumor ecosystem to establish a series of tumor ecodynamic equations. These equations were used to solve the fundamental and applied problems of the complex tumor ecosystem. Results A series of tumor ecodynamic equations were established. The tumor ecological momentum equations and their component factors could be used to distinguish disease progression, pseudoprogression, and hyperprogression in cancer immunotherapy. On this basis, the adjusted tumor momentum equations were established to achieve the equivalence of tumor activity (including immunosuppressive activity and metabolic activity) and tumor volume, which could be used to calculate individual disease remission rate and establish new efficacy evaluation criteria (ieRECIST) for immunotherapy of solid tumor based on tumor ecodynamics. At the same time, the concept of moving cube-to-force square ratio and its expression were proposed to calculate the area under the curve of tumor ecological braking force of blood required to achieve an individual disease remission rate when the adjusted tumor ecological momentum was known. Conclusions A new theory termed tumor ecodynamics emphasizing both tumor activity and tumor volume is established to solve a series of basic and applied problems in the complex tumor ecosystem. It can be predicted that the future will be the era of cancer immune ecotherapy that targets the entire tumor ecosystem.
Collapse
Affiliation(s)
- Xiaoping Chen
- State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Lamvac (Guangzhou) Biomedical Technology Co., Ltd., Guangzhou, China
| |
Collapse
|
40
|
Sheikhhossein HH, Iommelli F, Di Pietro N, Curia MC, Piattelli A, Palumbo R, Roviello GN, De Rosa V. Exosome-like Systems: From Therapies to Vaccination for Cancer Treatment and Prevention-Exploring the State of the Art. Vaccines (Basel) 2024; 12:519. [PMID: 38793770 PMCID: PMC11125800 DOI: 10.3390/vaccines12050519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Cancer remains one of the main causes of death in the world due to its increasing incidence and treatment difficulties. Although significant progress has been made in this field, innovative approaches are needed to reduce tumor incidence, progression, and spread. In particular, the development of cancer vaccines is currently ongoing as both a preventive and therapeutic strategy. This concept is not new, but few vaccines have been approved in oncology. Antigen-based vaccination emerges as a promising strategy, leveraging specific tumor antigens to activate the immune system response. However, challenges persist in finding suitable delivery systems and antigen preparation methods. Exosomes (EXs) are highly heterogeneous bilayer vesicles that carry several molecule types in the extracellular space. The peculiarity is that they may be released from different cells and may be able to induce direct or indirect stimulation of the immune system. In particular, EX-based vaccines may cause an anti-tumor immune attack or produce memory cells recognizing cancer antigens and inhibiting disease development. This review delves into EX composition, biogenesis, and immune-modulating properties, exploring their role as a tool for prevention and therapy in solid tumors. Finally, we describe future research directions to optimize vaccine efficacy and realize the full potential of EX-based cancer immunotherapy.
Collapse
Affiliation(s)
- Hamid Heydari Sheikhhossein
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
- Villa Serena Foundation for Research, 65013 Città Sant'Angelo, Italy
| | - Francesca Iommelli
- Institute of Biostructures and Bioimaging, National Research Council, 80145 Naples, Italy
| | - Natalia Di Pietro
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| | - Maria Cristina Curia
- Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy
- Facultad de Medicina, UCAM Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain
| | - Rosanna Palumbo
- Institute of Biostructures and Bioimaging, National Research Council, 80145 Naples, Italy
| | - Giovanni N Roviello
- Institute of Biostructures and Bioimaging, National Research Council, 80145 Naples, Italy
| | - Viviana De Rosa
- Institute of Biostructures and Bioimaging, National Research Council, 80145 Naples, Italy
| |
Collapse
|
41
|
Al-Hawary SIS, Almajidi YQ, Bansal P, Ahmad I, Kaur H, Hjazi A, Deorari M, Zwamel AH, Hamzah HF, Mohammed BA. Dendritic cell-derived exosome (DEX) therapy for digestive system cancers: Recent advances and future prospect. Pathol Res Pract 2024; 257:155288. [PMID: 38653088 DOI: 10.1016/j.prp.2024.155288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/10/2024] [Accepted: 03/31/2024] [Indexed: 04/25/2024]
Abstract
Tumor-mediated immunosuppression is a fundamental obstacle to the development of dendritic cell (DC)-based cancer vaccines, which despite their ability to stimulate host anti-tumor CD8 T cell immunity, have not been able to generate meaningful therapeutic responses. Exosomes are inactive membrane vesicles that are nanoscale in size and are produced by the endocytic pathway. They are essential for intercellular communication. Additionally, DC-derived exosomes (DEXs) contained MHC class I/II (MHCI/II), which is frequently complexed with antigens and co-stimulatory molecules and is therefore able to prime CD4 and CD8 T cells that are specific to particular antigens. Indeed, vaccines with DEXs have been shown to exhibit better anti-tumor efficacy in eradicating tumors compared to DC vaccines in pre-clinical models of digestive system tumors. Also, there is room for improvement in the tumor antigenic peptide (TAA) selection process. DCs release highly targeted exosomes when the right antigenic peptide is chosen, which could aid in the creation of DEX-based antitumor vaccines that elicit more targeted immune responses. Coupled with their resistance to tumor immunosuppression, DEXs-based cancer vaccines have been heralded as the superior alternative cell-free therapeutic vaccines over DC vaccines to treat digestive system tumors. In this review, current studies of DEXs cancer vaccines as well as potential future directions will be deliberated.
Collapse
Affiliation(s)
| | - Yasir Qasim Almajidi
- Department of pharmacy (pharmaceutics), Baghdad College of Medical Sciences, Baghdad, Iraq.
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh 247341, India; Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand 831001, India
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University Al-Kharj 11942, Saudi Arabia
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ahmed Hussein Zwamel
- Department of Medical Laboratory Technology, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Hamza Fadhel Hamzah
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | | |
Collapse
|
42
|
Gou Z, Li J, Liu J, Yang N. The hidden messengers: cancer associated fibroblasts-derived exosomal miRNAs as key regulators of cancer malignancy. Front Cell Dev Biol 2024; 12:1378302. [PMID: 38694824 PMCID: PMC11061421 DOI: 10.3389/fcell.2024.1378302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/08/2024] [Indexed: 05/04/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs), a class of stromal cells in the tumor microenvironment (TME), play a key role in controlling cancer cell invasion and metastasis, immune evasion, angiogenesis, and resistance to chemotherapy. CAFs mediate their activities by secreting soluble chemicals, releasing exosomes, and altering the extracellular matrix (ECM). Exosomes contain various biomolecules, such as nucleic acids, lipids, and proteins. microRNA (miRNA), a 22-26 nucleotide non-coding RNA, can regulate the cellular transcription processes. Studies have shown that miRNA-loaded exosomes secreted by CAFs engage in various regulatory communication networks with other TME constituents. This study focused on the roles of CAF-derived exosomal miRNAs in generating cancer malignant characteristics, including immune modulation, tumor growth, migration and invasion, epithelial-mesenchymal transition (EMT), and treatment resistance. This study thoroughly examines miRNA's dual regulatory roles in promoting and suppressing cancer. Thus, changes in the CAF-derived exosomal miRNAs can be used as biomarkers for the diagnosis and prognosis of patients, and their specificity can be used to develop newer therapies. This review also discusses the pressing problems that require immediate attention, aiming to inspire researchers to explore more novel avenues in this field.
Collapse
Affiliation(s)
- Zixuan Gou
- Bethune First Clinical School of Medicine, The First Hospital of Jilin University, Changchun, China
| | - Jiannan Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Jianming Liu
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Na Yang
- Department of Clinical Pharmacy, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
43
|
Saleh RO, Hjazi A, Bansal P, Ahmad I, Kaur H, Ali SHJ, Deorari M, Abosaoda MK, Hamzah HF, Mohammed BA. Mysterious interactions between macrophage-derived exosomes and tumors; what do we know? Pathol Res Pract 2024; 256:155261. [PMID: 38518733 DOI: 10.1016/j.prp.2024.155261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/24/2024]
Abstract
Through their ability to modify the tumor microenvironment and cancer cells, macrophages play a crucial role in the promotion of tumorigenesis, development of tumors and metastasis, and chemotherapy resistance. A growing body of research has indicated that exosomes may be essential for coordinating the communication between cancer cells and macrophages. One type of extracellular vehicle called an exosome is utilized for delivering a variety of molecules, such as proteins, lipids, and nucleic acids, to specific cells in order to produce pleiotropic effects. Exosomes derived from macrophages exhibit heterogeneity across various cancer types and function paradoxically, suppressing tumor growth while stimulating it, primarily through post-transcriptional control and protein phosphorylation regulation in the receiving cells. Exosomes released by various macrophage phenotypes offer a variety of therapeutic alternatives in the interim. We outlined the most recent developments in this article, including our understanding of the roles that mechanisms and macrophage-derived exosomal biogenesis play in mediating the progression of cancer and their possible therapeutic uses.
Collapse
Affiliation(s)
- Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq.
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India.
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia.
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh 247341, India; Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand 831001, India.
| | - Saad Hayif Jasim Ali
- Department of medical laboratory, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq.
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.
| | - Munther Kadhim Abosaoda
- College of pharmacy, the Islamic University, Najaf, Iraq; College of pharmacy, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; College of pharmacy, the Islamic University of Babylon, Al Diwaniyah, Iraq.
| | - Hamza Fadhel Hamzah
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq.
| | | |
Collapse
|
44
|
Rezaie J, Chodari L, Mohammadpour-Asl S, Jafari A, Niknam Z. Cell-mediated barriers in cancer immunosurveillance. Life Sci 2024; 342:122528. [PMID: 38408406 DOI: 10.1016/j.lfs.2024.122528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
The immune cells within the tumor microenvironment (TME) exert multifaceted functions ranging from tumor-antagonizing or tumor-promoting activities. During the initial phases of tumor development, the tumor-antagonizing immune cells in the TME combat cancer cells in an immune surveillance process. However, with time, cancer cells can evade detection and impede the immune cells' effectiveness through diverse mechanisms, such as decreasing immunogenic antigen presentation on their surfaces and/or secreting anti-immune factors that cause tolerance in TME. Moreover, some immune cells cause immunosuppressive situations and inhibit antitumoral immune responses. Physical and cellular-mediated barriers in the TME, such as cancer-associated fibroblasts, tumor endothelium, the altered lipid composition of tumor cells, and exosomes secreted from cancer cells, also mediate immunosuppression and prevent extravasation of immune cells. Due to successful clinical outcomes of cancer treatment strategies the potential barriers must be identified and addressed. We need to figure out how to optimize cancer immunotherapy strategies, and how to combine therapeutic approaches for maximum clinical benefit. This review provides a detailed overview of various cells and molecules in the TME, their association with escaping from immune surveillance, therapeutic targets, and future perspectives for improving cancer immunotherapy.
Collapse
Affiliation(s)
- Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Leila Chodari
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Shadi Mohammadpour-Asl
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran; Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Abbas Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Zahra Niknam
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
45
|
Guan XL, Guan XY, Zhang ZY. Roles and application of exosomes in the development, diagnosis and treatment of gastric cancer. World J Gastrointest Oncol 2024; 16:630-642. [PMID: 38577463 PMCID: PMC10989387 DOI: 10.4251/wjgo.v16.i3.630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/18/2023] [Accepted: 01/15/2024] [Indexed: 03/12/2024] Open
Abstract
As important messengers of intercellular communication, exosomes can regulate local and distant cellular communication by transporting specific exosomal contents and can also promote or suppress the development and progression of gastric cancer (GC) by regulating the growth and proliferation of tumor cells, the tumor-related immune response and tumor angiogenesis. Exosomes transport bioactive molecules including DNA, proteins, and RNA (coding and noncoding) from donor cells to recipient cells, causing reprogramming of the target cells. In this review, we will describe how exosomes regulate the cellular immune response, tumor angiogenesis, proliferation and metastasis of GC cells, and the role and mechanism of exosome-based therapy in human cancer. We will also discuss the potential application value of exosomes as biomarkers in the diagnosis and treatment of GC and their relationship with drug resistance.
Collapse
Affiliation(s)
- Xiao-Li Guan
- Department of General Medicine, The Second Hospital of Lanzhou University, Lanzhou 730030, Gansu Province, China
| | - Xiao-Ying Guan
- Department of Pathology, The Second Hospital of Lanzhou University, Lanzhou 730030, Gansu Province, China
| | - Zheng-Yi Zhang
- Department of General Medicine, The Second Hospital of Lanzhou University, Lanzhou 730030, Gansu Province, China
| |
Collapse
|
46
|
Xiong M, Chen Z, Tian J, Peng Y, Song D, Zhang L, Jin Y. Exosomes derived from programmed cell death: mechanism and biological significance. Cell Commun Signal 2024; 22:156. [PMID: 38424607 PMCID: PMC10905887 DOI: 10.1186/s12964-024-01521-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/09/2024] [Indexed: 03/02/2024] Open
Abstract
Exosomes are nanoscale extracellular vesicles present in bodily fluids that mediate intercellular communication by transferring bioactive molecules, thereby regulating a range of physiological and pathological processes. Exosomes can be secreted from nearly all cell types, and the biological function of exosomes is heterogeneous and depends on the donor cell type and state. Recent research has revealed that the levels of exosomes released from the endosomal system increase in cells undergoing programmed cell death. These exosomes play crucial roles in diseases, such as inflammation, tumors, and autoimmune diseases. However, there is currently a lack of systematic research on the differences in the biogenesis, secretion mechanisms, and composition of exosomes under different programmed cell death modalities. This review underscores the potential of exosomes as vital mediators of programmed cell death processes, highlighting the interconnection between exosome biosynthesis and the regulatory mechanisms governing cell death processes. Furthermore, we accentuate the prospect of leveraging exosomes for the development of innovative biomarkers and therapeutic strategies across various diseases.
Collapse
Affiliation(s)
- Min Xiong
- School of Public Health, North China University of Science and Technology, Tangshan, 063000, China
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250001, China
| | - Zhen Chen
- School of Public Health, Weifang Medical University, Weifang, 261000, China
| | - Jiaqi Tian
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250001, China
| | - Yanjie Peng
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250001, China
| | - Dandan Song
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250001, China.
| | - Lin Zhang
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250001, China.
- Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Jinan, 250001, China.
| | - Yulan Jin
- School of Public Health, North China University of Science and Technology, Tangshan, 063000, China.
- Hebei Key Laboratory of Coal Health and Safety, Tangshan, 063000, China.
| |
Collapse
|
47
|
Knopik-Skrocka A, Sempowicz A, Piwocka O. Plasticity and resistance of cancer stem cells as a challenge for innovative anticancer therapies - do we know enough to overcome this? EXCLI JOURNAL 2024; 23:335-355. [PMID: 38655094 PMCID: PMC11036066 DOI: 10.17179/excli2024-6972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/20/2024] [Indexed: 04/26/2024]
Abstract
According to the CSC hypothesis, cancer stem cells are pivotal in initiating, developing, and causing cancer recurrence. Since the identification of CSCs in leukemia, breast cancer, glioblastoma, and colorectal cancer in the 1990s, researchers have actively investigated the origin and biology of CSCs. However, the CSC hypothesis and the role of these cells in tumor development model is still in debate. These cells exhibit distinct surface markers, are capable of self-renewal, demonstrate unrestricted proliferation, and display metabolic adaptation. CSC phenotypic plasticity and the capacity to EMT is strictly connected to the stemness state. CSCs show high resistance to chemotherapy, radiotherapy, and immunotherapy. The plasticity of CSCs is significantly influenced by tumor microenvironment factors, such as hypoxia. Targeting the genetic and epigenetic changes of cancer cells, together with interactions with the tumor microenvironment, presents promising avenues for therapeutic strategies. See also the Graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Agnieszka Knopik-Skrocka
- Department of Cell Biology, Faculty of Biology, Adam Mickiewicz University of Poznań, Poland
- Section of Regenerative Medicine and Cancer Research, Natural Sciences Club, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Alicja Sempowicz
- Department of Cell Biology, Faculty of Biology, Adam Mickiewicz University of Poznań, Poland
- Section of Regenerative Medicine and Cancer Research, Natural Sciences Club, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Oliwia Piwocka
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Center, Poznań, Poland
- Department of Electroradiology, Poznan University of Medical Sciences, Poznań, Poland
- Doctoral School, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
48
|
Madhan S, Dhar R, Devi A. Plant-derived exosomes: a green approach for cancer drug delivery. J Mater Chem B 2024; 12:2236-2252. [PMID: 38351750 DOI: 10.1039/d3tb02752j] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Plant-derived exosomes (PDEs) are natural extracellular vesicles (EVs). In the current decade, they have been highlighted for cancer therapeutic development. Cancer is a global health crisis and it requires an effective, affordable, and less side effect-based treatment. Emerging research based on PDEs suggests that they have immense potential to be considered as a therapeutic option. Research evidences indicate that PDEs' internal molecular cargos show impressive cancer prevention activity with less toxicity. PDEs-based drug delivery systems overcome several limitations of traditional drug delivery tools. Extraction of PDEs from plant sources employ diverse methodologies, encompassing ultracentrifugation, immunoaffinity, size-based isolation, and precipitation, each with distinct advantages and limitations. The core constituents of PDEs comprise of lipids, proteins, DNA, and RNA. Worldwide, a few clinical trials on plant-derived exosomes are underway, and regulatory affairs for their use as therapeutic agents are still not understood with clarity. This review aims to comprehensively analyze the current state of research on plant-derived exosomes as a promising avenue for drug delivery, highlighting anticancer activity, challenges, and future orientation in effective cancer therapeutic development.
Collapse
Affiliation(s)
- Shrishti Madhan
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District - 603 203, Tamil Nadu, India.
| | - Rajib Dhar
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District - 603 203, Tamil Nadu, India.
| | - Arikketh Devi
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District - 603 203, Tamil Nadu, India.
| |
Collapse
|
49
|
Chak PT, Kam NW, Choi TH, Dai W, Kwong DLW. Unfolding the Complexity of Exosome-Cellular Interactions on Tumour Immunity and Their Clinical Prospects in Nasopharyngeal Carcinoma. Cancers (Basel) 2024; 16:919. [PMID: 38473281 DOI: 10.3390/cancers16050919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an epithelial malignancy situated in the posterolateral nasopharynx. NPC poses grave concerns in Southeast Asia due to its late diagnosis. Together with resistance to standard treatment combining chemo- and radiotherapy, NPC presents high metastatic rates and common recurrence. Despite advancements in immune-checkpoint inhibitors (ICIs) and cytotoxic-T-lymphocytes (CTLs)-based cellular therapy, the exhaustive T cell profile and other signs of immunosuppression within the NPC tumour microenvironment (TME) remain as concerns to immunotherapy response. Exosomes, extracellular vesicles of 30-150 nm in diameter, are increasingly studied and linked to tumourigenesis in oncology. These bilipid-membrane-bound vesicles are packaged with a variety of signalling molecules, mediating cell-cell communications. Within the TME, exosomes can originate from tumour, immune, or stromal cells. Although there are studies on tumour-derived exosomes (TEX) in NPC and their effects on tumour processes like angiogenesis, metastasis, therapeutic resistance, there is a lack of research on their involvement in immune evasion. In this review, we aim to enhance the comprehension of how NPC TEX contribute to cellular immunosuppression. Furthermore, considering the detectability of TEX in bodily fluids, we will also discuss the potential development of TEX-related biomarkers for liquid biopsy in NPC as this could facilitate early diagnosis and prognostication of the disease.
Collapse
Affiliation(s)
- Paak-Ting Chak
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Ngar-Woon Kam
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Hong Kong Science Park, New Territories, Hong Kong 999077, China
| | - Tsz-Ho Choi
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Wei Dai
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
- Clinical Oncology Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| | - Dora Lai-Wan Kwong
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
- Clinical Oncology Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| |
Collapse
|
50
|
Abbasi-Malati Z, Azizi SG, Milani SZ, Serej ZA, Mardi N, Amiri Z, Sanaat Z, Rahbarghazi R. Tumorigenic and tumoricidal properties of exosomes in cancers; a forward look. Cell Commun Signal 2024; 22:130. [PMID: 38360641 PMCID: PMC10870553 DOI: 10.1186/s12964-024-01510-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/01/2024] [Indexed: 02/17/2024] Open
Abstract
In recent decades, emerging data have highlighted the critical role of extracellular vesicles (EVs), especially (exosomes) Exos, in the progression and development of several cancer types. These nano-sized vesicles are released by different cell lineages within the cancer niche and maintain a suitable platform for the interchange of various signaling molecules in a paracrine manner. Based on several studies, Exos can transfer oncogenic factors to other cells, and alter the activity of immune cells, and tumor microenvironment, leading to the expansion of tumor cells and metastasis to the remote sites. It has been indicated that the cell-to-cell crosstalk is so complicated and a wide array of factors are involved in this process. How and by which mechanisms Exos can regulate the behavior of tumor cells and non-cancer cells is at the center of debate. Here, we scrutinize the molecular mechanisms involved in the oncogenic behavior of Exos released by different cell lineages of tumor parenchyma. Besides, tumoricidal properties of Exos from various stem cell (SC) types are discussed in detail.
Collapse
Affiliation(s)
- Zahra Abbasi-Malati
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Ghader Azizi
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Soheil Zamen Milani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Aliyari Serej
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Mardi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Amiri
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Sanaat
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|