1
|
Wadhonkar K, Singh Y, Rughetti A, Das S, Yangdol R, Sk MH, Baig MS. Role of cancer cell-derived exosomal glycoproteins in macrophage polarization. Mol Biol Rep 2025; 52:451. [PMID: 40347313 DOI: 10.1007/s11033-025-10535-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Accepted: 04/22/2025] [Indexed: 05/12/2025]
Abstract
Cancer is a deadly disease marked by abnormal cell growth, proliferation, and metastasis-the spread of cancer from its origin to distant sites. A key factor in tumor progression is the tumor microenvironment (TME), which significantly influences tumor behavior and response to treatment. Within the TME, interactions between cancer cells and surrounding immune cells, particularly tumor-associated macrophages (TAMs), play a critical role in shaping immune responses. This review focuses on recent findings from a systematic PubMed search regarding cancer cell-derived exosomal glycoproteins and their role in modulating macrophage phenotypes. Tumor-derived exosomes, a type of extracellular vesicle (EV), carry glycoproteins-proteins with attached sugar chains-that can influence macrophage polarization. These glycoproteins can reprogram macrophages into either the M1 phenotype (proinflammatory and anti-tumor) or the M2 phenotype (anti-inflammatory and tumor-supportive). The M1 macrophages inhibit tumor progression, while M2 macrophages support tumor growth by promoting immune suppression and tissue remodeling. Understanding how exosomal glycoproteins drive this polarization offers critical insight into cancer immunology and may pave the way for novel therapeutic strategies targeting the TME.
Collapse
Affiliation(s)
- Khandu Wadhonkar
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Yashi Singh
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Aurelia Rughetti
- Laboratory of Tumor Immunology and Cell Therapy, Department of Experimental Medicine, Policlinico Umberto I, University of Rome "Sapienza", Rome, Italy
| | - Soumalya Das
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Rigzin Yangdol
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - M Hassan Sk
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
| | - Mirza S Baig
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India.
| |
Collapse
|
2
|
Xiaoxia F, Rui L, Meiru C, Lu Y, Ying J. CD147 regulates the Rap1 signaling pathway to promote proliferation, migration, and invasion, and inhibit apoptosis in colorectal cancer cells. Sci Rep 2025; 15:13647. [PMID: 40254691 PMCID: PMC12009992 DOI: 10.1038/s41598-025-98266-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 04/10/2025] [Indexed: 04/22/2025] Open
Abstract
The malignant progression of colorectal cancer (CRC) is intimately associated with the abnormal regulation of transmembrane glycoprotein CD147. However, the molecular mechanism via the Rap1/Rap1GAP signaling axis has not been elucidated. This study, through integrated bioinformatics analysis, discovered that the expression of CD147 in CRC tissues was significantly higher than that in adjacent tissues, and patients with high expression had a shorter overall survival. Immunohistochemistry and Western blot confirmed that the expression level of CD147 protein in CRC tissues was higher than that in adjacent tissues. Moreover, qRT-PCR verified a positive correlation between the expressions of CD147 and Rap1. Immunofluorescence clearly indicated that CD147 was specifically enriched in the cell membrane and cytoplasm of SW620 cells. The knockdown of CD147 mediated by shRNA could inhibit the proliferation of HCT116/SW620 cells, induce apoptosis, and weaken the migration and invasion capabilities. The mechanism involved the downregulation of c-Myc, Bcl-2 and the upregulation of Bax, E-cadherin. The mechanistic study found that the knockdown of CD147 increased the expression of Rap1GAP and inhibited Rap1 activity. Overexpression of Rap1 could reverse the inhibitory effects of CD147 knockdown on proliferation, apoptosis, and EMT phenotypes. This study revealed that CD147 upregulated Rap1 expression while inhibiting Rap1GAP, thereby maintaining Rap1 activity and driving the malignant progression of CRC through the c-Myc/Bcl-2/Bax axis and EMT program, providing experimental evidence for precise treatment targeting the CD147-Rap1 signaling axis.
Collapse
Affiliation(s)
- Fu Xiaoxia
- Department of Pathology, Xinzhou Hospital, Shanxi Medical University, Xinzhou, 034000, China
| | - Li Rui
- Clinical Discipline Building Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Chen Meiru
- Department of Pathology, Xinzhou Hospital, Shanxi Medical University, Xinzhou, 034000, China
| | - Yuan Lu
- Department of Pathology, Xinzhou Hospital, Shanxi Medical University, Xinzhou, 034000, China
| | - Jin Ying
- Department of Pathology, Xinzhou Hospital, Shanxi Medical University, Xinzhou, 034000, China.
| |
Collapse
|
3
|
Thongheang K, Pamonsupornwichit T, Sornsuwan K, Juntit OA, Chokepaichitkool T, Thongkum W, Yasamut U, Tayapiwatana C. Potentiating Antibody-Dependent Cellular Cytotoxicity in Triple-Negative Breast Cancer via the Humanized Anti-CD147 Antibody. Antibodies (Basel) 2025; 14:36. [PMID: 40265417 PMCID: PMC12015854 DOI: 10.3390/antib14020036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/29/2025] [Accepted: 04/09/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is an aggressive subtype with high metastatic potential, poor prognosis, and the absence of estrogen receptors, progesterone receptors, and human epidermal growth factor receptor 2 (HER2). The lack of these receptors limits the standard treatments, such as hormone therapies and HER2-targeted antibodies like trastuzumab. These challenges highlight the critical need for novel therapeutic strategies. CD147, a transmembrane glycoprotein overexpressed in TNBC, promotes tumor progression, metastasis, and chemoresistance, making it a promising therapeutic target. This study evaluates the antibody-dependent cellular cytotoxicity (ADCC) of HuM6-1B9, a humanized anti-CD147 antibody, against MDA-MB-231 cells, a TNBC model. METHODS CFSE-labelled MDA-MB-231 cells were co-cultured with PBMCs as effector cells (E:T ratio 80:1) in the presence of HuM6-1B9 and incubated for 4 h. Cells were then collected and stained with PI, and CFSE+/PI+ dead target cells were analyzed by flow cytometry. RESULTS Co-culturing MDA-MB-231 cells with peripheral blood mononuclear cells (PBMCs) in the presence of HuM6-1B9 demonstrated effective ADCC induction without direct cytotoxicity. HuM6-1B9 induced 54.01% cancer cell death via ADCC, significantly outperforming trastuzumab (26.14%) while sparing PBMCs. CONCLUSION These findings support HuM6-1B9 as a prospective TNBC therapeutic and warrant further investigation into its clinical potential.
Collapse
Affiliation(s)
- Kanyarat Thongheang
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (T.P.); (K.S.); (O.-a.J.); (W.T.)
| | - Thanathat Pamonsupornwichit
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (T.P.); (K.S.); (O.-a.J.); (W.T.)
| | - Kanokporn Sornsuwan
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (T.P.); (K.S.); (O.-a.J.); (W.T.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - On-anong Juntit
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (T.P.); (K.S.); (O.-a.J.); (W.T.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Tawan Chokepaichitkool
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Weeraya Thongkum
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (T.P.); (K.S.); (O.-a.J.); (W.T.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Innovative Immunodiagnostic Development, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Umpa Yasamut
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (T.P.); (K.S.); (O.-a.J.); (W.T.)
- Center of Innovative Immunodiagnostic Development, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chatchai Tayapiwatana
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (T.P.); (K.S.); (O.-a.J.); (W.T.)
- Center of Innovative Immunodiagnostic Development, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
4
|
Huang W, Zhong L, Shi Y, Ma Q, Yang X, Zhang H, Zhang J, Wang L, Wang K, Li J, Zou J, Yang X, Yang L, Zeng Q, Jing L, Chen Z, Zhao Y. An Anti-CD147 Antibody-Drug Conjugate Mehozumab-DM1 is Efficacious Against Hepatocellular Carcinoma in Cynomolgus Monkey. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410438. [PMID: 39985225 PMCID: PMC12005782 DOI: 10.1002/advs.202410438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/21/2025] [Indexed: 02/24/2025]
Abstract
Effective treatment strategies are urgently needed for hepatocellular carcinoma (HCC) patients due to frequent therapeutic resistance and recurrence. Antibody-drug conjugate (ADC) is a specific antibody-drug conjugated with small molecular compounds, which has potent killing activity against cancer cells. However, few ADC candidates for HCC are undergoing clinical evaluation. CD147 is a tumor-associated antigen that is highly expressed on the surface of tumor cells. Here CD147 is found significantly upregulated in tumor tissues of HCC. Mehozumab-DM1, a humanized anti-CD147 monoclonal antibody conjugated with Mertansine (DM1) is developed. Mehozumab-DM1 is effectively internalized by cancer cells and demonstrated potent antitumor efficacy in HCC cells. In vivo evaluation of Mehozumab-DM1 is conducted in a CRISPR-mediated PTEN and TP53 mutation cynomolgus monkey liver cancer model, which is poorly responsive to sorafenib treatment. Mehozumab-DM1 demonstrated potent tumor inhibitory efficacy at doses of 0.2 and 1.0 mg kg-1 treatment groups in cynomolgus monkey. No treatment-related adverse reactions or body weight loss are observed. Interestingly, Mehozumab-DM1 treatment induced RIPK-dependent tumor cell necroptosis through inhibiting IκB kinase/NF-κB pathway. In conclusion, Mehozumab-DM1 potently inhibits hepatoma through effective internalization to release payload and inducing cell necroptosis to enhance the bystander effect, which is a promising treatment for refractory HCC.
Collapse
Affiliation(s)
- Wan Huang
- Department of Cell BiologyNational Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anShaanxi710032China
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesXi'anShaanxi710032China
| | - Liping Zhong
- State Key Laboratory of Targeting OncologyNational Center for International Research of Biotargeting TheranosticsGuangxi Key Laboratory of Biotargeting TheranosticsCollaborative Innovation Center for Targeting Tumor Diagnosis and TherapyGuangxi Medical UniversityNanningGuangxi530021China
| | - Ying Shi
- Department of Cell BiologyNational Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anShaanxi710032China
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesXi'anShaanxi710032China
| | - Qingzhi Ma
- Department of Cell BiologyNational Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anShaanxi710032China
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesXi'anShaanxi710032China
| | - Xiangmin Yang
- Department of Cell BiologyNational Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anShaanxi710032China
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesXi'anShaanxi710032China
| | - Hongmei Zhang
- Department of Clinical OncologyXijing HospitalFourth Military Medical UniversityXi'anShaanxi710032China
| | - Jing Zhang
- Department of PathologyXijing HospitalThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Ling Wang
- Department of Health StatisticsSchool of Preventive MedicineFourth Military Medical UniversityXi'anShaanxi710032China
| | - Kun Wang
- Department of Cell BiologyNational Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anShaanxi710032China
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesXi'anShaanxi710032China
| | - Jingzhuo Li
- Department of Cell BiologyNational Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anShaanxi710032China
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesXi'anShaanxi710032China
| | - Jie Zou
- Department of Cell BiologyNational Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anShaanxi710032China
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesXi'anShaanxi710032China
| | - Xu Yang
- Department of Cell BiologyNational Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anShaanxi710032China
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesXi'anShaanxi710032China
| | - Liu Yang
- Department of Cell BiologyNational Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anShaanxi710032China
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesXi'anShaanxi710032China
| | - Qingmei Zeng
- Department of Cell BiologyNational Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anShaanxi710032China
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesXi'anShaanxi710032China
| | - Lin Jing
- Department of Cell BiologyNational Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anShaanxi710032China
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesXi'anShaanxi710032China
| | - Zhi‐Nan Chen
- Department of Cell BiologyNational Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anShaanxi710032China
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesXi'anShaanxi710032China
| | - Yongxiang Zhao
- State Key Laboratory of Targeting OncologyNational Center for International Research of Biotargeting TheranosticsGuangxi Key Laboratory of Biotargeting TheranosticsCollaborative Innovation Center for Targeting Tumor Diagnosis and TherapyGuangxi Medical UniversityNanningGuangxi530021China
| |
Collapse
|
5
|
Eghbalifard N, Nouri N, Rouzbahani S, Bakhshi M, Ghasemi Kahrizsangi N, Golafshan F, Abbasi F. Hypoxia signaling in cancer: HIF-1α stimulated by COVID-19 can lead to cancer progression and chemo-resistance in oral squamous cell carcinoma (OSCC). Discov Oncol 2025; 16:399. [PMID: 40138101 PMCID: PMC11947373 DOI: 10.1007/s12672-025-02150-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
The potential implications of Coronavirus disease-2019 (COVID-19) on oral squamous cell carcinoma (OSCC) development, chemo-resistance, tumor recurrence, and patient outcomes are explored, emphasizing the urgent need for tailored therapeutic strategies to mitigate these risks. The role of hypoxia-inducible factor 1-alpha (HIF-1α) in OSCC studies has highlighted HIF-1α as a crucial prognostic marker in OSCC, with implications for disease prognosis and patient survival. Its overexpression has been linked to aggressive subtypes in early OSCC stages, indicating its significance as an early biomarker for disease progression. Moreover, dysplastic lesions with heightened HIF-1α expression exhibit a greater propensity for malignant transformation, underscoring its role in early oral carcinogenesis. Cancer patients, including those with OSCC, face an elevated risk of severe COVID-19 complications, which may further impact cancer progression and treatment outcomes. Understanding the interplay between COVID-19 infection, HIF-1α activation, and OSCC pathogenesis is crucial for enhancing clinical management strategies. So, insights from this review shed light on the significance of HIF-1α in OSCC tumorigenesis, metastasis formation, and patient prognosis. The review underscores the need for further research to elucidate the precise mechanisms through which HIF-1α modulates cancer progression and chemo-resistance in the context of COVID-19 infection. Such knowledge is essential for developing targeted therapeutic interventions to improve outcomes for OSCC patients.
Collapse
Affiliation(s)
- Negar Eghbalifard
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nikta Nouri
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shiva Rouzbahani
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Bakhshi
- Islamic Azad University of Najaf Abad, Affiliated Hospitals, Isfahan, Iran
| | - Negin Ghasemi Kahrizsangi
- Child Growth and Development Research Center, Research Institute for Primary Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Faraz Golafshan
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Abbasi
- Department of Obstetrics and Gynecology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran.
| |
Collapse
|
6
|
Li Y, Xu F, Fang Y, Cui Y, Zhu Z, Wu Y, Tong Y, Hu J, Zhu L, Shen H. Inflammation-fibrosis interplay in inflammatory bowel disease: mechanisms, progression, and therapeutic strategies. Front Pharmacol 2025; 16:1530797. [PMID: 40093318 PMCID: PMC11906429 DOI: 10.3389/fphar.2025.1530797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/05/2025] [Indexed: 03/19/2025] Open
Abstract
Background The incidence of intestinal fibrosis in Inflammatory bowel disease has increased in recent years, and the repair process is complex, leading to substantial economic and social burdens. Therefore, understanding the pathogenesis of intestinal fibrosis and exploring potential therapeutic agents is crucial. Purpose This article reviews the pathogenesis of IBD-related intestinal fibrosis, potential therapeutic targets, and the progress of research on Traditional Chinese Medicine (TCM) in inhibiting intestinal fibrosis. It also provides foundational data for developing innovative drugs to prevent intestinal fibrosis. Methods This article reviews the literature from the past decade on advancements in the cellular and molecular mechanisms underlying intestinal fibrosis. Data for this systematic research were obtained from electronic databases including PubMed, CNKI, SciFinder, and Web of Science. Additionally, a comprehensive analysis was conducted on reports regarding the use of TCM for the treatment of intestinal fibrosis. The study synthesizes and summarizes the research findings, presenting key patterns and trends through relevant charts. Results This study reviewed recent advancements in understanding the cellular and molecular mechanisms of intestinal fibrosis, the active ingredients of TCM that inhibit intestinal fibrosis, the efficacy of TCM formulae in preventing intestinal fibrosis, and dietary modification that may contribute to the inhibition of intestinal fibrosis. Conclusion This article examines the cellular and molecular mechanisms that promote the development of intestinal fibrosis, as well as potential therapeutic targets for its treatment. It also provides a theoretical basis for exploring and utilizing TCM resources in the management of intestinal fibrosis. Through the analysis of various TCM medicines, this article underscores the clinical significance and therapeutic potential of TCM and dietary modifications in treating intestinal fibrosis.
Collapse
Affiliation(s)
- Yanan Li
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Feng Xu
- Department of Gastroenterology, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Gastroenterology, The Third Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yulai Fang
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuan Cui
- Department of Gastroenterology, Ningxian second People's Hospital, Qing Yang, China
| | - Zhenxing Zhu
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuguang Wu
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yiheng Tong
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jingyi Hu
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lei Zhu
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Hong Shen
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
7
|
Besli N, Bulut Hİ, Onaran İ, Carmena-Bargueño M, Pérez-Sánchez H. Comparative assessment of different anti-CD147/Basigin 2 antibodies as a potential therapeutic anticancer target by molecular modeling and dynamic simulation. Mol Divers 2025; 29:61-71. [PMID: 38587771 DOI: 10.1007/s11030-024-10832-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/27/2024] [Indexed: 04/09/2024]
Abstract
Cluster of differentiation 147 (CD147) is an attractive target for anticancer therapy since it is pivotal in developing and progressing several of malignant tumors in the context of its high expression levels. Although anti-CD147 antibodies by different laboratories are designed for the Ig-like domains of CD147, there is a demand to provide priority among these anti-CD147 antibodies for developing of therapeutic anti-CD147 antibody before experimental validations. This study uses molecular docking and dynamic simulation techniques to compare the binding modes and affinities of nine antibody models against the Ig-like domains of CD147. After obtaining the model antibodies by homology modeling via Robetta, we predicted the CDRs of nine antibodies and the epitopes of CD147 to reach more accurate results for antigen affinity in molecular docking. Next, from HADDOCK 2.4., we meticulously handpicked the most superior model clusters (Z-Score: - 2.5 to - 1.2) and identified that meplazumab had higher affinities according to the success rate as the percentage of a scoring scale. We achieved stable simulations of CD147-antibody interaction. Our outcomes hold hypothetical importance for further experimental cancer research on the design and development of the relevant model antibodies.
Collapse
Affiliation(s)
- Nail Besli
- Department of Medical Biology, Hamidiye School of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Halil İbrahim Bulut
- Faculty of Medicine, Medical Program, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - İlhan Onaran
- Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Miguel Carmena-Bargueño
- Computer Engineering Department, Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), UCAM Universidad Católica de Murcia, Guadalupe, Spain
| | - Horacio Pérez-Sánchez
- Computer Engineering Department, Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), UCAM Universidad Católica de Murcia, Guadalupe, Spain.
| |
Collapse
|
8
|
Jin S, Zhang M, Qiao X. Cyclophilin A: promising target in cancer therapy. Cancer Biol Ther 2024; 25:2425127. [PMID: 39513594 PMCID: PMC11552246 DOI: 10.1080/15384047.2024.2425127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/08/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024] Open
Abstract
Cyclophilin A (CypA), a member of the immunophilin family, stands out as the most prevalent among the cyclophilins found in humans. Beyond serving as the intracellular receptor for the immunosuppressive drug cyclosporine A (CsA), CypA exerts critical functions within the cell via its peptidyl-prolyl cis-trans isomerase (PPIase) activity, which is crucial for processes, such as protein folding, trafficking, assembly, modulation of immune responses, and cell signaling. Increasing evidence indicates that CypA is up-regulated in a variety of human cancers and it may be a novel potential therapeutic target for cancer treatment. Therefore, gaining a thorough understanding of CypA's contribution to cancer could yield fresh perspectives and inform the development of innovative therapeutic approaches. This review delves into the multifaceted roles of CypA in cancer biology and explores the therapeutic potential of targeting CypA.
Collapse
Affiliation(s)
- Shujuan Jin
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, Guangdong, China
| | - Mengjiao Zhang
- Chenxi Women’s and Children’s Hospital, Huaihua, Hunan, China
| | - Xiaoting Qiao
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, Guangdong, China
| |
Collapse
|
9
|
Suliman S, Ellaithi M. Immunohistochemical Detection of CD147 Expression in Adenocarcinoma of the Prostate: A Case-Control Study. Prostate Cancer 2024; 2024:4406057. [PMID: 39735939 PMCID: PMC11682863 DOI: 10.1155/proc/4406057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/22/2024] [Indexed: 12/31/2024] Open
Abstract
Prostate cancer is the most common noncutaneous malignancy among men worldwide, including in Sudan, where it represents a significant public health challenge. CD147, a transmembrane glycoprotein implicated in tumor progression, invasion, and metastasis, has shown potential as a prognostic biomarker in various cancers. This retrospective case-control study aimed to evaluate CD147 expression in prostate adenocarcinoma among Sudanese men and its association with tumor grade. A total of 80 paraffin-embedded tissue samples, including 40 cases of prostate adenocarcinoma and 40 benign prostatic hyperplasia (BPH) controls, were analyzed using immunohistochemistry. CD147 expression was observed in 22.5% of adenocarcinoma cases compared to 7% of controls; however, the association was not statistically significant (p=0.07). Low-grade tumors were predominant in the cohort, consistent with early-stage diagnoses. The findings revealed no clear link between CD147 expression and tumor grade, diverging from prior studies that associate CD147 with advanced tumor stages. The nonsignificant results may be attributed to the small sample size, emphasizing the need for future research with larger, more diverse cohorts, advanced molecular techniques, and functional studies to better elucidate the role of CD147 in prostate cancer pathogenesis and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Sara Suliman
- Department of Histopathology and Cytology, Faculty of Medical Laboratory Sciences, Al-Neelain University, Khartoum, Sudan
| | - Mona Ellaithi
- Department of Histopathology and Cytology, Faculty of Medical Laboratory Sciences, Al-Neelain University, Khartoum, Sudan
| |
Collapse
|
10
|
Pashaei S, Shabani S, Mohammadi S, Morozova-Roche LA, Salari N, Rahimi Z, Khodarahmi R. Differential Expression of Neurodegeneration-Related Genes in SH-SY5Y Neuroblastoma Cells Under the Influence of Cyclophilin A: Could the Enzyme be a Likely Trigger and Therapeutic Target for Alzheimer's Disease? Neurochem Res 2024; 50:47. [PMID: 39636462 DOI: 10.1007/s11064-024-04253-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 10/08/2024] [Accepted: 10/23/2024] [Indexed: 12/07/2024]
Abstract
The function and mechanism of Cyclophilin A (CypA) in modulating gene expression associated with Alzheimer's disease (AD) remain unclear. This multifunctional protein is found to be elevated in the cerebrospinal fluid (CSF) of individuals at risk for AD. The cytotoxic effects of CypA, including both wild-type and the mutant R55A, were assessed using the MTT assay. Prior to this evaluation, the purified recombinant protein was validated through enzymatic activity assays and western blot analysis. Following treatment with CypA and transient transfection using the CypA construct, real-time PCR (qRT-PCR) and western blotting were conducted to analyze the expression of factors involved in various signaling pathways, with an emphasis on inflammation, cell death, and intercellular communication. The findings indicate that CypA has a significant impact on the gene expression of factors associated with inflammation and the progression of AD in SH-SY5Y cells. It can be concluded that CypA is capable of regulating gene expression in SH-SY5Y cells, either in a manner dependent on or independent of its enzymatic activity. Additionally, the influence of this multifunctional protein on gene expression is contingent upon the specific site of action, as well as the dosage and duration of exposure to the cells.
Collapse
Affiliation(s)
- Somayeh Pashaei
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sasan Shabani
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheila Mohammadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Nader Salari
- Department of Biostatics, School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zohreh Rahimi
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Department of Pharmacognosy and Biotechnology, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
11
|
Pamonsupornwichit T, Kodchakorn K, Udomwong P, Sornsuwan K, Weechan A, Juntit OA, Nimmanpipug P, Tayapiwatana C. Engineering affinity of humanized ScFv targeting CD147 antibody: A combined approach of mCSM-AB2 and molecular dynamics simulations. J Mol Graph Model 2024; 133:108884. [PMID: 39405982 DOI: 10.1016/j.jmgm.2024.108884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/24/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
This study aims to assess the effectiveness of mCSM-AB2, a graph-based signature machine learning method, for affinity engineering of the humanized single-chain Fv anti-CD147 (HuScFvM6-1B9). In parallel, molecular dynamics (MD) simulations were used to gain valuable insights into the dynamics and affinity of the HuScFvM6-1B9-CD147 complex. The result analysis involved integrating free energy changes calculated from the mCSM-AB2 with binding free energy predictions from MD simulations. The simulated structures of the modified HuScFvM6-1B9-CD147 domain 1 complex from MD simulations were used to highlight critical residues participating in the binding surface. Interestingly, alterations in the pattern of amino acids of HuScFvM6-1B9 at the complementarity determining regions interacting with the 31EDLGS35 epitope were observed, particularly in mutants that lost binding activity. The predicted mutants of HuScFvM6-1B9 were subsequently engineered and expressed in E. coli for subsequent binding property validation. Compared to WT HuScFvM6-1B9, the mutant HuScFvM6-1B9L1:N32Y exhibited a 1.66-fold increase in binding affinity, with a KD of 1.75 × 10-8 M. While mCSM-AB2 demonstrates insignificant improvement in predicting binding affinity enhancements, it excels at predicting negative effects, aligning well with experimental validation. In addition to binding free energies, total entropy was considered to explain the discrepancy between mCSM-AB2 predictions and experimental results. This study provides guidelines and identifies the limitations of mCSM-AB2 and MD simulations in antibody engineering.
Collapse
Affiliation(s)
- Thanathat Pamonsupornwichit
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Kanchanok Kodchakorn
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand; Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Piyachat Udomwong
- International College of Digital Innovation, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Kanokporn Sornsuwan
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand; Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Anuwat Weechan
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - On-Anong Juntit
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand; Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Piyarat Nimmanpipug
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Chatchai Tayapiwatana
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
12
|
Shigematsu Y, Kanda H, Takahashi Y, Takeuchi K, Inamura K. Relationships between tumor CD147 expression, tumor-infiltrating lymphocytes, and oncostatin M in hepatocellular carcinoma. Virchows Arch 2024:10.1007/s00428-024-03939-w. [PMID: 39395054 DOI: 10.1007/s00428-024-03939-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/02/2024] [Accepted: 09/29/2024] [Indexed: 10/14/2024]
Abstract
In hepatocellular carcinoma (HCC), CD147 expression contributes to tumor malignancy; however, its relationship with the tumor-immune microenvironment (TIME) remains unclear. This study aimed to elucidate the clinicopathological characteristics associated with CD147 expression in HCC and investigate its association with the TIME, specifically its association with tumor-infiltrating lymphocytes (TILs) and oncostatin M (OSM). Using 397 HCC specimens from patients undergoing curative-intent resection, we assessed CD147 expression in tumor cells and quantified OSM-positive cells and various TILs (CD8+, CD4+, FOXP3+, and CD20+ cells) in the TIME. Using tissue microarrays, these assessments were performed through immunohistochemical analysis. We investigated the associations between CD147 expression status, the density of OSM-positive cells, and the densities of various TILs. High CD147 expression, found in 332 specimens (83.6%), was associated with advanced clinical stage (P = 0.029), fibrosis (P = 0.036), and higher densities of FOXP3+ cells (P = 0.0039), CD4+ cells (P = 0.0012), and OSM-positive cells (P = 0.0017). In CD147-high tumors, OSM-positive cell density was associated with all assessed TIL subsets (CD8+, CD4+, FOXP3+, and CD20+ cells; all Ps < 0.001), whereas in CD147-low tumors, OSM-positive cell density was associated only with FOXP3+ cells (P = 0.0004). In HCC, CD147 expression is associated with an immunosuppressive TIME, characterized by increased FOXP3+ regulatory T cells and a correlation with OSM-positive cells. These results elucidate the potential mechanisms through which CD147 facilitates tumor-immune evasion, suggesting the CD147 - OSM axis as a promising target for therapeutic intervention in HCC.
Collapse
Affiliation(s)
- Yasuyuki Shigematsu
- Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research (JFCR), 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan.
- Division of Pathology, Cancer Institute, JFCR, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan.
| | - Hiroaki Kanda
- Department of Pathology, Saitama Cancer Center, 780 Komuro, Ina, Kita-adachi-gun, Saitama, 362-0806, Japan
| | - Yu Takahashi
- Division of Hepatobiliary and Pancreatic Surgery, Cancer Institute Hospital, JFCR, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Kengo Takeuchi
- Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research (JFCR), 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
- Division of Pathology, Cancer Institute, JFCR, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
- Pathology Project for Molecular Targets, Cancer Institute, JFCR, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Kentaro Inamura
- Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research (JFCR), 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan.
- Division of Pathology, Cancer Institute, JFCR, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan.
- Division of Tumor Pathology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.
| |
Collapse
|
13
|
Wang M, Chen L, Wang Y, Fan T, Zhu C, Li Z, Mou L, Yang H, Qian A, Li Y. CD147 facilitates cisplatin resistance in ovarian cancer through FOXM1 degradation inhibition. Genes Dis 2024; 11:101277. [PMID: 38873174 PMCID: PMC11170094 DOI: 10.1016/j.gendis.2024.101277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/18/2024] [Accepted: 03/07/2024] [Indexed: 06/15/2024] Open
Affiliation(s)
- Miao Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Lin Chen
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Yu Wang
- Department of Oncology, Air Force Medical Center, PLA, Beijing 100142, China
| | - Tian Fan
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Chunyu Zhu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Zhixian Li
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Lei Mou
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Hong Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Airong Qian
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Yu Li
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| |
Collapse
|
14
|
Munteanu C, Galaction AI, Poștaru M, Rotariu M, Turnea M, Blendea CD. Hydrogen Sulfide Modulation of Matrix Metalloproteinases and CD147/EMMPRIN: Mechanistic Pathways and Impact on Atherosclerosis Progression. Biomedicines 2024; 12:1951. [PMID: 39335465 PMCID: PMC11429404 DOI: 10.3390/biomedicines12091951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/18/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Atherosclerosis is a chronic inflammatory condition marked by endothelial dysfunction, lipid accumulation, inflammatory cell infiltration, and extracellular matrix (ECM) remodeling within arterial walls, leading to plaque formation and potential cardiovascular events. Key players in ECM remodeling and inflammation are matrix metalloproteinases (MMPs) and CD147/EMMPRIN, a cell surface glycoprotein expressed on endothelial cells, vascular smooth muscle cells (VSMCs), and immune cells, that regulates MMP activity. Hydrogen sulfide (H₂S), a gaseous signaling molecule, has emerged as a significant modulator of these processes including oxidative stress mitigation, inflammation reduction, and vascular remodeling. This systematic review investigates the mechanistic pathways through which H₂S influences MMPs and CD147/EMMPRIN and assesses its impact on atherosclerosis progression. A comprehensive literature search was conducted across PubMed, Scopus, and Web of Science databases, focusing on studies examining H₂S modulation of MMPs and CD147/EMMPRIN in atherosclerosis contexts. Findings indicate that H₂S modulates MMP expression and activity through transcriptional regulation and post-translational modifications, including S-sulfhydration. By mitigating oxidative stress, H₂S reduces MMP activation, contributing to plaque stability and vascular remodeling. H₂S also downregulates CD147/EMMPRIN expression via transcriptional pathways, diminishing inflammatory responses and vascular cellular proliferation within plaques. The dual regulatory role of H₂S in inhibiting MMP activity and downregulating CD147 suggests its potential as a therapeutic agent in stabilizing atherosclerotic plaques and mitigating inflammation. Further research is warranted to elucidate the precise molecular mechanisms and to explore H₂S-based therapies for clinical application in atherosclerosis.
Collapse
Affiliation(s)
- Constantin Munteanu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa", 700115 Iasi, Romania
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital "Bagdasar-Arseni", 041915 Bucharest, Romania
| | - Anca Irina Galaction
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa", 700115 Iasi, Romania
| | - Mădălina Poștaru
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa", 700115 Iasi, Romania
| | - Mariana Rotariu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa", 700115 Iasi, Romania
| | - Marius Turnea
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa", 700115 Iasi, Romania
| | - Corneliu Dan Blendea
- Department of Medical-Clinical Disciplines, General Surgery, Faculty of Medicine, "Titu Maiorescu" University of Bucharest, 0400511 Bucharest, Romania
| |
Collapse
|
15
|
Spinello I, Labbaye C, Saulle E. Metabolic Function and Therapeutic Potential of CD147 for Hematological Malignancies: An Overview. Int J Mol Sci 2024; 25:9178. [PMID: 39273126 PMCID: PMC11395103 DOI: 10.3390/ijms25179178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Hematological malignancies refer to a heterogeneous group of neoplastic conditions of lymphoid and hematopoietic tissues classified in leukemias, Hodgkin and non-Hodgkin lymphomas and multiple myeloma, according to their presumed cell of origin, genetic abnormalities, and clinical features. Metabolic adaptation and immune escape, which influence various cellular functions, including the proliferation and survival of hematological malignant tumor cells, are major aspects of these malignancies that lead to therapeutic drug resistance. Targeting specific metabolic pathways is emerging as a novel therapeutic strategy in hematopoietic neoplasms, particularly in acute myeloid leukemia and multiple myeloma. In this context, CD147, also known as extracellular matrix metalloproteinase inducer (EMMPRIN) or Basigin, is one target candidate involved in reprograming metabolism in different cancer cells, including hematological malignant tumor cells. CD147 overexpression significantly contributes to the metabolic transformation of these cancer cells, by mediating signaling pathway, growth, metastasis and metabolic reprogramming, through its interaction, direct or not, with various membrane proteins related to metabolic regulation, including monocarboxylate transporters, integrins, P-glycoprotein, and glucose transporter 1. This review explores the metabolic functions of CD147 and its impact on the tumor microenvironment, influencing the progression and neoplastic transformation of leukemias, myeloma, and lymphomas. Furthermore, we highlight new opportunities for the development of targeted therapies against CD147, potentially improving the treatment of hematologic malignancies.
Collapse
Affiliation(s)
- Isabella Spinello
- Istituto Superiore di Sanità, National Center for Drug Research and Evaluation, 00161 Rome, Italy
| | - Catherine Labbaye
- Istituto Superiore di Sanità, National Center for Drug Research and Evaluation, 00161 Rome, Italy
| | - Ernestina Saulle
- Istituto Superiore di Sanità, National Center for Drug Research and Evaluation, 00161 Rome, Italy
| |
Collapse
|
16
|
Chupradit K, Muneekaew S, Wattanapanitch M. Engineered CD147-CAR macrophages for enhanced phagocytosis of cancers. Cancer Immunol Immunother 2024; 73:170. [PMID: 38954079 PMCID: PMC11219683 DOI: 10.1007/s00262-024-03759-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/11/2024] [Indexed: 07/04/2024]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has shown promising results in hematologic malignancies, but its effectiveness in solid cancers remains challenging. Macrophages are immune cells residing within the tumor microenvironment. They can phagocytose tumor cells. Recently, CAR macrophages (CAR-M) have been a promising candidate for treating solid cancers. One of the common cancer antigens overexpressed in various types of cancer is CD147. CAR-T and NK cells targeting CD147 antigen have shown significant efficacy against hepatocellular carcinoma. Nevertheless, CAR-M targeting the CD147 molecule has not been investigated. In this study, we generated CAR targeting the CD147 molecule using the THP-1 monocytic cell line (CD147 CAR-M). The CD147 CAR-M exhibited typical macrophage characteristics, including phagocytosis of zymosan bioparticles and polarization ability toward M1 and M2 phenotypes. Furthermore, the CD147 CAR-M demonstrated enhanced anti-tumor activity against K562 and MDA-MB-231 cells without exhibiting off-target cytotoxicity against normal cells. Our research provides valuable insights into the potential of CD147 CAR-M as a promising platform for cancer immunotherapy, with applications in both hematologic malignancies and solid cancers.
Collapse
Affiliation(s)
- Koollawat Chupradit
- Siriraj Center for Regenerative Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Saitong Muneekaew
- Siriraj Center for Regenerative Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Methichit Wattanapanitch
- Siriraj Center for Regenerative Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
17
|
Siragam V, Maltseva M, Castonguay N, Galipeau Y, Srinivasan MM, Soto JH, Dankar S, Langlois MA. Seasonal human coronaviruses OC43, 229E, and NL63 induce cell surface modulation of entry receptors and display host cell-specific viral replication kinetics. Microbiol Spectr 2024; 12:e0422023. [PMID: 38864599 PMCID: PMC11218498 DOI: 10.1128/spectrum.04220-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/25/2024] [Indexed: 06/13/2024] Open
Abstract
The emergence of the COVID-19 pandemic prompted an increased interest in seasonal human coronaviruses. OC43, 229E, NL63, and HKU1 are endemic seasonal coronaviruses that cause the common cold and are associated with generally mild respiratory symptoms. In this study, we identified cell lines that exhibited cytopathic effects (CPE) upon infection by three of these coronaviruses and characterized their viral replication kinetics and the effect of infection on host surface receptor expression. We found that NL63 produced CPE in LLC-MK2 cells, while OC43 produced CPE in MRC-5, HCT-8, and WI-38 cell lines, while 229E produced CPE in MRC-5 and WI-38 by day 3 post-infection. We observed a sharp increase in nucleocapsid and spike viral RNA (vRNA) from day 3 to day 5 post-infection for all viruses; however, the abundance and the proportion of vRNA copies measured in the supernatants and cell lysates of infected cells varied considerably depending on the virus-host cell pair. Importantly, we observed modulation of coronavirus entry and attachment receptors upon infection. Infection with 229E and OC43 led to a downregulation of CD13 and GD3, respectively. In contrast, infection with NL63 and OC43 leads to an increase in ACE2 expression. Attempts to block entry of NL63 using either soluble ACE2 or anti-ACE2 monoclonal antibodies demonstrated the potential of these strategies to greatly reduce infection. Overall, our results enable a better understanding of seasonal coronaviruses infection kinetics in permissive cell lines and reveal entry receptor modulation that may have implications in facilitating co-infections with multiple coronaviruses in humans.IMPORTANCESeasonal human coronavirus is an important cause of the common cold associated with generally mild upper respiratory tract infections that can result in respiratory complications for some individuals. There are no vaccines available for these viruses, with only limited antiviral therapeutic options to treat the most severe cases. A better understanding of how these viruses interact with host cells is essential to identify new strategies to prevent infection-related complications. By analyzing viral replication kinetics in different permissive cell lines, we find that cell-dependent host factors influence how viral genes are expressed and virus particles released. We also analyzed entry receptor expression on infected cells and found that these can be up- or down-modulated depending on the infecting coronavirus. Our findings raise concerns over the possibility of infection enhancement upon co-infection by some coronaviruses, which may facilitate genetic recombination and the emergence of new variants and strains.
Collapse
MESH Headings
- Humans
- Virus Replication
- Coronavirus NL63, Human/physiology
- Coronavirus NL63, Human/genetics
- Coronavirus 229E, Human/physiology
- Coronavirus 229E, Human/genetics
- Coronavirus OC43, Human/physiology
- Coronavirus OC43, Human/genetics
- Cell Line
- Virus Internalization
- Seasons
- Kinetics
- Receptors, Virus/metabolism
- Receptors, Virus/genetics
- Common Cold/virology
- Common Cold/metabolism
- SARS-CoV-2/physiology
- SARS-CoV-2/genetics
- SARS-CoV-2/metabolism
- RNA, Viral/metabolism
- RNA, Viral/genetics
- Animals
- COVID-19/virology
- COVID-19/metabolism
- Coronavirus/physiology
- Coronavirus/genetics
Collapse
Affiliation(s)
- Vinayakumar Siragam
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Mariam Maltseva
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Nicolas Castonguay
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Yannick Galipeau
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Mrudhula Madapuji Srinivasan
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Justino Hernandez Soto
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Samar Dankar
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- The Center for Infection, Immunity, and Inflammation (CI3), University of Ottawa, Ottawa, Canada
| |
Collapse
|
18
|
Pamonsupornwichit T, Sornsuwan K, Juntit OA, Yasamut U, Takheaw N, Kasinrerk W, Wanachantararak P, Kodchakorn K, Nimmanpipug P, Intasai N, Tayapiwatana C. Engineered CD147-Deficient THP-1 Impairs Monocytic Myeloid-Derived Suppressor Cell Differentiation but Maintains Antibody-Dependent Cellular Phagocytosis Function for Jurkat T-ALL Cells with Humanized Anti-CD147 Antibody. Int J Mol Sci 2024; 25:6626. [PMID: 38928332 PMCID: PMC11203531 DOI: 10.3390/ijms25126626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
CD147 is upregulated in cancers, including aggressive T-ALL. Traditional treatments for T-ALL often entail severe side effects and the risk of relapse, highlighting the need for more efficacious therapies. ADCP contributes to the antitumor response by enhancing the ability of phagocytic cells to engulf cancer cells upon antibody binding. We aimed to engineer CD147KO THP-1 cells and evaluated their differentiation properties compared to the wild type. A humanized anti-CD147 antibody, HuM6-1B9, was also constructed for investing the phagocytic function of CD147KO THP-1 cells mediated by HuM6-1B9 in the phagocytosis of Jurkat T cells. The CD147KO THP-1 was generated by CRISPR/Cas9 and maintained polarization profiles. HuM6-1B9 was produced in CHO-K1 cells and effectively bound to CD147 with high binding affinity (KD: 2.05 ± 0.30 × 10-9 M). Additionally, HuM6-1B9 enhanced the phagocytosis of Jurkat T cells by CD147KO THP-1-derived LPS-activated macrophages (M-LPS), without self-ADCP. The formation of THP-1-derived mMDSC was limited in CD147KO THP-1 cells, highlighting the significant impact of CD147 deletion. Maintaining expression markers and phagocytic function in CD147KO THP-1 macrophages supports future engineering and the application of induced pluripotent stem cell-derived macrophages. The combination of HuM6-1B9 and CD147KO monocyte-derived macrophages holds promise as an alternative strategy for T-ALL.
Collapse
Affiliation(s)
- Thanathat Pamonsupornwichit
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (T.P.); (U.Y.); (N.T.); (W.K.)
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (K.S.); (O.-a.J.)
| | - Kanokporn Sornsuwan
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (K.S.); (O.-a.J.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - On-anong Juntit
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (K.S.); (O.-a.J.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Umpa Yasamut
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (T.P.); (U.Y.); (N.T.); (W.K.)
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (K.S.); (O.-a.J.)
| | - Nuchjira Takheaw
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (T.P.); (U.Y.); (N.T.); (W.K.)
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Watchara Kasinrerk
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (T.P.); (U.Y.); (N.T.); (W.K.)
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Kanchanok Kodchakorn
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand;
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Piyarat Nimmanpipug
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Nutjeera Intasai
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (K.S.); (O.-a.J.)
- Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chatchai Tayapiwatana
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (T.P.); (U.Y.); (N.T.); (W.K.)
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (K.S.); (O.-a.J.)
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
19
|
Zou S, Parfenova E, Vrdoljak N, Minden MD, Spagnuolo PA. Pseudolaric Acid B Targets CD147 to Selectively Kill Acute Myeloid Leukemia Cells. Int J Mol Sci 2024; 25:6517. [PMID: 38928225 PMCID: PMC11203802 DOI: 10.3390/ijms25126517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive blood cancer. With low survival rates, new drug targets are needed to improve treatment regimens and patient outcomes. Pseudolaric acid B (PAB) is a plant-derived bioactive compound predicted to interact with cluster of differentiation 147 (CD147/BSG). CD147 is a transmembrane glycoprotein overexpressed in various malignancies with suggested roles in regulating cancer cell survival, proliferation, invasion, and apoptosis. However, the detailed function of PAB in AML remains unknown. In this study, AML cell lines and patient-derived cells were used to show that PAB selectively targeted AML (IC50: 1.59 ± 0.47 µM). Moreover, proliferation assays, flow cytometry, and immunoblotting confirmed that PAB targeting of CD147 resulted in AML cell apoptosis. Indeed, the genetic silencing of CD147 significantly suppressed AML cell growth and attenuated PAB activity. Overall, PAB imparts anti-AML activity through transmembrane glycoprotein CD147.
Collapse
Affiliation(s)
- Sheng Zou
- Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada; (S.Z.); (E.P.)
| | - Ekaterina Parfenova
- Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada; (S.Z.); (E.P.)
| | - Nikolina Vrdoljak
- Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada; (S.Z.); (E.P.)
| | - Mark D. Minden
- Princess Margaret Cancer Center, Ontario Cancer Institute, Toronto, ON M5G 2M9, Canada;
| | - Paul A. Spagnuolo
- Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada; (S.Z.); (E.P.)
| |
Collapse
|
20
|
Su F, Koeberle A. Regulation and targeting of SREBP-1 in hepatocellular carcinoma. Cancer Metastasis Rev 2024; 43:673-708. [PMID: 38036934 PMCID: PMC11156753 DOI: 10.1007/s10555-023-10156-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/10/2023] [Indexed: 12/02/2023]
Abstract
Hepatocellular carcinoma (HCC) is an increasing burden on global public health and is associated with enhanced lipogenesis, fatty acid uptake, and lipid metabolic reprogramming. De novo lipogenesis is under the control of the transcription factor sterol regulatory element-binding protein 1 (SREBP-1) and essentially contributes to HCC progression. Here, we summarize the current knowledge on the regulation of SREBP-1 isoforms in HCC based on cellular, animal, and clinical data. Specifically, we (i) address the overarching mechanisms for regulating SREBP-1 transcription, proteolytic processing, nuclear stability, and transactivation and (ii) critically discuss their impact on HCC, taking into account (iii) insights from pharmacological approaches. Emphasis is placed on cross-talk with the phosphatidylinositol-3-kinase (PI3K)-protein kinase B (Akt)-mechanistic target of rapamycin (mTOR) axis, AMP-activated protein kinase (AMPK), protein kinase A (PKA), and other kinases that directly phosphorylate SREBP-1; transcription factors, such as liver X receptor (LXR), peroxisome proliferator-activated receptors (PPARs), proliferator-activated receptor γ co-activator 1 (PGC-1), signal transducers and activators of transcription (STATs), and Myc; epigenetic mechanisms; post-translational modifications of SREBP-1; and SREBP-1-regulatory metabolites such as oxysterols and polyunsaturated fatty acids. By carefully scrutinizing the role of SREBP-1 in HCC development, progression, metastasis, and therapy resistance, we shed light on the potential of SREBP-1-targeting strategies in HCC prevention and treatment.
Collapse
Affiliation(s)
- Fengting Su
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Andreas Koeberle
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria.
| |
Collapse
|
21
|
Feigelman G, Simanovich E, Brockmeyer P, Rahat MA. EMMPRIN promotes spheroid organization and metastatic formation: comparison between monolayers and spheroids of CT26 colon carcinoma cells. Front Immunol 2024; 15:1374088. [PMID: 38725999 PMCID: PMC11079191 DOI: 10.3389/fimmu.2024.1374088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Background In vitro studies often use two-dimensional (2D) monolayers, but 3D cell organization, such as in spheroids, better mimics the complexity of solid tumors. To metastasize, cancer cells undergo the process of epithelial-to-mesenchymal transition (EMT) to become more invasive and pro-angiogenic, with expression of both epithelial and mesenchymal markers. Aims We asked whether EMMPRIN/CD147 contributes to the formation of the 3D spheroid structure, and whether spheroids, which are often used to study proliferation and drug resistance, could better model the EMT process and the metastatic properties of cells, and improve our understanding of the role of EMMPRIN in them. Methods We used the parental mouse CT26 colon carcinoma (CT26-WT) cells, and infected them with a lentivirus vector to knock down EMMPRIN expression (CT26-KD cells), or with an empty lentivirus vector (CT26-NC) that served as a negative control. In some cases, we repeated the experiments with the 4T1 or LLC cell lines. We compared the magnitude of change between CT26-KD and CT26-WT/NC cells in different metastatic properties in cells seeded as monolayers or as spheroids formed by the scaffold-free liquid overlay method. Results We show that reduced EMMPRIN expression changed the morphology of cells and their spatial organization in both 2D and 3D models. The 3D models more clearly demonstrated how reduced EMMPRIN expression inhibited proliferation and the angiogenic potential, while it enhanced drug resistance, invasiveness, and EMT status, and moreover it enhanced cell dormancy and prevented CT26-KD cells from forming metastatic-like lesions when seeded on basement membrane extract (BME). Most interestingly, this approach enabled us to identify that EMMPRIN and miR-146a-5p form a negative feedback loop, thus identifying a key mechanism for EMMPRIN activities. These results underline EMMPRIN role as a gatekeeper that prevents dormancy, and suggest that EMMPRIN links EMT characteristics to the process of spheroid formation. Conclusions Thus, 3D models can help identify mechanisms by which EMMPRIN facilitates tumor and metastasis progression, which might render EMMPRIN as a promising target for anti-metastatic tumor therapy.
Collapse
Affiliation(s)
- Gabriele Feigelman
- Immunotherapy Laboratory, Research Laboratories, Carmel Medical Center, Haifa, Israel
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Elina Simanovich
- Immunotherapy Laboratory, Research Laboratories, Carmel Medical Center, Haifa, Israel
| | - Phillipp Brockmeyer
- Department of Oral and Maxillofacial Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Michal A. Rahat
- Immunotherapy Laboratory, Research Laboratories, Carmel Medical Center, Haifa, Israel
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
22
|
Naffa R, Hegedűs L, Hegedűs T, Tóth S, Papp B, Tordai A, Enyedi Á. Plasma membrane Ca 2+ pump isoform 4 function in cell migration and cancer metastasis. J Physiol 2024; 602:1551-1564. [PMID: 36876504 DOI: 10.1113/jp284179] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/02/2023] [Indexed: 03/07/2023] Open
Abstract
The Ca2+ ion is a universal second messenger involved in many vital physiological functions including cell migration and development. To fulfil these tasks the cytosolic Ca2+ concentration is tightly controlled, and this involves an intricate functional balance between a variety of channels and pumps of the Ca2+ signalling machinery. Among these proteins, plasma membrane Ca2+ ATPases (PMCAs) represent the major high-affinity Ca2+ extrusion systems in the cell membrane that are effective in maintaining free Ca2+ concentration at exceedingly low cytosolic levels, which is essential for normal cell function. An imbalance in Ca2+ signalling can have pathogenic consequences including cancer and metastasis. Recent studies have highlighted the role of PMCAs in cancer progression and have shown that a particular variant, PMCA4b, is downregulated in certain cancer types, causing delayed attenuation of the Ca2+ signal. It has also been shown that loss of PMCA4b leads to increased migration and metastasis of melanoma and gastric cancer cells. In contrast, an increased PMCA4 expression has been reported in pancreatic ductal adenocarcinoma that coincided with increased cell migration and shorter patient survival, suggesting distinct roles of PMCA4b in various tumour types and/or different stages of tumour development. The recently discovered interaction of PMCAs with basigin, an extracellular matrix metalloproteinase inducer, may provide further insights into our understanding of the specific roles of PMCA4b in tumour progression and cancer metastasis.
Collapse
Affiliation(s)
- Randa Naffa
- Molecular Biology Research Laboratory, School of Medicine, The University of Jordan, Amman, Jordan
| | - Luca Hegedűs
- Department of Thoracic Surgery, Ruhrlandklinik, University Clinic Essen, Essen, Germany
| | - Tamás Hegedűs
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
- ELKH-SE Biophysical Virology Research Group, Eötvös Loránd Research Network, Budapest, Hungary
| | - Sarolta Tóth
- Department of Transfusion Medicine, Semmelweis University, Budapest, Hungary
| | - Béla Papp
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche Saint-Louis, Hôpital Saint-Louis, Paris, France
- Institut de Recherche Saint-Louis, Hôpital Saint-Louis, Université de Paris, Paris, France
- CEA, DRF-Institut Francois Jacob, Department of Hemato-Immunology Research, Hôpital Saint-Louis, Paris, France
| | - Attila Tordai
- Department of Transfusion Medicine, Semmelweis University, Budapest, Hungary
| | - Ágnes Enyedi
- ELKH-SE Biophysical Virology Research Group, Eötvös Loránd Research Network, Budapest, Hungary
- Department of Transfusion Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
23
|
Zhao X, Zhao X, Di W, Wang C. Inhibitors of Cyclophilin A: Current and Anticipated Pharmaceutical Agents for Inflammatory Diseases and Cancers. Molecules 2024; 29:1235. [PMID: 38542872 PMCID: PMC10974348 DOI: 10.3390/molecules29061235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 04/07/2024] Open
Abstract
Cyclophilin A, a widely prevalent cellular protein, exhibits peptidyl-prolyl cis-trans isomerase activity. This protein is predominantly located in the cytosol; additionally, it can be secreted by the cells in response to inflammatory stimuli. Cyclophilin A has been identified to be a key player in many of the biological events and is therefore involved in several diseases, including vascular and inflammatory diseases, immune disorders, aging, and cancers. It represents an attractive target for therapeutic intervention with small molecule inhibitors such as cyclosporin A. Recently, a number of novel inhibitors of cyclophilin A have emerged. However, it remains elusive whether and how many cyclophilin A inhibitors function in the inflammatory diseases and cancers. In this review, we discuss current available data about cyclophilin A inhibitors, including cyclosporin A and its derivatives, quinoxaline derivatives, and peptide analogues, and outline the most recent advances in clinical trials of these agents. Inhibitors of cyclophilin A are poised to enhance our comprehension of the molecular mechanisms that underpin inflammatory diseases and cancers associated with cyclophilin A. This advancement will aid in the development of innovative pharmaceutical treatments in the future.
Collapse
Affiliation(s)
- Xuemei Zhao
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan 250000, China; (X.Z.); (W.D.)
| | - Xin Zhao
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan 250000, China; (X.Z.); (W.D.)
| | - Weihua Di
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan 250000, China; (X.Z.); (W.D.)
| | - Chang Wang
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan 250000, China; (X.Z.); (W.D.)
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan 250000, China
| |
Collapse
|
24
|
Pessino G, Scotti C, Maggi M, Immuno-Hub Consortium. Hepatocellular Carcinoma: Old and Emerging Therapeutic Targets. Cancers (Basel) 2024; 16:901. [PMID: 38473265 DOI: 10.3390/cancers16050901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Liver cancer, predominantly hepatocellular carcinoma (HCC), globally ranks sixth in incidence and third in cancer-related deaths. HCC risk factors include non-viral hepatitis, alcohol abuse, environmental exposures, and genetic factors. No specific genetic alterations are unequivocally linked to HCC tumorigenesis. Current standard therapies include surgical options, systemic chemotherapy, and kinase inhibitors, like sorafenib and regorafenib. Immunotherapy, targeting immune checkpoints, represents a promising avenue. FDA-approved checkpoint inhibitors, such as atezolizumab and pembrolizumab, show efficacy, and combination therapies enhance clinical responses. Despite this, the treatment of hepatocellular carcinoma (HCC) remains a challenge, as the complex tumor ecosystem and the immunosuppressive microenvironment associated with it hamper the efficacy of the available therapeutic approaches. This review explores current and advanced approaches to treat HCC, considering both known and new potential targets, especially derived from proteomic analysis, which is today considered as the most promising approach. Exploring novel strategies, this review discusses antibody drug conjugates (ADCs), chimeric antigen receptor T-cell therapy (CAR-T), and engineered antibodies. It then reports a systematic analysis of the main ligand/receptor pairs and molecular pathways reported to be overexpressed in tumor cells, highlighting their potential and limitations. Finally, it discusses TGFβ, one of the most promising targets of the HCC microenvironment.
Collapse
Affiliation(s)
- Greta Pessino
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Claudia Scotti
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Maristella Maggi
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Immuno-Hub Consortium
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
25
|
Qu B, Sun L, Xiao P, Shen H, Ren Y, Zhang J. CircCDK17 promotes the proliferation and metastasis of ovarian cancer cells by sponging miR-22-3p to regulate CD147 expression. Carcinogenesis 2024; 45:83-94. [PMID: 37952105 DOI: 10.1093/carcin/bgad079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/22/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023] Open
Abstract
Ovarian cancer (OC) is a common malignancy in women of reproductive age. Circular RNAs (circRNAs) are emerging players in OC progression. We investigated the function and mechanism of circular RNA hsa_circ_0027803 (circCDK17) in OC pathogenesis. Real‑time PCR (RT-qPCR) and western blot were utilized for gene and protein expression analysis, respectively. Cell counting kit‑8 (CCK-8), EdU and Transwell assays investigated OC cell proliferation, migration and invasion. The associations between circCDK17, miR-22-3p and CD147 were examined by dual-luciferase reporter and RNA-protein immunoprecipitation (RIP) assays. The in vivo model of OC nude mice was constructed to explore the role of circCDK17. CircCDK17 was increased in OC tissue and cells, and patients with higher expression of circCDK17 had a shorter survival. CircCDK17 downregulation inhibited OC cell proliferation, migration and invasion, and reduced epithelial-mesenchymal transition (EMT)-related markers. In vivo experiments showed that circCDK17 silencing inhibited OC tumor growth and metastasis. CircCDK17 depletion reduced CD147 level via sponging miR-22-3p. MiR-22-3p knockdown overturned effect of circCDK17 depletion on OC cell proliferation, migration and invasion. Meanwhile, overexpressed CD147 restored functions of circCDK17 downregulation on OC development. CircCDK17 is an important molecule that regulates OC pathogenic process through miR-22-3p/CD147.
Collapse
Affiliation(s)
- Bin Qu
- Department of Clinical Examination, Hunan Cancer Hospital, Changsha 41000, Hunan Province, P.R. China
| | - Lisha Sun
- Department of Blood Transfusion, Hunan Cancer Hospital, Changsha 41000, Hunan Province, P.R. China
| | - Ping Xiao
- Department of Clinical Examination, Hunan Cancer Hospital, Changsha 41000, Hunan Province, P.R. China
| | - Haoming Shen
- Department of Clinical Examination, Hunan Cancer Hospital, Changsha 41000, Hunan Province, P.R. China
| | - Yuxi Ren
- Department of Clinical Examination, Hunan Cancer Hospital, Changsha 41000, Hunan Province, P.R. China
| | - Jing Zhang
- Department of Clinical Examination, Hunan Cancer Hospital, Changsha 41000, Hunan Province, P.R. China
| |
Collapse
|
26
|
Ma XK, Liu TL, Ren YN, Ma XP, Yao Y, Hou XG, Ding J, Wang F, Huang HF, Zhu H, Yang Z. 124I-labeled anti-CD147 antibody for noninvasive detection of CD147-positive pan-cancers: construction and preclinical studies. Acta Pharmacol Sin 2024; 45:436-448. [PMID: 37749238 PMCID: PMC10789738 DOI: 10.1038/s41401-023-01162-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/29/2023] [Indexed: 09/27/2023]
Abstract
Extracellular matrix metalloproteinase inducer CD147 is a glycoprotein on the cell surface. There is minimal expression of CD147 in normal epithelial and fetal tissues, but it is highly expressed in a number of aggressive tumors. CD147 has been implicated in pan-cancer immunity and progression. With the development of CD147-targeting therapeutic strategy, accurate detection of CD147 expression in tumors and its changes during the therapy is necessary. In this study we constructed a novel radiotracer by labeling the anti-CD147 mAb with radionuclide 124/125I (124/125I-anti-CD147) for noninvasive detection of CD147 expression in pan-cancers, and characterized its physicochemical properties, affinity, metabolic characteristics, biodistribution and immunoPET imaging with 124I-IgG and 18F-FDG as controls. By examining the expression of CD147 in cancer cell lines, we found high CD147 expression in colon cancer cells LS174T, FADU human pharyngeal squamous cancer cells and 22RV1 human prostate cancer cells, and low expression of CD147 in human pancreatic cancer cells ASPC1 and human gastric cancer cells BGC823. 124/125I-anti-CD147 was prepared using N-bromine succinimide (NBS) as oxidant and purified by PD-10 column. Its radiochemical purity (RCP) was over 99% and maintained over 85% in saline or 5% human serum albumin (HSA) for more than 7 d; the RCP of 125I-anti-CD147 in blood was over 90% at 3 h post injection (p.i.) in healthy mice. The Kd value of 125I-anti-CD147 to CD147 protein was 6.344 nM, while that of 125I-IgG was over 100 nM. 125I-anti-CD147 showed much greater uptake in CD147 high-expression cancer cells compared to CD147 low-expression cancer cells. After intravenous injection in healthy mice, 125I-anti-CD147 showed high initial uptake in blood pool and liver, the uptake was decreased with time. The biological half-life of distribution and clearance phases in healthy mice were 0.63 h and 19.60 h, respectively. The effective dose of 124I-anti-CD147 was estimated as 0.104 mSv/MBq. We conducted immunoPET imaging in tumor-bearing mice, and demonstrated a significantly higher tumor-to-muscle ratio of 124I-anti-CD147 compared to that of 124I-IgG and 18F-FDG in CD147 (+) tumors. The expression levels of CD147 in cells and tumors were positively correlated with the maximum standardized uptake value (SUVmax) (P < 0.01). In conclusion, 124/125I-anti-CD147 displays high affinity to CD147, and represents potential for the imaging of CD147-positive tumors. The development of 124I-anti-CD147 may provide new insights into the regulation of tumor microenvironment and formulation of precision diagnosis and treatment programs for tumors.
Collapse
Affiliation(s)
- Xiao-Kun Ma
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Te-Li Liu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Ya-Nan Ren
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
- Medical College, Guizhou University, Guiyang, 550025, China
| | - Xiao-Pan Ma
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
- Medical College, Guizhou University, Guiyang, 550025, China
| | - Yuan Yao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xing-Guo Hou
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jin Ding
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Feng Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Hai-Feng Huang
- Department of Orthopaedics, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Hua Zhu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Zhi Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
27
|
Zhong F, Li W, Zhao C, Jin L, Lu X, Zhao Y, Pu J, Ge H. Basigin Deficiency Induces Spontaneous Polycystic Kidney in Mice. Hypertension 2024; 81:114-125. [PMID: 37955149 DOI: 10.1161/hypertensionaha.123.21486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/19/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Polycystic kidney disease is the most common hereditary kidney disorder with early and frequent hypertension symptoms. The mechanisms of cyst progression in polycystic kidney disease remain incompletely understood. METHODS Bsg (basigin) heterozygous and homozygous knockout mice were generated using cas9 system, and Bsg overexpression was achieved by adeno-associated virus serotype 9 injection. Renal morphology was investigated through histological and imaging analysis. Molecular analysis was performed through transcriptomic profiling and biochemical approaches. RESULTS Bsg-deficient mice exhibited significantly elevated arterial blood pressure. Further investigation demonstrated that Bsg deficiency triggers spontaneous cystic formation in mouse kidneys, which shares similar cyst pathological features and common transcriptional regulatory pathways with human polycystic kidney disease. Moreover, Bsg disruption promoted polycystin-1 ubiquitination and degradation, leading to activation of polycystic kidney disease associated cAMP and AMPK signaling pathways in Bsg knockout mouse kidneys. Finally, adeno-associated virus serotype 9 mediated Bsg reexpression reversed cystic progression in Bsg knockout mice in vivo, and Bsg overexpression inhibited the expansion of Madin-Darby canine kidney cysts in vitro. CONCLUSIONS Our findings show that Bsg deficiency leads to an early-onset spontaneous polycystic kidney phenotype, suggesting that dysregulated Bsg signaling may be a contributing factor in cystogenesis.
Collapse
Affiliation(s)
- Fangyuan Zhong
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Wenli Li
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Chenxu Zhao
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Lixing Jin
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Xiyuan Lu
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Yichao Zhao
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Jun Pu
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Heng Ge
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| |
Collapse
|
28
|
Zisis V, Anastasiadou PA, Poulopoulos A, Vahtsevanos K, Paraskevopoulos K, Andreadis D. A Preliminary Study of the Role of Endothelial-Mesenchymal Transitory Factor SOX 2 and CD147 in the Microvascularization of Oral Squamous Cell Carcinoma. Cureus 2024; 16:e52265. [PMID: 38352102 PMCID: PMC10863931 DOI: 10.7759/cureus.52265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2024] [Indexed: 02/16/2024] Open
Abstract
INTRODUCTION The aim of this study was to detect the possible endothelial expression of embryonic-type cancer stem cells (CSC) marker SOX2 and the stemness-type CSC marker CD147 in oral potential malignant disorders (OPMDs), oral leukoplakia (OL) in particular, and oral squamous cell carcinoma (OSCC). METHODS This study focuses on the immunohistochemical pattern of expression of CSC protein-biomarkers SOX2 and CD147 in paraffin-embedded samples of 21 OSCCs of different grades of differentiation and 30 cases of OLs with different grades of dysplasia, compared to normal oral mucosa. RESULTS The protein biomarker SOX2 was expressed in the endothelial cells, but without establishing any statistically significant correlation among OSCC, OL, and normal tissue specimens. However, SOX endothelial staining was noticed in 7/30 (23.3%) cases of OL (one non-dysplastic, one mildly dysplastic, one moderately dysplastic, and four severely dysplastic cases) and 5/21 (23.8%) cases of OSCC (two well-differentiated, one moderately differentiated, and two poorly differentiated cases). Although CD147 is expressed in normal oral epithelium, OL, and OSCC neoplastic cells, its vascular-endothelial expression was noticed in only 2/5 (40%) cases of normal oral epithelium, 1/30 (3.3%) cases of OL (one severely dysplastic case), and 4/21 (19%) cases of OSCC (two well-differentiated, one moderately differentiated, and one poorly differentiated case). Therefore, no statistically significant correlation among OSCC, OL, and normal tissue specimens was established. CONCLUSION The endothelial presence of SOX2 both in oral potentially malignant and malignant lesions suggests that SOX2 may be implicated in the microvascularization process and associated with the degree of dysplasia in OL. The expression of CD147 may be attributed both to local inflammation and tumorigenesis. The implementation of CD147 in larger groups of tissue samples will shed some light on its role in cancer and inflammation. The evidence so far supports the need for more studies, which may support the clinical significance of these novel cancer stem cell biomarkers.
Collapse
Affiliation(s)
- Vasileios Zisis
- Oral Medicine and Pathology, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | | | | | - Konstantinos Vahtsevanos
- Oral and Maxillofacial Surgery, Papanikolaou Hospital, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | | | - Dimitrios Andreadis
- Oral Medicine and Pathology, Aristotle University of Thessaloniki, Thessaloniki, GRC
| |
Collapse
|
29
|
Valdes Angues R, Perea Bustos Y. SARS-CoV-2 Vaccination and the Multi-Hit Hypothesis of Oncogenesis. Cureus 2023; 15:e50703. [PMID: 38234925 PMCID: PMC10792266 DOI: 10.7759/cureus.50703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2023] [Indexed: 01/19/2024] Open
Abstract
Cancer is a complex and dynamic disease. The "hallmarks of cancer" were proposed by Hanahan and Weinberg (2000) as a group of biological competencies that human cells attain as they progress from normalcy to neoplastic transformation. These competencies include self-sufficiency in proliferative signaling, insensitivity to growth-suppressive signals and immune surveillance, the ability to evade cell death, enabling replicative immortality, reprogramming energy metabolism, inducing angiogenesis, and activating tissue invasion and metastasis. Underlying these competencies are genome instability, which expedites their acquisition, and inflammation, which fosters their function(s). Additionally, cancer exhibits another dimension of complexity: a heterogeneous repertoire of infiltrating and resident host cells, secreted factors, and extracellular matrix, known as the tumor microenvironment, that through a dynamic and reciprocal relationship with cancer cells supports immortality, local invasion, and metastatic dissemination. This staggering intricacy calls for caution when advising all people with cancer (or a previous history of cancer) to receive the COVID-19 primary vaccine series plus additional booster doses. Moreover, because these patients were not included in the pivotal clinical trials, considerable uncertainty remains regarding vaccine efficacy, safety, and the risk of interactions with anticancer therapies, which could reduce the value and innocuity of either medical treatment. After reviewing the available literature, we are particularly concerned that certain COVID-19 vaccines may generate a pro-tumorigenic milieu (i.e., a specific environment that could lead to neoplastic transformation) that predisposes some (stable) oncologic patients and survivors to cancer progression, recurrence, and/or metastasis. This hypothesis is based on biological plausibility and fulfillment of the multi-hit hypothesis of oncogenesis (i.e., induction of lymphopenia and inflammation, downregulation of angiotensin-converting enzyme 2 (ACE2) expression, activation of oncogenic cascades, sequestration of tumor suppressor proteins, dysregulation of the RNA-G quadruplex-protein binding system, alteration of type I interferon responses, unsilencing of retrotransposable elements, etc.) together with growing evidence and safety reports filed to Vaccine Adverse Effects Report System (VAERS) suggesting that some cancer patients experienced disease exacerbation or recurrence following COVID-19 vaccination. In light of the above and because some of these concerns (i.e., alteration of oncogenic pathways, promotion of inflammatory cascades, and dysregulation of the renin-angiotensin system) also apply to cancer patients infected with SARS-CoV-2, we encourage the scientific and medical community to urgently evaluate the impact of both COVID-19 and COVID-19 vaccination on cancer biology and tumor registries, adjusting public health recommendations accordingly.
Collapse
Affiliation(s)
- Raquel Valdes Angues
- Neurology, Oregon Health and Science University School of Medicine, Portland, USA
| | | |
Collapse
|
30
|
Cho A, Ahn J, Kim A, Lee JH, Ryu HS, Kim KM, Yi EC. Proteomics analysis of an individual formalin-fixed paraffin-embedded tissue section using isobaric-tag amplification. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9616. [PMID: 37817342 DOI: 10.1002/rcm.9616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 10/12/2023]
Abstract
RATIONALE The comprehensive analysis of formalin-fixed paraffin-embedded (FFPE) tissues is essential for retrospective clinical studies. However, detecting low-abundance proteins and obtaining proteome-scale data from FFPE samples pose analytical challenges in mass spectrometry-based proteomics. To overcome this challenge, our study focuses on implementing an isobaric labeling approach to improve the detection of low-abundance target proteins in FFPE tissues, thereby enhancing the qualitative and quantitative analysis. METHODS We employed an isobaric labeling approach utilizing synthetic peptides or proteins to enable the qualitative and quantitative measurement of target proteins in FFPE tissue samples. To achieve this, we incorporated tandem mass tag (TMT)-labeled recombinant proteins or synthetic peptides into TMT-labeled metastatic breast cancer FFPE tissues. Through this strategy, we successfully detect coexisting CD276 (B7-H3) and CD147 proteins while identifying over 6000 proteins using targeted analysis of individual FFPE tissue sections. RESULTS Our findings provide compelling evidence that the incorporation of isobaric labeling, along with the inclusion of TMT-labeled peptides or proteins, greatly enhances the detection of target proteins in FFPE tissue samples. By employing this approach, we were able to obtain robust qualitative measurements of CD276 and CD147 proteins, showcasing its effectiveness in identifying more than 6000 proteins in FFPE samples. CONCLUSIONS The integration of an isobaric labeling approach, in conjunction with synthetic peptides or proteins, presents a valuable strategy for enhancing the detection and validation of target proteins in FFPE tissue analysis. This technique holds immense potential in retrospective clinical studies, as it enables comprehensive analysis of low-abundance proteins and facilitating proteome-scale investigations in FFPE samples. By leveraging this methodology, researchers can unlock new insights into disease mechanisms and advance our understanding of complex biological processes.
Collapse
Affiliation(s)
- Ara Cho
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jinsung Ahn
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Andrew Kim
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jeong Hyun Lee
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Han Suk Ryu
- Department of Pathology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Kristine M Kim
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, Republic of Korea
| | - Eugene C Yi
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
31
|
Nyalali AMK, Leonard AU, Xu Y, Li H, Zhou J, Zhang X, Rugambwa TK, Shi X, Li F. CD147: an integral and potential molecule to abrogate hallmarks of cancer. Front Oncol 2023; 13:1238051. [PMID: 38023152 PMCID: PMC10662318 DOI: 10.3389/fonc.2023.1238051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
CD147 also known as EMMPRIN, basigin, and HAb18G, is a single-chain type I transmembrane protein shown to be overexpressed in aggressive human cancers of CNS, head and neck, breasts, lungs, gastrointestinal, genitourinary, skin, hematological, and musculoskeletal. In these malignancies, the molecule is integral to the diverse but complimentary hallmarks of cancer: it is pivotal in cancerous proliferative signaling, growth propagation, cellular survival, replicative immortality, angiogenesis, metabolic reprogramming, immune evasion, invasion, and metastasis. CD147 also has regulatory functions in cancer-enabling characteristics such as DNA damage response (DDR) and immune evasion. These neoplastic functions of CD147 are executed through numerous and sometimes overlapping molecular pathways: it transduces signals from upstream molecules or ligands such as cyclophilin A (CyPA), CD98, and S100A9; activates a repertoire of downstream molecules and pathways including matrix metalloproteinases (MMPs)-2,3,9, hypoxia-inducible factors (HIF)-1/2α, PI3K/Akt/mTOR/HIF-1α, and ATM/ATR/p53; and also functions as an indispensable chaperone or regulator to monocarboxylate, fatty acid, and amino acid transporters. Interestingly, induced loss of functions to CD147 prevents and reverses the acquired hallmarks of cancer in neoplastic diseases. Silencing of Cd147 also alleviates known resistance to chemoradiotherapy exhibited by malignant tumors like carcinomas of the breast, lung, pancreas, liver, gastric, colon, ovary, cervix, prostate, urinary bladder, glioblastoma, and melanoma. Targeting CD147 antigen in chimeric and induced-chimeric antigen T cell or antibody therapies is also shown to be safer and more effective. Moreover, incorporating anti-CD147 monoclonal antibodies in chemoradiotherapy, oncolytic viral therapy, and oncolytic virus-based-gene therapies increases effectiveness and reduces on and off-target toxicity. This study advocates the expedition and expansion by further exploiting the evidence acquired from the experimental studies that modulate CD147 functions in hallmarks of cancer and cancer-enabling features and strive to translate them into clinical practice to alleviate the emergency and propagation of cancer, as well as the associated clinical and social consequences.
Collapse
Affiliation(s)
- Alphonce M. K. Nyalali
- Department of Neurosurgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Surgery, Songwe Regional Referral Hospital, Mbeya, Tanzania
- Department of Orthopedics and Neurosurgery, Mbeya Zonal Referral Hospital and Mbeya College of Health and Allied Sciences, University of Dar Es Salaam, Mbeya, Tanzania
| | - Angela U. Leonard
- Department of Pediatrics and Child Health, Mbeya Zonal Referral Hospital and Mbeya College of Health and Allied Sciences, University of Dar Es Salaam, Mbeya, Tanzania
- Department of Public Health, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Yongxiang Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Huayu Li
- School of Nursing and Rehabilitation, Shandong University, Jinan, China
| | - Junlin Zhou
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xinrui Zhang
- School of Nursing and Rehabilitation, Shandong University, Jinan, China
| | - Tibera K. Rugambwa
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Internal Medicine, Mbeya Zonal Referral Hospital and Mbeya College of Health and Allied Sciences, University of Dar Es Salaam, Mbeya, Tanzania
| | - Xiaohan Shi
- School of Nursing and Rehabilitation, Shandong University, Jinan, China
| | - Feng Li
- Department of Neurosurgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
32
|
Zhang N, Liu Z, Lai X, Liu S, Wang Y. Silencing of CD147 inhibits cell proliferation, migration, invasion, lipid metabolism dysregulation and promotes apoptosis in lung adenocarcinoma via blocking the Rap1 signaling pathway. Respir Res 2023; 24:253. [PMID: 37880644 PMCID: PMC10601207 DOI: 10.1186/s12931-023-02532-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/05/2023] [Indexed: 10/27/2023] Open
Abstract
OBJECTIVE CD147 is an important glycoprotein that participates in the progression of diverse cancers. This study aims to explore the specific function of CD147 in lung adenocarcinoma (LUAD) and to reveal related downstream molecular mechanisms. METHODS Followed by silencing of CD147, the viability, migration, invasion, and apoptosis of LUAD cells were measured by CCK8, wound healing, transwell assay, and flow cytometer, respectively. The expression of CD147 and two markers of lipid metabolism (FASN and ACOX1) were detected by qRT-PCR. A xenograft tumor model was constructed to investigate the function of CD147 in vivo. Then transcriptome sequencing was performed to explore the potential mechanisms. After measuring the expression of Rap1 and p-p38 MAPK/p38 MAPK by western blot, the changes of CD147 and lipid metabolism markers (FASN, ACOX1) was detected by Immunohistochemistry. Moreover, a Rap1 activator and a Rap1 inhibitor were applied for feedback functional experiments. RESULTS CD147 was up-regulated in LUAD cells, and its silencing inhibited cell proliferation, migration, invasion, lipid metabolism dysregulation and promoted apoptosis, while overexpression of CD147 showed the opposite results. Silencing of CD147 also inhibited the growth of tumor xenografts in mice. Transcriptome sequencing revealed 834 up-regulated differentially expressed genes (DEGs) and 602 down-regulated DEGs. After functional enrichment, the Rap1 signaling pathway was selected as a potential target, which was then verified to be blocked by CD147 silencing. In addition, the treatment of Rap1 activator weakened the inhibiting effects of si-CD147 on the proliferation, migration, invasion, and lipid metabolism in LUAD cells, while the intervention of RAP1 inhibitor showed the opposite results. CONCLUSIONS Silencing of CD147 inhibited the proliferation, migration, invasion, lipid metabolism dysregulation and promoted apoptosis of LUAD cells through blocking the Rap1 signaling pathway.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Gastroenterology, Ganzhou People's Hospital, the Affiliated Ganzhou Hospital of Nanchang University, Ganzhou City, 341000, Jiangxi Province, China
| | - Zhouzhong Liu
- Department of Oncology, Ganzhou People's Hospital, the Affiliated Ganzhou Hospital of Nanchang University, Ganzhou City, 341000, Jiangxi Province, China
| | - Xuwang Lai
- Department of Oncology, Ganzhou People's Hospital, the Affiliated Ganzhou Hospital of Nanchang University, Ganzhou City, 341000, Jiangxi Province, China
| | - Shubin Liu
- Department of Oncology, Ganzhou People's Hospital, the Affiliated Ganzhou Hospital of Nanchang University, Ganzhou City, 341000, Jiangxi Province, China
| | - Yuli Wang
- Department of Oncology, Ganzhou People's Hospital, the Affiliated Ganzhou Hospital of Nanchang University, Ganzhou City, 341000, Jiangxi Province, China.
| |
Collapse
|
33
|
Huang DF, Zhang WJ, Chen J, Jiao ZG, Wang XL, Rao DY, Li WS, Hu D, Xie FF, Wang XX, Li ZZ, Yi XM, Wu JY, Jiang Y, Wang Q, Zhong TY. Hepatocellular carcinoma cell-derived small extracellular vesicle-associated CD147 serves as a diagnostic marker and promotes endothelial cell angiogenesis via the PI3K/Akt pathway. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:532-547. [PMID: 40357132 PMCID: PMC12066417 DOI: 10.20517/evcna.2023.30] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/25/2023] [Accepted: 10/08/2023] [Indexed: 05/15/2025]
Abstract
Aim Hepatocellular carcinoma (HCC) is one of the most common malignant tumors. The process of HCC development is closely related to angiogenesis. Plasma exosomes have diagnostic value in many diseases and have become a current research hotspot. We aimed to identify a key molecule in small extracellular vesicles (sEVs) involved in angiogenesis as a diagnostic marker for HCC and uncover the mechanism underlying its regulation in the angiogenesis process. Methods Nano-flow cytometer (nFCM) was used to detect CD147 expression in plasma-derived sEVs in 155 HCC patients, 59 liver cirrhosis (LC), and 82 healthy donors (HD). The mechanism of hepatocellular carcinoma cell-derived sEVs CD147 promoting angiogenesis was elucidated by cell proliferation assay, scratch wound healing assay, transwell assay, tube formation assay, and in vivo Matrigel plug angiogenesis assay. Results We found that CD147 expression was significantly higher in HCC tissue samples than in normal tissues. We also found a significantly larger number of CD147-positive small extracellular vesicles (CD147+ sEVs) in the plasma of HCC patients than LC patients and HD. Furthermore, we showed that hepatocellular carcinoma cell (HepG2)-derived CD147+ sEVs promoted cell proliferation, migration, invasion, and angiogenesis in human umbilical vein endothelial cells. The CD147+ sEVs upregulated vascular endothelial growth factor A (VEGFA) by activating the PI3K/Akt pathway, thereby promoting angiogenesis. Conclusion HCC-derived sEVs-associated CD147 serves as a diagnostic marker and promotes endothelial cell angiogenesis via the PI3K/Akt pathway.
Collapse
Affiliation(s)
- De-Fa Huang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi, China
- These authors contributed equally and considered joint first authors
| | - Wen-Juan Zhang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi, China
- Precision Medicine Center, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi, China
- These authors contributed equally and considered joint first authors
| | - Jie Chen
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi, China
- Department of Clinical Laboratory, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, Sichuan, China
| | - Zhi-Gang Jiao
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi, China
| | - Xiao-Ling Wang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi, China
| | - Ding-Yu Rao
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi, China
| | - Wei-Song Li
- Department of pathology, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi, China
| | - Die Hu
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi, China
| | - Fang-Fang Xie
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi, China
| | - Xiao-Xing Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou 341000, Jiangxi, China
| | - Zheng-Zhe Li
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou 341000, Jiangxi, China
| | - Xiao-Mei Yi
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou 341000, Jiangxi, China
| | - Ji-Yang Wu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou 341000, Jiangxi, China
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Qi Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou 341000, Jiangxi, China
| | - Tian-Yu Zhong
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi, China
- Precision Medicine Center, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi, China
| |
Collapse
|
34
|
Seo YR, Lee J, Ryu HS, Kim EG, Kim SH, Jeong J, Jung H, Jung Y, Kim HB, Jo YH, Kim YD, Jin MS, Lee YY, Kim KM, Yi EC. Lateral interactions between CD276 and CD147 are essential for stemness in breast cancer: a novel insight from proximal proteome analysis. Sci Rep 2023; 13:14242. [PMID: 37648771 PMCID: PMC10469185 DOI: 10.1038/s41598-023-41416-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023] Open
Abstract
Oncogenic cell-surface membrane proteins contribute to the phenotypic and functional characteristics of cancer stem cells (CSCs). We employed a proximity-labeling proteomic approach to quantitatively analyze the cell-surface membrane proteins in close proximity to CD147 in CSCs. Furthermore, we compared CSCs to non-CSCs to identify CSC-specific cell-surface membrane proteins that are closely interact with CD147 and revealed that lateral interaction between CD147 and CD276 concealed within the lipid raft microdomain in CSCs, confers resistance to docetaxel, a commonly used chemotherapy agent for various cancer types, including metastatic breast cancer. Moreover, we investigated the clinical relevance of CD147 and CD276 co-expression in HER2+ breast cancer (BC) and triple-negative breast cancer patients who underwent chemotherapy. We observed poor disease-free survival and Overall survival rates in patients of CD147 and CD276 (p = 0.04 and 0.08, respectively). Subsequent immunohistochemical analysis in independent cohorts of HER2+ BC support for the association between co-expression of CD147 and CD276 and a poor response to chemotherapy. Collectively, our study suggests that the lateral interaction between CD147 and its proximal partners, such as CD276, may serve as a poor prognostic factor in BC and a predictive marker for the critical phenotypic determinant of BC stemness.
Collapse
Affiliation(s)
- Yu Ri Seo
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Junghyeon Lee
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, Republic of Korea
- Department of Systems Immunology, Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Han Suk Ryu
- Department of Pathology, Seoul National University Hospital, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - EunHee G Kim
- Department of Systems Immunology, Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - So Hyun Kim
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Jieun Jeong
- Department of Systems Immunology, Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Hyeryeon Jung
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - YeoJin Jung
- Department of Systems Immunology, Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Han Byeol Kim
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Yeon Hui Jo
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, Republic of Korea
| | - Yeong Dong Kim
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, Republic of Korea
| | - Min-Sun Jin
- Department of Pathology, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Yong Yook Lee
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Kristine M Kim
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, Republic of Korea.
- Department of Systems Immunology, Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea.
| | - Eugene C Yi
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
35
|
Xu YJ, He HJ, Wu P, Li WB. Expression patterns of cluster of differentiation 147 impact the prognosis of hepatocellular carcinoma. World J Gastrointest Oncol 2023; 15:1412-1423. [PMID: 37663949 PMCID: PMC10473926 DOI: 10.4251/wjgo.v15.i8.1412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/30/2023] [Accepted: 06/27/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) has very low overall survival. According to global cancer statistics, approximately 905677 new cases were reported in 2020, with at least 830180 of them being fatal. Cluster of differentiation 147 (CD147) is a novel, transmembrane glycoprotein that is expressed in a wide variety of tumor cells and plays an important role in various stages of tumor development. Based on the reports described previously, we theorize that CD147 may be used as a novel biological indicator to predict the prognosis of HCC. To study this possibility, expression profiles of CD147 and corresponding clinical data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were analyzed, and a hazard ratio (HR) was established. AIM To explore the pattern of CD147 expression and its applicability in the prognosis of HCC. To establish HRs and probability points for predicting the prognosis of HCC by correlating CD147 expression with clinical characteristics. To determine if CD147 can be a reliable biomarker in HCC prognosis. METHODS The CD147 expression profile in HCC and corresponding clinical data were obtained from TCGA database. The expression patterns of CD147 were then validated by analyzing data from the GEO database. In addition, CD147 immunohistochemistry in HCC was obtained from the Human Protein Atlas. CD147 expression patterns and clinical characteristics in the prognosis of HCC were analyzed by accessing the UALCAN web resource. Accuracy, sensitivity, and specificity of the CD147 expression profile in predictive prognosis were determined by the time-dependent receiver operating characteristic (ROC) curves. Kaplan-Meier curves were plotted to estimate the HR of survival in HCC. Univariate and multivariate Cox regression proportional hazards analyses of CD147 expression levels and clinical characteristics as prognostic factors of HCC were performed. Nomograms were used to establish probability points and predict prognosis. RESULTS Data from TCGA and GEO databases revealed that CD147 was significantly overexpressed in HCC (P = 1.624 × 10-12 and P = 1.2 × 10-5, respectively). The expression of CD147 and prognosis of HCC were significantly correlated with the clinical characteristics of HCC as per the data from the UALCAN web resource (P < 0.05). Kaplan-Meier analysis of CD147 expression in HCC revealed that the high expression groups showed poor prognosis and an HR of survival > 1 [log-rank test, P = 0.000542, HR (in high expression group): 1.856, 95% confidence interval (CI): 1.308 to 2.636]. ROC curves were plotted to analyze the 1-year, 3-year, and 5-year survival rates. The area under the ROC curve values were 0.675 (95%CI: 0.611 to 0.740), 0.623 (95%CI: 0.555 to 0.692), and 0.664 (95%CI: 0.582 to 9.745), respectively. Univariate Cox analysis of CD147 expression and clinical characteristics of HCC and multivariate Cox analysis of CD147 patterns and pathological tumor-node-metastasis stage showed significant differences (univariate Cox, P = 0.00013, HR: 1.424, 95%CI: 1.884 to 1.707 and P = 0.00066, HR: 1.376, 95%CI: 1.145 to 1.654, respectively; multivariate Cox, P = 0.00578, HR: 1.507, 95%CI: 1.126 to 2.018 and P = 0.00336, HR: 1.443, 95%CI: 1.129 to 1.844, respectively). Nomograms were plotted to establish the probability points and predict prognosis. The total points ranged from 0 to 180, and the C-index value was 0.673 (95%CI: 0.600 to 1.000, P < 0.01). CONCLUSION Overexpression of CD147 was correlated with poor prognosis in HCC. The CD147 expression profile combined with clinical characteristics can reliably predict the prognosis of HCC. CD147 can serve as a biomarker to predict the prognosis of HCC.
Collapse
Affiliation(s)
- Yun-Ji Xu
- Department of General Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China
| | - Hong-Jie He
- Department of General Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China
| | - Peng Wu
- Department of General Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China
| | - Wen-Bing Li
- Department of General Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China
| |
Collapse
|
36
|
Yu F, He H, Zhou Y. Roles, biological functions, and clinical significances of RHPN1-AS1 in cancer. Pathol Res Pract 2023; 248:154589. [PMID: 37285733 DOI: 10.1016/j.prp.2023.154589] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/20/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023]
Abstract
For the complex and multifaceted challenge of cancer eradication, a comprehensive approach is required. Molecular strategies are critical in the fight against cancer as they allow us to understand the underlying fundamental mechanisms and develop specialized treatments. The role of long non-coding RNAs (lncRNAs), a class of ncRNA molecules longer than 200 nucleotides, in cancer biology has attracted growing attention in recent years. These roles include but are not limited to regulating gene expression, protein localization, and chromatin remodeling. LncRNAs can influence a range of cellular functions and pathways, including those involved in cancer development. The first study on RHPN1 antisense RNA 1 (RHPN1-AS1), a 2030-bp transcript originating from human chromosome 8q24, in uveal melanoma (UM) demonstrated that this lncRNA was significantly upregulated in several UM cell lines. Further studies in various cancer cell lines showed that this lncRNA is significantly overexpressed and exerts oncogenic functions. This review will provide an overview of current knowledge regarding the roles played by RHPN1-AS1 in the emergence of various cancers, focusing on its biological and clinical functions.
Collapse
Affiliation(s)
- Fan Yu
- Clinical Laboratory Medical Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, China
| | - Haihong He
- Clinical Laboratory Medical Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, China
| | - Yiwen Zhou
- Clinical Laboratory Medical Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, China.
| |
Collapse
|
37
|
Pathak U, Pal RB, Malik N. The Viral Knock: Ameliorating Cancer Treatment with Oncolytic Newcastle Disease Virus. Life (Basel) 2023; 13:1626. [PMID: 37629483 PMCID: PMC10455894 DOI: 10.3390/life13081626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 08/27/2023] Open
Abstract
The prospect of cancer treatment has drastically transformed over the last four decades. The side effects caused by the traditional methods of cancer treatment like surgery, chemotherapy, and radiotherapy through the years highlight the prospect for a novel, complementary, and alternative cancer therapy. Oncolytic virotherapy is an evolving treatment modality that utilizes oncolytic viruses (OVs) to selectively attack cancer cells by direct lysis and can also elicit a strong anti-cancer immune response. Newcastle disease virus (NDV) provides a very high safety profile compared to other oncolytic viruses. Extensive research worldwide concentrates on experimenting with and better understanding the underlying mechanisms by which oncolytic NDV can be effectively applied to intercept cancer. This review encapsulates the potential of NDV to be explored as an oncolytic agent and discusses current preclinical and clinical research scenarios involving various NDV strains.
Collapse
Affiliation(s)
- Upasana Pathak
- Sir H.N. Medical Research Society, Sir H.N. Reliance Foundation Hospital and Research Centre, Mumbai 400004, Maharashtra, India
- Vivekanand Education Society’s College of Arts, Science and Commerce, Chembur, Mumbai 400071, Maharashtra, India
| | - Ramprasad B. Pal
- Sir H.N. Medical Research Society, Sir H.N. Reliance Foundation Hospital and Research Centre, Mumbai 400004, Maharashtra, India
| | - Nagesh Malik
- Vivekanand Education Society’s College of Arts, Science and Commerce, Chembur, Mumbai 400071, Maharashtra, India
| |
Collapse
|
38
|
Norouzi A, Liaghat M, Bakhtiyari M, Noorbakhsh Varnosfaderani SM, Zalpoor H, Nabi-Afjadi M, Molania T. The potential role of COVID-19 in progression, chemo-resistance, and tumor recurrence of oral squamous cell carcinoma (OSCC). Oral Oncol 2023; 144:106483. [PMID: 37421672 DOI: 10.1016/j.oraloncology.2023.106483] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/10/2023]
Abstract
Numerous studies have revealed that cancer patients are more likely to develop severe Coronavirus disease-2019 (COVID-19), which can cause mortality, as well as cancer progression and treatment failure. Among these patients who may be particularly vulnerable to severe COVID-19 and COVID-19-associated cancer progression are those with oral squamous cell carcinoma (OSCC). In this regard, therapeutic approaches must be developed to lower the risk of cancer development, chemo-resistance, tumor recurrence, and death in OSCC patients with COVID-19. It may be helpful to comprehend the cellular and molecular mechanisms by which the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contributes to these problems. In this line, in this review, we described the potential cellular and molecular mechanisms that SARS-CoV-2 can exert its role and based on them pharmacological targeted therapies were suggested. However, in this study, we encourage more investigations in the future to uncover other cellular and molecular mechanisms of action of SARS-CoV-2 to develop beneficial therapeutic strategies for such patients.
Collapse
Affiliation(s)
- Ali Norouzi
- Department of Oral Medicine, Dental Research Center, Faculty of Dentistry, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahsa Liaghat
- Department of Medical Laboratory sciences, Faculty of Medical Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran; Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Maryam Bakhtiyari
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran; Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Hamidreza Zalpoor
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran; Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of biological sciences, Tarbiat Modares University, Tehran, Iran.
| | - Tahereh Molania
- Department of Oral Medicine, Dental Research Center, Faculty of Dentistry, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
39
|
Pereira-Nunes A, Ferreira H, Abreu S, Guedes M, Neves NM, Baltazar F, Granja S. Combination Therapy With CD147-Targeted Nanoparticles Carrying Phenformin Decreases Lung Cancer Growth. Adv Biol (Weinh) 2023:e2300080. [PMID: 37303292 DOI: 10.1002/adbi.202300080] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/26/2023] [Indexed: 06/13/2023]
Abstract
Lung cancer is one of the most fatal cancers worldwide. Resistance to conventional therapies remains a hindrance to patient treatment. Therefore, the development of more effective anti-cancer therapeutic strategies is imperative. Solid tumors exhibit a hyperglycolytic phenotype, leading to enhanced lactate production; and, consequently, its extrusion to the tumor microenvironment. Previous data reveals that inhibition of CD147, the chaperone of lactate transporters (MCTs), decreases lactate export in lung cancer cells and sensitizes them to phenformin, leading to a drastic decrease in cell growth. In this study, the development of anti-CD147 targeted liposomes (LUVs) carrying phenformin is envisioned, and their efficacy is evaluated to eliminate lung cancer cells. Herein, the therapeutic effect of free phenformin and anti-CD147 antibody, as well as the efficacy of anti-CD147 LUVs carrying phenformin on A549, H292, and PC-9 cell growth, metabolism, and invasion, are evaluated. Data reveals that phenformin decreases 2D and 3D-cancer cell growth and that the anti-CD147 antibody reduces cell invasion. Importantly, anti-CD147 LUVs carrying phenformin are internalized by cancer cells and impaired lung cancer cell growth in vitro and in vivo. Overall, these results provide evidence for the effectiveness of anti-CD147 LUVs carrying phenformin in compromising lung cancer cell aggressiveness.
Collapse
Affiliation(s)
- Andreia Pereira-Nunes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães, Braga, 4710-057, Portugal
| | - Helena Ferreira
- ICVS/3B's-PT Government Associate Laboratory, Guimarães, Braga, 4710-057, Portugal
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, 4805-017, Portugal
| | - Sara Abreu
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães, Braga, 4710-057, Portugal
| | - Marta Guedes
- ICVS/3B's-PT Government Associate Laboratory, Guimarães, Braga, 4710-057, Portugal
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, 4805-017, Portugal
| | - Nuno M Neves
- ICVS/3B's-PT Government Associate Laboratory, Guimarães, Braga, 4710-057, Portugal
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, 4805-017, Portugal
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães, Braga, 4710-057, Portugal
| | - Sara Granja
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães, Braga, 4710-057, Portugal
- Department of Pathological, Cytological and Thanatological Anatomy, ESS|P.PORTO, Porto, 4200-072, Portugal
| |
Collapse
|
40
|
Silva A, Cerqueira MC, Rosa B, Sobral C, Pinto-Ribeiro F, Costa MF, Baltazar F, Afonso J. Prognostic Value of Monocarboxylate Transporter 1 Overexpression in Cancer: A Systematic Review. Int J Mol Sci 2023; 24:ijms24065141. [PMID: 36982217 PMCID: PMC10049181 DOI: 10.3390/ijms24065141] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Energy production by cancer is driven by accelerated glycolysis, independently of oxygen levels, which results in increased lactate production. Lactate is shuttled to and from cancer cells via monocarboxylate transporters (MCTs). MCT1 works both as an importer and an extruder of lactate, being widely studied in recent years and generally associated with a cancer aggressiveness phenotype. The aim of this systematic review was to assess the prognostic value of MCT1 immunoexpression in different malignancies. Study collection was performed by searching nine different databases (PubMed, EMBASE, ScienceDirect, Scopus, Cochrane Library, Web of Science, OVID, TRIP and PsycINFO), using the keywords "cancer", "Monocarboxylate transporter 1", "SLC16A1" and "prognosis". Results showed that MCT1 is an indicator of poor prognosis and decreased survival for cancer patients in sixteen types of malignancies; associations between the transporter's overexpression and larger tumour sizes, higher disease stage/grade and metastasis occurrence were also frequently observed. Yet, MCT1 overexpression correlated with better outcomes in colorectal cancer, pancreatic ductal adenocarcinoma and non-small cell lung cancer patients. These results support the applicability of MCT1 as a biomarker of prognosis, although larger cohorts would be necessary to validate the overall role of MCT1 as an outcome predictor.
Collapse
Affiliation(s)
- Ana Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Mónica Costa Cerqueira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Beatriz Rosa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Catarina Sobral
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Filipa Pinto-Ribeiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Marta Freitas Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Julieta Afonso
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| |
Collapse
|
41
|
Feigelman G, Simanovich E, Brockmeyer P, Rahat MA. Knocking-Down CD147/EMMPRIN Expression in CT26 Colon Carcinoma Forces the Cells into Cellular and Angiogenic Dormancy That Can Be Reversed by Interactions with Macrophages. Biomedicines 2023; 11:biomedicines11030768. [PMID: 36979746 PMCID: PMC10044868 DOI: 10.3390/biomedicines11030768] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Metastasis in colorectal cancer is responsible for most of the cancer-related deaths. For metastasis to occur, tumor cells must first undergo the epithelial-to-mesenchymal transition (EMT), which is driven by the transcription factors (EMT-TFs) Snail, Slug twist1, or Zeb1, to promote their migration. In the distant organs, tumor cells may become dormant for years, until signals from their microenvironment trigger and promote their outgrowth. Here we asked whether CD147/EMMPRIN controls entry and exit from dormancy in the aggressive and proliferative (i.e., non-dormant) CT26 mouse colon carcinoma cells, in its wild-type form (CT26-WT cells). To this end, we knocked down EMMPRIN expression in CT26 cells (CT26-KD), and compared their EMT and cellular dormancy status (e.g., proliferation, pERK/pP38 ratio, vimentin expression, expression of EMT-TFs and dormancy markers), and angiogenic dormancy (e.g., VEGF and MMP-9 secretion, healing of the wounded bEND3 mouse endothelial cells), to the parental cells (CT26-WT). We show that knocking-down EMMPRIN expression reduced the pERK/pP38 ratio, enhanced the expression of vimentin, the EMT-TFs and the dormancy markers, and reduced the proliferation and angiogenic potential, cumulatively indicating that cells were pushed towards dormancy. When macrophages were co-cultured with both types of CT26 cells, the CT26-WT cells increased their angiogenic potential, but did not change their proliferation, state of EMT, or dormancy, whereas the CT26-KD cells exhibited values mostly similar to those of the co-cultured CT26-WT cells. Addition of recombinant TGFβ or EMMPRIN that simulated the presence of macrophages yielded similar results. Combinations of low concentrations of TGFβ and EMMPRIN had a minimal additive effect only in the CT26-KD cells, suggesting that they work along the same signaling pathway. We conclude that EMMPRIN is important as a gatekeeper that prevents cells from entering a dormant state, and that macrophages can promote an exit from dormancy.
Collapse
Affiliation(s)
- Gabriele Feigelman
- Immunotherapy Laboratory, Carmel Medical Center, Haifa 3436212, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel
| | - Elina Simanovich
- Immunotherapy Laboratory, Carmel Medical Center, Haifa 3436212, Israel
| | - Phillipp Brockmeyer
- Department of Oral and Maxillofacial Surgery, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Michal A. Rahat
- Immunotherapy Laboratory, Carmel Medical Center, Haifa 3436212, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3109601, Israel
- Correspondence:
| |
Collapse
|
42
|
Maher J, Davies DM. CAR-Based Immunotherapy of Solid Tumours-A Survey of the Emerging Targets. Cancers (Basel) 2023; 15:1171. [PMID: 36831514 PMCID: PMC9953954 DOI: 10.3390/cancers15041171] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Immunotherapy with CAR T-cells has revolutionised the treatment of B-cell and plasma cell-derived cancers. However, solid tumours present a much greater challenge for treatment using CAR-engineered immune cells. In a partner review, we have surveyed data generated in clinical trials in which patients with solid tumours that expressed any of 30 discrete targets were treated with CAR-based immunotherapy. That exercise confirms that efficacy of this approach falls well behind that seen in haematological malignancies, while significant toxic events have also been reported. Here, we consider approximately 60 additional candidates for which such clinical data are not available yet, but where pre-clinical data have provided support for their advancement to clinical evaluation as CAR target antigens.
Collapse
Affiliation(s)
- John Maher
- CAR Mechanics Group, Guy’s Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, Great Maze Pond, London SE1 9RT, UK
- Department of Immunology, Eastbourne Hospital, Kings Drive, Eastbourne BN21 2UD, UK
- Leucid Bio Ltd., Guy’s Hospital, Great Maze Pond, London SE1 9RT, UK
| | - David M. Davies
- Leucid Bio Ltd., Guy’s Hospital, Great Maze Pond, London SE1 9RT, UK
| |
Collapse
|
43
|
Kvedaraite E, Milne P, Khalilnezhad A, Chevrier M, Sethi R, Lee HK, Hagey DW, von Bahr Greenwood T, Mouratidou N, Jädersten M, Lee NYS, Minnerup L, Yingrou T, Dutertre CA, Benac N, Hwang YY, Lum J, Loh AHP, Jansson J, Teng KWW, Khalilnezhad S, Weili X, Resteu A, Liang TH, Guan NL, Larbi A, Howland SW, Arnell H, Andaloussi SEL, Braier J, Rassidakis G, Galluzzo L, Dzionek A, Henter JI, Chen J, Collin M, Ginhoux F. Notch-dependent cooperativity between myeloid lineages promotes Langerhans cell histiocytosis pathology. Sci Immunol 2022; 7:eadd3330. [PMID: 36525505 PMCID: PMC7614120 DOI: 10.1126/sciimmunol.add3330] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Langerhans cell histiocytosis (LCH) is a potentially fatal neoplasm characterized by the aberrant differentiation of mononuclear phagocytes, driven by mitogen-activated protein kinase (MAPK) pathway activation. LCH cells may trigger destructive pathology yet remain in a precarious state finely balanced between apoptosis and survival, supported by a unique inflammatory milieu. The interactions that maintain this state are not well known and may offer targets for intervention. Here, we used single-cell RNA-seq and protein analysis to dissect LCH lesions, assessing LCH cell heterogeneity and comparing LCH cells with normal mononuclear phagocytes within lesions. We found LCH discriminatory signatures pointing to senescence and escape from tumor immune surveillance. We also uncovered two major lineages of LCH with DC2- and DC3/monocyte-like phenotypes and validated them in multiple pathological tissue sites by high-content imaging. Receptor-ligand analyses and lineage tracing in vitro revealed Notch-dependent cooperativity between DC2 and DC3/monocyte lineages during expression of the pathognomonic LCH program. Our results present a convergent dual origin model of LCH with MAPK pathway activation occurring before fate commitment to DC2 and DC3/monocyte lineages and Notch-dependent cooperativity between lineages driving the development of LCH cells.
Collapse
Affiliation(s)
- Egle Kvedaraite
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Pathology, Karolinska University Laboratory, Stockholm, Sweden
| | - Paul Milne
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK
- Northern Centre for Cancer Care, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK
| | - Ahad Khalilnezhad
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Marion Chevrier
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Raman Sethi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Hong Kai Lee
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK
| | - Daniel W. Hagey
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tatiana von Bahr Greenwood
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- Pediatric Oncology, Astrid Lindgrens Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Natalia Mouratidou
- Pediatric Gastroenterology, Hepatology and Nutrition Unit, Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Martin Jädersten
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Nicole Yee Shin Lee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Lara Minnerup
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Tan Yingrou
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
- National Skin Center, National Healthcare Group, Singapore
| | - Charles-Antoine Dutertre
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, France
| | - Nathan Benac
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, France
- Université de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
| | - You Yi Hwang
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Josephine Lum
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Amos Hong Pheng Loh
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, KK Women’s and Children’s Hospital, Singapore
| | - Jessica Jansson
- Pediatric Gastroenterology, Hepatology and Nutrition Unit, Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Karen Wei Weng Teng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Shabnam Khalilnezhad
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Xu Weili
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Anastasia Resteu
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK
- Northern Centre for Cancer Care, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK
| | - Tey Hong Liang
- National Skin Centre, National Healthcare Group, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore
| | - Ng Lai Guan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Shanshan Wu Howland
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
| | - Henrik Arnell
- Department of Clinical Pathology, Karolinska University Laboratory, Stockholm, Sweden
- Pediatric Gastroenterology, Hepatology and Nutrition Unit, Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Samir EL Andaloussi
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jorge Braier
- Hospital Nacional de Pediatría Dr Prof JP Garrahan, Pathology Department, Buenos Aires, Argentina
| | - Georgios Rassidakis
- Department of Clinical Pathology, Karolinska University Laboratory, Stockholm, Sweden
| | - Laura Galluzzo
- Hospital Nacional de Pediatría Dr Prof JP Garrahan, Pathology Department, Buenos Aires, Argentina
| | | | - Jan-Inge Henter
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- Pediatric Oncology, Astrid Lindgrens Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Jinmiao Chen
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
- Immunology Translational Research Program, Yong Loo Lin School of Medicine, Department of Microbiology and Immunology, Narional Unietsoty of Sinapore (NUS)
| | - Matthew Collin
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK
- Northern Centre for Cancer Care, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), BIOPOLIS, Singapore, Singapore
- INSERM U1015, Gustave Roussy Cancer Campus, Villejuif, France
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| |
Collapse
|
44
|
ACE2-Independent Alternative Receptors for SARS-CoV-2. Viruses 2022; 14:v14112535. [PMID: 36423144 PMCID: PMC9692829 DOI: 10.3390/v14112535] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
Abstract
Severe acute respiratory syndrome-related coronavirus (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), is highly contagious and remains a major public health challenge despite the availability of effective vaccines. SARS-CoV-2 enters cells through the binding of its spike receptor-binding domain (RBD) to the human angiotensin-converting enzyme 2 (ACE2) receptor in concert with accessory receptors/molecules that facilitate viral attachment, internalization, and fusion. Although ACE2 plays a critical role in SARS-CoV-2 replication, its expression profiles are not completely associated with infection patterns, immune responses, and clinical manifestations. Additionally, SARS-CoV-2 infects cells that lack ACE2, and the infection is resistant to monoclonal antibodies against spike RBD in vitro, indicating that some human cells possess ACE2-independent alternative receptors, which can mediate SARS-CoV-2 entry. Here, we discuss these alternative receptors and their interactions with SARS-CoV-2 components for ACE2-independent viral entry. These receptors include CD147, AXL, CD209L/L-SIGN/CLEC4M, CD209/DC-SIGN/CLEC4L, CLEC4G/LSECtin, ASGR1/CLEC4H1, LDLRAD3, TMEM30A, and KREMEN1. Most of these receptors are known to be involved in the entry of other viruses and to modulate cellular functions and immune responses. The SARS-CoV-2 omicron variant exhibits altered cell tropism and an associated change in the cell entry pathway, indicating that emerging variants may use alternative receptors to escape the immune pressure against ACE2-dependent viral entry provided by vaccination against RBD. Understanding the role of ACE2-independent alternative receptors in SARS-CoV-2 viral entry and pathogenesis may provide avenues for the prevention of infection by SARS-CoV-2 variants and for the treatment of COVID-19.
Collapse
|
45
|
Bae WJ, Kim S, Ahn JM, Han JH, Lee D. Estrogen-responsive cancer-associated fibroblasts promote invasive property of gastric cancer in a paracrine manner via CD147 production. FASEB J 2022; 36:e22597. [PMID: 36197688 DOI: 10.1096/fj.202200164rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 09/15/2022] [Accepted: 09/26/2022] [Indexed: 11/11/2022]
Abstract
Estrogen signaling has been extensively studied, especially in cancers that express estrogen receptor alpha (ERα). However, little is known regarding the effect of estrogen on cancer-associated fibroblasts (CAFs). Here, we explored the role of estrogen signaling of CAFs in gastric cancer (GC) progression. We investigated the phenotypic changes in CAFs upon 17β-estradiol (E2) treatment using ERα-negative/positive CAFs, and the conditioned media (CM) collected from these were compared with regard to cancer cell proliferation, migration, and invasion. A paracrine factor was found using a cytokine array and was confirmed using qRT-PCR, western blotting, and enzyme-linked immunosorbent assays. ERα-CD147-matrix metalloproteinase (MMP) axis was confirmed by knockdown experiments using specific siRNAs. We found that a subset of CAFs expressed ERα. ERα-positive CAFs were responsive to E2, inducing ERα expression in a dose-dependent manner. Although E2 did not induce the proliferation of ERα-positive CAFs, the CM from E2-bound ERα-positive CAFs significantly promoted cancer cell migration and invasion. Cytokine array revealed that CD147 was induced in ERα-positive CAFs upon E2 treatment; this was mediated via ERα. Increased CD147 upregulated MMP2 and MMP9 in CAFs, and also influenced cancer cells in a paracrine manner to increase MMPs and CD147 in cancer cells. High CD147 expression in tumor tissue was associated with a worse prognosis in GC patients. Our data suggest that estrogen signaling activation in CAFs and the byproduct CD147 are among the critical mediators between the interplay of CAFs and cancer cells to facilitate cancer progression.
Collapse
Affiliation(s)
- Won Jung Bae
- Department of Pathology, Ajou University School of Medicine, Suwon, Republic of Korea.,Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Seokhwi Kim
- Department of Pathology, Ajou University School of Medicine, Suwon, Republic of Korea.,Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Ji Mi Ahn
- Department of Pathology, Ajou University School of Medicine, Suwon, Republic of Korea.,Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Jae Ho Han
- Department of Pathology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Dakeun Lee
- Department of Pathology, Ajou University School of Medicine, Suwon, Republic of Korea.,Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
46
|
Mohr T, Zwick A, Hans MC, Bley IA, Braun FL, Khalmurzaev O, Matveev VB, Loertzer P, Pryalukhin A, Hartmann A, Geppert CI, Loertzer H, Wunderlich H, Naumann CM, Kalthoff H, Junker K, Smola S, Lohse S. The prominent role of the S100A8/S100A9-CD147 axis in the progression of penile cancer. Front Oncol 2022; 12:891511. [PMID: 36303837 PMCID: PMC9592847 DOI: 10.3389/fonc.2022.891511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Currently, no established biomarkers are recommended for the routine diagnosis of penile carcinoma (PeCa). The rising incidence of this human papillomavirus (HPV)–related cancer entity highlights the need for promising candidates. The Calprotectin subunits S100A8 and S100A9 mark myeloid-derived suppressor cells in other HPV-related entities while their receptor CD147 was discussed to identify patients with PeCa at a higher risk for poor prognoses and treatment failure. We thus examined their expression using immunohistochemistry staining of PeCa specimens from 74 patients on tissue microarrays of the tumor center, the invasion front, and lymph node metastases. Notably, whereas the tumor center was significantly more intensively stained than the invasion front, lymph node metastases were thoroughly positive for both S100 subunits. An HPV-positive status combined with an S100A8+S100A9+ profile was related with an elevated risk for metastases. We observed several PeCa specimens with S100A8+S100A9+-infiltrating immune cells overlapping with CD15 marking neutrophils. The S100A8+S100A9+CD15+ profile was associated with dedifferentiated and metastasizing PeCa, predominantly of HPV-associated subtype. These data suggest a contribution of neutrophil-derived suppressor cells to the progression of HPV-driven penile carcinogenesis. CD147 was elevated, expressed in PeCa specimens, prominently at the tumor center and in HPV-positive PeCa cell lines. CD147+HPV+ PeCa specimens were with the higher-frequency metastasizing cancers. Moreover, an elevated expression of CD147 of HPV-positive PeCa cell lines correlated negatively with the susceptibility to IgA-based neutrophil-mediated tumor cell killing. Finally, stratifying patients regarding their HPV/S100A8/S100A9/CD15/CD147 profile may help identify patients with progressing cancer and tailor immunotherapeutic treatment strategies.
Collapse
Affiliation(s)
- Tobias Mohr
- Institute of Virology, Saarland University Medical Center, Homburg, Germany
| | - Anabel Zwick
- Institute of Virology, Saarland University Medical Center, Homburg, Germany
| | | | | | - Felix Leon Braun
- Institute of Virology, Saarland University Medical Center, Homburg, Germany
| | - Oybek Khalmurzaev
- Department of Urology and Paediatric Urology, Saarland University Medical Center, Homburg, Germany
- Department of Urology, Federal State Budgetary Institution “N.N. Blokhin National Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Vsevolod Borisovich Matveev
- Department of Urology, Federal State Budgetary Institution “N.N. Blokhin National Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Philine Loertzer
- Department of Urology and Paediatric Urology, Westpfalz Klinikum, Kaiserslautern, Germany
| | - Alexey Pryalukhin
- Institute of Pathology, Saarland University Medical Center, Homburg, Germany
- Institute of Pathology, University Medical Center Bonn, Bonn, Germany
| | - Arndt Hartmann
- Institute of Pathology, University Erlangen-Nuremberg, Erlangen, Germany
| | | | - Hagen Loertzer
- Department of Urology and Paediatric Urology, Westpfalz Klinikum, Kaiserslautern, Germany
| | - Heiko Wunderlich
- Department of Urology and Paediatric Urology, St. Georg Klinikum, Eisenach, Germany
| | - Carsten Maik Naumann
- Department of Urology and Paediatric Urology, University Hospital Schleswig Holstein, Kiel, Germany
| | - Holger Kalthoff
- Division of Molecular Oncology, Institute of Experimental Cancer Research, University Hospital Schleswig Holstein, Kiel, Germany
| | - Kerstin Junker
- Department of Urology and Paediatric Urology, Saarland University Medical Center, Homburg, Germany
| | - Sigrun Smola
- Institute of Virology, Saarland University Medical Center, Homburg, Germany
| | - Stefan Lohse
- Institute of Virology, Saarland University Medical Center, Homburg, Germany
- *Correspondence: Stefan Lohse,
| |
Collapse
|
47
|
Agostinis C, Toffoli M, Spazzapan M, Balduit A, Zito G, Mangogna A, Zupin L, Salviato T, Maiocchi S, Romano F, Crovella S, Fontana F, Braga L, Confalonieri M, Ricci G, Kishore U, Bulla R. SARS-CoV-2 modulates virus receptor expression in placenta and can induce trophoblast fusion, inflammation and endothelial permeability. Front Immunol 2022; 13:957224. [PMID: 36177036 PMCID: PMC9513489 DOI: 10.3389/fimmu.2022.957224] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
SARS-CoV-2 is a devastating virus that induces a range of immunopathological mechanisms including cytokine storm, apoptosis, inflammation and complement and coagulation pathway hyperactivation. However, how the infection impacts pregnant mothers is still being worked out due to evidence of vertical transmission of the SARS-CoV-2, and higher incidence of pre-eclampsia, preterm birth, caesarian section, and fetal mortality. In this study, we assessed the levels of the three main receptors of SARS-CoV-2 (ACE2, TMPRSS2 and CD147) in placentae derived from SARS-CoV-2 positive and negative mothers. Moreover, we measured the effects of Spike protein on placental cell lines, in addition to their susceptibility to infection. SARS-CoV-2 negative placentae showed elevated levels of CD147 and considerably low amount of TMPRSS2, making them non-permissive to infection. SARS-CoV-2 presence upregulated TMPRSS2 expression in syncytiotrophoblast and cytotrophoblast cells, thereby rendering them amenable to infection. The non-permissiveness of placental cells can be due to their less fusogenicity due to infection. We also found that Spike protein was capable of inducing pro-inflammatory cytokine production, syncytiotrophoblast apoptosis and increased vascular permeability. These events can elicit pre-eclampsia-like syndrome that marks a high percentage of pregnancies when mothers are infected with SARS-CoV-2. Our study raises important points relevant to SARS-CoV-2 mediated adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Chiara Agostinis
- Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Burlo Garofolo, Trieste, Italy
| | - Miriam Toffoli
- Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Burlo Garofolo, Trieste, Italy
| | | | - Andrea Balduit
- Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Burlo Garofolo, Trieste, Italy
- *Correspondence: Andrea Balduit,
| | - Gabriella Zito
- Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Burlo Garofolo, Trieste, Italy
| | - Alessandro Mangogna
- Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Burlo Garofolo, Trieste, Italy
| | - Luisa Zupin
- Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Burlo Garofolo, Trieste, Italy
| | - Tiziana Salviato
- Department of Diagnostic, Clinic and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Serena Maiocchi
- Department of Life Sciences, University of Trieste, Trieste, Italy
- Functional Cell Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Federico Romano
- Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Burlo Garofolo, Trieste, Italy
| | - Sergio Crovella
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Francesco Fontana
- Division of Laboratory Medicine, Azienda Sanitaria Universitaria Giuliano Isontina (ASU GI), Trieste, Italy
| | - Luca Braga
- Functional Cell Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Marco Confalonieri
- Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
| | - Giuseppe Ricci
- Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Burlo Garofolo, Trieste, Italy
- Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
| | - Uday Kishore
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University of London, London, United Kingdom
- Department of Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Roberta Bulla
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
48
|
Guizhen Z, Guanchang J, Liwen L, Huifen W, Zhigang R, Ranran S, Zujiang Y. The tumor microenvironment of hepatocellular carcinoma and its targeting strategy by CAR-T cell immunotherapy. Front Endocrinol (Lausanne) 2022; 13:918869. [PMID: 36093115 PMCID: PMC9452721 DOI: 10.3389/fendo.2022.918869] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/05/2022] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the major subtype of liver cancer, which ranks sixth in cancer incidence and third in mortality. Although great strides have been made in novel therapy for HCC, such as immunotherapy, the prognosis remains less than satisfactory. Increasing evidence demonstrates that the tumor immune microenvironment (TME) exerts a significant role in the evolution of HCC and has a non-negligible impact on the efficacy of HCC treatment. In the past two decades, the success in hematological malignancies made by chimeric antigen receptor-modified T (CAR-T) cell therapy leveraging it holds great promise for cancer treatment. However, in the face of a hostile TME in solid tumors like HCC, the efficacy of CAR-T cells will be greatly compromised. Here, we provide an overview of TME features in HCC, discuss recent advances and challenges of CAR-T immunotherapy in HCC.
Collapse
Affiliation(s)
- Zhang Guizhen
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Presion Medicine Cencter Gene Hospital of Henan Province, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ji Guanchang
- Department of Urology People’s Hospital of Puyang, Puyang, China
| | - Liu Liwen
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Presion Medicine Cencter Gene Hospital of Henan Province, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wang Huifen
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Presion Medicine Cencter Gene Hospital of Henan Province, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ren Zhigang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sun Ranran
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Zujiang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Presion Medicine Cencter Gene Hospital of Henan Province, Zhengzhou, China
| |
Collapse
|
49
|
Han JM, Jung HJ. Cyclophilin A/CD147 Interaction: A Promising Target for Anticancer Therapy. Int J Mol Sci 2022; 23:ijms23169341. [PMID: 36012604 PMCID: PMC9408992 DOI: 10.3390/ijms23169341] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Cyclophilin A (CypA), which has peptidyl-prolyl cis-trans isomerase (PPIase) activity, regulates multiple functions of cells by binding to its extracellular receptor CD147. The CypA/CD147 interaction plays a crucial role in the progression of several diseases, including inflammatory diseases, coronavirus infection, and cancer, by activating CD147-mediated intracellular downstream signaling pathways. Many studies have identified CypA and CD147 as potential therapeutic targets for cancer. Their overexpression promotes growth, metastasis, therapeutic resistance, and the stem-like properties of cancer cells and is related to the poor prognosis of patients with cancer. This review aims to understand the biology and interaction of CypA and CD147 and to review the roles of the CypA/CD147 interaction in cancer pathology and the therapeutic potential of targeting the CypA/CD147 axis. To validate the clinical significance of the CypA/CD147 interaction, we analyzed the expression levels of PPIA and BSG genes encoding CypA and CD147, respectively, in a wide range of tumor types using The Cancer Genome Atlas (TCGA) database. We observed a significant association between PPIA/BSG overexpression and poor prognosis, such as a low survival rate and high cancer stage, in several tumor types. Furthermore, the expression of PPIA and BSG was positively correlated in many cancers. Therefore, this review supports the hypothesis that targeting the CypA/CD147 interaction may improve treatment outcomes for patients with cancer.
Collapse
Affiliation(s)
- Jang Mi Han
- Department of Life Science and Biochemical Engineering, Graduate School, Sun Moon University, Asan 31460, Korea
| | - Hye Jin Jung
- Department of Life Science and Biochemical Engineering, Graduate School, Sun Moon University, Asan 31460, Korea
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan 31460, Korea
- Genome-Based BioIT Convergence Institute, Sun Moon University, Asan 31460, Korea
- Correspondence: ; Tel.: +82-41-530-2354; Fax: +82-41-530-2939
| |
Collapse
|
50
|
Gonçalves E, Poulos RC, Cai Z, Barthorpe S, Manda SS, Lucas N, Beck A, Bucio-Noble D, Dausmann M, Hall C, Hecker M, Koh J, Lightfoot H, Mahboob S, Mali I, Morris J, Richardson L, Seneviratne AJ, Shepherd R, Sykes E, Thomas F, Valentini S, Williams SG, Wu Y, Xavier D, MacKenzie KL, Hains PG, Tully B, Robinson PJ, Zhong Q, Garnett MJ, Reddel RR. Pan-cancer proteomic map of 949 human cell lines. Cancer Cell 2022; 40:835-849.e8. [PMID: 35839778 PMCID: PMC9387775 DOI: 10.1016/j.ccell.2022.06.010] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/29/2022] [Accepted: 06/21/2022] [Indexed: 12/12/2022]
Abstract
The proteome provides unique insights into disease biology beyond the genome and transcriptome. A lack of large proteomic datasets has restricted the identification of new cancer biomarkers. Here, proteomes of 949 cancer cell lines across 28 tissue types are analyzed by mass spectrometry. Deploying a workflow to quantify 8,498 proteins, these data capture evidence of cell-type and post-transcriptional modifications. Integrating multi-omics, drug response, and CRISPR-Cas9 gene essentiality screens with a deep learning-based pipeline reveals thousands of protein biomarkers of cancer vulnerabilities that are not significant at the transcript level. The power of the proteome to predict drug response is very similar to that of the transcriptome. Further, random downsampling to only 1,500 proteins has limited impact on predictive power, consistent with protein networks being highly connected and co-regulated. This pan-cancer proteomic map (ProCan-DepMapSanger) is a comprehensive resource available at https://cellmodelpassports.sanger.ac.uk.
Collapse
Affiliation(s)
- Emanuel Gonçalves
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK; Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisboa, Portugal; INESC-ID, 1000-029 Lisboa, Portugal
| | - Rebecca C Poulos
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Zhaoxiang Cai
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Syd Barthorpe
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Srikanth S Manda
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Natasha Lucas
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Alexandra Beck
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Daniel Bucio-Noble
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Michael Dausmann
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Caitlin Hall
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Michael Hecker
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Jennifer Koh
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Howard Lightfoot
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Sadia Mahboob
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Iman Mali
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - James Morris
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Laura Richardson
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Akila J Seneviratne
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Rebecca Shepherd
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Erin Sykes
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Frances Thomas
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Sara Valentini
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Steven G Williams
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Yangxiu Wu
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Dylan Xavier
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Karen L MacKenzie
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Peter G Hains
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Brett Tully
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Phillip J Robinson
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia.
| | - Qing Zhong
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia.
| | - Mathew J Garnett
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK.
| | - Roger R Reddel
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia.
| |
Collapse
|