1
|
Furrer R, Handschin C. Biomarkers of aging: from molecules and surrogates to physiology and function. Physiol Rev 2025; 105:1609-1694. [PMID: 40111763 DOI: 10.1152/physrev.00045.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/10/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025] Open
Abstract
Many countries face an unprecedented challenge in aging demographics. This has led to an exponential growth in research on aging, which, coupled to a massive financial influx of funding in the private and public sectors, has resulted in seminal insights into the underpinnings of this biological process. However, critical validation in humans has been hampered by the limited translatability of results obtained in model organisms, additionally confined by the need for extremely time-consuming clinical studies in the ostensible absence of robust biomarkers that would allow monitoring in shorter time frames. In the future, molecular parameters might hold great promise in this regard. In contrast, biomarkers centered on function, resilience, and frailty are available at the present time, with proven predictive value for morbidity and mortality. In this review, the current knowledge of molecular and physiological aspects of human aging, potential antiaging strategies, and the basis, evidence, and potential application of physiological biomarkers in human aging are discussed.
Collapse
|
2
|
Gao L, Liu J, Li Y, Yang J, Cai J, Wang L, Ye Z, Tong S, Deng G, Chen Q, Cai Q. TMBIM1 promotes epithelial mesenchymal transition by accelerating autophagic degradation of E-cadherin in glioblastoma. Sci Rep 2025; 15:17488. [PMID: 40394049 PMCID: PMC12092792 DOI: 10.1038/s41598-025-01699-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 05/07/2025] [Indexed: 05/22/2025] Open
Abstract
Glioblastoma (GBM; WHO grade IV) is well known for its highly aggressive and recurrent nature and accounts for approximately 50% of all gliomas. Dysregulation of epithelial-mesenchymal transition (EMT) can lead to malignant progression of GBM. Therefore, it is an urgent need to delineate the mechanisms by which molecular drivers affect EMT in GBM. We found for the first time that transmembrane BAX inhibitor motif-containing 1 (TMBIM1) was overexpressed in GBM tissues compared with nontumor brain tissues and that its expression level was correlated with the degree of malignancy of glioma. Patients with high TMBIM1 expression had shorter overall survival times than those with low TMBIM1 expression. Importantly, TMBIM1 induced EMT and autophagy, and inhibition of autophagy reversed TMBIM1-induced EMT in both in vitro and in vivo assays. TMBIM1 induced EMT by downregulating E-cadherin expression, which mediated by in-habitation of autophagic degradation of E-cadherin. Inhibition of TMBIM1 expression dramatically decreased the levels of p-AMPKα Thr172 and p-ULK1 Ser317 in U87 and U251 cells and increased the level of p-mTOR Ser2448. In addition, inhibition of AMPK (adenosine monophosphate-activated protein kinase)/mTOR (mammalian target of rapamycin)/ULK1 (unc-51-like autophagy-activating kinase 1) axis partially attenuated TMBIM1-induced autophagy. Our study provides a novel mechanism for the regulation of EMT in the process of GBM invasion and migration, indicating that suppression of TMBIM1 activity to attenuate autophagy may be a potential strategy for the treatment of GBM.
Collapse
Affiliation(s)
- Lun Gao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Junhui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yong Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ji'an Yang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jiayang Cai
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Long Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhang Ye
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Shi'ao Tong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Gang Deng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Qiang Cai
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
3
|
Senapati PK, Mahapatra KK, Singh A, Bhutia SK. mTOR inhibitors in targeting autophagy and autophagy-associated signaling for cancer cell death and therapy. Biochim Biophys Acta Rev Cancer 2025; 1880:189342. [PMID: 40339669 DOI: 10.1016/j.bbcan.2025.189342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/28/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025]
Abstract
The mechanistic target of rapamycin (mTOR) is a protein kinase that plays a central regulatory switch to control multifaceted cellular processes, including autophagy. As a nutrient sensor, mTOR inhibits autophagy by phosphorylating and inactivating key regulators, including ULK1, Beclin-1, UVRAG, and TFEB, preventing autophagy initiation and lysosomal biogenesis. It also suppresses autophagy-related protein expression, prioritizing growth over cellular recycling. Under nutrient deprivation, mTORC1 activity decreases, allowing autophagy to restore cellular homeostasis. Hyperautophagic activities lead to autophagic cell death; sometime after the point of no return, the cell goes for non-apoptotic, non-necrotic cell death i.e., Autosis. In cancer, the crosstalk between autophagy and mTOR is context-dependent, driving either cell survival or autophagy-dependent cell death. Using mTOR inhibitors, autophagic cell death can be induced to regulate cell growth, and proliferation is a potential therapeutic option for cancer treatment. mTOR inhibitors are broadly categorized into two types, i.e., natural and synthetic mTOR inhibitors. Although several studies in preclinical and clinical trials of various synthetic mTOR inhibitors are now in focus for cancer therapies, limited work has been done to explore autophagic cell death-inducing mTOR inhibitors. In addition, many natural mTOR inhibitors display better efficacy over synthetic mTOR inhibitors due to their lower toxicity, biocompatibility, and potential to overcome drug resistance in inducing autophagic cell death for cancer treatment.
Collapse
Affiliation(s)
- Prakash Kumar Senapati
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Kewal Kumar Mahapatra
- Department of Agriculture and Allied Sciences (Zoology), C. V. Raman Global University Bhubaneswar, Odisha-752054, India
| | - Amruta Singh
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Sujit Kumar Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India.
| |
Collapse
|
4
|
Singh M, Arora HL, Naik R, Joshi S, Sonawane K, Sharma NK, Sinha BK. Ferroptosis in Cancer: Mechanism and Therapeutic Potential. Int J Mol Sci 2025; 26:3852. [PMID: 40332483 PMCID: PMC12028135 DOI: 10.3390/ijms26083852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/11/2025] [Accepted: 04/15/2025] [Indexed: 05/08/2025] Open
Abstract
Cancer drug resistance occurs when cancer cells evade cell death following treatment with chemotherapy, radiation therapy, and targeted therapies. This resistance is often linked to the reprogramming of programmed cell death (PCD) pathways, allowing cancer cells to survive drug-induced stress. However, certain anticancer therapies, when combined with specific agents or inhibitors, can induce ferroptosis-a form of cell death driven by iron-dependent lipid peroxidation. Currently, extensive preclinical and clinical research is underway to investigate the molecular, cellular, and tissue-specific mechanisms underlying ferroptosis, with the goal of identifying strategies to overcome drug resistance in cancers unresponsive to conventional PCD pathways. By harnessing ferroptosis, cancer cells can be compelled to undergo lipid peroxidation-induced death, potentially improving therapeutic outcomes in patients with cancer. This short review aims to enhance the understanding of ferroptosis inducers in cancer therapy and stimulate further research into ferroptosis-based approaches for more effective clinical cancer treatment.
Collapse
Affiliation(s)
- Mansaa Singh
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, India; (M.S.); (H.L.A.); (R.N.); (S.J.); (K.S.)
| | - Hasmiq L. Arora
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, India; (M.S.); (H.L.A.); (R.N.); (S.J.); (K.S.)
| | - Rutuja Naik
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, India; (M.S.); (H.L.A.); (R.N.); (S.J.); (K.S.)
| | - Shravani Joshi
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, India; (M.S.); (H.L.A.); (R.N.); (S.J.); (K.S.)
| | - Kaveri Sonawane
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, India; (M.S.); (H.L.A.); (R.N.); (S.J.); (K.S.)
| | - Nilesh Kumar Sharma
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, India; (M.S.); (H.L.A.); (R.N.); (S.J.); (K.S.)
| | - Birandra K. Sinha
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| |
Collapse
|
5
|
Rab SO, Zwamel AH, Oghenemaro EF, Chandra M, Kaur I, Rani B, Abbot V, Kumar MR, Ullah MI, Kumar A. Cell death-associated lncRNAs in cancer immunopathogenesis: An exploration of molecular mechanisms and signaling pathways. Exp Cell Res 2025; 446:114439. [PMID: 39947388 DOI: 10.1016/j.yexcr.2025.114439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/07/2024] [Accepted: 02/10/2025] [Indexed: 02/19/2025]
Abstract
Cancer remains one of the foremost causes of mortality worldwide, highlighting the urgent need for novel therapeutic targets due to the insufficient efficacy and adverse side effects associated with existing cancer treatments. Long non-coding RNAs (lncRNAs), defined as RNA transcripts longer than 200 nucleotides, have emerged as pivotal regulators in the initiation and progression of various malignancies. In oncology, programmed cell death (PCD) serves as the primary mechanism for tumor cell elimination, comprising processes such as apoptosis, pyroptosis, autophagy, and ferroptosis. Recent studies have elucidated a substantial relationship between lncRNAs and these PCD pathways, indicating that lncRNAs can modulate the apoptotic and non-apoptotic death mechanisms. This regulation may influence not only the dynamics of cancer progression but also the therapeutic response to clinical interventions. This review delves into the intricate role of lncRNAs within the context of PCD in cancer, unveiling the underlying pathogenic mechanisms while proposing innovative strategies for cancer therapy. Additionally, it discusses the potential therapeutic implications of targeting lncRNAs in PCD and related signaling pathways, aiming to enhance treatment outcomes for patients facing cancer.
Collapse
Affiliation(s)
- Safia Obaidur Rab
- Central Labs, King Khalid University, AlQura'a, P.O. Box 960, Abha, Saudi Arabia; Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq; Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | - Enwa Felix Oghenemaro
- Delta State University, Department of Pharmaceutical Microbiology, Faculty of Pharmacy, PMB 1 Abraka, Delta State, Nigeria
| | - Muktesh Chandra
- Marwadi University Research Center, Department of Bioinformatics, Faculty of Engineering and Technology, Marwadi University, Rajkot, 360003, Gujarat, India
| | - Irwanjot Kaur
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India.
| | - Bindu Rani
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Vikrant Abbot
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - M Ravi Kumar
- Department of Basic Science & Humanities, Raghu Engineering College, Visakhapatnam, India
| | - Muhammad Ikram Ullah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Aljouf, Saudi Arabia
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named After the First President of Russia Boris Yeltsin, Ekaterinburg, 620002, Russia; Department of Mechanical Engineering, Karpagam Academy of Higher Education, Coimbatore, 641021, India
| |
Collapse
|
6
|
Li F, Yu Y, Jiang M, Zhang H. Targets for improving prostate tumor response to radiotherapy. Eur J Pharmacol 2025; 986:177149. [PMID: 39577551 DOI: 10.1016/j.ejphar.2024.177149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Prostate cancer is a prevalent malignancy that is frequently managed with radiotherapy. However, resistance to radiotherapy remains a significant challenge in controlling this disease. Early radiotherapy is employed for locally confined prostate cancer (PCa), while recurrent disease post-surgery and metastatic castration-resistant prostate cancer (mCRPC) are treated with late-stage radiotherapy, including radium-223. Combination therapies to integrate radiotherapy and chemotherapy have demonstrated enhanced treatment efficacy. Nonetheless, both modalities can induce severe local and systemic toxicities. Consequently, selectively sensitizing prostate tumors to radiotherapy could improve therapeutic outcomes while minimizing systemic side effects. The mechanisms underlying radioresistance in prostate cancer are multifaceted, including DNA damage repair (DDR) pathways, hypoxia, angiogenesis, androgen receptor (AR) signaling, and immune evasion. The advent of 177Lu-PSMA-617, which was approved in 2022, has shown promise in targeting prostate-specific membrane antigen (PSMA) in advanced prostate cancer. Experimental and clinical studies have yielded promising results in suppressing prostate tumors by targeting these pathways. This paper reviews potential targets for sensitizing prostate tumors to radiotherapy. We discuss cellular and molecular mechanisms contributing to therapy resistance and examine findings from experimental and clinical trials on promising targets and drugs that can be used in combination with radiotherapy.
Collapse
Affiliation(s)
- Fengguang Li
- Department of Urology, Yantaishan Hospital, Shandong, 264000, China
| | - Yizhi Yu
- Department of Urology, Yantaishan Hospital, Shandong, 264000, China
| | - Maozhu Jiang
- Department of Radiotherapy, Yantaishan Hospital, Shandong, 264000, China
| | - Haiying Zhang
- Department of Urology, Yantaishan Hospital, Shandong, 264000, China.
| |
Collapse
|
7
|
Manivannan HP, Veeraraghavan VP, Francis AP. Identification of Novel Marine Bioactive Compound as Potential Multiple Inhibitors in Triple-negative Breast Cancer - An in silico Approach. Curr Comput Aided Drug Des 2025; 21:375-402. [PMID: 38231067 DOI: 10.2174/0115734099287118240102112337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a highly aggressive form of breast cancer lacking specific receptors, with dysregulated and overactivated Hedgehog (Hh) and mTOR/PI3K/AKT signaling pathways as potential therapeutic targets. OBJECTIVE This study aimed to identify potential inhibitors among 53 alkaloids derived from 9 marine bryozoans using in silico approaches. It sought to analyze their impact on key signaling targets and their potential for future experimental validation. METHODS In this research, selected targets were evaluated for protein-protein interactions, coexpression survival, and expression profiles. The protein expression was validated through the Human Protein Atlas (HPA) database and druggability through DGIdb. Online web servers were employed to assess drug-likeness, physiochemical properties, pharmacokinetics, and toxicological characteristics of the compounds. Molecular docking and dynamic simulations were carried out for ligand-protein interactions. Common Pharmacophore features, bioavailability, bioactivity, and biological activity spectrum (BAS) were also analyzed. RESULTS Out of the 13 compounds studied, 10 displayed strong binding affinity with binding energies ranging from >-6.5 to <-8 Kcal/mol across all targets. Molecular dynamics simulations provided insights into Amathamide E's stability and conformational changes. Pharmacophore modeling revealed common features in 14 compounds potentially responsible for their biological activity. CONCLUSION Our findings indicate the potential of marine-derived compounds as TNBC inhibitors. Further in vitro and in vivo validation is necessary to establish their effectiveness and explore their role as novel anti-TNBC agents.
Collapse
Affiliation(s)
- Hema Priya Manivannan
- Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India
| | - Arul Prakash Francis
- Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India
| |
Collapse
|
8
|
Carlos JAEG, Lima K, Rego EM, Costa-Lotufo LV, Machado-Neto JA. The survivin/XIAP suppressant YM155 impairs clonal growth and induces apoptosis in JAK2 V617F cells. Hematol Transfus Cell Ther 2024; 46 Suppl 6:S217-S227. [PMID: 39261151 PMCID: PMC11726093 DOI: 10.1016/j.htct.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/25/2024] [Accepted: 05/20/2024] [Indexed: 09/13/2024] Open
Abstract
The central role of the control of apoptosis in the pathophysiology of Philadelphia chromosome-negative myeloproliferative neoplasms has recently been reinforced in genetic and pharmacological studies. The inhibitor of apoptosis protein family has eight members and plays an important role in apoptosis, with the most studied being survivin (BIRC5) and X-linked inhibitor of apoptosis (XIAP). YM155 is a small molecule with antineoplastic potential that has been described as a suppressant of survivin and XIAP. In the present study, BIRC5 expression was significantly increased in primary myelofibrosis patients compared to healthy donors. On the other hand, XIAP expression was reduced in myeloproliferative neoplasms patients. In JAK2V617F cells, YM155 reduces cell viability and autonomous clonal growth and induces apoptosis, cell cycle arrest, and autophagy. HEL cells that show greater malignancy are more sensitive to the drug than SET2 cells. In the molecular scenario, YM155 modulates apoptosis-, cell cycle-, DNA damage- and autophagy-related genes. Protein expression analysis corroborates the observed cellular phenotype and exploratory gene expression findings. In summary, our results indicate that survivin/BIRC5 and XIAP are differently expressed in myeloproliferative neoplasms and YM155 has multiple antineoplastic effects on JAK2V617F cells suggesting that inhibitor of apoptosis proteins may be a target for pharmacological interventions in the treatment of these diseases.
Collapse
Affiliation(s)
| | - Keli Lima
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Department of Internal Medicine, Hematology Division, Medical School, University of São Paulo, São Paulo, Brazil
| | - Eduardo Magalhães Rego
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Department of Internal Medicine, Hematology Division, Medical School, University of São Paulo, São Paulo, Brazil
| | - Leticia Veras Costa-Lotufo
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
9
|
Wu C, Jiang Y, Zhou Z, Zhang Y, Zhou Y, Bai S, Li J, Wu F, Wang J, Lyu Y. Selenized Yeast Protects Against Cadmium-Induced Follicular Atresia in Laying Hens by Reducing Autophagy in Granulosa Cells. Curr Issues Mol Biol 2024; 46:13119-13130. [PMID: 39590376 PMCID: PMC11592890 DOI: 10.3390/cimb46110782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Cadmium (Cd) exposure can induce follicular atresia and laying performance reduction in hens, which is linked to autophagy within the granulosa cells. Selenium (Se) can influence autophagy and counteract Cd toxicity. This study aimed to investigate the protective effect of Se on Cd-induced follicular atresia in laying hens. Sixty-four laying hens were randomly allocated into 4 treatments: control group: basal diet; Se group: basal diet + 0.4 mg/kg Se from selenized yeast; Cd group: basal diet + 25 mg/kg Cd from CdCl2; and Cd+Se group: basal diet + 25 mg/kg Cd + 0.4 mg/kg Se. Compared to the Cd group, Se supplementation alleviated the ovarian pathological changes and oxidative stress in the follicles, serum, liver, and ovary, increased daily laying production, ovarian weight and F5-F1 follicle amounts, serum levels of progesterone and oestradiol, and up-regulated mTOR expression (p < 0.05), while decreasing the count of autophagic vacuoles, ovarian atresia follicle numbers, and Cd deposition, and down-regulated expression levels of autophagy-related mRNAs, including ATG5, LC3-I, and LC3-II, Beclin1, and Dynein in the follicles (p < 0.05). In conclusion, 0.4 mg/kg Se supplementation protected against Cd-induced laying performance reduction and follicular atresia, which were achieved via decreasing oxidative stress and inhibiting mTOR pathways of autophagy.
Collapse
Affiliation(s)
- Caimei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.W.)
- Key Laboratory of Animal Disease-Resistance Nutrition, Sichuan Province, Ministry of Education, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
| | - Yuxuan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.W.)
- Key Laboratory of Animal Disease-Resistance Nutrition, Sichuan Province, Ministry of Education, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
| | - Ziyun Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.W.)
- Key Laboratory of Animal Disease-Resistance Nutrition, Sichuan Province, Ministry of Education, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
| | - Yuwei Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.W.)
- Key Laboratory of Animal Disease-Resistance Nutrition, Sichuan Province, Ministry of Education, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
| | - Yixuan Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.W.)
- Key Laboratory of Animal Disease-Resistance Nutrition, Sichuan Province, Ministry of Education, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
| | - Shiping Bai
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.W.)
- Key Laboratory of Animal Disease-Resistance Nutrition, Sichuan Province, Ministry of Education, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
| | - Jian Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.W.)
- Key Laboratory of Animal Disease-Resistance Nutrition, Sichuan Province, Ministry of Education, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
| | - Fali Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.W.)
- Key Laboratory of Animal Disease-Resistance Nutrition, Sichuan Province, Ministry of Education, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
| | - Jianping Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.W.)
- Key Laboratory of Animal Disease-Resistance Nutrition, Sichuan Province, Ministry of Education, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
| | - Yang Lyu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.W.)
- Key Laboratory of Animal Disease-Resistance Nutrition, Sichuan Province, Ministry of Education, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
| |
Collapse
|
10
|
Pizzimenti C, Fiorentino V, Ruggeri C, Franchina M, Ercoli A, Tuccari G, Ieni A. Autophagy Involvement in Non-Neoplastic and Neoplastic Endometrial Pathology: The State of the Art with a Focus on Carcinoma. Int J Mol Sci 2024; 25:12118. [PMID: 39596186 PMCID: PMC11594225 DOI: 10.3390/ijms252212118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Autophagy is a cellular process crucial for maintaining homeostasis by degrading damaged proteins and organelles. It is stimulated in response to stress, recycling nutrients and generating energy for cell survival. In normal endometrium, it suppresses tumorigenesis by preventing toxic accumulation and maintaining cellular homeostasis. It is involved in the cyclic remodelling of the endometrium during the menstrual cycle and contributes to decidualisation for successful pregnancy. Such a process is regulated by various signalling pathways, including PI3K/AKT/mTOR, AMPK/mTOR, and p53. Dysregulation of autophagy has been associated with benign conditions like endometriosis and endometrial hyperplasia but also with malignant neoplasms such as endometrial carcinoma. In fact, it has emerged as a crucial player in endometrial carcinoma biology, exhibiting a dual role in both tumour suppression and tumour promotion, providing nutrients during metabolic stress and allowing cancer cell survival. It also regulates cancer stem cells, metastasis and therapy resistance. Targeting autophagy is therefore a promising therapeutic strategy in endometrial carcinoma and potential for overcoming resistance to standard treatments. The aim of this review is to delve into the intricate details of autophagy's role in endometrial pathology, exploring its mechanisms, signalling pathways and potential therapeutic implications.
Collapse
Affiliation(s)
- Cristina Pizzimenti
- Section of Pathology, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (C.P.); (V.F.); (M.F.)
| | - Vincenzo Fiorentino
- Section of Pathology, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (C.P.); (V.F.); (M.F.)
| | - Chiara Ruggeri
- Section of Gynecology and Obstetrics, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (C.R.); (A.E.)
| | - Mariausilia Franchina
- Section of Pathology, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (C.P.); (V.F.); (M.F.)
| | - Alfredo Ercoli
- Section of Gynecology and Obstetrics, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (C.R.); (A.E.)
| | - Giovanni Tuccari
- Section of Pathology, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (C.P.); (V.F.); (M.F.)
| | - Antonio Ieni
- Section of Pathology, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (C.P.); (V.F.); (M.F.)
| |
Collapse
|
11
|
Bai SR, Zhao Q, Jia HJ, He F, Wang XB. Chloramphenicol alleviates 5-fluorouracil-induced cellular senescence through activation of autophagy. Can J Physiol Pharmacol 2024; 102:661-671. [PMID: 38776555 DOI: 10.1139/cjpp-2023-0432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
5-Fluorouracil (5-FU) is a first-line treatment for colorectal cancer, but side effects such as severe diarrhea are common in clinical use and have been linked to its induction of normal cell senescence. Chloramphenicol (CAP) is an antibiotic commonly used to treat typhoid or anaerobic infections, but its senescence-related aspects have not been thoroughly investigated. Here, we used 5-FU to induce senescence in human umbilical vein endothelial cells (HUVECs) and investigated the relationship between CAP and cellular senescence at the cellular level. In a model of cellular senescence induced by 5-FU treatment, we discovered that CAP treatment reversed the rise in the percentage of senescence-associated galactosidase (SA-β-gal)-positive cells and decreased the expression of senescence-associated proteins (p16), senescence-associated genes (p21), and senescence-associated secretory phenotypes (SASPs: IL-6, TNF-α). In addition, CAP subsequently restored the autophagic process inhibited by 5-FU and upregulated the levels of autophagy-related proteins. Mechanistically, we found that CAP restored autophagic flux by inhibiting the mTOR pathway, which in turn alleviated FU-induced cellular senescence. Our findings suggest that CAP may help prevent cellular senescence and restore autophagy, opening up new possibilities and approaches for the clinical management of colorectal cancer.
Collapse
Affiliation(s)
- Shi-Rui Bai
- School of Basic Medicine, Dali University, Dali, Yunnan 671000, China
| | - Qi Zhao
- School of Basic Medicine, Dali University, Dali, Yunnan 671000, China
| | - Hui-Jie Jia
- School of Basic Medicine, Dali University, Dali, Yunnan 671000, China
| | - Fei He
- School of Basic Medicine, Dali University, Dali, Yunnan 671000, China
| | - Xiao-Bo Wang
- School of Basic Medicine, Dali University, Dali, Yunnan 671000, China
| |
Collapse
|
12
|
Xiao X, Gao C. Saikosaponins Targeting Programmed Cell Death as Anticancer Agents: Mechanisms and Future Perspectives. Drug Des Devel Ther 2024; 18:3697-3714. [PMID: 39185081 PMCID: PMC11345020 DOI: 10.2147/dddt.s470455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
Saikosaponins (SS), which are major bioactive compounds in Radix Bupleuri, have long been used clinically for multicomponent, multitarget, and multipathway therapeutic strategies. Programmed cell death (PCD) induction is among the multiple mechanisms of SS and mediates the anticancer efficacy of this drug family. Although SS show promise for anticancer therapy, the available data to explain how SS mediate their key anticancer effects through PCD (apoptosis, autophagy, ferroptosis, and pyroptosis) remain limited and piecemeal. This review offers an extensive analysis of the key pathways and mechanisms involved in PCD and explores the importance of SS in cancer. We believe that high-quality clinical trials and a deeper understanding of the pharmacological targets involved in the signalling cascades that govern tumour initiation and progression are needed to facilitate the development of innovative SS-based treatments. Elucidating the specific anticancer pathways activated by SS and further clarifying how comprehensive therapies lead to cross-link among the different types of cell death will inspire the clinical translation of SS as cancer treatments.
Collapse
Affiliation(s)
- Xiao Xiao
- Department of Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, People’s Republic of China
| | - Chunfang Gao
- Department of Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, People’s Republic of China
| |
Collapse
|
13
|
Izquierdo-Bermejo S, Chamorro B, Martín-de-Saavedra MD, Lobete M, López-Muñoz F, Marco-Contelles J, Oset-Gasque MJ. In Vitro Modulation of Autophagy by New Antioxidant Nitrones as a Potential Therapeutic Approach for the Treatment of Ischemic Stroke. Antioxidants (Basel) 2024; 13:946. [PMID: 39199193 PMCID: PMC11351736 DOI: 10.3390/antiox13080946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024] Open
Abstract
Stroke is a leading cause of death worldwide, yet current therapeutic strategies remain limited. Among the neuropathological events underlying this disease are multiple cell death signaling cascades, including autophagy. Recent interest has focused on developing agents that target molecules involved in autophagy to modulate this process under pathological conditions. This study aimed to analyze the role of autophagy in cell death induced by an in vitro ischemia-reperfusion (IR) model and to determine whether nitrones, known for their neuroprotective and antioxidant effects, could modulate this process. We focused on key proteins involved in different phases of autophagy: HIF-1α, BNIP3, and BECN1 for induction and nucleation, LC3 for elongation, and p62 for degradation. Our findings confirmed that the IR model promotes autophagy, initially via HIF-1α activation. Additionally, the neuroprotective effect of three of the selected synthetic nitrones (quinolylnitrones QN6 and QN23, and homo-bis-nitrone HBN6) partially derives from their antiautophagic properties, demonstrated by a downregulation of the expression of molecular markers involved in various phases of autophagy. In contrast, the neuroprotective power of cholesteronitrone ChN2 seems to derive from its promoting effects on the initial phases of autophagy, which could potentially help inhibit other forms of cell death. These results underscore the importance of autophagy modulation in neuroprotection, highlighting the potential of inhibiting prodeath autophagy and promoting prosurvival autophagy as promising therapeutic approaches in treating ischemic stroke clinically.
Collapse
Affiliation(s)
- Sara Izquierdo-Bermejo
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain; (S.I.-B.); (B.C.); (M.D.M.-d.-S.); (M.L.)
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040 Madrid, Spain
- Faculty of Health Sciences—HM Hospitals, Camilo José Cela University, Villafranca del Castillo, 28692 Madrid, Spain;
| | - Beatriz Chamorro
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain; (S.I.-B.); (B.C.); (M.D.M.-d.-S.); (M.L.)
- Faculty of Health Sciences—HM Hospitals, Camilo José Cela University, Villafranca del Castillo, 28692 Madrid, Spain;
| | - María Dolores Martín-de-Saavedra
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain; (S.I.-B.); (B.C.); (M.D.M.-d.-S.); (M.L.)
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040 Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, Complutense University of Madrid, Ciudad Universitaria, 28040 Madrid, Spain
| | - Miguel Lobete
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain; (S.I.-B.); (B.C.); (M.D.M.-d.-S.); (M.L.)
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040 Madrid, Spain
| | - Francisco López-Muñoz
- Faculty of Health Sciences—HM Hospitals, Camilo José Cela University, Villafranca del Castillo, 28692 Madrid, Spain;
- HM Hospitals Health Research Institute, 28015 Madrid, Spain
- Neuropsychopharmacology Unit, “Hospital 12 de Octubre” Research Institute, 28041 Madrid, Spain
| | - José Marco-Contelles
- Laboratory of Medicinal Chemistry, Institute of Organic Chemistry (CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain;
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
| | - María Jesús Oset-Gasque
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain; (S.I.-B.); (B.C.); (M.D.M.-d.-S.); (M.L.)
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040 Madrid, Spain
- Instituto Universitario de Investigación en Neuroquímica, Complutense University of Madrid, Ciudad Universitaria, 28040 Madrid, Spain
| |
Collapse
|
14
|
El Mahi Y, Nizami ZN, Wali AF, Al Neyadi A, Magramane M, Al Azzani M, Arafat K, Attoub S, Eid AH, Iratni R. Rhus coriaria induces autophagic and apoptotic cell death in pancreatic cancer cells. Front Pharmacol 2024; 15:1412565. [PMID: 39139643 PMCID: PMC11319293 DOI: 10.3389/fphar.2024.1412565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/10/2024] [Indexed: 08/15/2024] Open
Abstract
Background:Pancreatic cancer is a leading cause of cancer-related mortality worldwide with increasing global incidence. We previously reported the anticancer effect of Rhus coriaria ethanolic extract (RCE) in triple negative breast and colon cancer cells. Herein, we investigated the anticancer effect of RCE on human pancreatic cancer cells. Methods: Cell viability was measured using Cell Titer-Glo and staining of viable and dead cells based on differential permeability to two DNA binding dyes. Cell cycle distribution and annexin V staining was carried out in Muse cell analyzer. Protein level was determined by Western blot. Tumor growth was assessed by in ovo chick embryo chorioallantoic membrane assay. Results: We found that RCE significantly inhibited the viability and colony growth of pancreatic cancer cells (Panc-1, Mia-PaCa-2, S2-013, AsPC-1). The antiproliferative effects of RCE in pancreatic cancer cells (Panc-1 and Mia-PaCa-2) were mediated through induction of G1 cell cycle arrest, Beclin-1-independent autophagy, and apoptosis. RCE activated both the extrinsic and intrinsic pathways of apoptosis and regulated the Bax/Bcl-2 apoptotic switch. Mechanistically, we found that RCE inhibited the AKT/mTOR pathway, downstream of which, inactivation of the cell cycle regulator p70S6K and downregulation of the antiapoptotic protein survivin was observed. Additionally, we found that RCE-induced autophagy preceded apoptosis. Further, we confirmed the anticancer effect of RCE in a chick embryo xenograft model and found that RCE inhibited the growth of pancreatic cancer xenografts without affecting embryo survival. Conclusion: Collectively, our findings demonstrate that Rhus coriaria exerts potent anti-pancreatic cancer activity though cell cycle impairment, autophagy, and apoptosis, and is hence a promising source of anticancer phytochemicals.
Collapse
Affiliation(s)
- Yassine El Mahi
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Zohra Nausheen Nizami
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Adil Farooq Wali
- Department of Pharmaceutical Chemistry, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Aysha Al Neyadi
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohamed Magramane
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mazoun Al Azzani
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Kholoud Arafat
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Samir Attoub
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Rabah Iratni
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
15
|
Liu XY, Zhang W, Ma BF, Sun MM, Shang QH. Advances in Research on the Effectiveness and Mechanism of Active Ingredients from Traditional Chinese Medicine in Regulating Hepatic Stellate Cells Autophagy Against Hepatic Fibrosis. Drug Des Devel Ther 2024; 18:2715-2727. [PMID: 38974122 PMCID: PMC11227309 DOI: 10.2147/dddt.s467480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
Hepatic fibrosis (HF) is a pathological process of structural and functional impairment of the liver and is a key component in the progression of chronic liver disease. There are no specific anti-hepatic fibrosis (anti-HF) drugs, and HF can only be improved or prevented by alleviating the cause. Autophagy of hepatic stellate cells (HSCs) is closely related to the development of HF. In recent years, traditional Chinese medicine (TCM) has achieved good therapeutic effects in the prevention and treatment of HF. Several active ingredients from TCM (AITCM) can regulate autophagy in HSCs to exert anti-HF effects through different pathways, but relevant reviews are lacking. This paper reviewed the research progress of AITCM regulating HSCs autophagy against HF, and also discussed the relationship between HSCs autophagy and HF, pointing out the problems and limitations of the current study, in order to provide references for the development of anti-HF drugs targeting HSCs autophagy in TCM. By reviewing the literature in PubMed, Web of Science, Embase, CNKI and other databases, we found that the relationship between autophagy of HSCs and HF is currently controversial. HSCs autophagy may promote HF by consuming lipid droplets (LDs) to provide energy for their activation. However, in contrast, inducing autophagy in HSCs can exert the anti-HF effect by stimulating their apoptosis or senescence, reducing type I collagen accumulation, inhibiting the extracellular vesicles release, degrading pro-fibrotic factors and other mechanisms. Some AITCM inhibit HSCs autophagy to resist HF, with the most promising direction being to target LDs. While, others induce HSCs autophagy to resist HF, with the most promising direction being to target HSCs apoptosis. Future research needs to focus on cell targeting research, autophagy targeting research and in vivo verification research, and to explore the reasons for the contradictory effects of HSCs autophagy on HF.
Collapse
Affiliation(s)
- Xin-Yu Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250000, People’s Republic of China
| | - Wei Zhang
- Department of Liver Disease, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, Shandong, 250000, People’s Republic of China
| | - Bao-Feng Ma
- The third department of encephalopathy, Jinan Integrated Traditional Chinese and Western Medicine Hospital, Jinan, Shandong, 271100, People’s Republic of China
| | - Mi-Mi Sun
- Diagnosis and Treatment Center for Liver Diseases, Tai’an 88 Hospital, Tai’an, Shandong, 271000, People’s Republic of China
| | - Qing-Hua Shang
- Department of Liver Disease, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, Shandong, 250000, People’s Republic of China
| |
Collapse
|
16
|
Chai Y, Chen F, Li H, Sun X, Yang P, Xi Y. Mechanism of salidroside regulating autophagy based on network pharmacology and molecular docking. Anticancer Drugs 2024; 35:525-534. [PMID: 38502854 DOI: 10.1097/cad.0000000000001601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Salidroside is a natural product of phenols with a wide range of pharmacological functions, but whether it plays a role in regulating autophagy is unclear. We systematically investigated the regulatory effect and molecular mechanism of salidroside on autophagy through network pharmacology, which provided a theoretical basis for subsequent experimental research. First, the target genes of salidroside were obtained using the Chinese Medicine System Pharmacology Database and Analysis Platform, and the target genes were converted into standardized gene names using the Uniprot website. At the same time, autophagy-related genes were collected from GeneCards, and preliminary handling of data to obtain intersecting genes. Then, the String website was used to construct a protein-protein interaction network, and to perform the Gene Ontology functional annotation and Kyoto Encyclopedia of Genes and Genomes pathway analysis. To observe the specific molecular mechanism by which salidroside regulates autophagy, we constructed a drug component-target genes-autophagy network. Finally, we performed molecular docking to verify the possible binding conformation between salidroside and the candidate target. By searching the database and analyzing the data, we found that 113 target genes in salidroside interact with autophagy. Salidroside regulate autophagy in relation to a number of important oncogenes and signaling pathways. Molecular docking confirmed that salidroside has high affinity with mTOR, SIRT1, and AKT1. Through network pharmacology combined with molecular docking-validated research methods, we revealed the underlying mechanism of salidroside regulation of autophagy. This study not only provides new systematic insights into the underlying mechanism of salidroside in autophagy, but also provides new ideas for network approaches for autophagy-related research.
Collapse
Affiliation(s)
- Yihong Chai
- The First Clinical Medical College of Lanzhou University
| | - Feng Chen
- The First Clinical Medical College of Lanzhou University
| | - Hongxing Li
- The First Clinical Medical College of Lanzhou University
- Department of Obstetrics and Gynaecology
| | - Xiaohong Sun
- The First Clinical Medical College of Lanzhou University
| | - Panpan Yang
- The First Clinical Medical College of Lanzhou University
- Department of Obstetrics and Gynaecology
| | - YaMing Xi
- The First Clinical Medical College of Lanzhou University
- Department of Hematology, First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
17
|
Hamwi MN, Elsayed E, Dabash H, Abuawad A, Aweer NA, Al Zeir F, Pedersen S, Al-Mansoori L, Burgon PG. MLIP and Its Potential Influence on Key Oncogenic Pathways. Cells 2024; 13:1109. [PMID: 38994962 PMCID: PMC11240681 DOI: 10.3390/cells13131109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/27/2024] [Accepted: 06/19/2024] [Indexed: 07/13/2024] Open
Abstract
Muscle-enriched A-type lamin-interacting protein (MLIP) is an emerging protein involved in cellular homeostasis and stress adaptation. Eukaryotic cells regulate various cellular processes, including metabolism, DNA repair, and cell cycle progression, to maintain cellular homeostasis. Disruptions in this homeostasis can lead to diseases such as cancer, characterized by uncontrolled cell growth and division. This review aims to explore for the first time the unique role MLIP may play in cancer development and progression, given its interactions with the PI3K/Akt/mTOR pathway, p53, MAPK9, and FOXO transcription factors, all critical regulators of cellular homeostasis and tumor suppression. We discuss the current understanding of MLIP's involvement in pro-survival pathways and its potential implications in cancer cells' metabolic remodeling and dysregulated homeostasis. Additionally, we examine the potential of MLIP as a novel therapeutic target for cancer treatment. This review aims to shed light on MLIP's potential impact on cancer biology and contribute to developing innovative therapeutic strategies.
Collapse
Affiliation(s)
- Mahmoud N. Hamwi
- College of Medicine, Qatar University, Doha P.O. Box 0974, Qatar; (M.N.H.); (E.E.); (N.A.A.); (F.A.Z.); (S.P.)
| | - Engy Elsayed
- College of Medicine, Qatar University, Doha P.O. Box 0974, Qatar; (M.N.H.); (E.E.); (N.A.A.); (F.A.Z.); (S.P.)
| | - Hanan Dabash
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar; (H.D.); (A.A.)
| | - Amani Abuawad
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar; (H.D.); (A.A.)
| | - Noor A. Aweer
- College of Medicine, Qatar University, Doha P.O. Box 0974, Qatar; (M.N.H.); (E.E.); (N.A.A.); (F.A.Z.); (S.P.)
| | - Faissal Al Zeir
- College of Medicine, Qatar University, Doha P.O. Box 0974, Qatar; (M.N.H.); (E.E.); (N.A.A.); (F.A.Z.); (S.P.)
| | - Shona Pedersen
- College of Medicine, Qatar University, Doha P.O. Box 0974, Qatar; (M.N.H.); (E.E.); (N.A.A.); (F.A.Z.); (S.P.)
| | - Layla Al-Mansoori
- Biomedical Research Centre, Qatar University, Doha P.O. Box 2713, Qatar
| | - Patrick G. Burgon
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar; (H.D.); (A.A.)
| |
Collapse
|
18
|
Hablase R, Kyrou I, Randeva H, Karteris E, Chatterjee J. The "Road" to Malignant Transformation from Endometriosis to Endometriosis-Associated Ovarian Cancers (EAOCs): An mTOR-Centred Review. Cancers (Basel) 2024; 16:2160. [PMID: 38893278 PMCID: PMC11172073 DOI: 10.3390/cancers16112160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/29/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024] Open
Abstract
Ovarian cancer is an umbrella term covering a number of distinct subtypes. Endometrioid and clear-cell ovarian carcinoma are endometriosis-associated ovarian cancers (EAOCs) frequently arising from ectopic endometrium in the ovary. The mechanistic target of rapamycin (mTOR) is a crucial regulator of cellular homeostasis and is dysregulated in both endometriosis and endometriosis-associated ovarian cancer, potentially favouring carcinogenesis across a spectrum from benign disease with cancer-like characteristics, through an atypical phase, to frank malignancy. In this review, we focus on mTOR dysregulation in endometriosis and EAOCs, investigating cancer driver gene mutations and their potential interaction with the mTOR pathway. Additionally, we explore the complex pathogenesis of transformation, considering environmental, hormonal, and epigenetic factors. We then discuss postmenopausal endometriosis pathogenesis and propensity for malignant transformation. Finally, we summarize the current advancements in mTOR-targeted therapeutics for endometriosis and EAOCs.
Collapse
Affiliation(s)
- Radwa Hablase
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB83PH, UK; (R.H.); (E.K.)
- Academic Department of Gynaecological Oncology, Royal Surrey NHS Foundation Trust Hospital, Guildford GU2 7XX, UK
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK (H.R.)
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Institute for Cardiometabolic Medicine, University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Centre for Sport, Exercise and Life Sciences, Research Institute for Health & Wellbeing, Coventry University, Coventry CV1 5FB, UK
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
- College of Health, Psychology and Social Care, University of Derby, Derby DE22 1GB, UK
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece
| | - Harpal Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK (H.R.)
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Institute for Cardiometabolic Medicine, University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Centre for Sport, Exercise and Life Sciences, Research Institute for Health & Wellbeing, Coventry University, Coventry CV1 5FB, UK
| | - Emmanouil Karteris
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB83PH, UK; (R.H.); (E.K.)
| | - Jayanta Chatterjee
- College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB83PH, UK; (R.H.); (E.K.)
- Academic Department of Gynaecological Oncology, Royal Surrey NHS Foundation Trust Hospital, Guildford GU2 7XX, UK
| |
Collapse
|
19
|
Mousavi SH, Jalili-Nik M, Soukhtanloo M, Soltani A, Abbasinezhad-Moud F, Mollazadeh H, Shakeri F, Bibak B, Sahebkar A, Afshari AR. Auraptene inhibits migration, invasion and metastatic behavior of human malignant glioblastoma cells: An in vitro and in silico study. AVICENNA JOURNAL OF PHYTOMEDICINE 2024; 14:349-364. [PMID: 39086858 PMCID: PMC11287035 DOI: 10.22038/ajp.2023.23586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/30/2023] [Indexed: 08/02/2024]
Abstract
Objective The present work examined the anti-metastatic effects of auraptene and their underlying mechanisms of action in U87 Glioblastoma multiforme (GBM) cells. Materials and Methods To test the hypothesis, cell culture, Matrigel invasion assay, scratch wound healing assay, gelatin zymography assay, qRT-PCR, and western blot experiments were conducted. Results At sublethal concentrations of 12.5 and 25 µg/ml, auraptene exhibited a significant reduction in cell invasion and migration of U87 cells, as assessed using scratch wound healing and Transwell tests, respectively. The qRT-PCR and zymography experiments demonstrated a significant decrease in both mRNA expression and activities of MMP-2 and MMP-9 following auraptene treatment. Western blot analysis also showed that MMP-2 protein level and phosphorylation of metastasis-related proteins (p-JNK and p-mTOR) decreased in auraptene-treated cells. Molecular docking studies consistently demonstrated that auraptene exhibits a significant affinity towards MMP-2/-9, the ATP binding site of mTOR and JNK1/2/3. Conclusion Auraptene inhibited the migration and invasion of GBM cells. This inhibitory effect was induced by modulating specific mechanisms, including suppressing MMPs, JNK, and mTOR activities.
Collapse
Affiliation(s)
- Seyed Hadi Mousavi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Jalili-Nik
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Soukhtanloo
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Soltani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzaneh Abbasinezhad-Moud
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Farzaneh Shakeri
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Bahram Bibak
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir R. Afshari
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| |
Collapse
|
20
|
Zoi V, Kyritsis AP, Galani V, Lazari D, Sioka C, Voulgaris S, Alexiou GA. The Role of Curcumin in Cancer: A Focus on the PI3K/Akt Pathway. Cancers (Basel) 2024; 16:1554. [PMID: 38672636 PMCID: PMC11048628 DOI: 10.3390/cancers16081554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Cancer is a life-threatening disease and one of the leading causes of death worldwide. Despite significant advancements in therapeutic options, most available anti-cancer agents have limited efficacy. In this context, natural compounds with diverse chemical structures have been investigated for their multimodal anti-cancer properties. Curcumin is a polyphenol isolated from the rhizomes of Curcuma longa and has been widely studied for its anti-inflammatory, anti-oxidant, and anti-cancer effects. Curcumin acts on the regulation of different aspects of cancer development, including initiation, metastasis, angiogenesis, and progression. The phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT) pathway is a key target in cancer therapy, since it is implicated in initiation, proliferation, and cancer cell survival. Curcumin has been found to inhibit the PI3K/Akt pathway in tumor cells, primarily via the regulation of different key mediators, including growth factors, protein kinases, and cytokines. This review presents the therapeutic potential of curcumin in different malignancies, such as glioblastoma, prostate and breast cancer, and head and neck cancers, through the targeting of the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Vasiliki Zoi
- Neurosurgical Institute, University of Ioannina, 45500 Ioannina, Greece
| | | | - Vasiliki Galani
- Department of Anatomy Histology-Embryology, School of Medicine, University of Ioannina, 45500 Ioannina, Greece
| | - Diamanto Lazari
- Laboratory of Pharmacognosy, Faculty of Health Sciences, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Chrissa Sioka
- Neurosurgical Institute, University of Ioannina, 45500 Ioannina, Greece
| | - Spyridon Voulgaris
- Neurosurgical Institute, University of Ioannina, 45500 Ioannina, Greece
- Department of Neurosurgery, University of Ioannina, 45500 Ioannina, Greece
| | - Georgios A. Alexiou
- Neurosurgical Institute, University of Ioannina, 45500 Ioannina, Greece
- Department of Neurosurgery, University of Ioannina, 45500 Ioannina, Greece
| |
Collapse
|
21
|
Gheitasi H, Sabbaghian M, Fadaee M, Mohammadzadeh N, Shekarchi AA, Poortahmasebi V. The relationship between autophagy and respiratory viruses. Arch Microbiol 2024; 206:136. [PMID: 38436746 DOI: 10.1007/s00203-024-03838-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 03/05/2024]
Abstract
Respiratory viruses have caused severe global health problems and posed essential challenges to the medical community. In recent years, the role of autophagy as a critical process in cells in viral respiratory diseases has been noticed. One of the vital catabolic biological processes in the body is autophagy. Autophagy contributes to energy recovery by targeting and selectively directing foreign microorganisms, organelles, and senescent intracellular proteins to the lysosome for degradation and phagocytosis. Activation or suppression of autophagy is often initiated when foreign pathogenic organisms such as viruses infect cells. Because of its antiviral properties, several viruses may escape or resist this process by encoding viral proteins. Viruses can also use autophagy to enhance their replication or prolong the persistence of latent infections. Here, we provide an overview of autophagy and respiratory viruses such as coronavirus, rhinovirus, parainfluenza, influenza, adenovirus, and respiratory syncytial virus, and examine the interactions between them and the role of autophagy in the virus-host interaction process and the resulting virus replication strategy.
Collapse
Affiliation(s)
- Hamidreza Gheitasi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Sabbaghian
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Manouchehr Fadaee
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nader Mohammadzadeh
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Akbar Shekarchi
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahdat Poortahmasebi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Zhu La ALT, Li D, Cheng Z, Wen Q, Hu D, Jin X, Liu D, Feng Y, Guo Y, Cheng G, Hu Y. Enzymatically prepared neoagarooligosaccharides improve gut health and function through promoting the production of spermidine by Faecalibacterium in chickens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169057. [PMID: 38056640 DOI: 10.1016/j.scitotenv.2023.169057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Maintaining animal gut health through modulating the gut microbiota is a constant need when antibiotics are not used in animal feed during the food animal production process. Prebiotics is regarded as one of the most promising antibiotic alternatives for such purpose. As an attractive prebiotic, the role and mechanisms of neoagarooligosaccharides (NAOS) in promoting animal growth and gut health have not been elucidated. In this study, we first cloned and expressed marine bacterial β-agarase in yeast to optimize the NAOS preparation and then investigated the role and the underlying mechanisms of the prepared NAOS in improving chicken gut health and function. The marine bacterial β-agarase PDE13B was expressed in Pichia pastoris GS115 and generated even-numbered NAOS. Dietary the prepared NAOS promoted chicken growth and improved intestinal morphology, its barrier, and digestion capabilities, and absorption function. Metagenomic analysis indicated that NAOS modulated the chicken gut microbiota structure and function, and microbial interactions, and promoted the growth of spermidine-producing bacteria especially Faecalibacterium. Through integration of gut metagenome, gut content metabolome, and gut tissue transcriptome, we established connections among NAOS, gut microbes, spermidine, and chicken gut gene expression. The spermidine regulation of genes related to autophagy, immunity, and inflammation was further confirmed in chicken embryo intestinal epithelium cells. We also verified that NAOS can be utilized by Faecalibacterium prausnitzii to grow and produce spermidine in in vitro experiments. Collectively, we provide a systematic investigation of the role of NAOS in regulating gut health and demonstrate the microbial spermidine-mediated mechanism involved in prebiotic effects of NAOS, which lays foundation for future use of NAOS as a new antibiotic alternative in animal production.
Collapse
Affiliation(s)
- A La Teng Zhu La
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Depeng Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhiqian Cheng
- Huzhou Inspection & Quarantine Comprehensive Technology Center, Zhejiang 313000, China
| | - Qiu Wen
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Die Hu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaolu Jin
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Dan Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yuqing Feng
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Gong Cheng
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yongfei Hu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
23
|
Adelipour M, Naghashpour M, Roshanazadeh MR, Chenaneh H, Mohammadi A, Pourangi P, Miri SR, Zahedi A, Haghighatnezhad M, Golabi S. Evaluation of Beclin1 and mTOR genes and p62 protein expression in breast tumor tissues of Iranian patients. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2024; 13:11-19. [PMID: 38164366 PMCID: PMC10644314 DOI: 10.22099/mbrc.2023.47597.1837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Autophagy is a cellular process that plays a major role in the fate of tumor cells. Understanding the role of autophagy in cancer therapy is a major challenge, particularly for breast cancer as the sole top cause of mortality among women. In this study, we evaluated the gene expression of mTOR and Beclin1 and the levels of p62 protein, in breast tumors and compared them to a control condition. To explore the role of autophagy in breast cancer, we acquired tumor biopsies from 41 new cases of breast cancer patients. We extracted total RNA from each biopsy and used real-time PCR to quantify Beclin1 and mTOR-specific RNA expression. In addition, we evaluated the expression of the p62 protein in paraffin-embedded tumor tissue using the immunohistochemistry technique. The data revealed an upregulation of Beclin1 and a downregulation of mTOR in tumor tissues compared to the control condition. The correlation between p62 expression and Beclin1/mTOR showed a negative and positive correlation, respectively, confirming autophagy activation in the tumor tissues. However, there was no correlation between autophagy markers and tumor size, grade and stage. The findings revealed that autophagy activation was found in breast tumor tissues, suggesting that autophagy can be a target for breast cancer therapy.
Collapse
Affiliation(s)
- Maryam Adelipour
- Department of Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahshid Naghashpour
- Department of Nutrition, School of Medicine, Abadan University of Medical Science, Abadan, Iran
| | - Mohammad Reza Roshanazadeh
- Department of Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hadi Chenaneh
- Department of Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Asma Mohammadi
- Department of Biochemistry, School of Medicine, Abadan University of Medical Science, Abadan, Iran
| | - Pegah Pourangi
- Department of Biochemistry, School of Medicine, Abadan University of Medical Science, Abadan, Iran
| | - Seyed Rouhollah Miri
- Department of surgical oncology, Cancer institute, Tehran University of Medical Science
| | | | - Mahmood Haghighatnezhad
- Department of Biochemistry, School of Medicine, Abadan University of Medical Science, Abadan, Iran
| | - Sahar Golabi
- Department of Physiology, School of Medicine, Abadan University of Medical Science, Abadan, Iran
| |
Collapse
|
24
|
Mirabdali S, Ghafouri K, Farahmand Y, Gholizadeh N, Yazdani O, Esbati R, Hajiagha BS, Rahimi A. The role and function of autophagy through signaling and pathogenetic pathways and lncRNAs in ovarian cancer. Pathol Res Pract 2024; 253:154899. [PMID: 38061269 DOI: 10.1016/j.prp.2023.154899] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 01/24/2024]
Abstract
Lysosomal-driven autophagy is a tightly controlled cellular catabolic process that breaks down and recycles broken or superfluous cell parts. It is involved in several illnesses, including cancer, and is essential in preserving cellular homeostasis. Autophagy prevents DNA mutation and cancer development by actively eliminating pro-oxidative mitochondria and protein aggregates from healthy cells. Oncosuppressor and oncogene gene mutations cause dysregulation of autophagy. Increased autophagy may offer cancer cells a pro-survival advantage when oxygen and nutrients are scarce and resistance to chemotherapy and radiation. This finding justifies the use of autophagy inhibitors in addition to anti-neoplastic treatments. Excessive autophagy levels can potentially kill cells. The diagnosis and treatment of ovarian cancer present many difficulties due to its complexity and heterogeneity. Understanding the role of autophagy, a cellular process involved in the breakdown and recycling of cellular components, in ovarian cancer has garnered increasing attention in recent years. Of particular note is the increasing amount of data indicating a close relationship between autophagy and ovarian cancer. Autophagy either promotes or restricts tumor growth in ovarian cancer. Dysregulation of autophagy signaling pathways in ovarian cancers can affect the development, metastasis, and response to tumor treatment. The precise mechanism underlying autophagy concerning ovarian cancer remains unclear, as does the role autophagy plays in ovarian carcinoma. In this review, we tried to encapsulate and evaluate current findings in investigating autophagy in ovarian cancer.
Collapse
Affiliation(s)
- Seyedsaber Mirabdali
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kimia Ghafouri
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yalda Farahmand
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Gholizadeh
- Department of Dermatology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Omid Yazdani
- Department of Medicine, Shahid Beheshti University, Tehran, Iran
| | - Romina Esbati
- Department of Medicine, Shahid Beheshti University, Tehran, Iran
| | - Bahareh Salmanian Hajiagha
- Department of Cellular and Molecular Biology, Faculty of Basic Science, Tehran East Branch, Islamic Azad University, Tehran, Iran.
| | - Asiye Rahimi
- Faculty of Nursing and Midwifery, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
25
|
Khalil MI, Ali MM, Holail J, Houssein M. Growth or death? Control of cell destiny by mTOR and autophagy pathways. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 185:39-55. [PMID: 37944568 DOI: 10.1016/j.pbiomolbio.2023.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/08/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
One of the central regulators of cell growth, proliferation, and metabolism is the mammalian target of rapamycin, mTOR, which exists in two structurally and functionally different complexes: mTORC1 and mTORC2; unlike m TORC2, mTORC1 is activated in response to the sufficiency of nutrients and is inhibited by rapamycin. mTOR complexes have critical roles not only in protein synthesis, gene transcription regulation, proliferation, tumor metabolism, but also in the regulation of the programmed cell death mechanisms such as autophagy and apoptosis. Autophagy is a conserved catabolic mechanism in which damaged molecules are recycled in response to nutrient starvation. Emerging evidence indicates that the mTOR signaling pathway is frequently activated in tumors. In addition, dysregulation of autophagy was associated with the development of a variety of human diseases, such as cancer and aging. Since mTOR can inhibit the induction of the autophagic process from the early stages of autophagosome formation to the late stage of lysosome degradation, the use of mTOR inhibitors to regulate autophagy could be considered a potential therapeutic option. The present review sheds light on the mTOR and autophagy signaling pathways and the mechanisms of regulation of mTOR-autophagy.
Collapse
Affiliation(s)
- Mahmoud I Khalil
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, 11072809, Lebanon; Molecular Biology Unit, Department of Zoology, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.
| | - Mohamad M Ali
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-751 23, Uppsala, Sweden.
| | - Jasmine Holail
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom.
| | - Marwa Houssein
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, 11072809, Lebanon.
| |
Collapse
|
26
|
Jeon SJ, Choi EY, Han EJ, Lee SW, Moon JM, Jung SH, Jung JY. Piperlongumine induces apoptosis via the MAPK pathway and ERK‑mediated autophagy in human melanoma cells. Int J Mol Med 2023; 52:115. [PMID: 37830157 PMCID: PMC10599349 DOI: 10.3892/ijmm.2023.5318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023] Open
Abstract
Piperlongumine (PL) is an amide alkaloid with diverse pharmacological effects against cancer, bronchitis and asthma; however, research on its efficacy against melanoma is lacking. The present study investigated the anticancer effects of PL on A375SM and A375P human melanoma cells. PL decreased the survival rate of A375SM and A375P cells, as shown by MTT assay, increase of apoptotic cells by DAPI staining. And PL induced apoptosis by decreasing the expression of the anti‑apoptotic protein Bcl‑2 and increasing that of the pro‑apoptotic proteins cleaved‑PARP and Bax. PL also induced apoptosis in A375SM and A375P cells via the MAPK pathway, increasing expression of the MAPK pathway proteins, phosphorylated‑(p‑ERK), p‑JNK p‑p38. These proteins were confirmed by western blot. In addition, A375SM and A375P cells treated with PL showed an increased number of acidic vesicular organelles by acridine orange staining. Also, autophagy induced by the expression of 1A/1B‑light chain 3, Beclin 1and mTOR was investigated through western blot. When PL was applied following treatment with autophagy inhibitors 3‑methyladenine and hydroxychloroquine, autophagy exhibited a cytoprotective effect against apoptosis in MTT assay. Pretreatment of A375P cells with the ERK inhibitor PD98059 and the JNK inhibitor SP600125 followed by treatment with PL confirmed that apoptosis and autophagy were mediated via the MAPK/ERK pathway by western blot. In summary, the present study provided empirical evidence supporting the anticancer effects of PL on human melanoma cells and indicated the potential of PL as a treatment for melanoma.
Collapse
Affiliation(s)
- Su-Ji Jeon
- Department of Companion and Laboratory Animal Science, Kongju National University
| | - Eun-Young Choi
- Department of Companion and Laboratory Animal Science, Kongju National University
| | - Eun-Ji Han
- Department of Companion and Laboratory Animal Science, Kongju National University
| | - Sang-Woo Lee
- Department of Companion and Laboratory Animal Science, Kongju National University
| | - Jun-Mo Moon
- Department of Companion and Laboratory Animal Science, Kongju National University
| | - Soo-Hyun Jung
- Department of Companion and Laboratory Animal Science, Kongju National University
| | - Ji-Youn Jung
- Department of Companion and Laboratory Animal Science, Kongju National University
- Research Institute for Natural Products, Kongju National University
- Research Center of Crop Breeding for Omics and Artificial Intelligence, Kongju National University, Yesan-eup, Chungcheongnam-do 32439, Republic of Korea
| |
Collapse
|
27
|
Xiang H, Zhou M, Li Y, Zhou L, Wang R. Drug discovery by targeting the protein-protein interactions involved in autophagy. Acta Pharm Sin B 2023; 13:4373-4390. [PMID: 37969735 PMCID: PMC10638514 DOI: 10.1016/j.apsb.2023.07.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/31/2023] [Accepted: 07/10/2023] [Indexed: 11/17/2023] Open
Abstract
Autophagy is a cellular process in which proteins and organelles are engulfed in autophagosomal vesicles and transported to the lysosome/vacuole for degradation. Protein-protein interactions (PPIs) play a crucial role at many stages of autophagy, which present formidable but attainable targets for autophagy regulation. Moreover, selective regulation of PPIs tends to have a lower risk in causing undesired off-target effects in the context of a complicated biological network. Thus, small-molecule regulators, including peptides and peptidomimetics, targeting the critical PPIs involved in autophagy provide a new opportunity for innovative drug discovery. This article provides general background knowledge of the critical PPIs involved in autophagy and reviews a range of successful attempts on discovering regulators targeting those PPIs. Successful strategies and existing limitations in this field are also discussed.
Collapse
Affiliation(s)
- Honggang Xiang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Mi Zhou
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yan Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Lu Zhou
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Renxiao Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
28
|
Shakeri F, Mohamadynejad P, Moghanibashi M. Identification of autophagy and angiogenesis modulators in colorectal cancer based on bioinformatics analysis. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 43:340-355. [PMID: 37791824 DOI: 10.1080/15257770.2023.2259431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/11/2023] [Indexed: 10/05/2023]
Abstract
Colorectal cancer (CRC) is the third most common cancer and the fourth leading cause of cancer-related death worldwide. The purpose of this study was to discover novel molecular pathways and potential prognosis biomarkers. To achieve this, we acquired five microarray datasets from the Gene Expression Omnibus (GEO) database. We identified differentially expressed genes between CRC and adjacent normal tissue samples and further validated them using The Cancer Genome Atlas (TCGA) database. Using various analytical approaches, including the construction of a competing endogenous RNA (ceRNA) network, Gene Ontology term and Kyoto Encyclopedia of Genes and Genomes pathway analyses, as well as survival analysis, we identified key genes and pathways associated with the diagnosis and prognosis of CRC. We obtained a total of 185 differentially expressed genes, comprising 17 lncRNAs, 30 miRNAs, and 138 mRNAs. The ceRNA network consisted of 17 lncRNAs, 25 miRNAs, and 7 mRNAs. Among the 7 mRNAs involved in the ceRNA network, SLC7A5 and KRT80 were found to be upregulated, while ADIPOQ, CCBE1, KCNB1, CADM2, and CHRDL1 were downregulated in CRC. Further analysis revealed that ADIPOQ and SLC7A5 are involved in the AMPK and mTOR signaling pathway, respectively. In addition, survival analysis demonstrated a statistically significant relationship between ADIPOQ, SLC7A5, and overall survival rates in CRC patients. In conclusion, our findings suggest that downregulation of ADIPOQ and upregulation of SLC7A5 in tumor cells lead to increased mTORC1 activity, reduced autophagy, enhanced angiogenesis, and ultimately contribute to cancer progression and decreased survival in CRC patients.
Collapse
Affiliation(s)
- Fariba Shakeri
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Parisa Mohamadynejad
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mehdi Moghanibashi
- Department of Genetics, Faculty of Medicine, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| |
Collapse
|
29
|
Qiao D, Zhang T, Tang M. Autophagy regulation by inorganic, organic, and organic/inorganic hybrid nanoparticles: Organelle damage, regulation factors, and potential pathways. J Biochem Mol Toxicol 2023; 37:e23429. [PMID: 37409715 DOI: 10.1002/jbt.23429] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 03/30/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023]
Abstract
The rapid development of nanotechnology requires a more thorough understanding of the potential health effects caused by nanoparticles (NPs). As a programmed cell death, autophagy is one of the biological effects induced by NPs, which maintain intracellular homeostasis by degrading damaged organelles and removing aggregates of defective proteins through lysosomes. Currently, autophagy has been shown to be associated with the development of several diseases. A significant number of research have demonstrated that most NPs can regulate autophagy, and their regulation of autophagy is divided into induction and blockade. Studying the autophagy regulation by NPs will facilitate a more comprehensive understanding of the toxicity of NPs. In this review, we will illustrate the effects of different types of NPs on autophagy, including inorganic NPs, organic NPs, and organic/inorganic hybrid NPs. The potential mechanisms by which NPs regulate autophagy are highlighted, including organelle damage, oxidative stress, inducible factors, and multiple signaling pathways. In addition, we list the factors influencing NPs-regulated autophagy. This review may provide basic information for the safety assessment of NPs.
Collapse
Affiliation(s)
- Dong Qiao
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
30
|
Kawakita E, Yang F, Shi S, Takagaki Y, Koya D, Kanasaki K. Inhibition of Dipeptidyl Peptidase-4 Activates Autophagy to Promote Survival of Breast Cancer Cells via the mTOR/HIF-1α Pathway. Cancers (Basel) 2023; 15:4529. [PMID: 37760498 PMCID: PMC10526496 DOI: 10.3390/cancers15184529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/21/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Autophagy plays a complex role in breast cancer cell survival, metastasis, and chemotherapeutic resistance. Dipeptidyl peptidase (DPP)-4, a therapeutic target for type 2 diabetes mellitus, is also involved in autophagic flux. The potential influence of DPP-4 suppression on cancer biology remains unknown. Here, we report that DPP-4 deficiency promotes breast cancer cell survival via the induction of autophagy by the C-X-C motif chemokine 12 (CXCL12)/C-X-C receptor 4 (CXCR4)/mammalian target of rapamycin (mTOR)/hypoxia inducible factor (HIF)-1α axis. DPP-4 knockdown and DPP-4 inhibitor KR62436 (KR) treatment both increased the levels of LC3II and HIF-1α in cultured human breast and mouse mammary cancer cells. The KR-induced autophagic phenotype in cancer cells was inhibited by treatment with the CXCR4 inhibitor AMD3100 and rapamycin. HIF-1α knockdown also suppressed breast cancer autophagy induced by KR. The autophagy inhibitor 3-methyladenine significantly blocked the KR-mediated suppression of cleaved caspase-3 levels and apoptosis in breast cancer cell lines. Finally, we found that the metformin-induced apoptosis of DPP-4-deficient 4T1 mammary cancer cells was associated with the suppression of autophagy. Our findings identify a novel role for DPP-4 inhibition in the promotion of breast cancer survival by inducing CXCL12/CXCR4/mTOR/HIF-1α axis-dependent autophagy. Metformin is a potential drug that counteracts the breast cancer cell survival system.
Collapse
Affiliation(s)
- Emi Kawakita
- Department of Internal Medicine 1, Shimane University Faculty of Medicine, Izumo 693-8501, Shimane, Japan
- Department of Diabetology & Endocrinology, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan
| | - Fan Yang
- Department of Diabetology & Endocrinology, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan
- Department of Emergency Medicine, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Sen Shi
- Department of Diabetology & Endocrinology, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan
- Division of Vascular Surgery, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yuta Takagaki
- Department of Diabetology & Endocrinology, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan
| | - Daisuke Koya
- Department of Diabetology & Endocrinology, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan
| | - Keizo Kanasaki
- Department of Internal Medicine 1, Shimane University Faculty of Medicine, Izumo 693-8501, Shimane, Japan
- Department of Diabetology & Endocrinology, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan
| |
Collapse
|
31
|
Han EJ, Choi EY, Jeon SJ, Lee SW, Moon JM, Jung SH, Jung JY. Piperine Induces Apoptosis and Autophagy in HSC-3 Human Oral Cancer Cells by Regulating PI3K Signaling Pathway. Int J Mol Sci 2023; 24:13949. [PMID: 37762259 PMCID: PMC10530752 DOI: 10.3390/ijms241813949] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Currently, therapies for treating oral cancer have various side effects; therefore, research on treatment methods employing natural substances is being conducted. This study aimed to investigate piperine-induced apoptosis and autophagy in HSC-3 human oral cancer cells and their effects on tumor growth in vivo. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay demonstrated that piperine reduced the viability of HSC-3 cells and 4',6-diamidino-2-phenylindole staining, annexin-V/propidium iodide staining, and analysis of apoptosis-related protein expression confirmed that piperine induces apoptosis in HSC-3 cells. Additionally, piperine-induced autophagy was confirmed by the observation of increased acidic vesicular organelles and autophagy marker proteins, demonstrating that autophagy in HSC-3 cells induces apoptosis. Mechanistically, piperine induced apoptosis and autophagy by inhibiting the phosphatidylinositol-3-kinase (PI3K)/protein kinase B/mammalian target of rapamycin pathway in HSC-3 cells. We also confirmed that piperine inhibits oral cancer tumor growth in vivo via antitumor effects related to apoptosis and PI3K signaling pathway inhibition. Therefore, we suggest that piperine can be considered a natural anticancer agent for human oral cancer.
Collapse
Affiliation(s)
- Eun-Ji Han
- Laboratory Animal Science, Department of Companion, Kongju National University, Yesan-gun 32439, Republic of Korea; (E.-J.H.); (E.-Y.C.); (S.-J.J.); (S.-W.L.); (J.-M.M.); (S.-H.J.)
| | - Eun-Young Choi
- Laboratory Animal Science, Department of Companion, Kongju National University, Yesan-gun 32439, Republic of Korea; (E.-J.H.); (E.-Y.C.); (S.-J.J.); (S.-W.L.); (J.-M.M.); (S.-H.J.)
| | - Su-Ji Jeon
- Laboratory Animal Science, Department of Companion, Kongju National University, Yesan-gun 32439, Republic of Korea; (E.-J.H.); (E.-Y.C.); (S.-J.J.); (S.-W.L.); (J.-M.M.); (S.-H.J.)
| | - Sang-Woo Lee
- Laboratory Animal Science, Department of Companion, Kongju National University, Yesan-gun 32439, Republic of Korea; (E.-J.H.); (E.-Y.C.); (S.-J.J.); (S.-W.L.); (J.-M.M.); (S.-H.J.)
| | - Jun-Mo Moon
- Laboratory Animal Science, Department of Companion, Kongju National University, Yesan-gun 32439, Republic of Korea; (E.-J.H.); (E.-Y.C.); (S.-J.J.); (S.-W.L.); (J.-M.M.); (S.-H.J.)
| | - Soo-Hyun Jung
- Laboratory Animal Science, Department of Companion, Kongju National University, Yesan-gun 32439, Republic of Korea; (E.-J.H.); (E.-Y.C.); (S.-J.J.); (S.-W.L.); (J.-M.M.); (S.-H.J.)
| | - Ji-Youn Jung
- Laboratory Animal Science, Department of Companion, Kongju National University, Yesan-gun 32439, Republic of Korea; (E.-J.H.); (E.-Y.C.); (S.-J.J.); (S.-W.L.); (J.-M.M.); (S.-H.J.)
- Research Institute for Natural Products, Kongju National University, Yesan-gun 32439, Republic of Korea
| |
Collapse
|
32
|
Ciołczyk-Wierzbicka D, Krawczyk A, Zarzycka M, Zemanek G, Wierzbicki K. Three generations of mTOR kinase inhibitors in the activation of the apoptosis process in melanoma cells. J Cell Commun Signal 2023; 17:975-989. [PMID: 37097377 PMCID: PMC10409930 DOI: 10.1007/s12079-023-00748-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 04/10/2023] [Indexed: 04/26/2023] Open
Abstract
Many signaling pathways are involved in the mammalian target of rapamycin (mTOR), and this serine/threonine kinase regulates the most important cellular processes such as cell proliferation, autophagy, and apoptosis. The subject of this research was the effect of protein kinase inhibitors involved in the AKT, MEK, and mTOR kinase signaling pathways on the expression of pro-survival proteins, activity of caspase-3, proliferation, and induction of apoptosis in melanoma cells. The following inhibitors were used: protein kinase inhibitors such as AKT-MK-2206, MEK-AS-703026, mTOR-everolimus and Torkinib, as well as dual PI3K and mTOR inhibitor-BEZ-235 and Omipalisib, and mTOR1/2-OSI-027 inhibitor in single-mode and their combinations with MEK1/2 kinase inhibitor AS-703026. The obtained results confirm the synergistic effect of nanomolar concentrations of mTOR inhibitors, especially the dual PI3K and mTOR inhibitors (Omipalisib, BEZ-235) in combination with the MAP kinase inhibitor (AS-703026) in the activation of caspase 3, induction of apoptosis, and inhibition of proliferation in melanoma cell lines. Our previous and current studies confirm the importance of the mTOR signal transduction pathway in the neoplastic transformation process. Melanoma is a case of a very heterogeneous neoplasm, which causes great difficulties in treating this neoplasm in an advanced stage, and the standard approach to this topic does not bring the expected results. There is a need for research on the search for new therapeutic strategies aimed at particular groups of patients. Effect of three generations of mTOR kinase inhibitors on caspase-3 activity, apoptosis and proliferation in melanoma cell lines.
Collapse
Affiliation(s)
- Dorota Ciołczyk-Wierzbicka
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Ul. Kopernika 7, 31-034, Kraków, Poland.
| | - Agnieszka Krawczyk
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Ul. Kopernika 7, 31-034, Kraków, Poland
| | - Marta Zarzycka
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Ul. Kopernika 7, 31-034, Kraków, Poland
| | - Grzegorz Zemanek
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Ul. Kopernika 7, 31-034, Kraków, Poland
| | - Karol Wierzbicki
- Department of Cardiovascular Surgery and Transplantology, Institute of Cardiology, Jagiellonian University, John Paul II Hospital, Ul. Prądnicka 80, 31-202, Kraków, Poland
| |
Collapse
|
33
|
Lin JJ, Luo BH, Su T, Yang Q, Zhang QF, Dai WY, Liu Y, Xiang L. Antitumor activity of miR-188-3p in gastric cancer is achieved by targeting CBL expression and inactivating the AKT/mTOR signaling. World J Gastrointest Oncol 2023; 15:1384-1399. [PMID: 37663941 PMCID: PMC10473938 DOI: 10.4251/wjgo.v15.i8.1384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/29/2023] [Accepted: 07/07/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Altered miR-188-3p expression has been observed in various human cancers. AIM To investigate the miR-188-3p expression, its roles, and underlying molecular events in gastric cancer. METHODS Fifty gastric cancer and paired normal tissues were collected to analyze miR-188-3p and CBL expression. Normal and gastric cancer cells were used to manipulate miR-188-3p and CBL expression through different assays. The relationship between miR-188-3p and CBL was predicted bioinformatically and confirmed using a luciferase gene reporter assay. A Kaplan-Meier analysis was used to associate miR-188-3p or CBL expression with patient survival. A nude mouse tumor cell xenograft assay was used to confirm the in vitro data. RESULTS MiR-188-3p was found to be lower in the plasma of gastric cancer patients, tissues, and cell lines compared to their healthy counterparts. It was associated with overall survival of gastric cancer patients (P < 0.001), tumor differentiation (P < 0.001), lymph node metastasis (P = 0.033), tumor node metastasis stage (I/II vs III/IV, P = 0.024), and American Joint Committee on Cancer stage (I/II vs III/IV, P = 0.03). Transfection with miR-188-3p mimics reduced tumor cell growth and invasion while inducing apoptosis and autophagy. CBL was identified as a direct target of miR-188-3p, with its expression antagonizing the effects of miR-188-3p on gastric cancer (GC) cell proliferation by inducing tumor cell apoptosis and autophagy through the inactivation of the Akt/mTOR signaling pathway. The in vivo data confirmed antitumor activity via CBL downregulation in gastric cancer. CONCLUSION The current data provides ex vivo, in vitro, and in vivo evidence that miR-188-3p acts as a tumor suppressor gene or possesses antitumor activity in GC.
Collapse
Affiliation(s)
- Jian-Jiao Lin
- Department of Gastroenterology, The Second Affiliated Hospital of Chinese University of Hong Kong (Shenzhen Longgang District People's Hospital), Shenzhen 518172, Guangdong Province, China
| | - Bao-Hua Luo
- Department of Urology, Hospital of Southern University of Science and Technology, Shenzhen 518055, Guangdong Province, China
| | - Tao Su
- Department of Gastroenterology, The Second Affiliated Hospital of Chinese University of Hong Kong (Shenzhen Longgang District People's Hospital), Shenzhen 518172, Guangdong Province, China
| | - Qiong Yang
- Department of Gastroenterology, The Second Affiliated Hospital of the University of South China, Hengyang 421001, Hunan Province, China
| | - Qin-Fei Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Chinese University of Hong Kong (Shenzhen Longgang District People's Hospital), Shenzhen 518172, Guangdong Province, China
| | - Wei-Yu Dai
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Yan Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Chinese University of Hong Kong (Shenzhen Longgang District People's Hospital), Shenzhen 518172, Guangdong Province, China
| | - Li Xiang
- Department of Gastroenterology, The Second Affiliated Hospital of Chinese University of Hong Kong (Shenzhen Longgang District People's Hospital), Shenzhen 518172, Guangdong Province, China
| |
Collapse
|
34
|
Glassman I, Le N, Asif A, Goulding A, Alcantara CA, Vu A, Chorbajian A, Mirhosseini M, Singh M, Venketaraman V. The Role of Obesity in Breast Cancer Pathogenesis. Cells 2023; 12:2061. [PMID: 37626871 PMCID: PMC10453206 DOI: 10.3390/cells12162061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/03/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Research has shown that obesity increases the risk for type 2 diabetes mellitus (Type 2 DM) by promoting insulin resistance, increases serum estrogen levels by the upregulation of aromatase, and promotes the release of reactive oxygen species (ROS) by macrophages. Increased circulating glucose has been shown to activate mammalian target of rapamycin (mTOR), a significant signaling pathway in breast cancer pathogenesis. Estrogen plays an instrumental role in estrogen-receptor-positive breast cancers. The role of ROS in breast cancer warrants continued investigation, in relation to both pathogenesis and treatment of breast cancer. We aim to review the role of obesity in breast cancer pathogenesis and novel therapies mediating obesity-associated breast cancer development. We explore the association between body mass index (BMI) and breast cancer incidence and the mechanisms by which oxidative stress modulates breast cancer pathogenesis. We discuss the role of glutathione, a ubiquitous antioxidant, in breast cancer therapy. Lastly, we review breast cancer therapies targeting mTOR signaling, leptin signaling, blood sugar reduction, and novel immunotherapy targets.
Collapse
Affiliation(s)
- Ira Glassman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| | - Nghia Le
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| | - Aamna Asif
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| | - Anabel Goulding
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| | - Cheldon Ann Alcantara
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| | - Annie Vu
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| | - Abraham Chorbajian
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| | - Mercedeh Mirhosseini
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| | - Manpreet Singh
- Corona Regional Medical Center, Department of Emergency Medicine, Corona, CA 92882, USA
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| |
Collapse
|
35
|
Cooper AJL, Dorai T, Pinto JT, Denton TT. Metabolic Heterogeneity, Plasticity, and Adaptation to "Glutamine Addiction" in Cancer Cells: The Role of Glutaminase and the GTωA [Glutamine Transaminase-ω-Amidase (Glutaminase II)] Pathway. BIOLOGY 2023; 12:1131. [PMID: 37627015 PMCID: PMC10452834 DOI: 10.3390/biology12081131] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/06/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023]
Abstract
Many cancers utilize l-glutamine as a major energy source. Often cited in the literature as "l-glutamine addiction", this well-characterized pathway involves hydrolysis of l-glutamine by a glutaminase to l-glutamate, followed by oxidative deamination, or transamination, to α-ketoglutarate, which enters the tricarboxylic acid cycle. However, mammalian tissues/cancers possess a rarely mentioned, alternative pathway (the glutaminase II pathway): l-glutamine is transaminated to α-ketoglutaramate (KGM), followed by ω-amidase (ωA)-catalyzed hydrolysis of KGM to α-ketoglutarate. The name glutaminase II may be confused with the glutaminase 2 (GLS2) isozyme. Thus, we recently renamed the glutaminase II pathway the "glutamine transaminase-ω-amidase (GTωA)" pathway. Herein, we summarize the metabolic importance of the GTωA pathway, including its role in closing the methionine salvage pathway, and as a source of anaplerotic α-ketoglutarate. An advantage of the GTωA pathway is that there is no net change in redox status, permitting α-ketoglutarate production during hypoxia, diminishing cellular energy demands. We suggest that the ability to coordinate control of both pathways bestows a metabolic advantage to cancer cells. Finally, we discuss possible benefits of GTωA pathway inhibitors, not only as aids to studying the normal biological roles of the pathway but also as possible useful anticancer agents.
Collapse
Affiliation(s)
- Arthur J. L. Cooper
- Department of Biochemistry and Molecular Biology, New York Medical College, 15 Dana Road, Valhalla, NY 10595, USA; (T.D.); (J.T.P.)
| | - Thambi Dorai
- Department of Biochemistry and Molecular Biology, New York Medical College, 15 Dana Road, Valhalla, NY 10595, USA; (T.D.); (J.T.P.)
- Department of Urology, New York Medical College, Valhalla, NY 10595, USA
| | - John T. Pinto
- Department of Biochemistry and Molecular Biology, New York Medical College, 15 Dana Road, Valhalla, NY 10595, USA; (T.D.); (J.T.P.)
| | - Travis T. Denton
- Department Pharmaceutical Sciences, College of Pharmacy & Pharmaceutical Sciences, Washington State University Health Sciences Spokane, Spokane, WA 99202, USA
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University Health Sciences Spokane, Spokane, WA 99164, USA
- Steve Gleason Institute for Neuroscience, Washington State University Health Sciences Spokane, Spokane, WA 99164, USA
| |
Collapse
|
36
|
Guz M, Jeleniewicz W, Cybulski M. Interactions between circRNAs and miR-141 in Cancer: From Pathogenesis to Diagnosis and Therapy. Int J Mol Sci 2023; 24:11861. [PMID: 37511619 PMCID: PMC10380543 DOI: 10.3390/ijms241411861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
The function of non-coding RNAs (ncRNAs) in the pathogenesis and development of cancer is indisputable. Molecular mechanisms underlying carcinogenesis involve the aberrant expression of ncRNAs, including circular RNAs (circRNAs), and microRNAs (miRNAs). CircRNAs are a class of single-stranded, covalently closed RNAs responsible for maintaining cellular homeostasis through their diverse functions. As a part of the competing endogenous RNA (ceRNAs) network, they play a central role in the regulation of accessibility of miRNAs to their mRNA targets. The interplay between these molecular players is based on the primary role of circRNAs that act as miRNAs sponges, and the circRNA/miRNA imbalance plays a central role in different pathologies including cancer. Herein, we present the latest state of knowledge about interactions between circRNAs and miR-141, a well-known member of the miR-200 family, in malignant transformation, with emphasis on the biological role of circRNA/miR-141/mRNA networks as a future target for novel anti-cancer therapies.
Collapse
Affiliation(s)
- Małgorzata Guz
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Witold Jeleniewicz
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Marek Cybulski
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
37
|
Zhang Y, Wu K, Liu Y, Sun S, Shao Y, Li Q, Sui X, Duan C. UHRF2 promotes the malignancy of hepatocellular carcinoma by PARP1 mediated autophagy. Cell Signal 2023:110782. [PMID: 37356603 DOI: 10.1016/j.cellsig.2023.110782] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/07/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Autophagy have critical implications in the proliferation and metastasis of HCC. In the current study, we aimed to explore the underlying mechanisms of UHRF2 regulates HCC cell autophagy and HCC progression. We initially determined the relationship between UHRF2 and HCC autophagy, oncogenicity and patient survival through GSEA database and TCGA database. We mainly investigated the effect of UHRF2 on HCC development and autophagy through western blot, electron microscopy, and immunofluorescence. Functionally, UHRF2 was positively involved in the autophagy activation. Overexpression of UHRF2 reduced apoptosis in HCC cells, and promote the malignancy phenotype of HCC both in vitro and in vivo. Mechanistically, PRDX1 bound to UHRF2 and upregulated its protein expression to facilitate the biological function of UHRF2 in HCC. Meanwhile, UHRF2 bound to autophagy-related protein PARP1 and upregulated PARP1 protein level. The results showed that UHRF2 promoted autophagy and contributed to the malignant phenotype of hepatocellular carcinoma by regulating PARP1 levels. In summary, a novel interaction between PRDX1, UHRF2, and PARP1 was revealed, suggesting that UHRF2 could inspire a potential biomarker and potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Yiqi Zhang
- Department of Cell Biology and Genetics, Center for Molecular Medicine and Oncology Research, Chongqing Medical University, Chongqing 400016, China.
| | - Kejia Wu
- Department of Cell Biology and Genetics, Center for Molecular Medicine and Oncology Research, Chongqing Medical University, Chongqing 400016, China.
| | - Yuxin Liu
- Department of Cell Biology and Genetics, Center for Molecular Medicine and Oncology Research, Chongqing Medical University, Chongqing 400016, China.
| | - Shuangling Sun
- Department of Biochemistry, Chongqing Medical and Pharmaceutical College, Chongqing 400016, China
| | - Yue Shao
- Department of Thoracic surgery, the First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Qingxiu Li
- Department of Cell Biology and Genetics, Center for Molecular Medicine and Oncology Research, Chongqing Medical University, Chongqing 400016, China.
| | - Xinying Sui
- Department of Cell Biology and Genetics, Center for Molecular Medicine and Oncology Research, Chongqing Medical University, Chongqing 400016, China.
| | - Changzhu Duan
- Department of Cell Biology and Genetics, Center for Molecular Medicine and Oncology Research, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
38
|
Pizzimenti C, Fiorentino V, Franchina M, Martini M, Giuffrè G, Lentini M, Silvestris N, Di Pietro M, Fadda G, Tuccari G, Ieni A. Autophagic-Related Proteins in Brain Gliomas: Role, Mechanisms, and Targeting Agents. Cancers (Basel) 2023; 15:cancers15092622. [PMID: 37174088 PMCID: PMC10177137 DOI: 10.3390/cancers15092622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
The present review focuses on the phenomenon of autophagy, a catabolic cellular process, which allows for the recycling of damaged organelles, macromolecules, and misfolded proteins. The different steps able to activate autophagy start with the formation of the autophagosome, mainly controlled by the action of several autophagy-related proteins. It is remarkable that autophagy may exert a double role as a tumour promoter and a tumour suppressor. Herein, we analyse the molecular mechanisms as well as the regulatory pathways of autophagy, mainly addressing their involvement in human astrocytic neoplasms. Moreover, the relationships between autophagy, the tumour immune microenvironment, and glioma stem cells are discussed. Finally, an excursus concerning autophagy-targeting agents is included in the present review in order to obtain additional information for the better treatment and management of therapy-resistant patients.
Collapse
Affiliation(s)
- Cristina Pizzimenti
- Translational Molecular Medicine and Surgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy
| | - Vincenzo Fiorentino
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Mariausilia Franchina
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Maurizio Martini
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Giuseppe Giuffrè
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Maria Lentini
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Nicola Silvestris
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Oncology Section, University of Messina, 98125 Messina, Italy
| | - Martina Di Pietro
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Oncology Section, University of Messina, 98125 Messina, Italy
| | - Guido Fadda
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Giovanni Tuccari
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| |
Collapse
|
39
|
Lee YC, Chiou JT, Chang LS. AMPK inhibition induces MCL1 mRNA destabilization via the p38 MAPK/miR-22/HuR axis in chronic myeloid leukemia cells. Biochem Pharmacol 2023; 209:115442. [PMID: 36720359 DOI: 10.1016/j.bcp.2023.115442] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/15/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023]
Abstract
The oncogenic and tumor-suppressive roles of AMPK in chronic myeloid leukemia (CML) are controvertible. This study aimed to investigate the cytotoxic effects of the AMPK inhibitor Compound C in the CML cell lines K562, KU812, and MEG-01. Compared to K562 cells, KU812 and MEG-01 cells were more sensitive to Compound C-mediated cytotoxicity. Moreover, Compound C induced SIRT3 upregulation in K562 cells but not in KU812 or MEG-01 cells. SIRT3 silencing increased the sensitivity of K562 cells to Compound C. Additionally; Compound C-induced autophagy attenuated its induced apoptosis in KU812 and MEG-01 cells. Compound C-induced ROS-mediated AMPKα inactivation resulted in the downregulation of apoptotic regulator MCL1 in KU812 and MEG-01 cells. Mechanistically, AMPK inhibition activated p38 MAPK-mediated miR-22 expression, which in turn inhibited HuR expression, thereby reducing MCL1 mRNA stability. Overexpression of constitutively active AMPKα1 and abolishment of the activation of p38 MAPK inhibited Compound C-induced cell death and MCL1 downregulation. Furthermore, Compound C synergistically enhanced the cytotoxicity of BCR-ABL inhibitors and the BCL2 inhibitor ABT-199. Collectively, this study indicates that Compound C induces MCL1 downregulation through the AMPK/p38 MAPK/miR-22/HuR pathway, thereby inducing apoptosis of KU812 and MEG-01 cells. Furthermore, our findings suggest that AMPK inhibition is a promising strategy for improving CML therapy.
Collapse
Affiliation(s)
- Yuan-Chin Lee
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Jing-Ting Chiou
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
40
|
Ahmadi-Dehlaghi F, Mohammadi P, Valipour E, Pournaghi P, Kiani S, Mansouri K. Autophagy: A challengeable paradox in cancer treatment. Cancer Med 2023. [PMID: 36760166 DOI: 10.1002/cam4.5577] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/14/2022] [Accepted: 12/21/2022] [Indexed: 02/11/2023] Open
Abstract
OBJECTIVE Autophagy is an intracellular degradation pathway conserved in all eukaryotes from yeast to humans. This process plays a quality-control role by destroying harmful cellular components under normal conditions, maintaining cell survival, and establishing cellular adaptation under stressful conditions. Hence, there are various studies indicating dysfunctional autophagy as a factor involved in the development and progression of various human diseases, including cancer. In addition, the importance of autophagy in the development of cancer has been highlighted by paradoxical roles, as a cytoprotective and cytotoxic mechanism. Despite extensive research in the field of cancer, there are many questions and challenges about the roles and effects suggested for autophagy in cancer treatment. The aim of this study was to provide an overview of the paradoxical roles of autophagy in different tumors and related cancer treatment options. METHODS In this study, to find articles, a search was made in PubMed and Google scholar databases with the keywords Autophagy, Autophagy in Cancer Management, and Drug Design. RESULTS According to the investigation, some studies suggest that several advanced cancers are dependent on autophagy for cell survival, so when cancer cells are exposed to therapy, autophagy is induced and suppresses the anti-cancer effects of therapeutic agents and also results in cell resistance. However, enhanced autophagy from using anti-cancer drugs causes autophagy-mediated cell death in several cancers. Because autophagy also plays roles in both tumor suppression and promotion further research is needed to determine the precise mechanism of this process in cancer treatment. CONCLUSION We concluded in this article, autophagy manipulation may either promote or hinder the growth and development of cancer according to the origin of the cancer cells, the type of cancer, and the behavior of the cancer cells exposed to treatment. Thus, before starting treatment it is necessary to determine the basal levels of autophagy in various cancers.
Collapse
Affiliation(s)
- Farnaz Ahmadi-Dehlaghi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Biology, Payame Noor University, Tehran, Iran
| | - Parisa Mohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Elahe Valipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Sarah Kiani
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
41
|
Inase A, Maimaitili Y, Kimbara S, Mizutani Y, Miyata Y, Ohata S, Matsumoto H, Kitao A, Sakai R, Kawaguchi K, Higashime A, Nagao S, Kurata K, Goto H, Kawamoto S, Yakushijin K, Minami H, Matsuoka H. GSK3 inhibitor enhances gemtuzumab ozogamicin-induced apoptosis in primary human leukemia cells by overcoming multiple mechanisms of resistance. EJHAEM 2023; 4:153-164. [PMID: 36819180 PMCID: PMC9928658 DOI: 10.1002/jha2.600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/23/2022] [Accepted: 10/03/2022] [Indexed: 12/15/2022]
Abstract
In acute myeloid leukemia (AML), the heterogeneity of genetic and epigenetic characteristics makes treatment difficult. The prognosis for AML is therefore poor, and there is an urgent need for new treatments for this condition. Gemtuzumab ozogamicin (GO), the first antibody-drug conjugate (ADC), targets the CD33 antigen expressed in over 90% of AML cases. GO therefore has the potential to counter the heterogeneity of AML patients. However, a major clinical problem is that drug resistance to GO diminishes its effect over time. Here, we report that the inhibition of glycogen synthase kinase 3 (GSK3) alone overcomes several forms of GO resistance at concentrations without antileukemic effects. The GSK3 inhibitors tested significantly enhanced the cytotoxic effect of GO in AML cell lines. We elucidated four mechanisms of enhancement: (1) increased expression of CD33, the target antigen of GO; (2) activation of a lysosomal function essential for hydrolysis of the GO linker; (3) reduced expression of MDR1 that eliminates calicheamicin, the payload of GO; and (4) reduced expression of the anti-apoptotic factor Bcl-2. A similar combination effect was observed against patient-derived primary AML cells. Combining GO with GSK3 inhibitors may be efficacious in treating heterogeneous AML.
Collapse
Affiliation(s)
- Aki Inase
- Division of Bioresource Research and DevelopmentDepartment of Social/Community Medicine and Health ScienceKobe University Graduate School of MedicineKobeJapan
- Division of Medical Oncology and HematologyDepartment of MedicineKobe University Graduate School of MedicineKobeJapan
| | - Yimamu Maimaitili
- Division of Medical Oncology and HematologyDepartment of MedicineKobe University Graduate School of MedicineKobeJapan
| | - Shiro Kimbara
- Division of Medical Oncology and HematologyDepartment of MedicineKobe University Graduate School of MedicineKobeJapan
| | - Yu Mizutani
- Division of Medical Oncology and HematologyDepartment of MedicineKobe University Graduate School of MedicineKobeJapan
| | - Yoshiharu Miyata
- Division of Bioresource Research and DevelopmentDepartment of Social/Community Medicine and Health ScienceKobe University Graduate School of MedicineKobeJapan
- Division of Medical Oncology and HematologyDepartment of MedicineKobe University Graduate School of MedicineKobeJapan
| | - Shinya Ohata
- Division of Medical Oncology and HematologyDepartment of MedicineKobe University Graduate School of MedicineKobeJapan
| | | | - Akihito Kitao
- Division of Medical Oncology and HematologyDepartment of MedicineKobe University Graduate School of MedicineKobeJapan
| | - Rina Sakai
- Division of Medical Oncology and HematologyDepartment of MedicineKobe University Graduate School of MedicineKobeJapan
| | - Koji Kawaguchi
- Division of Medical Oncology and HematologyDepartment of MedicineKobe University Graduate School of MedicineKobeJapan
- Department of Medical Oncology/HematologyKonan Medical CenterKobeJapan
| | - Ako Higashime
- Division of Medical Oncology and HematologyDepartment of MedicineKobe University Graduate School of MedicineKobeJapan
| | - Shigeki Nagao
- Division of Medical Oncology and HematologyDepartment of MedicineKobe University Graduate School of MedicineKobeJapan
| | - Keiji Kurata
- Division of Medical Oncology and HematologyDepartment of MedicineKobe University Graduate School of MedicineKobeJapan
| | - Hideaki Goto
- Division of Medical Oncology and HematologyDepartment of MedicineKobe University Graduate School of MedicineKobeJapan
- Department of Hematology and OncologyKita‐harima Medical CenterOnoJapan
| | | | - Kimikazu Yakushijin
- Division of Medical Oncology and HematologyDepartment of MedicineKobe University Graduate School of MedicineKobeJapan
| | - Hironobu Minami
- Division of Medical Oncology and HematologyDepartment of MedicineKobe University Graduate School of MedicineKobeJapan
- Cancer Center, Kobe University HospitalKobeJapan
| | - Hiroshi Matsuoka
- Division of Bioresource Research and DevelopmentDepartment of Social/Community Medicine and Health ScienceKobe University Graduate School of MedicineKobeJapan
- Division of Medical Oncology and HematologyDepartment of MedicineKobe University Graduate School of MedicineKobeJapan
| |
Collapse
|
42
|
The mTORC1-G9a-H3K9me2 axis negatively regulates autophagy in fatty acid-induced hepatocellular lipotoxicity. J Biol Chem 2023; 299:102937. [PMID: 36690274 PMCID: PMC9957777 DOI: 10.1016/j.jbc.2023.102937] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
Defective autophagy and lipotoxicity are the hallmarks of nonalcoholic fatty liver disease. However, the precise molecular mechanism for the defective autophagy in lipotoxic conditions is not fully known. In the current study, we elucidated that activation of the mammalian target of rapamycin complex 1 (mTORC1)-G9a-H3K9me2 axis in fatty acid-induced lipotoxicity blocks autophagy by repressing key autophagy genes. The fatty acid-treated cells show mTORC1 activation, increased histone methyltransferase G9a levels, and suppressed autophagy as indicated by increased accumulation of the key autophagic cargo SQSTM1/p62 and decreased levels of autophagy-related proteins LC3II, Beclin1, and Atg7. Our chromatin immunoprecipitation analysis showed that decrease in autophagy was associated with increased levels of the G9a-mediated repressive H3K9me2 mark and decreased RNA polymerase II occupancy at the promoter regions of Beclin1 and Atg7 in fatty acid-treated cells. Inhibition of mTORC1 in fatty acid-treated cells decreased G9a-mediated H3K9me2 occupancy and increased polymerase II occupancy at Beclin1 and Atg7 promoters. Furthermore, mTORC1 inhibition increased the expression of Beclin1 and Atg7 in fatty acid-treated cells and decreased the accumulation of SQSTM1/p62. Interestingly, the pharmacological inhibition of G9a alone in fatty acid-treated cells decreased the H3K9me2 mark at Atg7 and Beclin1 promoters and restored the expression of Atg7 and Beclin1. Taken together, our findings have identified the mTORC1-G9a-H3K9me2 axis as a negative regulator of the autophagy pathway in hepatocellular lipotoxicity and suggest that the G9a-mediated epigenetic repression is mechanistically a key step during the repression of autophagy in lipotoxic conditions.
Collapse
|
43
|
Dong L, He J, Luo L, Wang K. Targeting the Interplay of Autophagy and ROS for Cancer Therapy: An Updated Overview on Phytochemicals. Pharmaceuticals (Basel) 2023; 16:ph16010092. [PMID: 36678588 PMCID: PMC9865312 DOI: 10.3390/ph16010092] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Autophagy is an evolutionarily conserved self-degradation system that recycles cellular components and damaged organelles, which is critical for the maintenance of cellular homeostasis. Intracellular reactive oxygen species (ROS) are short-lived molecules containing unpaired electrons that are formed by the partial reduction of molecular oxygen. It is widely known that autophagy and ROS can regulate each other to influence the progression of cancer. Recently, due to the wide potent anti-cancer effects with minimal side effects, phytochemicals, especially those that can modulate ROS and autophagy, have attracted great interest of researchers. In this review, we afford an overview of the complex regulatory relationship between autophagy and ROS in cancer, with an emphasis on phytochemicals that regulate ROS and autophagy for cancer therapy. We also discuss the effects of ROS/autophagy inhibitors on the anti-cancer effects of phytochemicals, and the challenges associated with harnessing the regulation potential on ROS and autophagy of phytochemicals for cancer therapy.
Collapse
Affiliation(s)
- Lixia Dong
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Jingqiu He
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Li Luo
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610041, China
- Correspondence: (L.L.); (K.W.)
| | - Kui Wang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
- Correspondence: (L.L.); (K.W.)
| |
Collapse
|
44
|
Chrysophanol-Induced Autophagy Disrupts Apoptosis via the PI3K/Akt/mTOR Pathway in Oral Squamous Cell Carcinoma Cells. Medicina (B Aires) 2022; 59:medicina59010042. [PMID: 36676666 PMCID: PMC9864245 DOI: 10.3390/medicina59010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/08/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Background and Objectives: Natural products are necessary sources for drug discovery and have contributed to cancer chemotherapy over the past few decades. Furthermore, substances derived from plants have fewer side effects. Chrysophanol is an anthraquinone derivative that is isolated from rhubarb. Although the anticancer effect of chrysophanol on several cancer cells has been reported, studies on the antitumor effect of chrysophanol on oral squamous-cell carcinoma (OSCC) cells have yet to be elucidated. Therefore, in this study, we investigated the anticancer effect of chrysophanol on OSCC cells (CAL-27 and Ca9-22) via apoptosis and autophagy, among the cell death pathways. Results: It was found that chrysophanol inhibited the growth and viability of CAL-27 and Ca9-22 and induced apoptosis through the intrinsic pathway. It was also found that chrysophanol activates autophagy-related factors (ATG5, beclin-1, and P62/SQSTM1) and LC3B conversion. That is, chrysophanol activated both apoptosis and autophagy. Here, we focused on the roles of chrysophanol-induced apoptosis and the autophagy pathway. When the autophagy inhibitor 3-MA and PI3K/Akt inhibitor were used to inhibit the autophagy induced by chrysophanol, it was confirmed that the rate of apoptosis significantly increased. Therefore, we confirmed that chrysophanol induces apoptosis and autophagy at the same time, and the induced autophagy plays a role in interfering with apoptosis processes. Conclusions: Therefore, the potential of chrysophanol as an excellent anticancer agent in OSCC was confirmed via this study. Furthermore, the combined treatment of drugs that can inhibit chrysophanol-induced autophagy is expected to have a tremendous synergistic effect in overcoming oral cancer.
Collapse
|
45
|
Zhang Y, Yao E, Liu Y, Zhang Y, Ding M, Liu J, Chen X, Fan S. FUT2 Facilitates Autophagy and Suppresses Apoptosis via p53 and JNK Signaling in Lung Adenocarcinoma Cells. Cells 2022; 11:cells11244031. [PMID: 36552800 PMCID: PMC9776918 DOI: 10.3390/cells11244031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
Lung cancer is the most common cancer with high morbidity and mortality worldwide. Our previous studies showed that fucosyltransferase 2 (FUT2) is highly expressed in lung adenocarcinoma (LUAD) and plays a vital role in the tumorigenesis of LUAD. However, the underlying mechanism is not fully understood. Autophagy has recently attracted increasing attention due to its pro-survival role in cancer progression and metastasis. Here, we found that FUT2 was up-regulated and had an AUC (Area Under Curve) value of 0.964 in lung adenocarcinoma based on the TCGA dataset. Knockdown of FUT2 weakened the autophagy response, as evidenced by a degradation of LC3-II and Beclin1. The phosphorylation levels of AMPK, ULK1, and PI3K III were significantly reduced by FUT2 knockdown. FUT2 promoted the translocation of p53 from the cytoplasm into the nucleus, which triggered the DRAM1 pathway and enhanced autophagy. Meanwhile, the knockdown of FUT2 increased the phosphorylation of JNK and promoted mitochondrial-mediated apoptosis. Furthermore, the knockdown of FUT2 inhibited the autophagy induced by Z-VAD-FMK and promoted the apoptosis suppressed by rapamycin. The autophagy and apoptosis regulated by FUT2 antagonized each other. Taken together, these findings provide a mechanistic understanding of how FUT2 mediated the crosstalk between autophagy and apoptosis, which determine lung cancer cell death and survival, leading to the progression of lung adenocarcinoma.
Collapse
Affiliation(s)
- Yuqi Zhang
- Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Department of Clinical Genetics, Northwest Women’s and Children’s Hospital, Xi’an 710061, China
| | - Enze Yao
- Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Department of Laboratory, Zhoukou Central Hospital, Zhoukou 466000, China
| | - Yijing Liu
- Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yining Zhang
- Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Mengyang Ding
- Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jingyu Liu
- Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaoming Chen
- Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Correspondence: (X.C.); (S.F.); Tel.: +86-577-86689690 (X.C.); Fax: +86-577-86689717 (X.C.)
| | - Sairong Fan
- Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Correspondence: (X.C.); (S.F.); Tel.: +86-577-86689690 (X.C.); Fax: +86-577-86689717 (X.C.)
| |
Collapse
|
46
|
Ibrahim D, Shahin SE, Alqahtani LS, Hassan Z, Althobaiti F, Albogami S, Soliman MM, El-Malt RMS, Al-Harthi HF, Alqadri N, Elabbasy MT, El-Hamid MIA. Exploring the Interactive Effects of Thymol and Thymoquinone: Moving towards an Enhanced Performance, Gross Margin, Immunity and Aeromonas sobria Resistance of Nile Tilapia ( Oreochromis niloticus). Animals (Basel) 2022; 12:3034. [PMID: 36359158 PMCID: PMC9658592 DOI: 10.3390/ani12213034] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 08/16/2023] Open
Abstract
Plant-derived bioactive compounds with promising nutritional and therapeutic attributes (phytogenics) are among the top priorities in the aquaculture sector. Therefore, the impact of thymol (Thy) and/or thymoquinone (ThQ) on the growth, immune response antioxidant capacity, and Aeromonas sobria (A. sobria) resistance of Nile tilapia was investigated. Four fish groups were fed a control diet and three basal diets supplemented with 200 mg/kg diet of Thy or ThQ and a blend of both Thy and ThQ at a level of 200 mg/kg diet each. At the end of the feeding trial (12 weeks), the tilapias were challenged intraperitoneally with virulent A. sobria (2.5 × 108 CFU/mL) harboring aerolysin (aero) and hemolysin (hly) genes. The results revealed that tilapias fed diets fortified with a combination of Thy and ThQ displayed significantly enhanced growth rate and feed conversion ratio. Notably, the expression of the genes encoding digestive enzymes (pepsinogen, chymotrypsinogen, α-amylase and lipase) and muscle and intestinal antioxidant enzymes (glutathione peroxidase, catalase and superoxide dismutase) was significantly upregulated in Thy/ThQ-fed fish. An excessive inflammatory response was subsided more prominently in the group administrated Thy/ThQ as supported by the downregulation of il-β, il-6 and il-8 genes and in contrast, the upregulation of the anti-inflammatory il-10 gene. Remarkably, dietary inclusion of Thy/ThQ augmented the expression of autophagy-related genes, whilst it downregulated that of mtor gene improving the autophagy process. Furthermore, Thy/ThQ protective effect against A. sobria was evidenced via downregulating the expression of its aero and hly virulence genes with higher fish survival rates. Overall, the current study encouraged the inclusion of Thy/ThQ in fish diets to boost their growth rates, promote digestive and antioxidant genes expression, improve their immune responses and provide defense against A. sorbia infections with great economic benefits.
Collapse
Affiliation(s)
- Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Sara E. Shahin
- Department of Animal Wealth Development, Veterinary Economics and Farm Management, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Leena S. Alqahtani
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 80203, Saudi Arabia
| | - Zeinab Hassan
- Fish Disease Department, Faculty of Veterinary Medicine, Aswan University, Aswan 81528, Egypt
| | - Fayez Althobaiti
- Department of Biotechnology, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Sarah Albogami
- Department of Biotechnology, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif 21995, Saudi Arabia
| | - Rania M. S. El-Malt
- Department of Bacteriology, Zagazig Branch, Animal Health Research Institute, Agriculture Research Center, Zagazig 44516, Egypt
| | - Helal F. Al-Harthi
- Department of Biology, Turabah University College, Taif University, Taif 21995, Saudi Arabia
| | - Nada Alqadri
- Department of Biology, Turabah University College, Taif University, Taif 21995, Saudi Arabia
| | - Mohamed Tharwat Elabbasy
- College of Public Health and Molecular Diagnostics and Personalized Therapeutics Center (CMDPT), Ha’il University, Ha’il 2440, Saudi Arabia
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Marwa I. Abd El-Hamid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
47
|
Gunel NS, Yildirim N, Ozates NP, Oktay LM, Bagca BG, Sogutlu F, Ozsaran A, Korkmaz M, Biray Avci C. Investigation of cytotoxic and apoptotic effects of disodium pentaborate decahydrate on ovarian cancer cells and assessment of gene profiling. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:8. [PMID: 36308567 DOI: 10.1007/s12032-022-01870-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/20/2022] [Indexed: 01/17/2023]
Abstract
After revealing the anti-cancer properties of boron, which is included in the category of essential elements for human health by the World Health Organization, the therapeutic potential of boron compounds has been begun to be evaluated, and its molecular effect mechanisms have still been among the research subjects. In ovarian cancer, mutations or amplifications frequently occur in the PI3K/Akt/mTOR pathway components, and dysregulation of this pathway is shown among the causes of treatment failure. In the present study, it was aimed to investigate the anti-cancer properties of boron-containing DPD in SKOV3 cells, which is an epithelial ovarian cancer model, through PI3K/AKT/mTOR pathway. The cytotoxic activity of DPD in SKOV3 cells was evaluated by WST-1 test, apoptotic effect by Annexin V and JC-1 test. The gene expressions associated with PI3K/AKT/mTOR pathway were determined by real-time qRT-PCR. In SKOV3 cells, the IC50 value of DPD was found to be 6.7 mM, 5.6 mM, and 5.2 mM at 24th, 48th and 72nd hour, respectively. Compared with the untreated control group, DPD treatment was found to induce apoptosis 2.6-fold and increase mitochondrial membrane depolarization 4.5-fold. DPD treatment was found to downregulate PIK3CA, PIK3CG, AKT2, IGF1, IRS1, MAPK3, HIF-1, VEGFC, CAB39, CAB39L, STRADB, PRKAB2, PRKAG3, TELO2, RICTOR, MLST8, and EIF4B genes and upregulate TP53, GSK3B, FKBP8, TSC2, ULK1, and ULK2 genes. These results draw attention to the therapeutic potential of DPD, which is frequently exposed in daily life, in epithelial ovarian cancer and show that it can be a candidate compound in combination with chemotherapeutics.
Collapse
Affiliation(s)
- Nur Selvi Gunel
- Department of Medical Biology, Medicine Faculty, Ege University, Izmir, Turkey
| | - Nuri Yildirim
- Department of Obstetrics and Gynecology, Medicine Faculty, Ege University, Izmir, Turkey
| | | | - Latife Merve Oktay
- Department of Medical Biology, Medicine Faculty, Ege University, Izmir, Turkey
| | - Bakiye Goker Bagca
- Department of Medical Biology, Medicine Faculty, Adnan Menderes University, Izmir, Turkey
| | - Fatma Sogutlu
- Department of Medical Biology, Medicine Faculty, Ege University, Izmir, Turkey
| | - Aydin Ozsaran
- Department of Obstetrics and Gynecology, Medicine Faculty, Ege University, Izmir, Turkey
| | - Mehmet Korkmaz
- Department of Medical Biology, Medicine Faculty, Celal Bayar University, Manisa, Turkey
| | - Cigir Biray Avci
- Department of Medical Biology, Medicine Faculty, Ege University, Izmir, Turkey.
| |
Collapse
|
48
|
Izuegbuna OO. Polyphenols: Chemoprevention and therapeutic potentials in hematological malignancies. Front Nutr 2022; 9:1008893. [PMID: 36386899 PMCID: PMC9643866 DOI: 10.3389/fnut.2022.1008893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/02/2022] [Indexed: 01/25/2024] Open
Abstract
Polyphenols are one of the largest plant-derived natural product and they play an important role in plants' defense as well as in human health and disease. A number of them are pleiotropic molecules and have been shown to regulate signaling pathways, immune response and cell growth and proliferation which all play a role in cancer development. Hematological malignancies on the other hand, are cancers of the blood. While current therapies are efficacious, they are usually expensive and with unwanted side effects. Thus, the search for newer less toxic agents. Polyphenols have been reported to possess antineoplastic properties which include cell cycle arrest, and apoptosis via multiple mechanisms. They also have immunomodulatory activities where they enhance T cell activation and suppress regulatory T cells. They carry out these actions through such pathways as PI3K/Akt/mTOR and the kynurenine. They can also reverse cancer resistance to chemotherapy agents. In this review, i look at some of the molecular mechanism of action of polyphenols and their potential roles as therapeutic agents in hematological malignancies. Here i discuss their anti-proliferative and anti-neoplastic activities especially their abilities modulate signaling pathways as well as immune response in hematological malignancies. I also looked at clinical studies done mainly in the last 10-15 years on various polyphenol combination and how they enhance synergism. I recommend that further preclinical and clinical studies be carried out to ensure safety and efficacy before polyphenol therapies be officially moved to the clinics.
Collapse
Affiliation(s)
- Ogochukwu O. Izuegbuna
- Department of Haematology, Ladoke Akintola University of Technology (LAUTECH) Teaching Hospital, Ogbomoso, Nigeria
| |
Collapse
|
49
|
Wang Z, Liu J, Xie J, Yuan X, Wang B, Shen W, Zhang Y. Regulation of autophagy by non-coding RNAs in gastric cancer. Front Oncol 2022; 12:947332. [PMID: 36353541 PMCID: PMC9637602 DOI: 10.3389/fonc.2022.947332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/18/2022] [Indexed: 11/22/2023] Open
Abstract
Autophagy is a conserved cellular self-digesting process that degrades obsoleting proteins and cellular components and plays a crucial role in the tumorigenesis, metastasis, and drug resistance of various tumors such as gastric cancer (GC). As a hotspot in molecular biology, non-coding RNAs (ncRNAs) are involved in the regulation of multiple biological processes, such as autophagy. Increasing evidence indicate that various ncRNAs exert double roles in the initiation and progression of GC, either serve as oncogenes or tumor suppressors. Recent studies have shown that some ncRNAs could modulate autophagy activity in GC cells, which would affect the malignant transformation and drug resistance. Whether the function of ncRNAs in GC is dependent on autophagy is undefined. Therefore, identifying the underlying moleculr targets of ncRNAs in autophagy pathways and the role of ncRNA-regulated autophagy in GC could develop new treatment interventions for this disease. This review summarizes the autophagy process and its role in GC, and the regulatory mechanisms of ncRNAs, as well as focuses on the dual role of ncRNAs-mediated autophagy in GC, for the development of potential therapeutic strategies in GC patients.
Collapse
Affiliation(s)
- Zijian Wang
- Graduate College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jiarui Liu
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Jingri Xie
- Department of Gastroenterology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xingxing Yuan
- Graduate College, Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Bingyu Wang
- Graduate College, Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Wenjuan Shen
- Department of Gynaecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yang Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
50
|
Shiau JP, Chuang YT, Tang JY, Yang KH, Chang FR, Hou MF, Yen CY, Chang HW. The Impact of Oxidative Stress and AKT Pathway on Cancer Cell Functions and Its Application to Natural Products. Antioxidants (Basel) 2022; 11:1845. [PMID: 36139919 PMCID: PMC9495789 DOI: 10.3390/antiox11091845] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 01/10/2023] Open
Abstract
Oxidative stress and AKT serine-threonine kinase (AKT) are responsible for regulating several cell functions of cancer cells. Several natural products modulate both oxidative stress and AKT for anticancer effects. However, the impact of natural product-modulating oxidative stress and AKT on cell functions lacks systemic understanding. Notably, the contribution of regulating cell functions by AKT downstream effectors is not yet well integrated. This review explores the role of oxidative stress and AKT pathway (AKT/AKT effectors) on ten cell functions, including apoptosis, autophagy, endoplasmic reticulum stress, mitochondrial morphogenesis, ferroptosis, necroptosis, DNA damage response, senescence, migration, and cell-cycle progression. The impact of oxidative stress and AKT are connected to these cell functions through cell function mediators. Moreover, the AKT effectors related to cell functions are integrated. Based on this rationale, natural products with the modulating abilities for oxidative stress and AKT pathway exhibit the potential to regulate these cell functions, but some were rarely reported, particularly for AKT effectors. This review sheds light on understanding the roles of oxidative stress and AKT pathway in regulating cell functions, providing future directions for natural products in cancer treatment.
Collapse
Affiliation(s)
- Jun-Ping Shiau
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan or
| | - Ya-Ting Chuang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaoshiung Medical University, Kaohsiung 80708, Taiwan
| | - Kun-Han Yang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ming-Feng Hou
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan or
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ching-Yu Yen
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|