1
|
Zhang H, Nie J, Bao Z, Shi Y, Gong J, Li H. FOXC1 promotes EMT and colorectal cancer progression by attracting M2 macrophages via the TGF-β/Smad2/3/snail pathway. Cell Signal 2025; 130:111680. [PMID: 39978609 DOI: 10.1016/j.cellsig.2025.111680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
Colorectal cancer is a highly prevalent and deadly malignancy worldwide. Current treatment strategies, including surgery, chemotherapy, and targeted therapy, still face limitations due to recurrence and metastasis. By conducting a weighted gene coexpression network analysis on gene expression data from The Cancer Genome Atlas, we pinpointed critical genes linked to M2 macrophages and tumor metastasis. Among these, FOXC1 emerged as a significant prognostic indicator within our predictive model. Clinical sample analysis further confirmed that FOXC1 is upregulated in colorectal cancer tissues and associated with an unfavorable patient outcome. Both in vivo and in vitro experimental results revealed that FOXC1 promotes CRC cell migration, invasion and proliferation by regulating the expression of Snail and TGF-β/Smad2/3 pathways, thereby facilitating the epithelial-mesenchymal transition process. Additionally, FOXC1 recruits M2 macrophages to the tumor microenvironment by regulating CXCL2 expression through Snail. The TGF-β factor secreted by M2 macrophages further activates the TGF-β/Smad2/3 pathway, forming a positive feedback loop. In these processes, FOXC1 plays a critical regulatory role. In summary, this study highlights the critical significance of FOXC1 in CRC progression and indicates its viability as a therapeutic target, offering a novel theoretical foundation for the development of future CRC treatment strategies.
Collapse
Affiliation(s)
- Haoran Zhang
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, PR China
| | - Jinlin Nie
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, PR China; Department of Hepatobiliary Pancreatic Hernia Surgery, the Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, PR China
| | - Zhen Bao
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, PR China
| | - Yangdong Shi
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, PR China
| | - Jin Gong
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, PR China.
| | - Hailiang Li
- Department of Hepatobiliary Pancreatic Hernia Surgery, the Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, PR China.
| |
Collapse
|
2
|
Chalepaki AM, Gkoris M, Chondrou I, Kourti M, Georgakopoulos-Soares I, Zaravinos A. A multi-omics analysis of effector and resting treg cells in pan-cancer. Comput Biol Med 2025; 189:110021. [PMID: 40088713 DOI: 10.1016/j.compbiomed.2025.110021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 02/09/2025] [Accepted: 03/11/2025] [Indexed: 03/17/2025]
Abstract
Regulatory T cells (Tregs) are critical for maintaining the stability of the immune system and facilitating tumor escape through various mechanisms. Resting T cells are involved in cell-mediated immunity and remain in a resting state until stimulated, while effector T cells promote immune responses. Here, we investigated the roles of two gene signatures, one for resting Tregs (FOXP3 and IL2RA) and another for effector Tregs (FOXP3, CTLA-4, CCR8 and TNFRSF9) in pan-cancer. Using data from The Cancer Genome Atlas (TCGA), The Cancer Proteome Atlas (TCPA) and Gene Expression Omnibus (GEO), we focused on the expression profile of the two signatures, the existence of single nucleotide variants (SNVs) and copy number variants (CNVs), methylation, infiltration of immune cells in the tumor and sensitivity to different drugs. Our analysis revealed that both signatures are differentially expressed across different cancer types, and correlate with patient survival. Furthermore, both types of Tregs influence important pathways in cancer development and progression, like apoptosis, epithelial-to-mesenchymal transition (EMT) and the DNA damage pathway. Moreover, a positive correlation was highlighted between the expression of gene markers in both resting and effector Tregs and immune cell infiltration in adrenocortical carcinoma, while mutations in both signatures correlated with enrichment of specific immune cells, mainly in skin melanoma and endometrial cancer. In addition, we reveal the existence of widespread CNVs and hypomethylation affecting both Treg signatures in most cancer types. Last, we identified a few correlations between the expression of CCR8 and TNFRSF9 and sensitivity to several drugs, including COL-3, Chlorambucil and GSK1070916, in pan-cancer. Overall, these findings highlight new evidence that both Treg signatures are crucial regulators of cancer progression, providing potential clinical outcomes for cancer therapy.
Collapse
Affiliation(s)
- Anna-Maria Chalepaki
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus; Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia, Cyprus.
| | - Marios Gkoris
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus; Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia, Cyprus.
| | - Irene Chondrou
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus.
| | - Malamati Kourti
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus.
| | - Ilias Georgakopoulos-Soares
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA.
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus; Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia, Cyprus.
| |
Collapse
|
3
|
Kulkarni AM, Gayam PKR, Baby BT, Aranjani JM. Epithelial-Mesenchymal Transition in Cancer: A Focus on Itraconazole, a Hedgehog Inhibitor. Biochim Biophys Acta Rev Cancer 2025; 1880:189279. [PMID: 39938662 DOI: 10.1016/j.bbcan.2025.189279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/24/2025] [Accepted: 02/04/2025] [Indexed: 02/14/2025]
Abstract
Cancer, and the resulting mortality from it, is an ever-increasing concern in global health. Cancer mortality stems from the metastatic progression of the disease, by dissemination of the tumor cells. Epithelial-Mesenchymal Transition, the major hypothesis purported to be the origin of metastasis, confers mesenchymal phenotype to epithelial cells in a variety of contexts, physiological and pathological. EMT in cancer leads to rise of cancer-stem-like cells, drug resistance, relapse, and progression of malignancy. Inhibition of EMT could potentially attenuate the mortality. While novel molecules for inhibiting EMT are underway, repurposing drugs is also being considered as a viable strategy. In this review, Itraconazole is focused upon, as a repurposed molecule to mitigate EMT. Itraconazole is known to inhibit Hedgehog signaling, and light is shed upon the existing evidence, as well as the questions remaining to be answered.
Collapse
Affiliation(s)
- Aniruddha Murahar Kulkarni
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka 576104, India.
| | - Prasanna Kumar Reddy Gayam
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka 576104, India.
| | - Beena Thazhackavayal Baby
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka 576104, India
| | - Jesil Mathew Aranjani
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka 576104, India.
| |
Collapse
|
4
|
Tan Q, Liu H, Shi Q. Ailanthone Restrains Osteosarcoma Growth and Metastasis by Decreasing the Expression of Regulator of G Protein Signaling 4 and Twist Family BHLH Transcription Factor 1. Chem Biol Drug Des 2025; 105:e70075. [PMID: 40047202 DOI: 10.1111/cbdd.70075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 02/08/2025] [Accepted: 02/17/2025] [Indexed: 03/19/2025]
Abstract
Traditional Chinese medicine Ailanthone (AIL) has been confirmed to possess antimalarial, anti-inflammatory, and anticancer effects. Here, this study aimed to excavate the biological role and mechanism of AIL on osteosarcoma (OS) progression. Levels of Regulator of G protein signaling 4 (RGS4) and Twist Family BHLH Transcription Factor 1 (TWIST1) were detected by qRT-PCR and western blotting. In vitro and tumor formation experiments were conducted for functional analysis. The protein interaction between RGS4 and TWIST1 was verified by using a Co-immunoprecipitation assay. AIL impeded the proliferation, invasion, migration, and epithelial-mesenchymal transition (EMT) progression, but induced apoptosis in OS cells. RGS4 was highly expressed in OS tissues and cells and was decreased by AIL in cells. RGS4 silencing suppressed the growth and metastasis of OS cells, and RGS4 overexpression reversed the anticancer action of AIL in OS cells. Mechanistically, RGS4 interacted with TWIST1 and positively regulated its expression. TWIST1 was highly expressed in OS tissues and cells and could be reduced by AIL in cells. Moreover, TWIST1 overexpression abolished RGS4 silencing-triggered growth and metastasis inhibition in OS cells. Importantly, AIL impeded OS growth and metastasis in vivo by regulating RGS4 and TWIST1. Ailanthone restrained OS growth and metastasis by decreasing RGS4 and TWIST1 expression.
Collapse
Affiliation(s)
- Qiang Tan
- Department of Oncology, Affiliated Hospital of Xiangnan University, Chenzhou City, Hunan, China
| | - Hongzhan Liu
- Department of Orthopedics, Affiliated Hospital of Xiangnan University, Chenzhou City, Hunan, China
| | - Qiaojing Shi
- Department of Oncology, Affiliated Hospital of Xiangnan University, Chenzhou City, Hunan, China
| |
Collapse
|
5
|
Maity A, Maidantchik VD, Weidenfeld K, Larisch S, Barkan D, Haick H. Chemical Tomography of Cancer Organoids and Cyto-Proteo-Genomic Development Stages Through Chemical Communication Signals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413017. [PMID: 39935131 PMCID: PMC11938034 DOI: 10.1002/adma.202413017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/13/2024] [Indexed: 02/13/2025]
Abstract
Organoids mimic human organ function, offering insights into development and disease. However, non-destructive, real-time monitoring is lacking, as traditional methods are often costly, destructive, and low-throughput. In this article, a non-destructive chemical tomographic strategy is presented for decoding cyto-proteo-genomics of organoid using volatile signaling molecules, hereby, Volatile Organic Compounds (VOCs), to indicate metabolic activity and development of organoids. Combining a hierarchical design of graphene-based sensor arrays with AI-driven analysis, this method maps VOC spatiotemporal distribution and generate detailed digital profiles of organoid morphology and proteo-genomic features. Lens- and label-free, it avoids phototoxicity, distortion, and environmental disruption. Results from testing organoids with the reported chemical tomography approach demonstrate effective differentiation between cyto-proteo-genomic profiles of normal and diseased states, particularly during dynamic transitions such as epithelial-mesenchymal transition (EMT). Additionally, the reported approach identifies key VOC-related biochemical pathways, metabolic markers, and pathways associated with cancerous transformations such as aromatic acid degradation and lipid metabolism. This real-time, non-destructive approach captures subtle genetic and structural variations with high sensitivity and specificity, providing a robust platform for multi-omics integration and advancing cancer biomarker discovery.
Collapse
Affiliation(s)
- Arnab Maity
- Department of Chemical Engineering and Russell Berrie Nanotechnology InstituteTechnion – Israel Institute of TechnologyHaifa3200003Israel
| | - Vivian Darsa Maidantchik
- Department of Chemical Engineering and Russell Berrie Nanotechnology InstituteTechnion – Israel Institute of TechnologyHaifa3200003Israel
| | - Keren Weidenfeld
- Department of Human Biology and Medical SciencesUniversity of HaifaHaifa3498838Israel
| | - Sarit Larisch
- Department of Human Biology and Medical SciencesUniversity of HaifaHaifa3498838Israel
| | - Dalit Barkan
- Department of Human Biology and Medical SciencesUniversity of HaifaHaifa3498838Israel
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology InstituteTechnion – Israel Institute of TechnologyHaifa3200003Israel
- Life Science Technology (LiST) GroupDanube Private UniversityFakultät Medizin/Zahnmedizin, Steiner Landstraße 124Krems‐Stein3500Austria
| |
Collapse
|
6
|
Batal A, Garousi S, Finnson KW, Philip A. CD109, a master regulator of inflammatory responses. Front Immunol 2025; 15:1505008. [PMID: 39990858 PMCID: PMC11842317 DOI: 10.3389/fimmu.2024.1505008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/23/2024] [Indexed: 02/25/2025] Open
Abstract
Inflammation is a complex response to harmful stimuli, crucial for immunity, and linked to chronic diseases and cancer, with TGF-β and NF-κB pathways as key regulators. CD109 is a glycosylphosphatidylinositol (GPI)-anchored protein, that our group has originally identified as a TGF-β co-receptor and inhibitor of TGF-β signaling. CD109 modulates TGF-β and NF-κB pathways, to influence immune responses and inflammation. CD109's multifaceted role in inflammation spans various tissue types, including the skin, lung, bone and bone-related tissues, and various types of cancers. CD109 exerts its effects by modulating processes such as cytokine secretion, immune cell recruitment, macrophage polarization, T helper cell function and cancer cell phenotype and function. Here, we review CD109's regulatory functions in inflammatory responses in these various tissues and cell types. Exploration of CD109's mechanisms of action will enhance our understanding of its contributions to disease pathology and its potential for therapeutic applications.
Collapse
Affiliation(s)
- Adel Batal
- Division of Plastic Surgery, Department of Surgery, McGill University, Montreal, QC, Canada
- Surgical and Interventional Sciences Program, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Setareh Garousi
- Division of Plastic Surgery, Department of Surgery, McGill University, Montreal, QC, Canada
- Surgical and Interventional Sciences Program, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Kenneth W. Finnson
- Division of Plastic Surgery, Department of Surgery, McGill University, Montreal, QC, Canada
- Surgical and Interventional Sciences Program, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Anie Philip
- Division of Plastic Surgery, Department of Surgery, McGill University, Montreal, QC, Canada
- Surgical and Interventional Sciences Program, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
7
|
Lasagna M, Mardirosian M, Zappia D, Enriquez L, Miret N, Dahir L, Zotta E, Randi A, Núñez M, Cocca C. Chlorpyrifos induces lung metastases and modulation of cancer stem cell markers in triple negative breast cancer model. Toxicology 2025; 511:154059. [PMID: 39832751 DOI: 10.1016/j.tox.2025.154059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/31/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Breast cancer is a major public health problem, and distant metastases are the main cause of morbidity and mortality. Chlorpyrifos is an organophosphate that promotes Epithelial-Mesenchymal Transition-like phenotype in breast cancer cell lines and modulates the Breast Cancer Stem Cells activating two key processes related to the metastatic cascade. Here, we investigated whether Chlorpyrifos may induce distant metastases in an in vivo triple negative tumor model. Also, we studied the expression of Breast Cancer Stem Cell and Epithelial-Mesenchymal Transition activation-markers in Triple Negative Breast Cancer mice tumors and human cells. We demonstrate that Chlorpyrifos modulates stem cell plasticity as a function of growth conditions in monolayer or three-dimensional culture. Furthermore, Chlorpyrifos decreased the doubling period, increased tumor volume, stimulated the infiltration of adjacent muscle fibers and induced lung and lymphatic node metastases in mice. Finally, Chlorpyrifos modulated the expression of Epithelial-Mesenchymal Transition and Breast Cancer Stem Cell markers in mice exposed to the pesticide. All our findings confirm that Chlorpyrifos promotes breast cancer progression, enhances stemness and Epithelial-Mesenchymal Transition marker expression and generates lung metastases in an in vivo model induced in mice.
Collapse
Affiliation(s)
- Marianela Lasagna
- Universidad de Buenos Aires-CONICET, Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica. Cátedra de Física, Laboratorio de Radioisótopos, Buenos Aires, Argentina.
| | - Mariana Mardirosian
- Universidad de Buenos Aires-CONICET, Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica. Cátedra de Física, Laboratorio de Radioisótopos, Buenos Aires, Argentina.
| | - Daniel Zappia
- Universidad de Buenos Aires-CONICET, Instituto de Investigaciones Farmacológicas (ININFA), Buenos Aires, Argentina.
| | - Lucia Enriquez
- Universidad de Buenos Aires-CONICET, Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina.
| | - Noelia Miret
- Universidad de Buenos Aires-CONICET, Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Buenos Aires, Argentina.
| | - Lara Dahir
- Hospital General de Niños Pedro de Elizalde, Departamento de Patología, Buenos Aires, Argentina.
| | - Elsa Zotta
- Universidad de Buenos Aires-CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina.
| | - Andrea Randi
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Buenos Aires, Argentina.
| | - Mariel Núñez
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica. Cátedra de Física, Laboratorio de Radioisótopos, Buenos Aires, Argentina.
| | - Claudia Cocca
- Universidad de Buenos Aires-CONICET, Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica. Cátedra de Física, Laboratorio de Radioisótopos, Buenos Aires, Argentina.
| |
Collapse
|
8
|
Wang C, Guo J, Zhang Y, Zhou S, Jiang B. Cuproptosis-Related Gene FDX1 Suppresses the Growth and Progression of Colorectal Cancer by Retarding EMT Progress. Biochem Genet 2025; 63:775-788. [PMID: 38520567 PMCID: PMC11832605 DOI: 10.1007/s10528-024-10784-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/28/2024] [Indexed: 03/25/2024]
Abstract
Colorectal cancer (CRC) is a usual cancer and a kind of lethiferous cancer. Cuproptosis-related gene ferredoxin 1 (FDX1) has been discovered to act as a suppressor, thereby suppressing some cancers' progression. But, the regulatory functions of FDX1 in CRC progression keep vague. In this work, at first, through TCGA database, it was revealed that FDX1 exhibited lower expression in COAD (colon adenocarcinoma) tissues, and CRC patients with lower FDX1 expression had worse prognosis. Furthermore, FDX1 expression was verified to be down-regulated in CRC tissues (n = 30) and cells. It was further uncovered that FDX1 expression was positively correlated with CDH1 and TJP1 (epithelial marker), and negatively correlated with CDH2, TWIST1, and FN1 (stromal marker), suggesting that FDX1 was closely associated with the epithelial-mesenchymal transition (EMT) progress. Next, it was demonstrated that overexpression of FDX1 suppressed cell viability, invasion, and migration in CRC. Furthermore, it was verified that FDX1 retarded the EMT progress in CRC. Lastly, through rescue assays, the inhibited CRC progression mediated by FDX1 overexpression was rescued by EGF (EMT inducer) treatment. At last, it was uncovered that the tumor growth and metastasis were relieved after FDX1 overexpression, but these changes were reversed after EGF treatment. In conclusion, FDX1 inhibited the growth and progression of CRC by inhibiting EMT progress. This discovery hinted that FDX1 may act as an effective candidate for CRC treatment.
Collapse
Affiliation(s)
- Chao Wang
- Department of Internal Medicine Oncology, Chaohu Hospital of Anhui Medical University, No. 64, Chaohu North Road, Juchao District, Chaohu, 238000, Anhui, China.
| | - Jingjing Guo
- Department of Internal Medicine Oncology, Chaohu Hospital of Anhui Medical University, No. 64, Chaohu North Road, Juchao District, Chaohu, 238000, Anhui, China
| | - Yun Zhang
- Department of Internal Medicine Oncology, Chaohu Hospital of Anhui Medical University, No. 64, Chaohu North Road, Juchao District, Chaohu, 238000, Anhui, China
| | - Shusheng Zhou
- Department of Internal Medicine Oncology, Chaohu Hospital of Anhui Medical University, No. 64, Chaohu North Road, Juchao District, Chaohu, 238000, Anhui, China
| | - Bing Jiang
- Department of Gastrointestinal Surgery, Chaohu Hospital of Anhui Medical University, Chaohu, 238000, Anhui, China
| |
Collapse
|
9
|
Parker HN, Haberman KL, Ojo T, Watkins J, Nambiar A, Morales K, Zechmann B, Taube JH. Twist-Induced Epithelial-to-Mesenchymal Transition Confers Specific Metabolic and Mitochondrial Alterations. Cells 2025; 14:80. [PMID: 39851508 PMCID: PMC11763985 DOI: 10.3390/cells14020080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/19/2024] [Accepted: 01/02/2025] [Indexed: 01/30/2025] Open
Abstract
Cells undergo significant epigenetic and phenotypic change during the epithelial-to-mesenchymal transition (EMT), a process observed in development, wound healing, and cancer metastasis. EMT confers several advantageous characteristics, including enhanced migration and invasion, resistance to cell death, and altered metabolism. In disease, these adaptations could be leveraged as therapeutic targets. Here, we analyze Twist-induced EMT in non-transformed HMLE cells as well as a breast cancer cell line with (MDA-MB-231) and without (MCF7) EMT features to compare differences in metabolic pathways and mitochondrial morphology. Analysis of oxidative and glycolytic metabolism reveals a general EMT-associated glycolytic metabolic phenotype accompanied by increased ATP production. Furthermore, a decrease in mitochondrial size was also associated with EMT-positive cells. However, mitochondrial elongation and spatial dynamics were not consistently altered, as HMLE Twist cells exhibit more rounded and dispersed mitochondria compared to control, while MDA-MB-231 cells exhibit more elongated and clustered mitochondria compared to MCF7 cells. These results provide further insight as to the contextual nature of EMT conferred properties.
Collapse
Affiliation(s)
- Haleigh N. Parker
- Department of Biology, Baylor University, Waco, TX 76798, USA; (H.N.P.)
| | - Kayla L. Haberman
- Department of Biology, Baylor University, Waco, TX 76798, USA; (H.N.P.)
| | - Tolulope Ojo
- Department of Biology, Baylor University, Waco, TX 76798, USA; (H.N.P.)
| | - Juli Watkins
- Department of Biology, Baylor University, Waco, TX 76798, USA; (H.N.P.)
| | - Adhwaitha Nambiar
- Department of Biology, Baylor University, Waco, TX 76798, USA; (H.N.P.)
| | - Kayla Morales
- Department of Biology, Baylor University, Waco, TX 76798, USA; (H.N.P.)
| | - Bernd Zechmann
- Center for Microscopy and Imaging, Baylor University, Waco, TX 76798, USA
| | - Joseph H. Taube
- Department of Biology, Baylor University, Waco, TX 76798, USA; (H.N.P.)
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
10
|
Srinivasan D, Subbarayan R, Krishnan M, Balakrishna R, Adtani P, Shrestha R, Chauhan A, Babu S, Radhakrishnan A. Radiation therapy-induced normal tissue damage: involvement of EMT pathways and role of FLASH-RT in reducing toxicities. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2025:10.1007/s00411-024-01102-2. [PMID: 39760753 DOI: 10.1007/s00411-024-01102-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 12/20/2024] [Indexed: 01/07/2025]
Abstract
Radiation therapy (RT) is fundamental to the fight against cancer because of its exceptional ability to target and destroy cancer cells. However, conventional radiation therapy can significantly affect the adjacent normal tissues, leading to fibrosis, inflammation, and decreased organ function. This tissue damage not only reduces the quality of life but also prevents the total elimination of cancer. The transformation of epithelial cells into mesenchymal-like cells, termed epithelial-mesenchymal transition (EMT), is essential for processes such as fibrosis, embryogenesis, and wound healing. Conventional radiation therapy increases the asymmetric activation of fibrotic and inflammatory pathways, and the resulting chronic fibrotic changes and organ dysfunction are linked to radiation-induced epithelial-mesenchymal transition. Recent advances in radiation therapy, namely flash radiation therapy (FLASH-RT), have the potential to widen the therapeutic index. Radiation delivered by FLASH-RT at very high dose rates (exceeding 40 Gy/s) can protect normal tissue from radiation-induced damage, a phenomenon referred to as the "FLASH effect". Preclinical studies have demonstrated that FLASH-RT successfully inhibits processes associated with fibrosis and epithelial-mesenchymal transition, mitigates damage to normal tissue, and enhances regeneration. Three distinct types of EMT have been identified: type-1, associated with embryogenesis; Type-2, associated with injury potential; and type-3, related with cancer spread. The regulation of EMT via pathways, including TGF-β/SMAD, WNT/β-catenin, and NF-κB, is essential for radiation-induced tissue remodelling. This study examined radiation-induced EMT, TGF-β activity, multiple signalling pathways in fibrosis, and the potential of FLASH-RT to reduce tissue damage. FLASH-RT is a novel approach to treat chronic tissue injury and fibrosis post-irradiation by maintaining epithelial properties and regulating mesenchymal markers including vimentin and N-cadherin. Understanding these pathways will facilitate the development of future therapies that can alleviate fibrosis, improve the efficacy of cancer therapy, and improve the quality of life of patients.
Collapse
Affiliation(s)
- Dhasarathdev Srinivasan
- Centre for Advanced Biotherapeutics and Regenerative Medicine, Faculty of Research, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| | - Rajasekaran Subbarayan
- Centre for Advanced Biotherapeutics and Regenerative Medicine, Faculty of Research, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| | - Madhan Krishnan
- Faculty of Research, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| | - Ranjith Balakrishna
- Centre for Advanced Biotherapeutics and Regenerative Medicine, Faculty of Research, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| | - Pooja Adtani
- Department of Basic Medical and Dental Sciences, Gulf Medical University, Ajman, United Arab Emirates
| | - Rupendra Shrestha
- Department of Natural and Applied Sciences, Nexus Institute of Research and Innovation (NIRI), Lalitpur, Nepal.
| | - Ankush Chauhan
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| | - Shyamaladevi Babu
- Faculty of Research, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| | - Arunkumar Radhakrishnan
- Department of Pharmacology, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| |
Collapse
|
11
|
Maleki AS, Ghahremani MH, Shadboorestan A. Arsenic and Benzo[a]pyrene Co-exposure Effects on MDA-MB-231 Cell Viability and Migration. Biol Trace Elem Res 2025; 203:178-186. [PMID: 38602648 DOI: 10.1007/s12011-024-04170-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
Although humans are frequently exposed to multiple pollutants simultaneously, research on their harmful effects on health has typically focused on studying each pollutant individually. Inorganic arsenic (As) and benzo[a]pyrene (BaP) are well-known pollutants with carcinogenic potential, but their co-exposure effects on breast cancer cell progression remain incompletely understood. This study aimed to assess the combined impact of BaP and As on the viability and migration of MDA-MB-231 cells. The results indicated that even at low levels, both inorganic As (0.01 μM, 0.1 μM, and 1 μM) and BaP (1 μM, 2.5 μM), individually or in combination, enhanced the viability and migration of the cells. However, the cell cycle analysis revealed no significant differences between the control group and the cells exposed to BaP and As. Specifically, exposure to BaP alone or in combination with As (As 0.01 μM + BaP 1 μM) for 24 h led to a significant increase in vimentin gene expression. Interestingly, short-term exposure to As not only did not induce EMT but also modulated the effects of BaP on vimentin gene expression. However, there were no observable changes in the expression of E-cadherin mRNA. Consequently, additional research is required to evaluate the prolonged effects of co-exposure to As and BaP on the initiation of EMT and the progression of breast cancer.
Collapse
Affiliation(s)
- Ahmad Safari Maleki
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Hossein Ghahremani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Shadboorestan
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
12
|
Alanbari BF, Al-Taweel FB, Cooper PR, Milward MR. Induction of Epithelial-Mesenchymal Transition in Periodontitis Rat Model. Eur J Dent 2024. [PMID: 39750512 DOI: 10.1055/s-0044-1792011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
OBJECTIVES Epithelial-mesenchymal transition (EMT) is a process that shifts cellular phenotype. It is linked to several different inflammatory diseases including periodontitis. This study was conducted to investigate the involvement of the EMT process in an experimental periodontitis (EP) model. MATERIALS AND METHODS Second upper molars of Wistar albino male rats were ligated to induce periodontitis, while controls were not ligated. The animals were sacrificed after 0, 3, 7, 14, and 21 days (n = 6 for each time point). The maxillae were resected, posterior to the incisor teeth, and the gingival tissue surrounding teeth were analyzed. Alveolar bone loss (ABL), epithelial thickness, and the number of inflammatory cells were measured at each time point. Expressions of EMT-related biomarkers (E-cadherin, N-cadherin, Snail1, Twist1, and vimentin) were assessed using the immunohistochemical technique. All experiments were performed in triplicate. STATISTICAL ANALYSIS Inferential comparisons were performed by the kruskall-wallis test. To determine the correlation between the dependent and independent variables ,Spearman's correlation test was used. RESULTS ABL, epithelial thickness, and inflammatory cell count were gradually increased throughout the EP study period. Switching of E-cadherin/N-cadherin was evident and associated with increased nuclear expression of Snail1 and Twist1. Additionally, positive cytoplasmic expression of vimentin was detected from day 7 and increased at subsequent time points. Histoscore of E-cadherin was negatively and significantly correlated with N-cadherin and Snail1. Furthermore, Snail1 and Twist1 histoscores were significantly and positively correlated. CONCLUSION The results demonstrated induction of an EMT phenotype in the EP model. This was supported by cadherin switching and positive vimentin expression along with nuclear translocation of Snail1 and Twist.
Collapse
Affiliation(s)
- Basma F Alanbari
- Department of Periodontics, College of Dentistry, University of Baghdad, Bab Al Mudam, Baghdad, Iraq
- Department of Dentistry, Periodontics Branch, Al-Rafidain University College, Baghdad, Iraq
| | - Firas B Al-Taweel
- Department of Periodontics, College of Dentistry, University of Baghdad, Bab Al Mudam, Baghdad, Iraq
| | - Paul R Cooper
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| | - Mike R Milward
- School of Dentistry, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
13
|
Roy NS, Kumari M, Alam K, Bhattacharya A, Kaity S, Kaur K, Ravichandiran V, Roy S. Development of bioengineered 3D patient derived breast cancer organoid model focusing dynamic fibroblast-stem cell reciprocity. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2024; 7:012007. [PMID: 39662055 DOI: 10.1088/2516-1091/ad9dcb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 12/11/2024] [Indexed: 12/13/2024]
Abstract
Three-dimensional (3D) models, such as tumor spheroids and organoids, are increasingly developed by integrating tissue engineering, regenerative medicine, and personalized therapy strategies. These advanced 3Din-vitromodels are not merely endpoint-driven but also offer the flexibility to be customized or modulated according to specific disease parameters. Unlike traditional 2D monolayer cultures, which inadequately capture the complexities of solid tumors, 3D co-culture systems provide a more accurate representation of the tumor microenvironment. This includes critical interactions with mesenchymal stem/stromal cells (MSCs) and induced pluripotent stem cells (iPSCs), which significantly modulate cancer cell behavior and therapeutic responses. Most of the findings from the co-culture of Michigan Cancer Foundation-7 breast cancer cells and MSC showed the formation of monolayers. Although changes in the plasticity of MSCs and iPSCs caused by other cells and extracellular matrix (ECM) have been extensively researched, the effect of MSCs on cancer stem cell (CSC) aggressiveness is still controversial and contradictory among different research communities. Some researchers have argued that CSCs proliferate more, while others have proposed that cancer spread occurs through dormancy. This highlights the need for further investigation into how these interactions shape cancer aggressiveness. The objective of this review is to explore changes in cancer cell behavior within a 3D microenvironment enriched with MSCs, iPSCs, and ECM components. By describing various MSC and iPSC-derived 3D breast cancer models that replicate tumor biology, we aim to elucidate potential therapeutic targets for breast cancer. A particular focus of this review is the Transwell system, which facilitates understanding how MSCs and iPSCs affect critical processes such as migration, invasion, and angiogenesis. The gradient formed between the two chambers is based on diffusion, as seen in the human body. Once optimized, this Transwell model can serve as a high-throughput screening platform for evaluating various anticancer agents. In the future, primary cell-based and patient-derived 3D organoid models hold promise for advancing personalized medicine and accelerating drug development processes.
Collapse
Affiliation(s)
- Nakka Sharmila Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| | - Mamta Kumari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| | - Kamare Alam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| | - Anamitra Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| | - Santanu Kaity
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| | - Kulwinder Kaur
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine a Health Sciences, Dublin, Ireland
- Department of Anatomy & Regenerative Medicine, Tissue Engineering Research Group, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Velayutham Ravichandiran
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| | - Subhadeep Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| |
Collapse
|
14
|
Abu-Alghayth MH, Abalkhail A, Hazazi A, Alyahyawi Y, Abdulaziz O, Alsharif A, Nassar SA, Omar BIA, Alqahtani SF, Shmrany HA, Khan FR. MicroRNAs and long non-coding RNAs In T-cell lymphoma: Mechanisms, pathway, therapeutic opportunities. Pathol Res Pract 2024; 266:155769. [PMID: 39740285 DOI: 10.1016/j.prp.2024.155769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/07/2024] [Accepted: 12/11/2024] [Indexed: 01/02/2025]
Abstract
T-cell lymphomas represent non-Hodgkin lymphomas distinguished by the uncontrolled proliferation of malignant T lymphocytes. Classifying these neoplasms and the ongoing investigation of their underlying biological mechanisms remains challenging. Significant subtypes encompass peripheral T-cell lymphomas, anaplastic large-cell lymphomas, cutaneous T-cell lymphomas, and adult T-cell leukemia/lymphoma. A systematic literature survey used electronic databases, including PubMed, Springer Link, Google Scholar, and Web of Science. Search keywords included "T-cell lymphoma," "therapeutic approaches," "RNA therapeutics," "microRNA," and "signaling pathways". T-cell lymphomas are believed to arise from a complex interplay of genetic predispositions and environmental factors. Epstein-Barr virus (EBV) and Human T-cell leukemia virus-1 (HTLV-1), have been implicated as potential etiologic agents. While the exact molecular mechanisms are under investigation, T-cell lymphomas are distinguished by aberrant proliferation of T-cells resulting from dysregulated gene expression. Contemporary research has emphasized the significance of non-coding RNAs, including microRNAs and long non-coding RNAs, in the etiology and advancement of T-cell lymphomas. Certain miRNAs function as tumor suppressors (e.g., miR-451, miR-31, miR-150, miR-29a), while others can act as oncogenes (e.g., miR-223, miR-17-92, miR-155). Additionally, lcRNAs are responsible for modulating gene expression, and their influence on T-cell function suggests their potential outcome as therapeutic targets. Current therapeutic strategies for T-cell lymphomas predominantly rely on chemotherapy, with emerging modalities encompassing immunotherapy and targeted therapies. Despite these advancements, a substantial subset of T-cell lymphomas remains challenging to manage, especially those in advanced stages or refractory to conventional treatments. RNA-based therapeutics represent a promising strategy, offering many advantages such as targeted therapy, potential for personalized medicine, reduced side effects, rapid development, and synergy with other therapies while facing challenges in delivery, immune response, and specificity. Future research should focus on improving delivery systems, modulating immune responses, and optimizing production to unlock its full potential. This review comprehensively explored T-cell lymphomas, delving into their classification, pathogenesis, and existing therapeutic options. Additionally, we explore the evolving function of non-coding RNAs in the pathogenesis of T-cell lymphoma. Furthermore, we discuss the potential of RNA-based therapeutics as a promising treatment strategy.
Collapse
Affiliation(s)
- Mohammed H Abu-Alghayth
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, P.O. Box 255, Bisha 67714, Saudi Arabia.
| | - Adil Abalkhail
- Department of Public Health, College of Applied Medical Sciences, Qassim University, P.O. Box 6666, Buraydah 51452, Saudi Arabia.
| | - Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| | - Yara Alyahyawi
- Department of Medical Laboratory Technology, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia.
| | - Osama Abdulaziz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Abdulaziz Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Somia A Nassar
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia; Department of Parasitology & Animal Diseases, National Research Centre, 33 Bohouth St., Dokki, Giza 12622, Egypt.
| | - Bashir Ibrahim A Omar
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia.
| | - Sultan F Alqahtani
- Laboratory Department, Aliman General Hospital, Riyadh 13782, Saudi Arabia.
| | - Humood Al Shmrany
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia.
| | - Farhan R Khan
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia.
| |
Collapse
|
15
|
Liaghat M, Ferdousmakan S, Mortazavi SH, Yahyazadeh S, Irani A, Banihashemi S, Seyedi Asl FS, Akbari A, Farzam F, Aziziyan F, Bakhtiyari M, Arghavani MJ, Zalpoor H, Nabi-Afjadi M. The impact of epithelial-mesenchymal transition (EMT) induced by metabolic processes and intracellular signaling pathways on chemo-resistance, metastasis, and recurrence in solid tumors. Cell Commun Signal 2024; 22:575. [PMID: 39623377 PMCID: PMC11610171 DOI: 10.1186/s12964-024-01957-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 11/22/2024] [Indexed: 12/06/2024] Open
Abstract
The intricate cellular process, known as the epithelial-mesenchymal transition (EMT), significantly influences solid tumors development. Changes in cell shape, metabolism, and gene expression linked to EMT facilitate tumor cell invasion, metastasis, drug resistance, and recurrence. So, a better understanding of the intricate processes underlying EMT and its role in tumor growth may lead to the development of novel therapeutic approaches for the treatment of solid tumors. This review article focuses on the signals that promote EMT and metabolism, the intracellular signaling pathways leading to EMT, and the network of interactions between EMT and cancer cell metabolism. Furthermore, the functions of EMT in treatment resistance, recurrence, and metastasis of solid cancers are covered. Lastly, treatment approaches that focus on intracellular signaling networks and metabolic alterations brought on by EMT will be discussed.
Collapse
Affiliation(s)
- Mahsa Liaghat
- Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Saeid Ferdousmakan
- Department of Pharmacy Practice, Nargund College of Pharmacy, Bangalore, 560085, India
| | | | - Sheida Yahyazadeh
- Department of Immunology, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asrin Irani
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, Iran
| | - Sara Banihashemi
- Department of Bioscience, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | | | - Abdullatif Akbari
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farnoosh Farzam
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Aziziyan
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Bakhtiyari
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohammad Javad Arghavani
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Hamidreza Zalpoor
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran.
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
16
|
Li Q, Li W, Wang J, Shi W, Wang T. Effect of ubiquitin-specific proteinase 43 on ovarian serous adenocarcinoma and its clinical significance. J OBSTET GYNAECOL 2024; 44:2361862. [PMID: 38916982 DOI: 10.1080/01443615.2024.2361862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 05/25/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Ovarian cancer stands as a highly aggressive malignancy. The core aim of this investigation is to uncover genes pivotal to the progression and prognosis of ovarian cancer, while delving deep into the intricate mechanisms that govern their impact. METHODS The study entailed the retrieval of RNA-seq data and survival data from the XENA database. Outliers were meticulously excluded in accordance with TCGA guidelines and through principal components analysis. The R package 'deseq2' was harnessed to extract differentially expressed genes. WGCNA was employed to prioritise these genes, and Cox regression analysis and survival analysis based on disease-specific time were conducted to identify significant genes. Immunohistochemistry validation was undertaken to confirm the distinct expression of USP43. Furthermore, the influence of USP43 on the biological functions of ovarian cancer cells was explored using techniques such as RNA interference, western blotting, scratch assays, and matrigel invasion assays. The examination of immune infiltration was facilitated via CIBERSORT. RESULTS The study unearthed 5195 differentially expressed genes between ovarian cancer and normal tissue, comprising 3416 up-regulated and 1779 down-regulated genes. WGCNA pinpointed 204 genes most intimately tied to tumorigenesis. The previously undisclosed gene USP43 exhibited heightened expression in tumour tissues and exhibited associations with overall survival and disease-specific survival. USP43 emerged as a driver of cell migration (43.27 ± 3.91% vs 19.69 ± 1.94%) and invasion ability (314 ± 32 vs 131 ± 12) through the mechanism of epithelial mesenchymal transition, potentially mediated by the KRAS pathway. USP43 was also identified as a booster of CD4+ T memory resting cell infiltration, while concurrently reducing M1 macrophages within cancer, thereby fostering a milieu with relatively immune suppressive traits. Interestingly, USP43 demonstrated connections with epigenetically regulated-mRNAsi, although not with mRNAsi. CONCLUSION This study underscores the role of USP43 in facilitating tumour migration and invasion. It postulates USP43 as a novel therapeutic target for ovarian cancer treatment.
Collapse
Affiliation(s)
- Qin Li
- Department of Obstetrics and Gynecology, Lixin County People's Hospital, Bozhou, China
| | - Wenhao Li
- First school of Clinical Medical, Anhui Medical University, Hefei, China
| | - Jiahao Wang
- First school of Clinical Medical, Anhui Medical University, Hefei, China
| | - Wenjing Shi
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Taorong Wang
- Experimental Center of Morphology, Anhui Medical University, Hefei, China
| |
Collapse
|
17
|
Wang Y, Chen Z, Yang G, Yuan G. Unveiling the roles of LEMD proteins in cellular processes. Life Sci 2024; 357:123116. [PMID: 39374771 DOI: 10.1016/j.lfs.2024.123116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/09/2024]
Abstract
Proteins localized in the inner nuclear membrane (INM) engage in various fundamental cellular processes via their interactions with outer nuclear membrane (ONM) proteins and nuclear lamina. LAP2-emerin-MAN1 domain (LEMD) family proteins, predominantly positioned in the INM, participate in the maintenance of INM functions, including the reconstruction of the nuclear envelope during mitosis, mechanotransduction, and gene transcriptional modulation. Malfunction of LEMD proteins leads to severe tissue-restricted diseases, which may manifest as fatal deformities and defects. In this review, we summarize the significant roles of LEMD proteins in cellular processes, explains the mechanisms of LEMD protein-related diseases, and puts forward questions in less-explored areas like details in tissue-restricted phenotypes. It intends to sort out previous works about LEMD proteins and pave way for future researchers who might discover deeper mechanisms of and better treatment strategies for LEMD protein-related diseases.
Collapse
Affiliation(s)
- Yiyun Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Zhi Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Guobin Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Guohua Yuan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
18
|
Bao Z, Yang M, Guo Y, Ge Q, Zhang H. MTFR2 accelerates hepatocellular carcinoma mediated by metabolic reprogramming via the Akt signaling pathway. Cell Signal 2024; 123:111366. [PMID: 39182591 DOI: 10.1016/j.cellsig.2024.111366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Metabolic reprogramming has recently been identified as a hallmark of malignancies. The shift from oxidative phosphorylation to glycolysis in hepatocellular carcinoma (HCC) meets the demands of rapid cell growth and provides a microenvironment for tumor progression. This study sought to uncover the function and mechanism of MTFR2 in the metabolic reprogramming of HCC. Elevated MTFR2 expression was associated with poor patient prognosis. Downregulation of MTFR2 blocked malignant behaviors, epithelial-to-mesenchymal transition (EMT), and glycolysis in HCC cells. Nuclear transcription factor Y subunit gamma (NFYC) was also associated with poor patient prognosis, and NFYC bound to the promoter of MTFR2 to activate transcription and promote Akt signaling. The repressive effects of NFYC knockdown on EMT and glycolysis in HCC cells were compromised by MTFR2 overexpression, elicited through the activation of the Akt signaling. Knockdown of NFYC slowed the growth and intrahepatic metastasis in vivo, which was reversed by MTFR2 overexpression. In conclusion, our work shows that activation of MTFR2 by the transcription factor NFYC promotes Akt signaling, thereby potentiating metabolic reprogramming in HCC development. Targeting the NFYC/MTFR2/Akt axis may represent a therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Zhongming Bao
- Department of Hepatobiliary Surgery, Huai'an Hospital Affiliated to Yangzhou University (The Fifth People's Hospital of Huai'an), Huaiyin 223300, Jiangsu, PR China
| | - Ming Yang
- Department of Hepatobiliary Surgery, Huai'an Hospital Affiliated to Yangzhou University (The Fifth People's Hospital of Huai'an), Huaiyin 223300, Jiangsu, PR China
| | - Yunhu Guo
- Department of Hepatobiliary Surgery, Huai'an Hospital Affiliated to Yangzhou University (The Fifth People's Hospital of Huai'an), Huaiyin 223300, Jiangsu, PR China
| | - Qi Ge
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou 239000, Anhui, PR China.
| | - Huaguo Zhang
- Department of Hepatobiliary Surgery, Huai'an Hospital Affiliated to Yangzhou University (The Fifth People's Hospital of Huai'an), Huaiyin 223300, Jiangsu, PR China.
| |
Collapse
|
19
|
Joudaki N, Khodadadi A, Shamshiri M, Dehnavi S, Asadirad A. Alterations in the expression of serum-derived exosome-enclosed inflammatory microRNAs in Covid-19 patients. Heliyon 2024; 10:e39303. [PMID: 39640730 PMCID: PMC11620257 DOI: 10.1016/j.heliyon.2024.e39303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/05/2024] [Accepted: 10/11/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction MicroRNAs in exosomes play a role in biological processes such as inflammation and Epithelial-mesenchymal transition (EMT). In EMT, epithelial cells undergo phenotypic changes and become similar to mesenchymal cells. EMT increases the invasion and metastasis of cancer cells. We aimed to evaluate the expression levels of miRNA-21, miRNA-218, miRNA-155, and miRNA-10b, which are effective in the pathway of inflammation and EMT in serum-derived exosome of COVID-19 patients. Method Blood samples were taken from 30 patients with COVID-19 and five healthy individuals as a control group. After separating the serum from the collected blood, the exosomes were purified from the serum. Relative expression of microRNAs was measured by real-time PCR method. Results The relative expression of miRNA-21, miRNA-218, and miRNA-155 in serum-derived exosomes of patients with COVID-19 had a significant increase (p < 0.0001). Also, the relative expression of miRNA-10b was significantly increased in the patient group (p < 0.01), but the changes in the expression level of miRNA-10b were not as significant as the changes in the expression level of other microRNAs. Conclusion miRNA-21, miRNA-218, miRNA-155, and miRNA-10b are involved in the pathogenesis of COVID-19 disease, and their transmission by exosomes leads to pathogenic lesions and problems in other parts of the body.
Collapse
Affiliation(s)
- Nazanin Joudaki
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Khodadadi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cancer, Petroleum and Environmental Pollutants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Marziye Shamshiri
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sajad Dehnavi
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Asadirad
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cancer, Petroleum and Environmental Pollutants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
20
|
Lv Z, Ali A, Wang N, Ren H, Liu L, Yan F, Shad M, Hao H, Zhang Y, Rahman FU. Co-targeting CDK 4/6 and C-MYC/STAT3/CCND1 axis and inhibition of tumorigenesis and epithelial-mesenchymal-transition in triple negative breast cancer by Pt(II) complexes bearing NH 3 as trans-co-ligand. J Inorg Biochem 2024; 259:112661. [PMID: 39018748 DOI: 10.1016/j.jinorgbio.2024.112661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 07/19/2024]
Abstract
In search of potential anticancer agents, we synthesized SNO-donor salicylaldimine main ligand-based Pt(II) complexes bearing NH3 as co-ligand at trans-position (C1-C6). These complexes showed similarity in structure with transplatin as the two N donor atoms of the main ligand and NH3 co-ligand were coordinated to Pt in trans position to each other. Each complex with different substituents on the main ligand was characterized thoroughly by detailed spectroscopic and spectrophotometric methods. Four of these complexes were studied in solid state by single crystal X-ray analysis. The stability of reference complex C1 was measured in solution state in DMSO‑d6 or its mixture with D2O using 1H NMR methods. These complexes were further investigated for their anticancer activity in triple-negative-breast (TNBC) cells including MDA-MB-231, MDA-MB-468 and MDA-MB-436 cells. All these complexes showed satisfactory cytotoxic effect as revealed by the MTT results. Importantly, the highly active complex C4 anticancer effect was compared to the standard chemotherapeutic agents including cisplatin, oxaliplatin and 5-fluorouracil (5-FU). Functionally, C4 suppressed invasion, spheroids formation ability and clonogenic potential of cancer cells. C4 showed synergistic anticancer effect when used in combination with palbociclib, JQ1 and paclitaxel in TNBC cells. Mechanistically, C4 inhibited cyclin-dependent kinase (CDK)4/6 pathway and targeted the expressions of MYC/STAT3/CCND1/CNNE1 axis. Furthermore, C4 suppressed the EMT signaling pathway that suggested a role of C4 in the inhibition of TNBC metastasis. Our findings may pave further in detailed mechanistic study on these complexes as potential chemotherapeutic agents in different types of human cancers.
Collapse
Affiliation(s)
- Zhimin Lv
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China
| | - Amjad Ali
- Institute of Integrative Biosciences, CECOS University of IT and Emerging Sciences, Peshawar, KPK, Pakistan; Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, People's Republic of China
| | - Na Wang
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China
| | - Haojie Ren
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China
| | - Lijing Liu
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China
| | - Fufu Yan
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China
| | - Man Shad
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China; School of Life Sciences, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Huifang Hao
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China; School of Life Sciences, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Yongmin Zhang
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China; Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005 Paris, France.
| | - Faiz-Ur Rahman
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China.
| |
Collapse
|
21
|
Sharma S, Dasgupta M, Vadaga BS, Kodgire P. Unfolding the symbiosis of AID, chromatin remodelers, and epigenetics-The ACE phenomenon of antibody diversity. Immunol Lett 2024; 269:106909. [PMID: 39128629 DOI: 10.1016/j.imlet.2024.106909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Activation-induced cytidine deaminase (AID) is responsible for the initiation of somatic hypermutation (SHM) and class-switch recombination (CSR), which result in antibody affinity maturation and isotype switching, thus producing pathogen-specific antibodies. Chromatin dynamics and accessibility play a significant role in determining AID expression and its targeting. Chromatin remodelers contribute to the accessibility of the chromatin structure, thereby influencing the targeting of AID to Ig genes. Epigenetic modifications, including DNA methylation, histone modifications, and miRNA expression, profoundly impact the regulation of AID and chromatin remodelers targeting Ig genes. Additionally, epigenetic modifications lead to chromatin rearrangement and thereby can change AID expression levels and its preferential targeting to Ig genes. This interplay is symbolized as the ACE phenomenon encapsulates three interconnected aspects: AID, Chromatin remodelers, and Epigenetic modifications. This review emphasizes the importance of understanding the intricate relationship between these aspects to unlock the therapeutic potential of these molecular processes and molecules.
Collapse
Affiliation(s)
- Saurav Sharma
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Mallar Dasgupta
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Bindu Sai Vadaga
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Prashant Kodgire
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore, 453552, India.
| |
Collapse
|
22
|
Mancha S, Horan M, Pasachhe O, Keikhosravi A, Eliceiri KW, Matkowskyj KA, Notbohm J, Skala MC, Campagnola PJ. Multiphoton excited polymerized biomimetic models of collagen fiber morphology to study single cell and collective migration dynamics in pancreatic cancer. Acta Biomater 2024; 187:212-226. [PMID: 39182805 PMCID: PMC11446658 DOI: 10.1016/j.actbio.2024.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/02/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
The respective roles of aligned collagen fiber morphology found in the extracellular matrix (ECM) of pancreatic cancer patients and cellular migration dynamics have been gaining attention because of their connection with increased aggressive phenotypes and poor prognosis. To better understand how collagen fiber morphology influences cell-matrix interactions associated with metastasis, we used Second Harmonic Generation (SHG) images from patient biopsies with Pancreatic ductal adenocarcinoma (PDAC) as models to fabricate collagen scaffolds to investigate processes associated with motility. Using the PDAC BxPC-3 metastatic cell line, we investigated single and collective cell dynamics on scaffolds of varying collagen alignment. Collective or clustered cells grown on the scaffolds with the highest collagen fiber alignment had increased E-cadherin expression and larger focal adhesion sites compared to single cells, consistent with metastatic behavior. Analysis of single cell motility revealed that the dynamics were characterized by random walk on all substrates. However, examining collective motility over different time points showed that the migration was super-diffusive and enhanced on highly aligned fibers, whereas it was hindered and sub-diffusive on un-patterned substrates. This was further supported by the more elongated morphology observed in collectively migrating cells on aligned collagen fibers. Overall, this approach allows the decoupling of single and collective cell behavior as a function of collagen alignment and shows the relative importance of collective cell behavior as well as fiber morphology in PDAC metastasis. We suggest these scaffolds can be used for further investigations of PDAC cell biology. STATEMENT OF SIGNIFICANCE: Pancreatic ductal adenocarcinoma (PDAC) has a high mortality rate, where aligned collagen has been associated with poor prognosis. Biomimetic models representing this architecture are needed to understand complex cellular interactions. The SHG image-based models based on stromal collagen from human biopsies afford the measurements of cell morphology, cadherin and focal adhesion expression as well as detailed motility dynamics. Using a metastatic cell line, we decoupled the roles of single cell and collective cell behavior as well as that arising from aligned collagen. Our data suggests that metastatic characteristics are enhanced by increased collagen alignment and that collective cell behavior is more relevant to metastatic processes. These scaffolds provide new insight in this disease and can be a platform for further experiments such as testing drug efficacy.
Collapse
Affiliation(s)
- Sophie Mancha
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Meghan Horan
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | - Adib Keikhosravi
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kevin W Eliceiri
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; Morgridge Institute for Research, Madison, WI, USA
| | - Kristina A Matkowskyj
- Department of Pathology & Lab Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jacob Notbohm
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Melissa C Skala
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; Morgridge Institute for Research, Madison, WI, USA.
| | - Paul J Campagnola
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
23
|
Bhattacharya T, Kumari M, Kaur K, Kaity S, Arumugam S, Ravichandiran V, Roy S. Decellularized extracellular matrix-based bioengineered 3D breast cancer scaffolds for personalized therapy and drug screening. J Mater Chem B 2024; 12:8843-8867. [PMID: 39162395 DOI: 10.1039/d4tb00680a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Breast cancer (BC) is the second deadliest cancer after lung cancer. Similar to all cancers, it is also driven by a 3D microenvironment. The extracellular matrix (ECM) is an essential component of the 3D tumor micro-environment, wherein it functions as a scaffold for cells and provides metabolic support. BC is characterized by alterations in the ECM. Various studies have attempted to mimic BC-specific ECMs using artificial materials, such as Matrigel. Nevertheless, research has proven that naturally derived decellularized extracellular matrices (dECMs) are superior in providing the essential in vivo-like cues needed to mimic a cancer-like environment. Developing in vitro 3-D BC models is not straightforward and requires extensive analysis of the data established by researchers. For the benefit of researchers, in this review, we have tried to highlight all developmental studies that have been conducted by various scientists so far. The analysis of the conclusions drawn from these studies is also discussed. The advantages and drawbacks of the decellularization methods employed for generating BC scaffolds will be covered, and the review will shed light on how dECM scaffolds help develop a BC environment. The later stages of the article will also focus on immunogenicity issues arising from decellularization and the origin of the tissue. Finally, this review will also discuss the biofabrication of matrices, which is the core part of the bioengineering process.
Collapse
Affiliation(s)
- Teeshyo Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India.
| | - Mamta Kumari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India
| | - Kulwinder Kaur
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine a Health Sciences, Dublin, Ireland
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Santanu Kaity
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India
| | - Somasundaram Arumugam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India.
| | - Velayutham Ravichandiran
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India.
| | - Subhadeep Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India.
| |
Collapse
|
24
|
Bustamante A, Baritaki S, Zaravinos A, Bonavida B. Relationship of Signaling Pathways between RKIP Expression and the Inhibition of EMT-Inducing Transcription Factors SNAIL1/2, TWIST1/2 and ZEB1/2. Cancers (Basel) 2024; 16:3180. [PMID: 39335152 PMCID: PMC11430682 DOI: 10.3390/cancers16183180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Untreated primary carcinomas often lead to progression, invasion and metastasis, a process that involves the epithelial-to-mesenchymal transition (EMT). Several transcription factors (TFs) mediate the development of EMT, including SNAIL1/SNAIL2, TWIST1/TWIST2 and ZEB1/ZEB2, which are overexpressed in various carcinomas along with the under expression of the metastasis suppressor Raf Kinase Inhibitor Protein (RKIP). Overexpression of RKIP inhibits EMT and the above associated TFs. We, therefore, hypothesized that there are inhibitory cross-talk signaling pathways between RKIP and these TFs. Accordingly, we analyzed the various properties and biomarkers associated with the epithelial and mesenchymal tissues and the various molecular signaling pathways that trigger the EMT phenotype such as the TGF-β, the RTK and the Wnt pathways. We also presented the various functions and the transcriptional, post-transcriptional and epigenetic regulations for the expression of each of the EMT TFs. Likewise, we describe the transcriptional, post-transcriptional and epigenetic regulations of RKIP expression. Various signaling pathways mediated by RKIP, including the Raf/MEK/ERK pathway, inhibit the TFs associated with EMT and the stabilization of epithelial E-Cadherin expression. The inverse relationship between RKIP and the TF expressions and the cross-talks were further analyzed by bioinformatic analysis. High mRNA levels of RKIP correlated negatively with those of SNAIL1, SNAIL2, TWIST1, TWIST2, ZEB1, and ZEB2 in several but not all carcinomas. However, in these carcinomas, high levels of RKIP were associated with good prognosis, whereas high levels of the above transcription factors were associated with poor prognosis. Based on the inverse relationship between RKIP and EMT TFs, it is postulated that the expression level of RKIP in various carcinomas is clinically relevant as both a prognostic and diagnostic biomarker. In addition, targeting RKIP induction by agonists, gene therapy and immunotherapy will result not only in the inhibition of EMT and metastases in carcinomas, but also in the inhibition of tumor growth and reversal of resistance to various therapeutic strategies. However, such targeting strategies must be better investigated as a result of tumor heterogeneities and inherent resistance and should be better adapted as personalized medicine.
Collapse
Affiliation(s)
- Andrew Bustamante
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Stavroula Baritaki
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Apostolos Zaravinos
- Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia 1516, Cyprus
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 1516, Cyprus
| | - Benjamin Bonavida
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
25
|
Tang L, Chen B, Wang B, Xu J, Yan H, Shan Y, Zhao X. Mediation of FOXA2/IL-6/IL-6R/STAT3 signaling pathway mediates benzo[a]pyrene-induced airway epithelial mesenchymal transformation in asthma. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124384. [PMID: 38901818 DOI: 10.1016/j.envpol.2024.124384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/30/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
Benzo [a]pyrene (BaP), a toxic pollutant, increases the incidence and severity of asthma. However, the molecular mechanisms underlying the effects of BaP in asthma remain unclear. In terms of research methods, we used BaP to intervene in the animal model of asthma and the human bronchial epithelial (16HBE) cells, and the involved mechanisms were found from the injury, inflammation, and airway epithelial to mesenchymal transition (EMT) in asthma. We also constructed small interfering RNAs and overexpression plasmids to knockdown/overexpress IL-6R and FOXA2 in 16HBE cells and a serotype 9 adeno-associated viral vector for lung tissue overexpression of FOXA2 in mice to determine the mechanism of action of BaP-exacerbated asthma airway EMT. We observed that BaP aggravated inflammatory cell infiltration into the lungs, reduced the Penh value, increased collagen fibres in the lung tissue, and increased serum IgE levels in asthmatic mice. After BaP intervention, the expression of FOXA2 in the lung tissue of asthmatic mice decreased, the production and secretion of IL-6 were stimulated, and STAT3 phosphorylation and nuclear translocation increased, leading to changes in EMT markers. However, EMT decreased after increasing FOXA2 expression and decreasing that of IL-6R and was further enhanced after low FOXA2 expression. Our results revealed that BaP exacerbated airway epithelial cell injury and interfered with FOXA2, activating the IL-6/IL-6R/STAT3 signaling pathway to promote airway EMT in asthma. These findings provide toxicological evidence for the mechanism underlying the contribution of BaP to the increased incidence of asthma and its exacerbations.
Collapse
Affiliation(s)
- Lingling Tang
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Bailei Chen
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Bohan Wang
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210004, China
| | - Jing Xu
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Hua Yan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Yiwen Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Xia Zhao
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China; Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210004, China.
| |
Collapse
|
26
|
Yang H, Gao J, Zheng Z, Yu Y, Zhang C. Current insights and future directions of LncRNA Morrbid in disease pathogenesis. Heliyon 2024; 10:e36681. [PMID: 39263145 PMCID: PMC11388785 DOI: 10.1016/j.heliyon.2024.e36681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/23/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024] Open
Abstract
Non-coding RNAs have emerged as important regulators of gene expression and contributors to many diseases. LncRNA Morrbid, a long non-coding RNA, has been widely studied in recent years. Current literature reports that lncRNA Morrbid is involved in various diseases such as tumors, cardiovascular diseases, inflammatory diseases and metabolic disorder. However, controversial conclusions exist in current studies. As a potential therapeutic target, it is necessary to comprehensively review the current evidence. In this work, we carefully review the literature on Morrbid and discuss each of the hot topics related to lncRNA Morrbid.
Collapse
Affiliation(s)
- Haiqiong Yang
- Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Jiali Gao
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Department of pharmacy, Luzhou people's hospital, Luzhou, China
| | - Zaiyong Zheng
- Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yang Yu
- Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Chunxiang Zhang
- Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
27
|
Liu Y, Jin T, Chen R, Miao R, Zhou Y, Shao S. High expression of ABL2 promotes gastric cancer cells migration, invasion and proliferation via the TGF-β and YAP signaling pathways. J Cancer 2024; 15:5719-5728. [PMID: 39308677 PMCID: PMC11414612 DOI: 10.7150/jca.99307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
Background: The Abelson-Related Gene (ABL2) is expressed in various malignancies. However, its role in gastric cancer (GC) regarding tumor proliferation, metastasis, and invasion remains unclear. Methods: ABL2 expression in clinical specimens was assessed using quantitative real-time fluorescence PCR (qRT-PCR). Western blotting and immunofluorescence assay determined protein levels. Additionally, Transwell migration and invasion, cell counting kit-8 (CCK-8) and colony-formation assays analyzed the effect of ABL2 on GC cells. Protein levels related to GC cells were assessed through Western blotting. The effects of si-ABL2 combined with GA-017 that activated YAP on cell migration, invasion and proliferation were investigated. Results: ABL2 expression was upregulated in human GC tissues compared to paracancer tissues, and it was positively related to tumor node metastasis classification (TNM) stage. Furthermore, high ABL2 levels promoted the proliferation, metastasis, and invasion capacity in GC cells. Elevated ABL2 expression enhanced the expression of MMP2, MMP9, and PCNA while decreasing TIMP1 and TIMP2 expression. It also increased the p-SMAD2/3 expression and YAP expression, decreased the expression of p-YAP in GC cells. Furthermore, GA-017 increased ABL2 expression in MGC-803 cells and counteracted the effects of si-ABL2 on cell migration, invasion and proliferation. Conclusion: These findings indicated that heightened ABL2 expression could activate TGF-β/SMAD2/3 and YAP signaling pathway, promoting epithelial mesenchymal transformation (EMT), and enhancing multiplication, metastasis, and invasion in GC cells.
Collapse
Affiliation(s)
- Yun Liu
- Department of Gastroenterology, Institute of Digestive Disease, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, Jiangsu, China
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Tao Jin
- Department of Gastroenterology, Yixing people's hospital, Yixing, Jiangsu, China
| | - Ruiyun Chen
- Department of gastrointestinal surgery, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Renjie Miao
- Department of Clinical laboratory, Affiliated Third Hospital of Zhenjiang to Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yong Zhou
- Department of Gastroenterology, Institute of Digestive Disease, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shihe Shao
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Gastroenterology, Yixing people's hospital, Yixing, Jiangsu, China
| |
Collapse
|
28
|
Nakasuka F, Hirayama A, Makinoshima H, Yano S, Soga T, Tabata S. The role of cytidine 5'-triphosphate synthetase 1 in metabolic rewiring during epithelial-to-mesenchymal transition in non-small-cell lung cancer. FEBS Open Bio 2024; 14:1570-1583. [PMID: 39030877 PMCID: PMC11492420 DOI: 10.1002/2211-5463.13860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/30/2024] [Accepted: 06/25/2024] [Indexed: 07/22/2024] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) contributes to the poor prognosis of patients with cancer by promoting distant metastasis and anti-cancer drug resistance. Several distinct metabolic alterations have been identified as key EMT phenotypes. In the present study, we further characterize the role of transforming growth factor-β (TGF-β)-induced EMT in non-small-cell lung cancer. Our study revealed that TGF-β plays a role in EMT functions by upregulation of cytidine 5'-triphosphate synthetase 1 (CTPS), a vital enzyme for CTP biosynthesis in the pyrimidine metabolic pathway. Both knockdown and enzymatic inhibition of CTPS reduced TGF-β-induced changes in EMT marker expression, chemoresistance and migration in vitro. Moreover, CTPS knockdown counteracted the TGF-β-mediated downregulation of UDP-glucuronate, glutarate, creatine, taurine and nicotinamide. These findings indicate that CTPS plays a multifaceted role in EMT metabolism, which is crucial for the malignant transformation of cancer through EMT, and underline its potential as a promising therapeutic target for preventing drug resistance and metastasis in non-small-cell lung cancer.
Collapse
Affiliation(s)
- Fumie Nakasuka
- Institute for Advanced BiosciencesKeio UniversityTsuruokaJapan
- Systems Biology Program, Graduate School of Media and GovernanceKeio UniversityFujisawaJapan
- Department of Molecular Pathology, Graduate School of MedicineThe University of TokyoJapan
| | - Akiyoshi Hirayama
- Institute for Advanced BiosciencesKeio UniversityTsuruokaJapan
- Systems Biology Program, Graduate School of Media and GovernanceKeio UniversityFujisawaJapan
| | - Hideki Makinoshima
- Tsuruoka Metabolomics LaboratoryNational Cancer CenterTsuruokaJapan
- Shonai Regional Industry Promotion CenterTsuruokaJapan
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial CenterNational Cancer CenterKashiwaJapan
| | - Seiji Yano
- Department of Medical Oncology, Kanazawa University Cancer Research InstituteKanazawa UniversityJapan
| | - Tomoyoshi Soga
- Institute for Advanced BiosciencesKeio UniversityTsuruokaJapan
- Systems Biology Program, Graduate School of Media and GovernanceKeio UniversityFujisawaJapan
| | - Sho Tabata
- Institute for Advanced BiosciencesKeio UniversityTsuruokaJapan
- Tsuruoka Metabolomics LaboratoryNational Cancer CenterTsuruokaJapan
- Shonai Regional Industry Promotion CenterTsuruokaJapan
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial CenterNational Cancer CenterKashiwaJapan
| |
Collapse
|
29
|
Meng Q, Li Y, Sun Z, Liu J. Citrulline facilitates the glycolysis, proliferation, and metastasis of lung cancer cells by regulating RAB3C. ENVIRONMENTAL TOXICOLOGY 2024; 39:4372-4384. [PMID: 38770826 DOI: 10.1002/tox.24326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/10/2024] [Accepted: 04/30/2024] [Indexed: 05/22/2024]
Abstract
Lung cancer (LC) is one of the major malignant diseases threatening human health. The study aimed to identify the effect of citrulline on the malignant phenotype of LC cells and to further disclose the potential molecular mechanism of citrulline in regulating the development of LC, providing a novel molecular biological basis for the clinical treatment of LC. The effects of citrulline on the viability, proliferation, migration, and invasion of LC cells (A549, H1299) were validated by CCK-8, colony formation, EdU, and transwell assays. The cell glycolysis was assessed via determining the glucose uptake, lactate production, ATP levels, extracellular acidification rate (ECAR), and oxygen consumption rate (OCR). RNA-seq and molecular docking were performed to screen for citrulline-binding target proteins. Western blotting experiments were conducted to examine the expression of related signaling pathway molecules. In addition, the impacts of citrulline on LC growth in vivo were investigated by constructing mouse models. Citrulline augmented the viability of LC cells in a concentration and time-dependent manner. The proliferation, migration, invasion, glycolysis, and EMT processes of LC cells were substantially enhanced after citrulline treatment. Bioinformatics analysis indicated that citrulline could bind to RAB3C protein. Western blotting results indicated that citrulline activated the IL-6/STAT3 pathway by binding to RAB3C. In addition, animal experiments disclosed that citrulline promoted tumor growth in mice. Citrulline accelerated the glycolysis and activated the IL6/STAT3 pathway through the RAB3C protein, consequently facilitating the development of LC.
Collapse
Affiliation(s)
- Qingjun Meng
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Thoracic Surgery, Cangzhou Central Hospital, Cangzhou, China
| | - Yanguang Li
- Department of Thoracic Surgery, Cangzhou Central Hospital, Cangzhou, China
| | - Zhen Sun
- Department of Thoracic Surgery, Cangzhou Central Hospital, Cangzhou, China
| | - Junfeng Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
30
|
Carlosama C, Arévalo C, Jimenez MC, Lasso P, Urueña C, Fiorentino S, Barreto A. Triple negative breast cancer migration is modified by mitochondrial metabolism alteration induced by natural extracts of C. spinosa and P. alliacea. Sci Rep 2024; 14:20253. [PMID: 39215068 PMCID: PMC11364553 DOI: 10.1038/s41598-024-70550-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Tumor metabolism is a crucial aspect of cancer development, and mitochondria plays a significant role in the aggressiveness and metastasis of tumors. As a result, mitochondria have become a promising therapeutic target in cancer treatment, leading to the development of compounds known as mitocans. In our group, we have consolidated the search of anticancer therapies based on natural products derived from plants, obtaining extracts such as P2Et from Caesalpinia spinosa and Anamu-SC from Petiveria alliacea, which have been shown to have antitumor activities in different cancer models. These extracts, due to their complex molecular composition, can interfere with multiple functions during tumor progression. To better understand how these natural products operate (P2Et and Anamu-SC), we constructed a model using 4T1 murine breast cancer cells with reduced expression of genes associated with glycolysis (Hexokinase-2) and mitochondrial function (Cqbp). The results indicate that the cells were more sensitive to the Anamu-SC extract, showing significant decreases in glucose consumption, ATP production, and oxygen consumption rate. Additionally, we observed changes in mitochondrial function, which reduced the cells' ability to migrate, particularly when C1qbp was silenced. This triple-negative breast cancer model allows us to identify potential natural products that can modulate tumor cell metabolism.
Collapse
Affiliation(s)
- Carolina Carlosama
- Grupo de Inmunobiología y Biología Celular, Unidad de Investigación en Ciencias Biomédicas, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7a. No. 43-82, Ed. 50, Lab. 101, 110211, Bogotá, Colombia
| | - Cindy Arévalo
- Grupo de Inmunobiología y Biología Celular, Unidad de Investigación en Ciencias Biomédicas, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7a. No. 43-82, Ed. 50, Lab. 101, 110211, Bogotá, Colombia
| | - María Camila Jimenez
- Grupo de Inmunobiología y Biología Celular, Unidad de Investigación en Ciencias Biomédicas, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7a. No. 43-82, Ed. 50, Lab. 101, 110211, Bogotá, Colombia
| | - Paola Lasso
- Grupo de Inmunobiología y Biología Celular, Unidad de Investigación en Ciencias Biomédicas, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7a. No. 43-82, Ed. 50, Lab. 101, 110211, Bogotá, Colombia
| | - Claudia Urueña
- Grupo de Inmunobiología y Biología Celular, Unidad de Investigación en Ciencias Biomédicas, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7a. No. 43-82, Ed. 50, Lab. 101, 110211, Bogotá, Colombia
| | - Susana Fiorentino
- Grupo de Inmunobiología y Biología Celular, Unidad de Investigación en Ciencias Biomédicas, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7a. No. 43-82, Ed. 50, Lab. 101, 110211, Bogotá, Colombia
| | - Alfonso Barreto
- Grupo de Inmunobiología y Biología Celular, Unidad de Investigación en Ciencias Biomédicas, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7a. No. 43-82, Ed. 50, Lab. 101, 110211, Bogotá, Colombia.
| |
Collapse
|
31
|
Tomecka P, Kunachowicz D, Górczyńska J, Gebuza M, Kuźnicki J, Skinderowicz K, Choromańska A. Factors Determining Epithelial-Mesenchymal Transition in Cancer Progression. Int J Mol Sci 2024; 25:8972. [PMID: 39201656 PMCID: PMC11354349 DOI: 10.3390/ijms25168972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a process in which an epithelial cell undergoes multiple modifications, acquiring both morphological and functional characteristics of a mesenchymal cell. This dynamic process is initiated by various inducing signals that activate numerous signaling pathways, leading to the stimulation of transcription factors. EMT plays a significant role in cancer progression, such as metastasis and tumor heterogeneity, as well as in drug resistance. In this article, we studied molecular mechanisms, epigenetic regulation, and cellular plasticity of EMT, as well as microenvironmental factors influencing this process. We included both in vivo and in vitro models in EMT investigation and clinical implications of EMT, such as the use of EMT in curing oncological patients and targeting its use in therapies. Additionally, this review concludes with future directions and challenges in the wide field of EMT.
Collapse
Affiliation(s)
- Paulina Tomecka
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Dominika Kunachowicz
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland;
| | - Julia Górczyńska
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Michał Gebuza
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Jacek Kuźnicki
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Katarzyna Skinderowicz
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Anna Choromańska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland
| |
Collapse
|
32
|
Weissenrieder JS, Peura J, Paudel U, Bhalerao N, Weinmann N, Johnson C, Wengyn M, Drager R, Furth EE, Simin K, Ruscetti M, Stanger BZ, Rustgi AK, Pitarresi JR, Foskett JK. Mitochondrial Ca 2+ controls pancreatic cancer growth and metastasis by regulating epithelial cell plasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.607195. [PMID: 39149344 PMCID: PMC11326289 DOI: 10.1101/2024.08.08.607195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Endoplasmic reticulum to mitochondria Ca2+ transfer is important for cancer cell survival, but the role of mitochondrial Ca2+ uptake through the mitochondrial Ca2+ uniporter (MCU) in pancreatic adenocarcinoma (PDAC) is poorly understood. Here, we show that increased MCU expression is associated with malignancy and poorer outcomes in PDAC patients. In isogenic murine PDAC models, Mcu deletion (Mcu KO) ablated mitochondrial Ca2+ uptake, which reduced proliferation and inhibited self-renewal. Orthotopic implantation of MCU-null tumor cells reduced primary tumor growth and metastasis. Mcu deletion reduced the cellular plasticity of tumor cells by inhibiting epithelial-to-mesenchymal transition (EMT), which contributes to metastatic competency in PDAC. Mechanistically, the loss of mitochondrial Ca2+ uptake reduced expression of the key EMT transcription factor Snail and secretion of the EMT-inducing ligand TGFβ. Snail re-expression and TGFβ treatment rescued deficits in Mcu KO cells and restored their metastatic ability. Thus, MCU may present a therapeutic target in PDAC to limit cancer-cell-induced EMT and metastasis.
Collapse
Affiliation(s)
- Jillian S Weissenrieder
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jessica Peura
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Usha Paudel
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Nikita Bhalerao
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Natalie Weinmann
- Department of Chemistry, Millersville University, Millersville, PA, USA
| | - Calvin Johnson
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Maximilian Wengyn
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Rebecca Drager
- Department of Chemistry, The Ohio State University, Columbus, OH, USA
| | - Emma Elizabeth Furth
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Karl Simin
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Marcus Ruscetti
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ben Z Stanger
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-5157, USA
| | - Anil K Rustgi
- Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York City, NY 10032, USA
| | - Jason R Pitarresi
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - J Kevin Foskett
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
33
|
Meng D, Dong Y, Shang Q, Sun Z. Anti-tumor effect and hepatotoxicity mechanisms of psoralen. Front Pharmacol 2024; 15:1442700. [PMID: 39161897 PMCID: PMC11331265 DOI: 10.3389/fphar.2024.1442700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/18/2024] [Indexed: 08/21/2024] Open
Abstract
In recent years, natural products have gradually become an important source for new drug development due to their advantages of multi-components, multi-targets, and good safety profiles. Psoralen, a furanocoumarin compound extracted from the traditional Chinese medicine psoralea corylifolia, is widely distributed among various plants. It has attracted widespread attention in the research community due to its pharmacological activities, including antitumor, anti-inflammatory, antioxidant, and neuroprotective effects. Studies have shown that psoralen has broad spectrum anti-tumor activities, offering resistance to malignant tumors such as breast cancer, liver cancer, glioma, and osteosarcoma, making it a natural, novel potential antitumor drug. Psoralen mainly exerts its antitumor effects by inhibiting tumor cell proliferation, inducing apoptosis, inhibiting tumor cell migration, and reversing multidrug resistance, presenting a wide application prospect in the field of antitumor therapy. With the deepening research on psoralea corylifolia, its safety has attracted attention, and reports on the hepatotoxicity of psoralen have gradually increased. Therefore, this article reviews recent studies on the mechanism of antitumor effects of psoralen and focuses on the molecular mechanisms of its hepatotoxicity, providing insights for the clinical development of low-toxicity, high-efficiency antitumor drugs and the safety of clinical medication.
Collapse
Affiliation(s)
- Dandan Meng
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yanling Dong
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Qingxin Shang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ziyuan Sun
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
34
|
Zunica ERM, Axelrod CL, Gilmore LA, Gnaiger E, Kirwan JP. The bioenergetic landscape of cancer. Mol Metab 2024; 86:101966. [PMID: 38876266 PMCID: PMC11259816 DOI: 10.1016/j.molmet.2024.101966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Bioenergetic remodeling of core energy metabolism is essential to the initiation, survival, and progression of cancer cells through exergonic supply of adenosine triphosphate (ATP) and metabolic intermediates, as well as control of redox homeostasis. Mitochondria are evolutionarily conserved organelles that mediate cell survival by conferring energetic plasticity and adaptive potential. Mitochondrial ATP synthesis is coupled to the oxidation of a variety of substrates generated through diverse metabolic pathways. As such, inhibition of the mitochondrial bioenergetic system by restricting metabolite availability, direct inhibition of the respiratory Complexes, altering organelle structure, or coupling efficiency may restrict carcinogenic potential and cancer progression. SCOPE OF REVIEW Here, we review the role of bioenergetics as the principal conductor of energetic functions and carcinogenesis while highlighting the therapeutic potential of targeting mitochondrial functions. MAJOR CONCLUSIONS Mitochondrial bioenergetics significantly contribute to cancer initiation and survival. As a result, therapies designed to limit oxidative efficiency may reduce tumor burden and enhance the efficacy of currently available antineoplastic agents.
Collapse
Affiliation(s)
- Elizabeth R M Zunica
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Christopher L Axelrod
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - L Anne Gilmore
- Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | | | - John P Kirwan
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA.
| |
Collapse
|
35
|
Zhang D, Luo Q, Xiao L, Chen X, Yang S, Zhang S. Exosomes derived from gastric cancer cells promote phenotypic transformation of hepatic stellate cells and affect the malignant behavior of gastric cancer cells. J Cancer Res Ther 2024; 20:1157-1164. [PMID: 39206977 DOI: 10.4103/jcrt.jcrt_749_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 03/01/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE This study aimed to evaluate the effect of exosomes derived from gastric cancer cells on the phenotypic transformation of hepatic stellate cells (HSCs) and the effect of HSC activation on the malignant behavior of gastric cancer cells, including its molecular mechanism. METHODS Exosomes derived from the human gastric adenocarcinoma cell line AGS were extracted and purified by polymer precipitation and ultrafiltration, respectively. The exosomes' morphologic characteristics were observed using transmission electron microscopy, particle size was determined through nanoparticle-tracking analysis, and marker proteins were detected using western blotting. Exosome uptake by LX-2 HSCs was observed through fluorescence-based tracing. Reverse transcription quantitative PCR (RT-qPCR) was used to detect the messenger RNA (mRNA) expression of alpha-smooth muscle actin (α-SMA) and fibroblast activation protein (FAP). Using functional assays, the effects of LX-2 HSC activation on the biological behavior of malignant gastric cancer cells were evaluated. The effects of LX-2 HSC activation on the protein expression of epithelial-mesenchymal transition (EMT)-related genes and β-catenin were evaluated via western blotting. RESULTS The extracted particles conformed to the definitions of exosomes and were thus considered gastric cancer cell-derived exosomes. Fluorescence-based tracing successfully demonstrated that exosomes were enriched in LX-2 HSCs. RT-qPCR revealed that the mRNA expression of the cancer-associated fibroblast markers α-SMA and FAP was significantly increased. LX-2 HSC activation considerably enhanced gastric cancer cell proliferation, invasion, and migration. Western blotting showed that the expression of the EMT-related epithelial marker E-cadherin was significantly downregulated, whereas the expression of interstitial markers (N-cadherin and vimentin) and β-catenin was remarkably upregulated in gastric cancer cells. CONCLUSION Exosomes derived from gastric cancer cells promoted phenotypic transformation of HSCs and activated HSCs to become tumor-associated fibroblasts. Gastric cancer cell-derived cells significantly enhanced gastric cancer cell proliferation, invasion, and migration after HSC activation, which may promote EMT of gastric cancer cells through the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Donghuan Zhang
- Department of Oncology Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Department of Oncology Medicine, Deqing People's Hospital, Deqing, Zhejiang, China
| | - Qiong Luo
- Department of Oncology Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Lirong Xiao
- Department of Oncology Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Xiangqi Chen
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China
| | - Sheng Yang
- Department of Oncology Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Suyun Zhang
- Department of Oncology Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| |
Collapse
|
36
|
Kandasamy T, Sarkar S, Sen P, Venkatesh D, Ghosh SS. Concurrent inhibition of IR, ITGB1, and CD36 perturbated the interconnected network of energy metabolism and epithelial-to-mesenchymal transition in breast cancer cells. J Cell Biochem 2024; 125:e30574. [PMID: 38704688 DOI: 10.1002/jcb.30574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/07/2024]
Abstract
Altered energy metabolism is an emerging hallmark of cancer and plays a pivotal in cell survival, proliferation, and biosynthesis. In a rapidly proliferating cancer, energy metabolism acts in synergism with epithelial-to-mesenchymal transition (EMT), enabling cancer stemness, dissemination, and metastasis. In this study, an interconnected functional network governing energy metabolism and EMT signaling pathways was targeted through the concurrent inhibition of IR, ITGB1, and CD36 activity. A novel multicomponent MD simulation approach was employed to portray the simultaneous inhibition of IR, ITGB1, and CD36 by a 2:1 combination of Pimozide and Ponatinib. Further, in-vitro studies revealed the synergistic anticancer efficacy of drugs against monolayer as well as tumor spheroids of breast cancer cell lines (MCF-7 and MDA-MB-231). In addition, the combination therapy exerted approximately 40% of the apoptotic population and more than 1.5- to 3-fold reduction in the expression of ITGB1, IR, p-IR, IRS-1, and p-AKT in MCF-7 and MDA-MB-231 cell lines. Moreover, the reduction in fatty acid uptake, lipid droplet accumulation, cancer stemness, and migration properties were also observed. Thus, targeting IR, ITGB1, and CD36 in the interconnected network with the combination of Pimozide and Ponatinib represents a promising therapeutic approach for breast cancer.
Collapse
Affiliation(s)
- Thirukumaran Kandasamy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Shilpi Sarkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Plaboni Sen
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Dheepika Venkatesh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Siddhartha Sankar Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
37
|
Yu L, Chen Y, Chen Y, Luo K. The crosstalk between metabolic reprogramming and epithelial-mesenchymal transition and their synergistic roles in distant metastasis in breast cancer. Medicine (Baltimore) 2024; 103:e38462. [PMID: 38875364 PMCID: PMC11175907 DOI: 10.1097/md.0000000000038462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Metabolic reprogramming (MR) and epithelial-mesenchymal transition (EMT) are crucial phenomena involved in the distant metastasis of breast cancer (BRCA). This study aims to assess the risk of distant metastasis in BRCA patients based on MR and EMT processes and investigate their underlying mechanisms. METHODS Gene sets related to EMT and MR were downloaded. MR-related genes (MRG) and EMT-related genes (ERG) were obtained. Principal Component Analysis method was used to define the EMT Potential Index (EPI) and MR Potential Index (MPI) to quantify the EMT and MR levels in each tumor tissue. A linear scoring model, the Metastasis Score, was derived using the union of MRGs and ERGs to evaluate the risk of distant metastasis/recurrence in BRCA. The Metastasis Score was then validated in multiple datasets. Additionally, our study explored the underlying mechanism of the Metastasis Score and its association with tumor immunity, focusing on HPRT1 gene expression in breast cancer tissues of transfer and untransferred groups using experimental methods. RESULTS A total of 59 MRGs and 30 ERGs were identified in the present study. Stratifying the dataset based on EPI and MPI revealed significantly lower survival rates (P < .05) in the MPI_high and EPI_high groups. Kaplan-Meier analysis indicated the lowest survival rate in the EPI-high + MPI-high group. The Metastasis Score demonstrated its ability to distinguish prognoses in GSE2034, GSE17705, and TCGA-BRCA datasets. Additionally, differences in mutated genes were found between the high- and the low-Metastasis Score groups, displaying significant associations with immune cell infiltration and anti-tumor immune status. Notably, the 13 genes included in the Metastasis Score showed a strong association with prognosis and tumor immunity. Immunohistochemistry and western blot results revealed high expression of the HPRT1 gene in the transfer group. CONCLUSION This study established the Metastasis Score as a reliable tool for evaluating the risk of distant metastasis/recurrence in BRCA patients. Additionally, we identified key genes involved in MR and EMT crosstalk, offering valuable insights into their roles in tumor immunity and other relevant aspects.
Collapse
Affiliation(s)
- Liyan Yu
- Department of Breast Surgery, Guangdong Medical University Affiliated Hospital, Zhanjiang, P.R. China
| | | | | | | |
Collapse
|
38
|
Lin J, Hou L, Zhao X, Zhong J, Lv Y, Jiang X, Ye B, Qiao Y. Switch of ELF3 and ATF4 transcriptional axis programs the amino acid insufficiency-linked epithelial-to-mesenchymal transition. Mol Ther 2024; 32:1956-1969. [PMID: 38627967 PMCID: PMC11184330 DOI: 10.1016/j.ymthe.2024.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/19/2024] [Accepted: 04/12/2024] [Indexed: 04/29/2024] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) that endows cancer cells with increased invasive and migratory capacity enables cancer dissemination and metastasis. This process is tightly associated with metabolic reprogramming acquired for rewiring cell status and signaling pathways for survival in dietary insufficiency conditions. However, it remains largely unclear how transcription factor (TF)-mediated transcriptional programs are modulated during the EMT process. Here, we reveal that depletion of a key epithelial TF, ELF3 (E74-like factor-3), triggers a transforming growth factor β (TGF-β) signaling activation-like mesenchymal transcriptomic profile and metastatic features linked to the aminoacyl-tRNA biogenesis pathway. Moreover, the transcriptome alterations elicited by ELF3 depletion perfectly resemble an ATF4-dependent weak response to amino acid starvation. Intriguingly, we observe an exclusive enrichment of ELF3 and ATF4 in epithelial and TGF-β-induced or ELF3-depletion-elicited mesenchymal enhancers, respectively, with rare co-binding on altered enhancers. We also find that the upregulation of aminoacyl-tRNA synthetases and some mesenchymal genes upon amino acid deprivation is diminished in ATF4-depleted cells. In sum, the loss of ELF3 binding on epithelial enhancers and the gain of ATF4 binding on the enhancers of mesenchymal factors and amino acid deprivation responsive genes facilitate the loss of epithelial cell features and the gain of TGF-β-signaling-associated mesenchymal signatures, which further promote lung cancer cell metastasis.
Collapse
Affiliation(s)
- Jianxiang Lin
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China; Shanghai Institute of Precision Medicine, Shanghai 200125, China
| | - Linjun Hou
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xin Zhao
- Department of Geriatrics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Jingli Zhong
- College of Life Science, Guangzhou University, Guangzhou 510006, China
| | - Yilv Lv
- Department of Thoracic Surgery, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xiaohua Jiang
- Center for Reproduction and Genetics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China.
| | - Bo Ye
- Department of Thoracic Surgery, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Yunbo Qiao
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China; Shanghai Institute of Precision Medicine, Shanghai 200125, China.
| |
Collapse
|
39
|
Xuan L, Zi-Ming J, Xue-Yan T, Wen-Xuan H, Fa-Xuan W. LncRNA MRAK052509 competitively adsorbs miR-204-3p to regulate silica dust-induced EMT process. ENVIRONMENTAL TOXICOLOGY 2024; 39:3628-3640. [PMID: 38491797 DOI: 10.1002/tox.24218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/07/2024] [Accepted: 03/04/2024] [Indexed: 03/18/2024]
Abstract
Silicosis is a systemic disease caused by long-term inhalation of free SiO2 and retention in the lungs. At present, it is still the most important occupational health hazard disease in the world. Existing studies have shown that non-coding RNA can also participate in complex fibrosis regulatory networks. However, its role in regulating silicotic fibrosis is still unclear. In this study, we constructed a NR8383/RLE-6TN co-culture system to simulate the pathogenesis of silicosis in vitro. Design of miR-204-3p mimics and inhibitors to overexpress or downregulate miR-204-3p in RLE-6TN cells. Design of short hairpin RNA (sh-RNA) to downregulate MRAK052509 in RLE-6TN cells. The regulatory mechanism of miR-204-3p and LncRNA MRAK052509 on EMT process was studied by Quantitative real-time PCR, Western blotting, Immunofluorescence and Cell scratch test. The results revealed that miR-204-3p affects the occurrence of silica dust-induced cellular EMT process mainly through regulating TGF-βRΙ, a key molecule of TGF-β signaling pathway. In contrast, Lnc MRAK052509 promotes the EMT process in epithelial cells by competitively adsorbing miR-204-3p and reducing its inhibitory effect on the target gene TGF-βRΙ, which may influence the development of silicosis fibrosis. This study perfects the targeted regulation relationship between LncRNA MRAK052509, miR-204-3p and TGF-βRΙ, and may provide a new strategy for the study of the pathogenesis and treatment of silicosis.
Collapse
Affiliation(s)
- Liu Xuan
- School of Public Health, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, China
| | - Jiao Zi-Ming
- School of Public Health, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, China
| | - Tian Xue-Yan
- School of Public Health, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, China
| | - Hu Wen-Xuan
- School of Public Health, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, China
| | - Wang Fa-Xuan
- School of Public Health, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, China
| |
Collapse
|
40
|
Lu E, Zhao B, Yuan C, Liang Y, Wang X, Yang G. Novel cancer-fighting role of ticagrelor inhibits GTSE1-induced EMT by regulating PI3K/Akt/NF-κB signaling pathway in malignant glioma. Heliyon 2024; 10:e30833. [PMID: 38774096 PMCID: PMC11107102 DOI: 10.1016/j.heliyon.2024.e30833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/21/2024] [Accepted: 05/06/2024] [Indexed: 05/24/2024] Open
Abstract
Background Glioma is the most common malignant brain tumor of the central nervous system. Despite of the improvement of therapeutic strategy, the prognosis of malignant glioma patients underwent by STUPP strategy is still unexpected. Previous studies have suggested that ticagrelor exerted chemotherapeutic effects by inhibition of epithelial-mesenchymal transition (EMT) in various diseases including tumors. However, whether ticagrelor can exhibit the antitumor efficiency in glioma by affecting the EMT process is still unclear. In this study, we investigated the cancer-fighting role of ticagrelor and demonstrated its chemotherapeutic mechanism in glioma. Materials and methods The MTT assay was performed to detect the cytotoxicity of ticagrelor in glioma cells. We evaluated the expression of Ki67 in glioma cells by immunofluorescence assay after ticagrelor treatment. We conducted wound healing assay and transwell assay to determine the effects of ticagrelor on the migration and invasion of glioma cells. RNA-seq analysis was conducted to examine potential target genes and alternative signaling pathways for ticagrelor treatment. The expression levels of key EMT -related proteins were examined by Western blot experiment. Results Ticagrelor inhibited the proliferation, migration and invasion of glioma cells with a favorable toxicity profile in vitro. Ticagrelor downregulated the expression of GTSE1 in glioma cells. RNA-seq analysis explored that GTSE1 acted as the potential target gene for ticagrelor treatment. Upregulation of GTSE1 antagonized the inhibitory effect of ticagrelor on the invasion of glioma and EMT progression by regulation of PI3K/Akt/NF-κB signaling pathway. And ticagrelor also exhibited the similar chemotherapeutic effect of glioma in vivo. Conclusions Ticagrelor as a potential chemotherapeutic option induced the inhibition of the GTSE1-induced EMT progression by regulation of PI3K/AKT/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Enzhou Lu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, China
- Heilongjiang Province Neuroscience Institute, Harbin, China
| | - Boxian Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, China
- Heilongjiang Province Neuroscience Institute, Harbin, China
| | - Chao Yuan
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, China
- Heilongjiang Province Neuroscience Institute, Harbin, China
| | - Yanchao Liang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, China
- Heilongjiang Province Neuroscience Institute, Harbin, China
| | - Xiaoxiong Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, China
- Heilongjiang Province Neuroscience Institute, Harbin, China
| | - Guang Yang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, China
- Heilongjiang Province Neuroscience Institute, Harbin, China
| |
Collapse
|
41
|
Cayetano-Salazar L, Hernandez-Moreno JA, Bello-Martinez J, Olea-Flores M, Castañeda-Saucedo E, Ramirez M, Mendoza-Catalán MA, Navarro-Tito N. Regulation of cellular and molecular markers of epithelial-mesenchymal transition by Brazilin in breast cancer cells. PeerJ 2024; 12:e17360. [PMID: 38737746 PMCID: PMC11088821 DOI: 10.7717/peerj.17360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/18/2024] [Indexed: 05/14/2024] Open
Abstract
Breast cancer is the most common invasive neoplasm and the leading cause of cancer death in women worldwide. The main cause of mortality in cancer patients is invasion and metastasis, where the epithelial-mesenchymal transition (EMT) is a crucial player in these processes. Pharmacological therapy has plants as its primary source, including isoflavonoids. Brazilin is an isoflavonoid isolated from Haematoxilum brasiletto that has shown antiproliferative activity in several cancer cell lines. In this study, we evaluated the effect of Brazilin on canonical markers of EMT such as E-cadherin, vimentin, Twist, and matrix metalloproteases (MMPs). By Western blot, we evaluated E-cadherin, vimentin, and Twist expression and the subcellular localization by immunofluorescence. Using gelatin zymography, we determined the levels of secretion of MMPs. We used Transwell chambers coated with matrigel to determine the in vitro invasion of breast cancer cells treated with Brazilin. Interestingly, our results show that Brazilin increases 50% in E-cadherin expression and decreases 50% in vimentin and Twist expression, MMPs, and cell invasion in triple-negative breast cancer (TNBC) MDA-MB-231 and to a lesser extend in MCF7 ER+ breast cancer cells. Together, these findings position Brazilin as a new molecule with great potential for use as complementary or alternative treatment in breast cancer therapy in the future.
Collapse
Affiliation(s)
- Lorena Cayetano-Salazar
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Chilpancingo, Guerrero, Mexico
| | - Jose A. Hernandez-Moreno
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Chilpancingo, Guerrero, Mexico
| | - Jorge Bello-Martinez
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Chilpancingo, Guerrero, Mexico
| | - Monserrat Olea-Flores
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Chilpancingo, Guerrero, Mexico
| | - Eduardo Castañeda-Saucedo
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Chilpancingo, Guerrero, Mexico
| | - Monica Ramirez
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Chilpancingo, Guerrero, Mexico
| | - Miguel A. Mendoza-Catalán
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Chilpancingo, Guerrero, Mexico
| | - Napoleon Navarro-Tito
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Chilpancingo, Guerrero, Mexico
| |
Collapse
|
42
|
Zhang G, Hou S, Li S, Wang Y, Cui W. Role of STAT3 in cancer cell epithelial‑mesenchymal transition (Review). Int J Oncol 2024; 64:48. [PMID: 38488027 PMCID: PMC11000535 DOI: 10.3892/ijo.2024.5636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 02/29/2024] [Indexed: 03/19/2024] Open
Abstract
Since its discovery, the role of the transcription factor, signal transducer and activator of transcription 3 (STAT3), in both normal physiology and the pathology of numerous diseases, including cancer, has been extensively studied. STAT3 is aberrantly activated in different types of cancer, fulfilling a critical role in cancer progression. The biological process, epithelial‑mesenchymal transition (EMT), is indispensable for embryonic morphogenesis. During the development of cancer, EMT is hijacked to confer motility, tumor cell stemness, drug resistance and adaptation to changes in the microenvironment. The aim of the present review was to outline recent advances in knowledge of the role of STAT3 in EMT, which may contribute to the understanding of the function of STAT3 in EMT in various types of cancer. Delineating the underlying mechanisms associated with the STAT3‑EMT signaling axis may generate novel diagnostic and therapeutic options for cancer treatment.
Collapse
Affiliation(s)
- Guoan Zhang
- Department of Forensic Genetics, Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Forensic Science Center of Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Sen Hou
- Department of Forensic Genetics, Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Forensic Science Center of Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Shuyue Li
- Department of Forensic Genetics, Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Forensic Science Center of Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Yequan Wang
- Department of Forensic Genetics, Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Forensic Science Center of Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Wen Cui
- Department of Forensic Pathology, Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Forensic Science Center of Jining Medical University, Jining, Shandong 272067, P.R. China
| |
Collapse
|
43
|
Li J, Wang R, Li M, Zhang Z, Jin S, Ma H. APIP regulated by YAP propels methionine cycle and metastasis in head and neck squamous cell carcinoma. Cancer Lett 2024; 588:216756. [PMID: 38423248 DOI: 10.1016/j.canlet.2024.216756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 02/07/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
The Yes-associated protein (YAP) plays a vital role in tumor progression and metabolic regulation. However, the involvement of YAP in metabolic reprogramming of head and neck squamous cell carcinoma remains unclear. Using RNA sequencing and ultra-high-performance liquid chromatography-tandem mass spectrometry, we observed that YAP increased the levels of the main metabolites and enzymes involved in methionine metabolism. APIP, an enzyme involved in the methionine salvage pathway, was transcriptionally activated by YAP. Further experiments showed that APIP promotes HNSCC cells migration and invasion in vitro and tumor metastasis in adjacent lymph nodes and distant organs in vivo. APIP also increases the levels of metabolites in the methionine cycle. We further found that methionine reversed the inhibition of HNSCC migration and invasion by APIP knockdown. In vivo experiments demonstrated that methionine addition promoted tumor metastasis. Mechanistically, the methionine cycle phosphorylated and inactivated GSK3β, then induced the epithelial mesenchymal transition pathway. Increased APIP expression was detected in patients with HNSCC, especially in tumors with lymph node metastasis. Metabolites of methionine cycle were also elevated in HNSCC patients. Our findings revealed that APIP, a novel target of YAP, promotes the methionine cycle and HNSCC metastasis through GSK3β phosphorylation.
Collapse
Affiliation(s)
- Jiayi Li
- Department of Pediatric Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Ruijie Wang
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Mingyu Li
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Zhiyuan Zhang
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Shufang Jin
- Department of Second Dental Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.
| | - Hailong Ma
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.
| |
Collapse
|
44
|
Khorami-Sarvestani S, Vanaki N, Shojaeian S, Zarnani K, Stensballe A, Jeddi-Tehrani M, Zarnani AH. Placenta: an old organ with new functions. Front Immunol 2024; 15:1385762. [PMID: 38707901 PMCID: PMC11066266 DOI: 10.3389/fimmu.2024.1385762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/08/2024] [Indexed: 05/07/2024] Open
Abstract
The transition from oviparity to viviparity and the establishment of feto-maternal communications introduced the placenta as the major anatomical site to provide nutrients, gases, and hormones to the developing fetus. The placenta has endocrine functions, orchestrates maternal adaptations to pregnancy at different periods of pregnancy, and acts as a selective barrier to minimize exposure of developing fetus to xenobiotics, pathogens, and parasites. Despite the fact that this ancient organ is central for establishment of a normal pregnancy in eutherians, the placenta remains one of the least studied organs. The first step of pregnancy, embryo implantation, is finely regulated by the trophoectoderm, the precursor of all trophoblast cells. There is a bidirectional communication between placenta and endometrium leading to decidualization, a critical step for maintenance of pregnancy. There are three-direction interactions between the placenta, maternal immune cells, and the endometrium for adaptation of endometrial immune system to the allogeneic fetus. While 65% of all systemically expressed human proteins have been found in the placenta tissues, it expresses numerous placenta-specific proteins, whose expression are dramatically changed in gestational diseases and could serve as biomarkers for early detection of gestational diseases. Surprisingly, placentation and carcinogenesis exhibit numerous shared features in metabolism and cell behavior, proteins and molecular signatures, signaling pathways, and tissue microenvironment, which proposes the concept of "cancer as ectopic trophoblastic cells". By extensive researches in this novel field, a handful of cancer biomarkers has been discovered. This review paper, which has been inspired in part by our extensive experiences during the past couple of years, highlights new aspects of placental functions with emphasis on its immunomodulatory role in establishment of a successful pregnancy and on a potential link between placentation and carcinogenesis.
Collapse
Affiliation(s)
- Sara Khorami-Sarvestani
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Negar Vanaki
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sorour Shojaeian
- Department of Biochemistry, School of Medical Sciences, Alborz University of Medical Sciences, Karaj, Iran
| | - Kayhan Zarnani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Amir-Hassan Zarnani
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
45
|
Baqai N, Amin R, Fatima T, Ahmed Z, Faiz N. Expression Profiling of EMT Transcriptional Regulators ZEB1 and ZEB2 in Different Histopathological Grades of Oral Squamous Cell Carcinoma Patients. Curr Genomics 2024; 25:140-151. [PMID: 38751602 PMCID: PMC11092914 DOI: 10.2174/0113892029284920240212091903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 05/18/2024] Open
Abstract
Background Pakistan has a high burden of oral cancers, with a prevalence rate of around 9%. Oral Squamous Cell Carcinoma (OSCC) accounts for about 90% of oral cancer cases. Epithelial to Mesenchymal Transition (EMT) gets highly stimulated in tumor cells by adopting subsequent malignant features of highly invasive cancer populations. Zinc Finger E-Box binding factors, ZEB1 and ZEB2, are regulatory proteins that promote EMT by suppressing the adherent ability of cells transforming into highly motile cancerous cells. The present study aimed to analyze the expression of EMT regulators, ZEB1 and ZEB2, and their association with the clinicopathological features in different grades of OSCC patients. Methods Tissue samples were collected for both case and control groups from the recruited study participants. Cancer tissues (cases) were collected from the confirmed OSCC patients, and healthy tissues (controls) were collected from third-molar dental extraction patients. The study participants were recruited with informed consent and brief demographic and clinical characteristics. The case group was further segregated with respect to the histological cancer grading system into well-differentiated (WD), moderately differentiated (MD), and poorly differentiated (PD) squamous cell carcinoma (SCC) groups. RNA was extracted from the tissue samples for expression profiling of ZEB1 and ZEB2 genes through quantitative real-time PCR (qRT-PCR). Results All of the recruited participants had a mean age of 46.55 ± 11.7 (years), with most of them belonging to Urdu speaking ethnic group and were married. The BMI (kg/m2) of the healthy participants was in the normal range (18-22 kg/m2). However, BMI was found to be reduced with the proliferation in the pathological state of cancer. The oral hygiene of patients was better than the healthy participants, possibly due to the strict oral hygiene practice concerns of consultants. Every recruited OSCC patient had one or multiple addiction habits for more than a year. Patients reported health frailty (46.6%), unhealed mouth sores (40%), swallowing difficulties and white/reddish marks (80%), and restricted mouth opening (64.4%). Furthermore, 82.2% of the recruited patients observed symptoms within 1-12 months, and buccal mucosa was the most exposed tumor site among 55.6% of the patients. Expression profiling of EMT regulators showed gradual over-expressions of ZEB1 (8, 20, and 42 folds) and ZEB2 (4, 10, and 18 folds) in respective histological cancer grades. Conclusion High expressions of ZEBs have been significantly associated with cancer progression and poor health. However, no association was found between OSCC with other clinicopathological features when compared to healthy controls.
Collapse
Affiliation(s)
- Neha Baqai
- Dow Research Institute of Biotechnology and Biomedical Sciences, Dow University of Health Sciences, Ojha Campus, Karachi, Pakistan
| | - Rafat Amin
- Dow College of Biotechnology, Dow University of Health Sciences, Ojha Campus, Karachi, Pakistan
| | - Tehseen Fatima
- Dow College of Biotechnology, Dow University of Health Sciences, Ojha Campus, Karachi, Pakistan
| | - Zeba Ahmed
- Otolaryngology, Dow Medical College-Dr.Ruth KM Pfau Civil Hospital Karachi, Dow University of Health Sciences, Karachi, Pakistan
| | - Nousheen Faiz
- Institute of Basic Medical Sciences, Dow University of Health Sciences, Ojha Campus, Karachi, Pakistan
| |
Collapse
|
46
|
Jasim SA, Al-Hawary SIS, Hjazi A, Ahmad I, Kaur I, Kadhum WR, Alkhafaji AT, Ghildiyal P, Jawad MA, Alsaadi SB. A comprehensive review of lncRNA CRNDE in cancer progression and pathology, with a specific glance at the epithelial-mesenchymal transition (EMT) process. Pathol Res Pract 2024; 256:155229. [PMID: 38484655 DOI: 10.1016/j.prp.2024.155229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/09/2024] [Accepted: 02/25/2024] [Indexed: 04/14/2024]
Abstract
It has been suggested that the long non-coding RNAs (lncRNAs), such as colorectal neoplasia differentially expressed (CRNDE), may contribute to the formation of human cancer. It is yet unknown, though, what therapeutic significance CRNDE expression has for different forms of cancer. CRNDE has recently been proposed as a possible diagnostic biomarker and prognostic pred for excellent specificity and sensitivity in cancer tissues and plasma. To provide the groundwork for potential future therapeutic uses of CRNDE, we briefly overview its biological action and related cancer-related pathways. Next, we mainly address the impact of CRNDE on the epithelial-mesenchymal transition (EMT). The epithelial-mesenchymal transition, or EMT, is an essential biological mechanism involved in the spread of cancer.
Collapse
Affiliation(s)
| | | | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia.
| | - Irwanjot Kaur
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Wesam R Kadhum
- Department of Pharmacy, Kut University College, Kut, Wasit 52001, Iraq; Advanced research center, Kut University College, Kut, Wasit 52001, Iraq
| | | | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | | | - Salim B Alsaadi
- Department of Pharmaceutics, Al-Hadi University College, Baghdad 10011, Iraq
| |
Collapse
|
47
|
Zhang Y, Xiang Z, Chen L, Deng X, Liu H, Peng X. PSMA2 promotes glioma proliferation and migration via EMT. Pathol Res Pract 2024; 256:155278. [PMID: 38574629 DOI: 10.1016/j.prp.2024.155278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Gliomas advance rapidly and are associated with a poor prognosis. Epithelial-mesenchymal transition (EMT) accelerates the progression of gliomas, exerting a pivotal role in glioma development. Proteasome subunit alpha type-2 (PSMA2) exhibits high expression levels in gliomas. however, its specific involvement in glioma progression and its correlation with EMT remain elusive. This study aims to elucidate the role of PSMA2 in glioma progression and its potential association with EMT. METHODS Online tools were employed to analyze the expression patterns and survival curves of PSMA2 in gliomas. The relationship between PSMA2 and various characteristics of glioma patients was investigated using data from the TCGA and CGGA databases. In vitro, cell proliferation and migration were assessed through CCK-8, colony formation, and transwell assays. Furthermore, a tumor xenograft model in nude mice was established to evaluate in vivo tumorigenesis. Protein binding to PSMA2 was scrutinized using co-immunoprecipitation MS (co-IP MS). The potential biological functions and molecular pathways associated with PSMA2 were explored through GO analysis and KEGG analysis, and the correlation between PSMA2 and EMT was validated through correlation analysis and Western blot experiments. RESULTS Bioinformatics analysis revealed a significant upregulation of PSMA2 across various cancers, with particularly heightened expression in gliomas. Moreover, elevated PSMA2 levels were correlated with advanced tumor stages and diminished survival rates among glioma patients. Inhibition of PSMA2 demonstrated a pronounced suppressive effect on glioma cell proliferation, both in vitro and in vivo. Knockdown of PSMA2 also impeded the migratory capacity of glioma cells. GO and KEGG enrichment analyses indicated that PSMA2-binding proteins (identified through Co-IP-MS) were associated with cell adhesion molecule binding and cadherin binding. Western blot results further confirmed the role of PSMA2 in promoting epithelial-mesenchymal transition (EMT) in glioma cells. CONCLUSION Our study provides evidence supporting the role of PSMA2 as a regulatory factor in EMT and suggests its potential as a prognostic biomarker for glioma progression.
Collapse
Affiliation(s)
- Yujun Zhang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Zijin Xiang
- Department of Pharmacy, Shaodong People's Hospital, Shaodong, Hunan 422800, China
| | - Le Chen
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Xingyan Deng
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Huaizheng Liu
- Department of Emergency, The Third Xiangya Hospital, Central South University, Changsha 410013, China.
| | - Xiangdong Peng
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
48
|
Pastorino GA, Sheraj I, Huebner K, Ferrero G, Kunze P, Hartmann A, Hampel C, Husnugil HH, Maiuthed A, Gebhart F, Schlattmann F, Gulec Taskiran AE, Oral G, Palmisano R, Pardini B, Naccarati A, Erlenbach-Wuensch K, Banerjee S, Schneider-Stock R. A partial epithelial-mesenchymal transition signature for highly aggressive colorectal cancer cells that survive under nutrient restriction. J Pathol 2024; 262:347-361. [PMID: 38235615 DOI: 10.1002/path.6240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 10/12/2023] [Accepted: 11/21/2023] [Indexed: 01/19/2024]
Abstract
Partial epithelial-mesenchymal transition (p-EMT) has recently been identified as a hybrid state consisting of cells with both epithelial and mesenchymal characteristics and is associated with the migration, metastasis, and chemoresistance of cancer cells. Here, we describe the induction of p-EMT in starved colorectal cancer (CRC) cells and identify a p-EMT gene signature that can predict prognosis. Functional characterisation of starvation-induced p-EMT in HCT116, DLD1, and HT29 cells showed changes in proliferation, morphology, and drug sensitivity, supported by in vivo studies using the chorioallantoic membrane model. An EMT-specific quantitative polymerase chain reaction (qPCR) array was used to screen for deregulated genes, leading to the establishment of an in silico gene signature that was correlated with poor disease-free survival in CRC patients along with the CRC consensus molecular subtype CMS4. Among the significantly deregulated p-EMT genes, a triple-gene signature consisting of SERPINE1, SOX10, and epidermal growth factor receptor (EGFR) was identified. Starvation-induced p-EMT was characterised by increased migratory potential and chemoresistance, as well as E-cadherin processing and internalisation. Both gene signature and E-cadherin alterations could be reversed by the proteasomal inhibitor MG132. Spatially resolving EGFR expression with high-resolution immunofluorescence imaging identified a proliferation stop in starved CRC cells caused by EGFR internalisation. In conclusion, we have gained insight into a previously undiscovered EMT mechanism that may become relevant when tumour cells are under nutrient stress, as seen in early stages of metastasis. Targeting this process of tumour cell dissemination might help to prevent EMT and overcome drug resistance. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Gil A Pastorino
- Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ilir Sheraj
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkey
| | - Kerstin Huebner
- Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Giulio Ferrero
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Philipp Kunze
- Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Arndt Hartmann
- Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Chuanpit Hampel
- Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Arnatchai Maiuthed
- Department of Pharmacology, Mahidol University, Bangkok, Thailand
- Centre of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Florian Gebhart
- Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Fynn Schlattmann
- Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Aliye Ezgi Gulec Taskiran
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkey
- Department of Molecular Biology and Genetics, Baskent University, Ankara, Turkey
| | - Goksu Oral
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkey
| | - Ralph Palmisano
- Optical Imaging Competence Centre FAU OICE, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Barbara Pardini
- Italian Institute for Genomic Medicine (IIGM), c/o FPO-IRCCS Candiolo, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| | - Alessio Naccarati
- Italian Institute for Genomic Medicine (IIGM), c/o FPO-IRCCS Candiolo, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| | - Katharina Erlenbach-Wuensch
- Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sreeparna Banerjee
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkey
- Cancer Systems Biology Laboratory (CanSyl), Orta Dogu Teknik Universitesi, Ankara, Turkey
| | - Regine Schneider-Stock
- Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
49
|
Strippoli R, Niayesh-Mehr R, Adelipour M, Khosravi A, Cordani M, Zarrabi A, Allameh A. Contribution of Autophagy to Epithelial Mesenchymal Transition Induction during Cancer Progression. Cancers (Basel) 2024; 16:807. [PMID: 38398197 PMCID: PMC10886827 DOI: 10.3390/cancers16040807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Epithelial Mesenchymal Transition (EMT) is a dedifferentiation process implicated in many physio-pathological conditions including tumor transformation. EMT is regulated by several extracellular mediators and under certain conditions it can be reversible. Autophagy is a conserved catabolic process in which intracellular components such as protein/DNA aggregates and abnormal organelles are degraded in specific lysosomes. In cancer, autophagy plays a controversial role, acting in different conditions as both a tumor suppressor and a tumor-promoting mechanism. Experimental evidence shows that deep interrelations exist between EMT and autophagy-related pathways. Although this interplay has already been analyzed in previous studies, understanding mechanisms and the translational implications of autophagy/EMT need further study. The role of autophagy in EMT is not limited to morphological changes, but activation of autophagy could be important to DNA repair/damage system, cell adhesion molecules, and cell proliferation and differentiation processes. Based on this, both autophagy and EMT and related pathways are now considered as targets for cancer therapy. In this review article, the contribution of autophagy to EMT and progression of cancer is discussed. This article also describes the multiple connections between EMT and autophagy and their implication in cancer treatment.
Collapse
Affiliation(s)
- Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy;
- National Institute for Infectious Diseases “Lazzaro Spallanzani”, I.R.C.C.S., 00149 Rome, Italy
| | - Reyhaneh Niayesh-Mehr
- Department of Clinical Biochemistry, Faculty of Medical Science, Tarbiat Modares University, Tehran P.O. Box 14115-331, Iran;
| | - Maryam Adelipour
- Department of Clinical Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15794, Iran;
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Türkiye;
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain;
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Türkiye;
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
| | - Abdolamir Allameh
- Department of Clinical Biochemistry, Faculty of Medical Science, Tarbiat Modares University, Tehran P.O. Box 14115-331, Iran;
| |
Collapse
|
50
|
Wang Y, Chen S, Bao S, Yao L, Wen Z, Xu L, Chen X, Guo S, Pang H, Zhou Y, Zhou P. Deciphering the fibrotic process: mechanism of chronic radiation skin injury fibrosis. Front Immunol 2024; 15:1338922. [PMID: 38426100 PMCID: PMC10902513 DOI: 10.3389/fimmu.2024.1338922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
This review explores the mechanisms of chronic radiation-induced skin injury fibrosis, focusing on the transition from acute radiation damage to a chronic fibrotic state. It reviewed the cellular and molecular responses of the skin to radiation, highlighting the role of myofibroblasts and the significant impact of Transforming Growth Factor-beta (TGF-β) in promoting fibroblast-to-myofibroblast transformation. The review delves into the epigenetic regulation of fibrotic gene expression, the contribution of extracellular matrix proteins to the fibrotic microenvironment, and the regulation of the immune system in the context of fibrosis. Additionally, it discusses the potential of biomaterials and artificial intelligence in medical research to advance the understanding and treatment of radiation-induced skin fibrosis, suggesting future directions involving bioinformatics and personalized therapeutic strategies to enhance patient quality of life.
Collapse
Affiliation(s)
- Yiren Wang
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Shouying Chen
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Shuilan Bao
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Li Yao
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Zhongjian Wen
- School of Nursing, Southwest Medical University, Luzhou, China
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Lixia Xu
- School of Nursing, Southwest Medical University, Luzhou, China
| | - Xiaoman Chen
- School of Nursing, Southwest Medical University, Luzhou, China
| | - Shengmin Guo
- Department of Nursing, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Haowen Pang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yun Zhou
- School of Medical Information and Engineering, Southwest Medical University, Luzhou, China
| | - Ping Zhou
- Wound Healing Basic Research and Clinical Application Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|