1
|
Wu W, Xie Y, Jiang C, Jiang X. Unveiling the multifaceted functions of TRIM proteins in glioma pathogenesis. Transl Oncol 2025; 58:102419. [PMID: 40424933 DOI: 10.1016/j.tranon.2025.102419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/30/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
Gliomas, the most prevalent malignant primary brain tumors in adults, represent a heterogeneous group of neoplasms characterized by poor prognosis and limited therapeutic options, particularly in high-grade cases. Understanding the molecular mechanisms underlying glioma pathogenesis is crucial for developing novel and effective treatment strategies. In recent years, increasing attention has been directed toward the tripartite motif (TRIM) family of proteins, a class of E3 ubiquitin ligases, due to their significant roles in glioma development and progression. This review comprehensively explores the diverse functions of TRIM proteins in gliomas, including their expression patterns, prognostic significance, and mechanisms of action that are both ubiquitination-dependent and -independent. By synthesizing current knowledge, we aim to elucidate the role of TRIM proteins in glioma pathogenesis and identify potential therapeutic targets within this protein family.
Collapse
Affiliation(s)
- Wenjie Wu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Youxi Xie
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Cheng Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
| |
Collapse
|
2
|
Sentís I, Melero JL, Cebria-Xart A, Grzelak M, Soto M, Michel A, Rovira Q, Rodriguez-Hernandez CJ, Caratù G, Urpi A, Sauvage C, Mendizabal-Sasieta A, Maspero D, Lavarino CE, Pascual-Reguant A, Castañeda Heredia A, Muñoz Perez JP, Mora J, Harari A, Nieto JC, Avgustinova A, Heyn H. Spatio-temporal T cell tracking for personalized TCR-T designs in childhood cancer. Ann Oncol 2025:S0923-7534(25)00733-1. [PMID: 40403847 DOI: 10.1016/j.annonc.2025.05.530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 04/21/2025] [Accepted: 05/08/2025] [Indexed: 05/24/2025] Open
Abstract
BACKGROUND Immune checkpoint inhibition (ICI) has revolutionized oncology, offering extended survival and long-term remission in previously incurable cancers. While highly effective in tumors with high mutational burden, lowly mutated cancers, including pediatric malignancies, present low response rate and limited predictive biomarkers. PATIENTS AND METHODS We present a framework for the identification and validation of tumor-reactive T cells as a biomarker to quantify ICI efficacy and as candidates for a personalized TCR-T cell therapy. Therefore, we profiled a pediatric malignant rhabdoid tumor patient with complete remission after ICI therapy using deep single-cell T cell receptor (TCR) repertoire sequencing of the tumor microenvironment (TME) and the peripheral blood. RESULTS Tracking T cell dynamics longitudinally from the tumor to cells in circulation over a time course of 12 months revealed a systemic response and durable clonal expansion of tumor-resident and ICI-induced TCR clonotypes. We functionally validated tumor reactivity of TCRs identified from the TME and the blood by co-culturing patient-derived tumor cells with TCR-engineered autologous T cells. Here, we observed unexpectedly high frequencies of tumor-reactive TCR clonotypes in the TME and confirmed T cell dynamics in the blood post-ICI to predict tumor-reactivity. CONCLUSION These findings strongly support spatio-temporal tracking of T cell activity in response to ICI to inform therapy efficacy and to serve as a source of tumor-reactive TCRs for personalized TCR-T designs.
Collapse
Affiliation(s)
- I Sentís
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Spain
| | | | - A Cebria-Xart
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Spain
| | | | - M Soto
- Omniscope, Barcelona, Spain
| | - A Michel
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Q Rovira
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Spain
| | | | - G Caratù
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
| | - A Urpi
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Spain
| | - C Sauvage
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | | | - D Maspero
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
| | - C E Lavarino
- Pediatric Cancer Center Barcelona (PCCB), Hospital Sant Joan de Déu, Barcelona, Spain
| | | | - A Castañeda Heredia
- Pediatric Cancer Center Barcelona (PCCB), Hospital Sant Joan de Déu, Barcelona, Spain
| | - J P Muñoz Perez
- Pediatric Cancer Center Barcelona (PCCB), Hospital Sant Joan de Déu, Barcelona, Spain
| | - J Mora
- Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Spain; Pediatric Cancer Center Barcelona (PCCB), Hospital Sant Joan de Déu, Barcelona, Spain
| | - A Harari
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - J C Nieto
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain
| | - A Avgustinova
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Spain.
| | - H Heyn
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain; Omniscope, Barcelona, Spain; Universitat de Barcelona (UB), Barcelona, Spain; ICREA, Barcelona, Spain.
| |
Collapse
|
3
|
Lv Q, Yang Q, Chen H, Wang Y, Wang Y, Hu X, Liu M. Construction and validation of a prognostic model for colorectal cancer based on migrasome-related long non-coding RNAs. PeerJ 2025; 13:e19443. [PMID: 40386228 PMCID: PMC12085119 DOI: 10.7717/peerj.19443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 04/17/2025] [Indexed: 05/20/2025] Open
Abstract
Background Colon adenocarcinoma (COAD) is a globally prevalent and deadly malignancy of the digestive system. Recently, migrasomes have gained significant attention as important regulators of tumor cell migration and metastasis. The current research developed a highly accurate prognostic model using migrasome-related long non-coding RNAs (lncRNAs) in COAD, providing new insights for prognostic assessment and immunotherapy of COAD patients. Methods RNA sequencing data from COAD patients were acquired from The Cancer Genome Atlas Program (TCGA) database to construct a prognostic lncRNA model based on known migrasome-related genes (MRGs). The model's predictive accuracy was then assessed using concordance index (C-index) analysis, nomograms, principal component analysis, and receiver operating characteristic curves. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted to identify significant differences in biological functions and signaling pathways associated with differentially expressed genes in the high-risk subgroup. A comprehensive evaluation of the model incorporated clinical-pathological features, tumor microenvironment, and chemotherapy sensitivity. The expression levels of prognostic genes in COAD patients were validated via quantitative reverse transcription polymerase chain reaction (RT-qPCR). Furthermore, the role of LCMT1-AS1 in colorectal cancer was examined through CCK-8 assays, colony formation assays, and Transwell experiments. Results Migrasome-related lncRNAs were identified as robust prognostic predictors for COAD. Multivariate analysis revealed that the risk score derived from these lncRNAs is an independent prognostic factor for COAD. Patients in the low-risk group exhibited significantly longer overall survival (OS) compared to those in the high-risk group. Accordingly, the nomogram prediction model we developed, which integrates clinical features and risk scores, demonstrated excellent prognostic performance. In vitro experiments further showed that LCMT1-AS1 promotes the proliferation and migration of COAD cells.
Collapse
Affiliation(s)
- Qiang Lv
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang, China
- Bio-Bank of Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang, China
| | - Qingzhu Yang
- College of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar, Heilongjiang, China
| | - Hongsheng Chen
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang, China
- Bio-Bank of Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yang Wang
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang, China
- Bio-Bank of Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yuliuming Wang
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xu Hu
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang, China
- Bio-Bank of Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang, China
| | - Ming Liu
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang, China
- Bio-Bank of Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
4
|
Eslami M, Naderian R, Bahar A, Babaeizad A, Rezanavaz Gheshlagh S, Oksenych V, Tahmasebi H. Microbiota as diagnostic biomarkers: advancing early cancer detection and personalized therapeutic approaches through microbiome profiling. Front Immunol 2025; 16:1559480. [PMID: 40406094 PMCID: PMC12095362 DOI: 10.3389/fimmu.2025.1559480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 04/16/2025] [Indexed: 05/26/2025] Open
Abstract
The important function of microbiota as therapeutic modulators and diagnostic biomarkers in cancer has been shown by recent developments in microbiome research. The intricate interplay between the gut microbiota and the development of cancer, especially in colorectal and breast cancers, emphasizes how microbial profiling may be used for precision treatment and early diagnosis. Important microbial signatures, including Bacteroides fragilis and Fusobacterium nucleatum, have been linked to the development and progression of cancer, providing important information on the processes behind carcinogenesis. Additionally, the influence of microbiota on the effectiveness of treatments such as immunotherapy and chemotherapy highlights its dual function in improving treatment outcomes and reducing side effects. To optimize treatment results, strategies including dietary changes and fecal microbiota transplantation (FMT) are being investigated. Despite these developments, there are still issues, such as individual variations in microbial composition, a lack of standardized procedures, and the requirement for reliable biomarkers. Integrating microbiome-based diagnostics with conventional approaches, such as liquid biopsies and machine learning algorithms, could revolutionize cancer detection and management. This review provides an overview of the current understanding of the host-microbe immunological axis and discusses emerging therapeutic strategies centered on microbiota modulation to support human health. Further research is essential to overcome existing challenges and fully realize the promise of microbiota-driven innovations in oncology.
Collapse
Affiliation(s)
- Majid Eslami
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Ramtin Naderian
- Clinical Research Development Unit, Kowsar Educational, Research and Therapeutic Hospital, Semnan University of Medical Sciences, Semnan, Iran
| | - Aisa Bahar
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Babaeizad
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | | | | | - Hamed Tahmasebi
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
5
|
Rahimi A, Baghernejadan Z, Hazrati A, Malekpour K, Samimi LN, Najafi A, Falak R, Khorramdelazad H. Combination therapy with immune checkpoint inhibitors in colorectal cancer: Challenges, resistance mechanisms, and the role of microbiota. Biomed Pharmacother 2025; 186:118014. [PMID: 40157004 DOI: 10.1016/j.biopha.2025.118014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/17/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
Colorectal cancer (CRC) is still one of the leading causes of cancer deaths worldwide. Even though there has been progress in cancer immunotherapy, the results of applying immune checkpoint inhibitors (ICIs) have been unsatisfactory, especially in microsatellite stable (MSS) CRC. Single-agent ICIs that target programmed cell death-1 (PD-1)/ PD-L1, cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), T cell Ig- and mucin-domain-containing molecule-3 (TIM-3), and lymphocyte activation gene (LAG)-3 have emerged as having specific benefits. However, many primary and secondary resistance mechanisms are available in the tumor microenvironment (TME) that prevent it from happening. Combination strategies, such as the use of anti-PD-1 and anti-CTLA-4, can be effective in overcoming these resistance pathways, but toxicities remain a significant concern. Moreover, ICIs have been integrated with various treatment modalities, including chemotherapy, radiotherapy, antibiotics, virotherapy, polyadenosine diphosphate-ribose polymerase (PARP) inhibitors, and heat shock protein 90 (HSP90) inhibitors. The outcomes observed in both preclinical and clinical settings have been encouraging. Interestingly, manipulating gut microbiota via fecal microbiota transplantation (FMT) has been identified as a new strategy to increase the efficacy of immunotherapy in CRC patients. Therefore, integrating ICIs with other treatment approaches holds promise in enhancing the prognosis of CRC patients. This review focuses on the unmet need for new biomarkers to select patients for combination therapies and the ongoing work to overcome resistance and immune checkpoint blockade.
Collapse
Affiliation(s)
- Ali Rahimi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zeinab Baghernejadan
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Hazrati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kosar Malekpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Alireza Najafi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
6
|
Zhang J, Li J, Yang S, Tang X, Wang C, Lin J, Chen Q, Xu H, Ma Y, Gao X. Development and validation of an ARID1A-related immune genes risk model in evaluating prognosis and immune therapeutic efficacy for gastric cancer patients: a translational study. Front Immunol 2025; 16:1541491. [PMID: 40406134 PMCID: PMC12096169 DOI: 10.3389/fimmu.2025.1541491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 04/07/2025] [Indexed: 05/26/2025] Open
Abstract
Background Mutations in the ARID1A gene, an integral component of the SWI/SNF complex, are prevalent, affecting prognosis and immune response in several malignancies, including gastric cancer (GC). The aim of this study was to identify ARID1A mutation-associated immune genes to construct an ARID1A-related immune gene risk model (ARM). Methods GSEA and ssGSEA were used to explore the involved biological pathways and the degree of immune cell infiltration, respectively. The prognosis model was constructed by lasso-COX. Protein expression level in tissue was verified by immunohistochemistry. Small molecule compounds were screened using molecular docking techniques and their anticancer value was validated in vitro and in vivo experiment. Results This study revealed immune-related pathways and infiltration level of multiple immune cell types were enriched in the ARID1AMUT group compared to the ARID1AWT group. ARID1A mutations were correlated with an improved prognosis in individuals treated with immune checkpoint inhibitor (ICI) analyzed via Cbioportal website. TCGA-STAD cohort was randomly divided into a training-group and a testing-group. Additionally, ARM was developed in the training group, which identified APOD and PROC from ARID1A mutation-associated differential immunity genes. A significantly poorer prognosis in the high-risk group compared to the low-risk group, which was consistent across TCGA-training/testing/all cohorts, five GEO cohorts and 55 GC patients from Hainan General Hospital. Furthermore, the immune microenvironment components and ICI therapeutic efficacy markers were different between the two groups. Meanwhile, APOD and PROC expression was higher in GC tissues compared to para-cancerous tissues. Baicalin and capsaicin inhibited the proliferation and metastatic ability of GC cells. Conclusion ARM provides valuable insights into the prognosis and the effectiveness of ICI, thereby offering a novel strategy for clinical decision. Baicalin and capsaicin are promising potential drugs for GC treatment.
Collapse
Affiliation(s)
- Jiangtao Zhang
- The Clinical Laboratory Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan, Medical University, Haikou, Hainan, China
- Hainan Medical University, Haikou, Hainan, China
| | - Jingting Li
- The Clinical Laboratory Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan, Medical University, Haikou, Hainan, China
- Hainan Medical University, Haikou, Hainan, China
| | | | - Xiaoyan Tang
- The Clinical Laboratory Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan, Medical University, Haikou, Hainan, China
- Hainan Medical University, Haikou, Hainan, China
| | - Chunze Wang
- The Clinical Laboratory Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan, Medical University, Haikou, Hainan, China
- Hainan Medical University, Haikou, Hainan, China
| | - Jiaxing Lin
- The Clinical Laboratory Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan, Medical University, Haikou, Hainan, China
- Hainan Medical University, Haikou, Hainan, China
| | | | - Hui Xu
- The Clinical Laboratory Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan, Medical University, Haikou, Hainan, China
| | - Yuanyuan Ma
- Second Department of Critical Care Medicine, Xi’an Daxing Hospital, Shanxi, China
| | - Xiaoling Gao
- The Clinical Laboratory Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan, Medical University, Haikou, Hainan, China
- Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
7
|
Ju K, Liu X, Wang Q, Liu X, Li D, Tan B. Integration of Machine Learning Algorithms and Single-Cell Sequencing Analysis Reveals the Efferocytosis-Related Molecular Subtype and Prognostic Scoring Index in Colon Adenocarcinoma. J Gastroenterol Hepatol 2025. [PMID: 40296254 DOI: 10.1111/jgh.16985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/08/2025] [Accepted: 04/16/2025] [Indexed: 04/30/2025]
Abstract
BACKGROUND Colon adenocarcinoma (COAD) is a leading cause of cancer-related mortality, with limited therapies for advanced stages. Efferocytosis, the clearance of apoptotic cells, modulates tumor immunity and progression. We investigated efferocytosis-related genes (ERRGs) in COAD through multiomics integration. METHODS We analyzed multiomics data from public databases to identify differentially expressed ERRGs and their molecular subtypes. An ERRG score index was developed using integrated machine learning algorithms to evaluate its predictive capacity. Single-cell sequencing and in vitro functional assays were performed to validate key findings. RESULTS Among 162 ERRGs, 22 were dysregulated in COAD. Three molecular subtypes exhibited distinct prognoses, immune profiles, and therapy responses. The ERRG score system accurately predicted clinical outcomes, with low scores correlating with improved survival and sensitivity to certain drugs. Single-cell analysis highlighted TIMP1 as a key regulator, confirmed by its knockdown suppressing tumor proliferation and migration in vitro. CONCLUSION ERRGs demonstrate prognostic and therapeutic relevance in COAD, providing insights into molecular subtyping and immunotherapy prediction. TIMP1 emerges as a potential therapeutic target, warranting further clinical validation.
Collapse
Affiliation(s)
- Kun Ju
- Department of Emergency, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaolei Liu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qian Wang
- Medical Records Management Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xichun Liu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dalue Li
- Department of Emergency, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bin Tan
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Han B, Zhang Y, Feng X, Yang J, Wang B, Fang J, Wang Z, Zhu J, Niu G, Guo Y. The power of microbes: the key role of gut microbiota in the initiation and progression of colorectal cancer. Front Oncol 2025; 15:1563886. [PMID: 40297806 PMCID: PMC12034544 DOI: 10.3389/fonc.2025.1563886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/24/2025] [Indexed: 04/30/2025] Open
Abstract
Colorectal cancer (CRC) is ranked as the third most prevalent malignancy and is a leading cause of cancer-related mortality globally, significantly affecting the health and longevity of middle-aged individuals and the elderly. The primary risk factors for CRC are mainly due to unhealthy dietary habits and lifestyle choices, and they have been shown to profoundly influence the composition of the gut microbiota. Given that dietary patterns are critical determinants of gut microbial diversity, a compelling association exists between gut microbiota and the pathogenesis of CRC. Recent research has increasingly focused on the intricate interplay between gut microbiota and CRC, exploring its role in disease initiation, progression, and the modulation of host immune responses. Investigations have demonstrated that certain specific microbial communities can promote inflammation, disrupt metabolic pathways, and produce carcinogenic compounds, thereby contributing to the development of CRC. Conversely, a diverse and balanced gut microbiome may confer protective effects against cancer through mechanisms such as the production of short-chain fatty acids and the enhancement of intestinal barrier integrity. This article provides a comprehensive overview of the characteristics of the gut microbial community and its complex relationship with CRC. It highlights potential mechanisms through which gut microbiota may influence CRC pathogenesis, including chronic inflammation, toxins, metabolites, epigenetic dysregulation, and immune regulatory dysfunction. Additionally, this review summarizes innovative strategies for CRC prevention and treatment, emphasizing the therapeutic potential of probiotics and natural plant extracts. By elucidating these connections, this work aims to enhance the understanding of the gut microbiome's role in CRC.
Collapse
Affiliation(s)
- Bo Han
- Department of General Surgery, 63650 Military Hospital, Urumqi, China
| | - Yongfeng Zhang
- Department of General Surgery, 63650 Military Hospital, Urumqi, China
| | - Xue Feng
- Department of Cardiology, 63650 Military Hospital, Urumqi, China
| | - Jun Yang
- Department of General Surgery, 63650 Military Hospital, Urumqi, China
| | - Baolin Wang
- Department of General Surgery, 63650 Military Hospital, Urumqi, China
| | - Jiang Fang
- Department of General Surgery, 63650 Military Hospital, Urumqi, China
| | - Zhigang Wang
- Department of General Surgery, 63650 Military Hospital, Urumqi, China
| | - Jun Zhu
- Department of General Surgery, 63650 Military Hospital, Urumqi, China
| | - Ge Niu
- Department of General Surgery, 63650 Military Hospital, Urumqi, China
| | - Youxiang Guo
- Department of General Surgery, 63650 Military Hospital, Urumqi, China
| |
Collapse
|
9
|
Wang CW, Muzakky H, Lee YC, Chung YP, Wang YC, Yu MH, Wu CH, Chao TK. Interpretable multi-stage attention network to predict cancer subtype, microsatellite instability, TP53 mutation and TMB of endometrial and colorectal cancer. Comput Med Imaging Graph 2025; 121:102499. [PMID: 39947084 DOI: 10.1016/j.compmedimag.2025.102499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/12/2024] [Accepted: 01/22/2025] [Indexed: 03/03/2025]
Abstract
Mismatch repair deficiency (dMMR), also known as high-grade microsatellite instability (MSI-H), is a well-established biomarker for predicting the immunotherapy response in endometrial cancer (EC) and colorectal cancer (CRC). Tumor mutational burden (TMB) has also emerged as an important quantitative genomic biomarker for assessing the efficacy of immune checkpoint inhibitors. Although next-generation sequencing (NGS) can be used to assess MSI and TMB, the high costs, low sample throughput, and significant DNA requirements make NGS impractical for routine clinical screening. In this study, an interpretable, multi-stage attention deep learning (DL) network is introduced to predict pathological subtypes, MSI, TP53 mutations, and TMB directly from low-cost, routinely used histopathological whole slide images of EC and CRC slides. Experimental results showed that this method consistently outperformed seven state-of-the-art approaches in cancer subtyping and molecular status prediction across EC and CRC datasets. Fisher's Least Significant Difference test confirmed a strong correlation between model predictions and actual molecular statuses (MSI, TP53, and TMB) (p<0.001). Furthermore, Kaplan-Meier disease-free survival analysis revealed that CRC patients with model-predicted high TMB had significantly longer disease-free survival than those with low TMB (p<0.05). These findings demonstrate that the proposed DL-based approach holds significant potential for directly predicting immunotherapy-related pathological diagnoses and molecular statuses from routine WSIs, supporting personalized cancer immunotherapy treatment decisions in EC and CRC.
Collapse
Affiliation(s)
- Ching-Wei Wang
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.
| | - Hikam Muzakky
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Yu-Ching Lee
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Yu-Pang Chung
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Yu-Chi Wang
- Department of Gynecology and Obstetrics, Tri-Service General Hospital, Taipei, Taiwan; Department of Gynecology and Obstetrics, National Defense Medical Center, Taipei, Taiwan
| | - Mu-Hsien Yu
- Department of Gynecology and Obstetrics, Tri-Service General Hospital, Taipei, Taiwan; Department of Gynecology and Obstetrics, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Hua Wu
- Department of Pathology, Tri-Service General Hospital, Taipei, Taiwan
| | - Tai-Kuang Chao
- Department of Pathology, Tri-Service General Hospital, Taipei, Taiwan; Institute of Pathology and Parasitology, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
10
|
Vonica RC, Butuca A, Morgovan C, Pumnea M, Cipaian RC, Frum A, Dobrea CM, Vonica-Tincu AL, Pacnejer AM, Ghibu S, Batar F, Gligor FG. Bevacizumab-Insights from EudraVigilance Database on the Assessments of the Safety Profile of Monoclonal Antibodies Used as Targeted Cancer Treatment. Pharmaceuticals (Basel) 2025; 18:501. [PMID: 40283938 PMCID: PMC12030381 DOI: 10.3390/ph18040501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/22/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: Worldwide, colon cancer is a major cause of cancer-related mortality, with an increasing incidence influenced by genetic, environmental, and lifestyle factors. Despite advances in diagnosis and personalized treatments, challenges remain in improving patient prognosis, particularly in metastatic colorectal cancer (mCRC). Bevacizumab (BEV), a monoclonal antibody, is widely used in colorectal cancer treatment. This study aimed to analyze adverse events associated with BEV compared with other therapies based on data from the EudraVigilance (EV) database. Methods: A descriptive and disproportionality analysis was conducted on signals reported in the EV database related to BEV. The study included comparisons with other antineoplastic treatments, such as chemotherapy, targeted therapy, and immunotherapy. Patient demographics, severity of adverse drug reactions (ADRs), and distribution patterns were analyzed to assess the safety profile of BEV in colorectal cancer treatment. Results: The majority of the signals for BEV were from patients aged 18-64 years (39.42%) and 65-85 years (34.08%). Hypertension, thromboembolism, proteinuria, and gastrointestinal disorders have been the most frequently reported. Serious ADRs, including gastrointestinal perforations, hemorrhage, and arterial thromboembolism, were observed in 93.74% of Individual Case Safety Reports. BEV was associated with a higher likelihood of vascular and endocrine disorders compared with chemotherapy and other targeted therapies. Immunotherapy was linked to increased immunological ADRs, while BEV demonstrated fewer immune-related toxicities. Conclusions: Continuous monitoring is necessary to optimize patient management, particularly in elderly patients or those with cardiovascular comorbidities. Understanding BEV's safety profile allows for better personalization of treatment strategies, minimizing risks while enhancing therapeutic outcomes.
Collapse
Affiliation(s)
- Razvan Constantin Vonica
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (R.C.V.); (M.P.); (A.F.); (C.M.D.); (A.L.V.-T.); (A.-M.P.); (F.B.); (F.G.G.)
| | - Anca Butuca
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (R.C.V.); (M.P.); (A.F.); (C.M.D.); (A.L.V.-T.); (A.-M.P.); (F.B.); (F.G.G.)
| | - Claudiu Morgovan
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (R.C.V.); (M.P.); (A.F.); (C.M.D.); (A.L.V.-T.); (A.-M.P.); (F.B.); (F.G.G.)
| | - Manuela Pumnea
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (R.C.V.); (M.P.); (A.F.); (C.M.D.); (A.L.V.-T.); (A.-M.P.); (F.B.); (F.G.G.)
| | - Remus Calin Cipaian
- Clinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania;
- County Clinical Emergency Hospital of Sibiu, 2–4 Corneliu Coposu Str., 550245 Sibiu, Romania
| | - Adina Frum
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (R.C.V.); (M.P.); (A.F.); (C.M.D.); (A.L.V.-T.); (A.-M.P.); (F.B.); (F.G.G.)
| | - Carmen Maximiliana Dobrea
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (R.C.V.); (M.P.); (A.F.); (C.M.D.); (A.L.V.-T.); (A.-M.P.); (F.B.); (F.G.G.)
| | - Andreea Loredana Vonica-Tincu
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (R.C.V.); (M.P.); (A.F.); (C.M.D.); (A.L.V.-T.); (A.-M.P.); (F.B.); (F.G.G.)
| | - Aliteia-Maria Pacnejer
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (R.C.V.); (M.P.); (A.F.); (C.M.D.); (A.L.V.-T.); (A.-M.P.); (F.B.); (F.G.G.)
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timişoara, Romania
| | - Steliana Ghibu
- Department of Pharmacology, Physiology and Pathophysiology, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| | - Florina Batar
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (R.C.V.); (M.P.); (A.F.); (C.M.D.); (A.L.V.-T.); (A.-M.P.); (F.B.); (F.G.G.)
| | - Felicia Gabriela Gligor
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (R.C.V.); (M.P.); (A.F.); (C.M.D.); (A.L.V.-T.); (A.-M.P.); (F.B.); (F.G.G.)
| |
Collapse
|
11
|
Huang J, Min S, Hong R, Zou M, Zhou D. High-dose Vitamin C inhibits PD-L1 expression by activating AMPK in colorectal cancer. Immunobiology 2025; 230:152893. [PMID: 40139125 DOI: 10.1016/j.imbio.2025.152893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/27/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
Vitamin C (VitC) has elicited considerable interest regarding its potential role in cancer therapy; however, its effects on tumor immunity remain unclear. In colorectal cancer (CRC), although anti-PD-1/PD-L1 therapies demonstrate promise, their efficacy is still constrained. Our prior research demonstrated that VitC can inhibit tumor growth by suppressing the Warburg effect. This study aims to explore the effects of high-dose VitC on PD-L1 expression in CRC, focusing on its underlying mechanisms and potential for enhancing immunotherapy. We found that VitC inhibits aerobic glycolysis in HCT116 cells while also downregulating PD-L1 expression. Further investigations indicated that this process is mediated by VitC's activation of AMPK, which downregulates HK2 and NF-κB, ultimately resulting in reduced PD-L1 expression and increased T cell infiltration. Notably, we observed that VitC and the PD-L1 monoclonal antibody atezolizumab exhibit comparable tumor-inhibiting abilities, and their combined use further enhances this efficacy. In conclusion, our results demonstrate that high-dose VitC activates AMPK, downregulates PD-L1 expression, mitigates immune evasion, and suppresses tumor growth. This provides a promising strategy for optimizing immunotherapy in CRC.
Collapse
Affiliation(s)
- Jia Huang
- Department of Anesthesiology, Technology Innovation Research Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Su Min
- Department of Anesthesiology, Technology Innovation Research Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Ruiyang Hong
- Department of Anesthesiology, Technology Innovation Research Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Mou Zou
- Department of Anesthesiology, Technology Innovation Research Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Dongyu Zhou
- Department of Anesthesiology, Technology Innovation Research Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
12
|
Yin H, Zhang M, Zhang Y, Zhang X, Zhang X, Zhang B. Liquid biopsies in cancer. MOLECULAR BIOMEDICINE 2025; 6:18. [PMID: 40108089 PMCID: PMC11923355 DOI: 10.1186/s43556-025-00257-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 02/14/2025] [Accepted: 02/23/2025] [Indexed: 03/22/2025] Open
Abstract
Cancer ranks among the most lethal diseases worldwide. Tissue biopsy is currently the primary method for the diagnosis and biological analysis of various solid tumors. However, this method has some disadvantages related to insufficient tissue specimen collection and intratumoral heterogeneity. Liquid biopsy is a noninvasive approach for identifying cancer-related biomarkers in peripheral blood, which allows for repetitive sampling across multiple time points. In the field of liquid biopsy, representative biomarkers include circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), and exosomes. Many studies have evaluated the prognostic and predictive roles of CTCs and ctDNA in various solid tumors. Although these studies have limitations, the results of most studies appear to consistently demonstrate the correlations of high CTC counts and ctDNA mutations with lower survival rates in cancer patients. Similarly, a reduction in CTC counts throughout therapy may be a potential prognostic indicator related to treatment response in advanced cancer patients. Moreover, the biochemical characteristics of CTCs and ctDNA can provide information about tumor biology as well as resistance mechanisms against targeted therapy. This review discusses the current clinical applications of liquid biopsy in cancer patients, emphasizing its possible utility in outcome prediction and treatment decision-making.
Collapse
Affiliation(s)
- Hang Yin
- The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China
| | - Manjie Zhang
- The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China
| | - Yu Zhang
- Dalian Medical University, Dalian, 116000, China
| | - Xuebing Zhang
- The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China
| | - Xia Zhang
- Dalian Fifth People's Hospital, Dalian, 116000, China.
| | - Bin Zhang
- The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China.
| |
Collapse
|
13
|
Lan H, Zhao J, Yuan L, Li M, Pu X, Guo Y. Deep Clustering-Based Immunotherapy Prediction for Gastric Cancer mRNA Vaccine Development. Int J Mol Sci 2025; 26:2453. [PMID: 40141097 PMCID: PMC11941797 DOI: 10.3390/ijms26062453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/04/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
Immunotherapy is becoming a promising strategy for treating diverse cancers. However, it benefits only a selected group of gastric cancer (GC) patients since they have highly heterogeneous immunosuppressive microenvironments. Thus, a more sophisticated immunological subclassification and characterization of GC patients is of great practical significance for mRNA vaccine therapy. This study aimed to find a new immunological subclassification for GC and further identify specific tumor antigens for mRNA vaccine development. First, deep autoencoder (AE)-based clustering was utilized to construct the immunological profile and to uncover four distinct immune subtypes of GC, labeled as Subtypes 1, 2, 3, and 4. Then, in silico prediction using machine learning methods was performed for accurate discrimination of new classifications with an average accuracy of 97.6%. Our results suggested significant clinicopathology, molecular, and immune differences across the four subtypes. Notably, Subtype 4 was characterized by poor prognosis, reduced tumor purity, and enhanced immune cell infiltration and activity; thus, tumor-specific antigens associated with Subtype 4 were identified, and a customized mRNA vaccine was developed using immunoinformatic tools. Finally, the influence of the tumor microenvironment (TME) on treatment efficacy was assessed, emphasizing that specific patients may benefit more from this therapeutic approach. Overall, our findings could help to provide new insights into improving the prognosis and immunotherapy of GC patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Yanzhi Guo
- College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
14
|
Wu W, Liu S, Ren H, Rao Y, Nie J, Wei K, Jiang X. Unveiling the oncogenic role of SLC25A13: a multi-omics pan-cancer analysis reveals its impact on glioma progression. Cancer Cell Int 2025; 25:76. [PMID: 40033307 DOI: 10.1186/s12935-025-03696-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 02/13/2025] [Indexed: 03/05/2025] Open
Abstract
SLC25A13, a pivotal component of the mitochondrial aspartate-glutamate carrier, is integral to cellular metabolism and has been linked to various diseases. However, its role in cancer biology remains largely unexplored. In this study, we employed multi-omics data to elucidate the genetic landscape, expression profile, and prognostic value of SLC25A13 in a pan-cancer context. Additionally, we examined the correlation between SLC25A13 and the immune microenvironment across various cancers. By applying multiple machine learning methods, we identified seven core SLC25A13 co-expressed genes and developed a nomogram to predict the prognosis of glioma patients, validating its efficacy across multiple independent datasets. Furthermore, in vitro and in vivo experiments demonstrated that SLC25A13 is significantly overexpressed in glioblastoma tissues compared to paraneoplastic tissues, promoting glioblastoma cell proliferation and migration while inhibiting apoptosis. Collectively, our study positions SLC25A13 as a promising biomarker for cancer prognosis and a potential therapeutic target, particularly in glioma, thereby laying the groundwork for future research into its therapeutic exploitation in cancer.
Collapse
Affiliation(s)
- Wenjie Wu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Simin Liu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Huili Ren
- Department of Pharmacy, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuxin Rao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Jun Nie
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Keke Wei
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
15
|
Lv P, Zhang Y, Wu W, Jiang X, Xiang W. Pan-cancer analysis identifies ADAM12 as a prognostic biomarker and indicator of immune infiltration in glioma. Sci Rep 2025; 15:6314. [PMID: 39984619 PMCID: PMC11845722 DOI: 10.1038/s41598-025-90121-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/11/2025] [Indexed: 02/23/2025] Open
Abstract
ADAM12, part of the adisintegrin and metalloproteases (ADAMs) family, has been widely reported in recent years to be associated with various malignant tumor behaviors, including migration, invasion, and treatment resistance. However, its role at the pan-cancer level remains insufficiently characterized. In this study, pan-cancer data were utilized to elucidate the expression patterns, prognostic significance, and potential roles of ADAM12 within the tumor immune microenvironment. An in-depth analysis of ADAM12 in gliomas was also conducted. Our findings revealed that ADAM12 expression is markedly overexpressed in glioma tissues, enhances glioma cell malignancy, and is associated with a worse prognosis. These results suggest that ADAM12 may serve as a biomarker for predicting glioma malignancy and patient prognosis, as well as a potential therapeutic target in glioma treatment.
Collapse
Affiliation(s)
- Peng Lv
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue NO.1277, Wuhan, 430022, Hubei Province, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yanbin Zhang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue NO.1277, Wuhan, 430022, Hubei Province, China
| | - Wenjie Wu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue NO.1277, Wuhan, 430022, Hubei Province, China
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue NO.1277, Wuhan, 430022, Hubei Province, China.
| | - Wei Xiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue NO.1277, Wuhan, 430022, Hubei Province, China.
| |
Collapse
|
16
|
Yang P, He S, Fan L, Ye L, Weng H. Risk factors for immunoresistance in advanced non-small cell lung cancer and the advantages of targeted therapy in improving prognosis. Am J Cancer Res 2025; 15:573-586. [PMID: 40084370 PMCID: PMC11897627 DOI: 10.62347/fgay1920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/17/2025] [Indexed: 03/16/2025] Open
Abstract
OBJECTIVES The advent of immunotherapy has transformed the therapeutic landscape for advanced non-small cell lung cancer (NSCLC); nonetheless, the emergence of resistance to immunotherapy poses a considerable obstacle. Our research sought to identify factors contributing to immunotherapy resistance and to assess the effectiveness of subsequent treatments in patients with advanced NSCLC who have been exposed to immune checkpoint inhibitors (ICIs). METHODS This retrospective study analyzed data from 232 individuals with advanced NSCLC who were treated with ICIs during January 2020 to December 2023. Based on their response to ICIs, these patients were classified into two groups: immunoresistance group (IM group) and non-immunoresistance group (NIM group). Data collected included demographics, clinical parameters, cytokine profiles, tumor mutational burden (TMB), PD-L1 expression, overall survival (OS), progression-free survival (PFS), and adverse events. The association between risk factors and immunoresistance were assessed, and second-line treatment outcomes were evaluated. RESULTS Key risk factors for immunoresistance included lower TMB, higher levels of interleukin-10 (IL-10), and PD-L1 expression ≥ 50%. TMB was inversely correlated with immunoresistance (rho = -0.838, P < 0.001). In multivariate analysis, IL-10 remained a significant risk factor (OR = 33.654, P = 0.021), whereas TMB was protective (OR = 0.786, P < 0.001). Second-line targeted therapy significantly improved OS (8.72 ± 2.02 months) and PFS (5.37 ± 2.15 months) compared to chemotherapy (OS: 7.93 ± 2.13 months; PFS: 4.86 ± 1.68 months) (P < 0.05). The targeted therapy group experienced distinct side effects, notably increased hypertension and hand-foot syndrome, while chemotherapy group had higher rates of fatigue (P < 0.05). CONCLUSION Immunoresistance in advanced NSCLC is influenced by IL-10, TMB, and PD-L1 expression. Targeted therapies offer superior outcomes than chemotherapy, though side effect management remains crucial.
Collapse
Affiliation(s)
- Ping Yang
- Department of Respiratory and Critical Care Medicine, The People’s Hospital Affiliated to Fujian University of Traditional Chinese MedicineFuzhou 350000, Fujian, China
| | - Shangxiang He
- Department of Medical Oncology, Shanghai GoBroad Cancer Hospital, China Pharmaceutical UniversityShanghai 200100, China
| | - Linyin Fan
- Department of Radiology, Zhejiang Cancer HospitalHangzhou 310022, Zhejiang, China
| | - Ling Ye
- Department of Respiratory and Critical Care Medicine, The People’s Hospital Affiliated to Fujian University of Traditional Chinese MedicineFuzhou 350000, Fujian, China
| | - Heng Weng
- Department of Respiratory and Critical Care Medicine, The People’s Hospital Affiliated to Fujian University of Traditional Chinese MedicineFuzhou 350000, Fujian, China
| |
Collapse
|
17
|
Wang M, Qi J, Tan Z, Zhou R, Zhuo Q, Deng X, Wang Z, Zhou R, Li F, Xu Y. GABPα targeted by miR-378a-5p inhibits the growth and angiogenesis of colorectal carcinoma. Int J Biochem Cell Biol 2025; 179:106729. [PMID: 39710138 DOI: 10.1016/j.biocel.2024.106729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/26/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Considering the high degree of malignancy, recurrence rate and poor prognosis, exploring promising targets is an imperious strategy for colorectal carcinoma therapy. Recent studies have indicated that GABPα plays a role in cancer aggressiveness, but its exact function and regulatory mechanisms in colorectal cancer progression remain unclear. This study aims to explore the biological role of GABPα and its upstream regulator, miR-378a-5p, in modulating cancer progression. The expression levels of GABPα and miR-378a-5p were analyzed through comprehensive data mining and qPCR assays. The functional effects of GABPα were assessed using CCK-8, wound healing, transwell invasion assay, tube formation and xenograft model in nude mice. A co-transfection assay was also performed to investigate the regulatory relationship between miR-378a-5p and GABPα. We found that GABPα expression was significantly downregulated in human colorectal cancer tissues and cell lines. Functional assays revealed that GABPα overexpression suppressed the proliferation, migration, invasion and angiogenesis of colorectal cancer cells, and in vivo experiments further confirmed the inhibitory role of GABPα. Additionally, miR-378a-5p was upregulated in colorectal cancer, and GABPα was identified as a direct target of miR-378a-5p, as confirmed by luciferase reporter assays. Furthermore, overexpression of GABPα partially counteracted the enhanced malignant behaviors of cancer cells induced by miR-378a-5p. Our findings suggest that miR-378a-5p promotes the aggressive progression of colorectal cancer by directly targeting GABPα, highlighting this regulatory axis as a potential therapeutic target for colorectal carcinoma.
Collapse
Affiliation(s)
- Mengyi Wang
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Jiangfa Qi
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhenlin Tan
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Runlong Zhou
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Qing Zhuo
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Xiaotong Deng
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Zhenrong Wang
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Ruijie Zhou
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Fan Li
- Wuhan Bio-Raid Biotechnology Co., Ltd., Wuhan, Hubei 430075, China
| | - Yao Xu
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China.
| |
Collapse
|
18
|
Singer M, Valerin J, Zhang Z, Zhang Z, Dayyani F, Yaghmai V, Choi A, Imagawa D, Abi-Jaoudeh N. Promising Cellular Immunotherapy for Colorectal Cancer Using Classical Dendritic Cells and Natural Killer T Cells. Cells 2025; 14:166. [PMID: 39936958 PMCID: PMC11817869 DOI: 10.3390/cells14030166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 02/13/2025] Open
Abstract
Colorectal cancer (CRC) remains one of the leading causes of cancer-related morbidity and mortality around the world. Despite advances in surgery, chemotherapy, and targeted therapies, the prognosis for patients with metastatic or advanced CRC remains poor. Immunotherapies comprising immune checkpoint inhibitors showed disappointing responses in metastatic CRC (mCRC). However, cellular immunotherapy, specifically using classical dendritic cells (cDCs), may hold unique promise in immune recognition for CRC antigens. cDCs are substantial players in immune recognition and are instrumental in orchestrating innate and adaptive immune responses by processing and presenting tumor antigens to effector cells. Natural killer T (NKT) cells are insufficiently studied but unique effector cells because of their ability to bridge innate and adaptive immune reactions and the crosstalk with dendritic cells in cancer. This review explores the therapeutic potential of using both cDCs and NKT cells as a synergistic therapy in CRC, focusing on their biological roles, strategies for harnessing their capabilities, clinical applications, and the challenges within the tumor microenvironment. Both cDCs and NKT cells can be used as a new effective approach for cell-based therapies in cancers to provide a new hope for CRC patients that are challenging to treat.
Collapse
Affiliation(s)
- Mahmoud Singer
- Department of Radiological Sciences, School of Medicine, University of California, Irvine, CA 92617, USA
| | - Jennifer Valerin
- Department of Medicine, Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92697, USA (A.C.)
| | - Zhuoli Zhang
- Department of Radiological Sciences, School of Medicine, University of California, Irvine, CA 92617, USA
| | - Zigeng Zhang
- Department of Radiological Sciences, School of Medicine, University of California, Irvine, CA 92617, USA
| | - Farshid Dayyani
- Department of Medicine, Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92697, USA (A.C.)
| | - Vahid Yaghmai
- Department of Radiological Sciences, School of Medicine, University of California, Irvine, CA 92617, USA
| | - April Choi
- Department of Medicine, Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92697, USA (A.C.)
| | - David Imagawa
- Department of Surgery, University of California Irvine, Orange, CA 92697, USA
| | - Nadine Abi-Jaoudeh
- Department of Radiological Sciences, School of Medicine, University of California, Irvine, CA 92617, USA
| |
Collapse
|
19
|
Razumovskaya A, Silkina M, Poloznikov A, Kulagin T, Raigorodskaya M, Gorban N, Kudryavtseva A, Fedorova M, Alekseev B, Tonevitsky A, Nikulin S. Predicting patient outcomes with gene-expression biomarkers from colorectal cancer organoids and cell lines. Front Mol Biosci 2025; 12:1531175. [PMID: 39886381 PMCID: PMC11774744 DOI: 10.3389/fmolb.2025.1531175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/02/2025] [Indexed: 02/01/2025] Open
Abstract
Introduction Colorectal cancer (CRC) is characterized by an extremely high mortality rate, mainly caused by the high metastatic potential of this type of cancer. To date, chemotherapy remains the backbone of the treatment of metastatic colorectal cancer. Three main chemotherapeutic drugs used for the treatment of metastatic colorectal cancer are 5-fluorouracil, oxaliplatin and irinotecan which is metabolized to an active compound SN-38. The main goal of this study was to find the genes connected to the resistance to the aforementioned drugs and to construct a predictive gene expression-based classifier to separate responders and non-responders. Methods In this study, we analyzed gene expression profiles of seven patient-derived CRC organoids and performed correlation analyses between gene expression and IC50 values for the three standard-of-care chemotherapeutic drugs. We also included in the study publicly available datasets of colorectal cancer cell lines, thus combining two different in vitro models relevant to cancer research. Logistic regression was used to build gene expression-based classifiers for metastatic Stage IV and non-metastatic Stage II/III CRC patients. Prognostic performance was evaluated through Kaplan-Meier survival analysis and log-rank tests, while independent prognostic significance was assessed using multivariate Cox proportional hazards modeling. Results A small set of genes showed consistent correlation with resistance to chemotherapy across different datasets. While some genes were previously implicated in cancer prognosis and drug response, several were linked to drug resistance for the first time. The resulting gene expression signatures successfully stratified Stage II/III and Stage IV CRC patients, with potential clinical utility for improving treatment outcomes after further validation. Discussion This study highlights the advantages of integrating diverse experimental models, such as organoids and cell lines, to identify novel prognostic biomarkers and enhance the understanding of chemotherapy resistance in CRC.
Collapse
Affiliation(s)
- Alexandra Razumovskaya
- Faculty of Biology and Biotechnologies, National Research University Higher School of Economics, Moscow, Russia
| | - Mariia Silkina
- Faculty of Biology and Biotechnologies, National Research University Higher School of Economics, Moscow, Russia
- P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Andrey Poloznikov
- P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Timur Kulagin
- Faculty of Biology and Biotechnologies, National Research University Higher School of Economics, Moscow, Russia
| | - Maria Raigorodskaya
- P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Nina Gorban
- Central Clinical Hospital with Polyclinic, Administration of the President of the Russian Federation, Moscow, Russia
| | - Anna Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Maria Fedorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Boris Alekseev
- P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alexander Tonevitsky
- Faculty of Biology and Biotechnologies, National Research University Higher School of Economics, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Art Photonics GmbH, Berlin, Germany
| | - Sergey Nikulin
- Faculty of Biology and Biotechnologies, National Research University Higher School of Economics, Moscow, Russia
- P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
20
|
Yin W, Ao Y, Jia Q, Zhang C, Yuan L, Liu S, Xiao W, Luo G, Shi X, Xin C, Chen M, Lü M, Yu Z. Integrated singlecell and bulk RNA-seq analysis identifies a prognostic signature related to inflammation in colorectal cancer. Sci Rep 2025; 15:874. [PMID: 39757274 PMCID: PMC11701073 DOI: 10.1038/s41598-024-84998-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/30/2024] [Indexed: 01/07/2025] Open
Abstract
Inflammation can influence the development of CRC as well as immunotherapy and plays a key role in CRC. Therefore, this study aimed to investigate the potential of inflammation-related genes in CRC risk prediction. Inflammation gene models were constructed and validated by combining transcriptomic and single-cell data from TCGA and GEO databases, and the expression of inflammation-related genes was verified by RT-qPCR. We identified two molecular subtypes and three genetic subtypes, two risk subgroups according to median risk values, constructed a prognostic model including thirteen genes (TIMP1, GDF15, UCN, KRT4, POU4F1, NXPH1, SIX2, NPC1L1, KLK12, IGFL1, FOXD1, ASPG, and CYP4F8), and validated the performance of each aspect of the model in an external database. Patients in the high-risk group had worse survival with reduced immune cell infiltration and a greater tumor mutational load. The risk score correlated strongly with the immune checkpoints PD1, PDL1, PDL2, and CTLA4, and it is possible that high-risk patients are more sensitive to treatment involving immune checkpoints. In the single-cell data, GDF15 was most significantly expressed in cancer cell populations. Therefore, we further validated their expression in cells and tissues using qPCR. In summary, we developed a prognostic marker associated with inflammatory genes to provide new directions for subsequent studies and to help clinicians assess the prognosis of CRC patients as well as to develop personalized treatment strategies.
Collapse
Affiliation(s)
- Wen Yin
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou City, China
| | - Yanting Ao
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou City, China
| | - Qian Jia
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou City, China
| | - Chao Zhang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou City, China
| | - Liping Yuan
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou City, China
| | - Sha Liu
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou City, China
| | - Wanmeng Xiao
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou City, China
| | - Gang Luo
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou City, China
| | - Xiaomin Shi
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou City, China
| | - Chen Xin
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou City, China
| | - Maolin Chen
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Muhan Lü
- The Affiliated Hospital of Southwest Medical University, Luzhou City, China.
- Human Microecology and Precision Diagnosis and Treatment of Luzhou Key Laboratory, Luzhou City, China.
| | - Zehui Yu
- Laboratory Animal Center, Southwest Medical University, Luzhou City, China.
| |
Collapse
|
21
|
Wang CW, Liu TC, Lai PJ, Muzakky H, Wang YC, Yu MH, Wu CH, Chao TK. Ensemble transformer-based multiple instance learning to predict pathological subtypes and tumor mutational burden from histopathological whole slide images of endometrial and colorectal cancer. Med Image Anal 2025; 99:103372. [PMID: 39461079 DOI: 10.1016/j.media.2024.103372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/30/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024]
Abstract
In endometrial cancer (EC) and colorectal cancer (CRC), in addition to microsatellite instability, tumor mutational burden (TMB) has gradually gained attention as a genomic biomarker that can be used clinically to determine which patients may benefit from immune checkpoint inhibitors. High TMB is characterized by a large number of mutated genes, which encode aberrant tumor neoantigens, and implies a better response to immunotherapy. Hence, a part of EC and CRC patients associated with high TMB may have higher chances to receive immunotherapy. TMB measurement was mainly evaluated by whole-exome sequencing or next-generation sequencing, which was costly and difficult to be widely applied in all clinical cases. Therefore, an effective, efficient, low-cost and easily accessible tool is urgently needed to distinguish the TMB status of EC and CRC patients. In this study, we present a deep learning framework, namely Ensemble Transformer-based Multiple Instance Learning with Self-Supervised Learning Vision Transformer feature encoder (ETMIL-SSLViT), to predict pathological subtype and TMB status directly from the H&E stained whole slide images (WSIs) in EC and CRC patients, which is helpful for both pathological classification and cancer treatment planning. Our framework was evaluated on two different cancer cohorts, including an EC cohort with 918 histopathology WSIs from 529 patients and a CRC cohort with 1495 WSIs from 594 patients from The Cancer Genome Atlas. The experimental results show that the proposed methods achieved excellent performance and outperforming seven state-of-the-art (SOTA) methods in cancer subtype classification and TMB prediction on both cancer datasets. Fisher's exact test further validated that the associations between the predictions of the proposed models and the actual cancer subtype or TMB status are both extremely strong (p<0.001). These promising findings show the potential of our proposed methods to guide personalized treatment decisions by accurately predicting the EC and CRC subtype and the TMB status for effective immunotherapy planning for EC and CRC patients.
Collapse
Affiliation(s)
- Ching-Wei Wang
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Tzu-Chien Liu
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Po-Jen Lai
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Hikam Muzakky
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Yu-Chi Wang
- Department of Gynecology and Obstetrics, Tri-Service General Hospital, Taipei, 114202, Taiwan; Department of Gynecology and Obstetrics, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Mu-Hsien Yu
- Department of Gynecology and Obstetrics, Tri-Service General Hospital, Taipei, 114202, Taiwan; Department of Gynecology and Obstetrics, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Chia-Hua Wu
- Department of Pathology, Tri-Service General Hospital, Taipei, 114202, Taiwan
| | - Tai-Kuang Chao
- Department of Pathology, Tri-Service General Hospital, Taipei, 114202, Taiwan; Institute of Pathology and Parasitology, National Defense Medical Center, Taipei, 11490, Taiwan.
| |
Collapse
|
22
|
Lucocq J, Trinder T, Symeonidou E, Homyer K, Baig H, Patil P, Muthukumarasamy G. Long-term outcomes following the resection of screen-detected right-sided colon cancer. World J Surg 2025; 49:46-54. [PMID: 39562760 PMCID: PMC11711116 DOI: 10.1002/wjs.12409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/28/2024] [Indexed: 11/21/2024]
Abstract
BACKGROUND The relative outcomes following the resection of screen-detected right-sided colon cancer compared to symptomatic cases are unknown. In this study, short and long-term outcomes after right-sided colectomy in screen-detected colon cancer are compared with symptomatic cases, both emergency and elective. METHODS A prospective observational cohort study of patients, including both screen-detected and symptomatic patients (elective and emergency resections), undergoing right-sided colectomy for colon cancer (2010-2020) in a tertiary care unit was conducted. Each patient was followed up for long-term recurrence and survival. RESULTS A total of 909 patients (median age, 70; IQR, 58-82; male, 52%) were included (151 patients (16.6%) screen-detected; 598 (65.8%) elective and 160 (17.6%) emergency). Screen-detected patients were more likely to have T1 or T2 lesions compared to elective and emergency groups (T1: 14.6% vs. 3.8% vs. 0.6% p < 0.001; T2: 16.6% vs. 8.9% vs. 3.1% p < 0.001), but were less likely to have T3 or T4 lesions (p < 0.001), respectively. Rates of N0 were higher in the screen-detected group (68.9% vs. 63.5% vs. 41.9%, respectively; p < 0.001). 98% of the screen-detected group achieved R0 resection compared to 93.3% of elective and 79.4% of emergency patients (p < 0.001). At 5-years following resection, overall survival for the screen-detected, elective, and emergency groups were 85.4%, 75.4%, and 53.1%, respectively (p < 0.001). Recurrence at 5-year post-resection were 8%, 15.1%, and 22.5% for the screen-detected, elective, and emergency groups, respectively (p < 0.001). DISCUSSION When considering right-sided colon cancer alone, screen-detected cancers have a lower long-term recurrence rate, lower rates of postoperative complication, and superior survival compared to symptomatic groups following resection.
Collapse
|
23
|
Luo B, Liao M, Nie B, Yu Y, Yao Q. Genomic profiles and their associations with microsatellite instability status, tumor mutational burden, and programmed death ligand 1 expression in Chinese patients with colorectal cancer. J Gastrointest Oncol 2024; 15:2460-2472. [PMID: 39816034 PMCID: PMC11732342 DOI: 10.21037/jgo-24-748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/10/2024] [Indexed: 01/18/2025] Open
Abstract
Background Colorectal cancer (CRC) is among the most prevalent malignancies globally, with a rising incidence observed in younger demographics. Despite surgical resection remaining the cornerstone of treatment, metastatic CRC poses significant therapeutic challenges. Immunotherapy, a mode of treatment that leverages the patient's immune system, presents a promising frontier in CRC management, particularly for late-stage cases with limited treatment options. The study was aimed to elucidate the relationships between genetic profiles and predictive biomarkers in CRC patients to inform immunotherapy decisions and improve outcomes. Methods We conducted a large-scale study involving 660 patients with CRC, analyzing genetic profiles and predictive biomarkers for immune checkpoint inhibitors (ICIs) using next-generation sequencing (NGS) and immunohistochemistry (IHC). The study focused on assessing the association between gene mutations and markers such as microsatellite instability (MSI) status, tumor mutational burden (TMB), and programmed death ligand 1 (PD-L1) expression. Results Analysis revealed a diverse mutational landscape in CRC, with TP53 (73.64%), APC (67.58%), and KRAS (46.82%) being the most frequently mutated genes. We observed significant associations between KRAS mutations and co-occurrences with FBXW7, PIK3CA, and SMAD4 mutations, while KRAS mutations were mutually exclusive with TP53 mutations. KRAS mutations were enriched in the PD-L1 tumor proportion score (TPS) ≥1% population (P=0.03), whereas APC mutations were enriched in the PD-L1 TPS <1% population (P=0.10) as compared to their wild types. Additionally, specific mutations such as KRAS p.A146T, PIK3CA p.H1047R, and BRAF p.V600E were significantly associated with higher TMB and MSI-high status, indicating potential benefits from ICI therapy. Conclusions Our findings underscore the importance of genetic profiling in guiding treatment decisions for patients with CRC, particularly in the era of immunotherapy. Understanding the complex interplay between genetic alterations and immune markers is critical for optimizing therapeutic strategies and improving clinical outcomes. Further research is warranted to validate these findings and explore personalized treatment approaches in CRC.
Collapse
Affiliation(s)
- Bo Luo
- Department of General Surgery, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Min Liao
- Department of Traditional Chinese Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Bin Nie
- Department of General Surgery, Chengdu BOE Hospital, Chengdu, China
| | - Yunbao Yu
- Department of General Surgery, Chengdu BOE Hospital, Chengdu, China
| | - Qipeng Yao
- Department of Traditional Chinese Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
24
|
Kaviyarasan V, Das A, Deka D, Saha B, Banerjee A, Sharma NR, Duttaroy AK, Pathak S. Advancements in immunotherapy for colorectal cancer treatment: a comprehensive review of strategies, challenges, and future prospective. Int J Colorectal Dis 2024; 40:1. [PMID: 39731596 DOI: 10.1007/s00384-024-04790-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/15/2024] [Indexed: 12/30/2024]
Abstract
PURPOSE Colorectal cancer (CRC) remains one of the leading causes of cancer-related mortality worldwide. Metastatic colorectal cancer (mCRC) continues to present significant challenges, particularly in patients with proficient mismatch repair/microsatellite stable (pMMR/MSS) tumors. This narrative review aims to provide recent developments in immunotherapy for CRC treatment, focusing on its efficacy and challenges. METHODS This review discussed the various immunotherapeutic strategies for CRC treatment, including immune checkpoint inhibitors (ICIs) targeting PD-1 and PD-L1, combination therapies involving ICIs with other modalities, chimeric antigen receptor T-cell (CAR-T) cell therapy, and cancer vaccines. The role of the tumor microenvironment and immune evasion mechanisms was also explored to understand their impact on the effectiveness of these therapies. RESULTS This review provides a comprehensive update of recent advancements in immunotherapy for CRC, highlighting the potential of various immunotherapeutic approaches, including immune checkpoint inhibitors, combination therapies, CAR-T therapy, and vaccination strategies. The results of checkpoint inhibitors, particularly in patients with MSI-H/dMMR tumors, which have significant improvements in survival rates have been observed. Furthermore, this review also addresses the challenges faced in treating pMMR/MSS CRC, which remains resistant to immunotherapy. CONCLUSION Immunotherapy plays a significant role in the treatment of CRC, particularly in patients with MSI-H/dMMR tumors. However, many challenges remain, especially in treating pMMR/MSS CRC. This review discussed the need for further research into combination therapies, biomarker development, CAR-T cell therapy, and a deeper understanding of immune evasion mechanisms for CRC treatment.
Collapse
Affiliation(s)
- Vaishak Kaviyarasan
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Alakesh Das
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Dikshita Deka
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Biki Saha
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Antara Banerjee
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India.
| | - Neeta Raj Sharma
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India.
| |
Collapse
|
25
|
Liu X, Liu D, Tan C, Wang J. Systemic immune profiling analysis identifying M2-TAM related genes predicted colon cancer prognosis and chemotherapy responses. Medicine (Baltimore) 2024; 103:e40979. [PMID: 39969348 PMCID: PMC11688056 DOI: 10.1097/md.0000000000040979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/27/2024] [Indexed: 02/20/2025] Open
Abstract
Colon cancer (COAD) poses great challenges to clinical treatment due to its heterogeneity and complex immune microenvironment. M2-like macrophages significantly influence COAD's onset, progression, and treatment. Yet, existing M2-like macrophage markers are limited in prognostic efficacy, prompting the exploration of new M2 signatures. Extensive data analysis aimed to unveil prognosis-associated M2-derived signatures. Bulk transcriptome, single-cell RNA sequencing, and clinical data from The Cancer Genome Atlas and Gene Expression Omnibus databases for patients with COAD were amassed. Cell-Type Identification by Estimating Relative Subsets of RNA Transcripts identified immune cell infiltration, and the Kaplan-Meier test identified crucial immune populations associated with prognosis. Genetic signatures linked to M2 tumor-associated macrophage were crafted utilizing weighted gene coexpression network analysis, least absolute shrinkage and selection operator, and Cox regression. The M2 tumor-associated macrophage gene signature was validated in GSE17536. The expression profile of the M2 gene signature was investigated in single-cell RNA sequencing dataset GSE166555. Systemic immune profile identified that M2-like macrophage has the most significant prognostic significance in The Cancer Genome Atlas-COAD. The core genes related to M2 macrophage infiltration were extracted by weighted gene coexpression network analysis. Least absolute shrinkage and selection operator-stepwise COX regression-derived M2-derived signatures (snail family zinc finger 1, gastrin-releasing peptide, gamma-aminobutyric acid type A receptor delta subunit, cluster of differentiation 1B, poly(A)-binding protein cytoplasmic 2, manic fringe, and death-associated protein kinase 1) as a risk model, which was confirmed as independent prognosis factors, validated by external dataset. This M2-based prognostic model reflected M2 macrophage infiltration. Mendelian randomization established cytotoxic T lymphocyte associate protein-4 and cluster of differentiation 274 immune checkpoints' causality with COAD. In conclusion, our study developed novel markers for discriminating M2-like macrophages and predicting the prognosis of patients with COAD, offering fresh perspectives for clinical interventions.
Collapse
Affiliation(s)
- Xiaopei Liu
- School of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Dan Liu
- Department of Anorectal, Xi’an Hospital of Traditional Chinese Medicine, Xianyang, China
| | - Cong’e Tan
- School of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jiehong Wang
- Department of Gastroenterology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
26
|
Bao L, Wu Y, Ren Z, Huang Y, Jiang Y, Li K, Xu X, Ye Y, Gui Z. Comprehensive pan-cancer analysis indicates UCHL5 as a novel cancer biomarker and promotes cervical cancer progression through the Wnt signaling pathway. Biol Direct 2024; 19:139. [PMID: 39702250 DOI: 10.1186/s13062-024-00588-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND UCHL5 was initially recognized as a multifunctional molecule. While recent research has highlighted its involvement in tumor malignant biological behaviors, its specific role in promoting tumor cell apoptosis has drawn particular attention. However, the precise relationship between UCHL5 and various tumor types, as well as its influence within the immune microenvironment, remains unclear. METHODS The transcriptomic data and clinicopathological parameters across 33 cancer types were obtained from TCGA. Clinical pathological parameters of tumor patients, including gender, age, survival time, and staging, are utilized to evaluate the association between UCHL5 and pan-cancer characteristics. The prognostic significance of UCHL5 was evaluated through Cox analysis and Kaplan-Meier (K-M) methods. Protein expression data for UCHL5 were obtained from The Human Protein Atlas database, and its subcellular localization was further investigated. Additionally, potential correlations between UCHL5 and factors such as tumor-infiltrating immune cells, immunomodulators, microsatellite instability (MSI), and tumor mutation burden (TMB) were explored. The relationship between UCHL5 and immunotherapy efficacy was also assessed in independent cohorts, including IMvigor210, GSE78220, GSE67501, and GSE168204. Finally, the impact of UCHL5 on the malignant biological behavior of cervical cancer cells was investigated through in vitro experiments, along with an exploration of the underlying mechanisms. RESULTS We observed that UCHL5 expression levels were elevated in 11 types of cancer tissues compared to their corresponding normal tissues, while levels were lower in five tumor types. Additionally, UCHL5 expression displayed a significant correlation with tumor stage in BRCA, KIRC, LUAD, and TGCT. Cox and K-M analysis indicated that UCHL5 expression was significantly associated with prognosis in KIRC, KICH, CESC, ACC, and UVM. UCHL5 expression was negatively associated with stromal and immune scores in certain cancers. In terms of immune cell infiltration, UCHL5 expression in UCEC, SKCM, and COAD showed a negative correlation with regulatory T cells (Tregs). Furthermore, UCHL5 was widely associated with three types of immunomodulators. It also demonstrated a significant relationship with MSI and TMB in certain cancers and was connected to the immunotherapy efficacy. Finally, in vitro experiments confirmed that UCHL5 knockout enhances apoptosis in cervical cancer cells and disrupts Wnt/β-catenin signaling. CONCLUSIONS Pan-cancer analysis indicates that UCHL5 is dysregulated in various tumor tissues and is closely associated with survival prognosis, the tumor immune microenvironment, and the efficacy of immunotherapy in certain cancer types. UCHL5 shows promise as a predictive biomarker, and its specific regulatory mechanisms across different cancers warrant further investigation.
Collapse
Affiliation(s)
- Lingling Bao
- Department of Hematology and Oncology, Beilun Branch of the First Affiliated Hospital, College of Medicine, Zhejiang University, Ningbo, China
- Department of Hematology and Oncology, Beilun People's Hospital, Ningbo, China
| | - Yuefei Wu
- Radiotherapy Department, The Second People's Hospital of Wuhu, Wuhu, China
| | - Zhengting Ren
- Department of Radiation Oncology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yi Huang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yue Jiang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Kailang Li
- Department of Hematology and Oncology, Beilun Branch of the First Affiliated Hospital, College of Medicine, Zhejiang University, Ningbo, China
- Department of Hematology and Oncology, Beilun People's Hospital, Ningbo, China
| | - Xin Xu
- Department of Hematology and Oncology, Beilun Branch of the First Affiliated Hospital, College of Medicine, Zhejiang University, Ningbo, China.
- Department of Hematology and Oncology, Beilun People's Hospital, Ningbo, China.
| | - Yingquan Ye
- Oncology Department of Integrated Traditional Chinese and Western Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Zhongxuan Gui
- Oncology Department of Integrated Traditional Chinese and Western Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
27
|
Bonfiglio R, Giacobbi E, Palumbo V, Casciardi S, Sisto R, Servadei F, Scioli MP, Schiaroli S, Cornella E, Cervelli G, Sica G, Candi E, Melino G, Mauriello A, Scimeca M. Aluminum Concentration Is Associated with Tumor Mutational Burden and the Expression of Immune Response Biomarkers in Colorectal Cancers. Int J Mol Sci 2024; 25:13388. [PMID: 39769153 PMCID: PMC11676456 DOI: 10.3390/ijms252413388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Environmental pollution poses a significant risk to public health, as demonstrated by the bioaccumulation of aluminum (Al) in colorectal cancer (CRC). This study aimed to investigate the potential mutagenic effect of Al bioaccumulation in CRC samples, linking it to the alteration of key mediators of cancer progression, including immune response biomarkers. Aluminum levels in 20 CRC biopsy samples were analyzed using inductively coupled plasma mass spectrometry (ICP-MS). The results indicated that Al bioaccumulation occurred in 100% of the cases. A correlation between Al levels and tumor mutation burden was observed. Furthermore, RNA sequencing revealed a significant association between Al concentration and the expression of the immune checkpoint molecule CTLA-4. Although correlations with PD-1 and PD-L1 were not statistically significant, a trend was observed. Additionally, a correlation between Al levels and both the presence of myeloid cells and IFNγ expression was detected, linking Al exposure to inflammatory responses within the tumor microenvironment. These findings suggested that Al can play a role in CRC progression by promoting both genetic mutations and immune evasion. Given the ubiquitous presence of Al in industrial and consumer products, dietary sources, and environmental pollutants, these results underscored the need for stricter regulatory measures to control Al exposure.
Collapse
Affiliation(s)
- Rita Bonfiglio
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.B.); (E.G.); (V.P.); (F.S.); (M.P.S.); (S.S.); (E.C.)
| | - Erica Giacobbi
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.B.); (E.G.); (V.P.); (F.S.); (M.P.S.); (S.S.); (E.C.)
| | - Valeria Palumbo
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.B.); (E.G.); (V.P.); (F.S.); (M.P.S.); (S.S.); (E.C.)
| | - Stefano Casciardi
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monte Porzio Catone, 00078 Rome, Italy; (S.C.); (R.S.)
| | - Renata Sisto
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monte Porzio Catone, 00078 Rome, Italy; (S.C.); (R.S.)
| | - Francesca Servadei
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.B.); (E.G.); (V.P.); (F.S.); (M.P.S.); (S.S.); (E.C.)
| | - Maria Paola Scioli
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.B.); (E.G.); (V.P.); (F.S.); (M.P.S.); (S.S.); (E.C.)
| | - Stefania Schiaroli
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.B.); (E.G.); (V.P.); (F.S.); (M.P.S.); (S.S.); (E.C.)
| | - Elena Cornella
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.B.); (E.G.); (V.P.); (F.S.); (M.P.S.); (S.S.); (E.C.)
| | - Giulio Cervelli
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.B.); (E.G.); (V.P.); (F.S.); (M.P.S.); (S.S.); (E.C.)
| | - Giuseppe Sica
- Department of Surgery, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.B.); (E.G.); (V.P.); (F.S.); (M.P.S.); (S.S.); (E.C.)
| | - Gerry Melino
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.B.); (E.G.); (V.P.); (F.S.); (M.P.S.); (S.S.); (E.C.)
| | - Alessandro Mauriello
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.B.); (E.G.); (V.P.); (F.S.); (M.P.S.); (S.S.); (E.C.)
| | - Manuel Scimeca
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.B.); (E.G.); (V.P.); (F.S.); (M.P.S.); (S.S.); (E.C.)
| |
Collapse
|
28
|
Li B, Yang W, Liu N, Bi D, Yang T, Wu G, Sun Y. Phase II Study of Irinotecan, Trifluridine/tipiracil (TAS-102) plus Bevacizumab as a Later-line Therapy for Patients with Metastatic Colorectal Cancer (mCRC): a prospective single-center explorative study. Br J Cancer 2024; 131:1775-1780. [PMID: 39448860 PMCID: PMC11589780 DOI: 10.1038/s41416-024-02885-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
PURPOSE To explore the efficacy and safety of the combination of irinotecan, trifluridine/tipiracil (TAS-102), and bevacizumab in a later-line setting for metastatic colorectal cancer (mCRC) patients. PATIENTS AND METHODS This was a single-center, phase II trial. The mCRC patients who are refractory to standard first-line and second-line treatment are eligible. Patients who previously received irinotecan while progressing during maintenance therapy are also eligible. The primary endpoint was the objective response rate (ORR). RESULTS Between August 1, 2022, and September 30, 2023, 35 patients were enrolled, and 31 of them were evaluable for efficacy. The ORR was 25.8% (8/31), and the disease control rate (DCR) was 93.5% (29/31). As of April 30, 2024, the median progression-free survival (PFS) was 9.2 months (95% CI 6.285-12.115), whereas the median overall survival (OS) was not reached with the 1-year OS rate of 73.5%. The most common grade 3/4 treatment-related adverse events were neutropenia (34.3%), anemia (17.1%), and thrombocytopenia (8.6%). CONCLUSION Irinotecan, TAS-102 plus bevacizumab regimen preliminarily demonstrated promising efficacy with tolerable toxicity for mCRC patients as later-line treatment. This regimen warrants further exploration in refractory mCRC patients.
Collapse
Affiliation(s)
- Baoqi Li
- Department of Medical Oncology, Beijing Chaoyang District Sanhuan Cancer Hospital, Beijing, 100122, China
| | - Wenwei Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Na Liu
- Department of Medical Oncology, Beijing Chaoyang District Sanhuan Cancer Hospital, Beijing, 100122, China
| | - Deying Bi
- Department of Medical Oncology, Beijing Chaoyang District Sanhuan Cancer Hospital, Beijing, 100122, China
| | - Tingting Yang
- Department of Medical Oncology, Beijing Chaoyang District Sanhuan Cancer Hospital, Beijing, 100122, China
| | - Guifu Wu
- Department of Medical Oncology, Beijing Chaoyang District Sanhuan Cancer Hospital, Beijing, 100122, China.
| | - Yongkun Sun
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
29
|
Yan J, Yang L, Ren Q, Zhu C, Du H, Wang Z, Qi Y, Xian X, Chen D. Gut microbiota as a biomarker and modulator of anti-tumor immunotherapy outcomes. Front Immunol 2024; 15:1471273. [PMID: 39669573 PMCID: PMC11634861 DOI: 10.3389/fimmu.2024.1471273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/25/2024] [Indexed: 12/14/2024] Open
Abstract
Although immune-checkpoint inhibitors (ICIs) have significantly improved cancer treatment, their effectiveness is limited by primary or acquired resistance in many patients. The gut microbiota, through its production of metabolites and regulation of immune cell functions, plays a vital role in maintaining immune balance and influencing the response to cancer immunotherapies. This review highlights evidence linking specific gut microbial characteristics to increased therapeutic efficacy in a variety of cancers, such as gastrointestinal cancers, melanoma, lung cancer, urinary system cancers, and reproductive system cancers, suggesting the gut microbiota's potential as a predictive biomarker for ICI responsiveness. It also explores the possibility of enhancing ICI effectiveness through fecal microbiota transplantation, probiotics, prebiotics, synbiotics, postbiotics, and dietary modifications. Moreover, the review underscores the need for extensive randomized controlled trials to confirm the gut microbiota's predictive value and to establish guidelines for microbiota-targeted interventions in immunotherapy. In summary, the article suggests that a balanced gut microbiota is key to maximizing immunotherapy benefits and calls for further research to optimize microbiota modulation strategies for cancer treatment. It advocates for a deeper comprehension of the complex interactions between gut microbiota, host immunity, and cancer therapy, aiming for more personalized and effective treatment options.
Collapse
Affiliation(s)
- Jiexi Yan
- The Precision Medicine Laboratory, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Lu Yang
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, Jiangsu, China
| | - Qingmiao Ren
- The Precision Medicine Laboratory, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Chan Zhu
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, Jiangsu, China
| | - Haiyun Du
- The Precision Medicine Laboratory, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Zhouyu Wang
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, Jiangsu, China
| | - Yaya Qi
- The Precision Medicine Laboratory, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xiaohong Xian
- The Precision Medicine Laboratory, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Dongsheng Chen
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, Jiangsu, China
| |
Collapse
|
30
|
Fang Y, Fu T, Zhang Q, Xiong Z, Yu K, Le A. Machine learning-driven estimation of mutational burden highlights DNAH5 as a prognostic marker in colorectal cancer. Biol Direct 2024; 19:116. [PMID: 39543663 PMCID: PMC11566893 DOI: 10.1186/s13062-024-00564-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Tumor Mutational Burden (TMB) have emerged as pivotal predictive biomarkers in determining prognosis and response to immunotherapy in colorectal cancer (CRC) patients. While Whole Exome Sequencing (WES) stands as the gold standard for TMB assessment, carry substantial costs and demand considerable time commitments. Additionally, the heterogeneity among high-TMB patients remains poorly characterized. METHODS We employed eight advanced machine learning algorithms to develop gene-panel-based models for TMB estimation. To rigorously compare and validate these TMB estimation models, four external cohorts, involving 1,956 patients, were used. Furthermore, we computed the Pearson correlation coefficient between the estimated TMB and tumor neoantigen levels to elucidate their association. CD8+ tumor-infiltrating lymphocyte (TIL) density was assessed via immunohistochemistry. RESULTS The TMB estimation model based on the Lasso algorithm, incorporating 20 genes, exhibiting satisfactory performance across multiple independent cohorts (R2 ≥ 0.859). This 20-gene TMB model proved to be an independent prognostic indicator for the progression-free survival (PFS) of CRC patients (p = 0.001). DNAH5 mutations were associated with a more favorable prognosis in high-TMB CRC patients, and correlated strongly with tumor neoantigen levels and CD8+ TIL density. CONCLUSIONS The 20-gene model offers a cost-efficient approach to precisely estimating TMB, providing prognosis in patients with CRC. Incorporating DNAH5 within this model further refines the categorization of patients with elevated TMB. Utilizing the 20-gene model facilitates the stratification of patients with CRC, enabling more precise treatment planning.
Collapse
Affiliation(s)
- Yangyang Fang
- Department of Transfusion Medicine, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Tianmei Fu
- Department of Transfusion Medicine, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qian Zhang
- Department of Transfusion Medicine, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Ziqing Xiong
- Department of Transfusion Medicine, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Kuai Yu
- Department of Transfusion Medicine, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| | - Aiping Le
- Department of Transfusion Medicine, Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
31
|
Morgenstern-Kaplan D, Kareff SA, Trabolsi A, Rodriguez E, Krause H, Ribeiro JR, Tan H, Antonarakis ES, Lou E, Nagasaka M, Algaze S, Lenz HJ, Liu SV, Halmos B, Hoon DSB, Seeber A, Ma PC, El-Deiry WS, Vanderwalde AM, Lopes G. Genomic, immunologic, and prognostic associations of TROP2 (TACSTD2) expression in solid tumors. Oncologist 2024; 29:e1480-e1491. [PMID: 38986529 PMCID: PMC11546728 DOI: 10.1093/oncolo/oyae168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND TROP2 (TACSTD2) expression is associated with decreased overall survival (OS) in some solid tumors, and the TROP2-targeting antibody-drug conjugate (ADC) sacituzumab govitecan has been approved in breast and urothelial carcinomas. We aimed to explore the multi-omic landscape associated with TACSTD2 gene expression in various solid tumors to identify patients most likely to benefit from this approach. METHODS Breast (N = 11 246), colorectal (N = 15 425), hepatocellular (N = 433), pancreatic (N = 5488), and urothelial (N = 4125) tumors were stratified into quartiles by TACSTD2 gene expression, analyzed by next-generation DNA sequencing, whole transcriptome sequencing, and immunohistochemistry at Caris Life Sciences (Phoenix, AZ). Survival data were obtained from insurance claims, and Kaplan-Meier estimates were calculated for molecularly defined cohorts. RESULTS Several pathogenic mutations were associated with TACSTD2-high tumors, including TP53 in breast, colorectal (CRC), pancreatic, and hepatocellular cancers; KRAS in pancreatic and CRC cancers; ARID1A and FGFR3 in urothelial cancer; and CTNNB1 in hepatocellular cancer. TACSTD2-low breast tumors were enriched for copy number amplifications in CCND1 and FGF/R family member genes. TACSTD2 high was generally associated with more immune cell infiltration and greater T-cell inflammation scores. Patients with TACSTD2-high breast, CRC, and pancreatic cancers demonstrated a significantly shorter OS than TACSTD2-low tumors. This was restricted to CRC with microsatellite stable tumors and patients with pancreatic cancer with KRAS-mutant tumors. Patients with breast cancer with TACSTD2-high tumors also experienced significantly worse OS following immune checkpoint inhibitors. CONCLUSIONS TACSTD2 expression is associated with key driver alterations and a more active immune microenvironment, suggesting possible combinatorial strategies with TROP2-targeting ADCs plus immunotherapy in various solid tumors.
Collapse
Affiliation(s)
- Dan Morgenstern-Kaplan
- Department of Medicine, Division of Medical Oncology, University of Miami Sylvester Comprehensive Cancer Center/Jackson Memorial Hospital, Miami, FL 33131, United States
| | - Samuel A Kareff
- Department of Medicine, Division of Medical Oncology, University of Miami Sylvester Comprehensive Cancer Center/Jackson Memorial Hospital, Miami, FL 33131, United States
| | - Asaad Trabolsi
- Department of Medicine, Division of Medical Oncology, University of Miami Sylvester Comprehensive Cancer Center/Jackson Memorial Hospital, Miami, FL 33131, United States
| | - Estelamari Rodriguez
- Department of Medicine, Division of Medical Oncology, University of Miami Sylvester Comprehensive Cancer Center/Jackson Memorial Hospital, Miami, FL 33131, United States
| | - Harris Krause
- Caris Life Sciences, Phoenix, AZ 85040, United States
| | | | - Heng Tan
- Department of Medicine, Division of Medical Oncology, University of Miami Sylvester Comprehensive Cancer Center/Jackson Memorial Hospital, Miami, FL 33131, United States
| | | | - Emil Lou
- University of Minnesota Masonic Cancer Center, Minneapolis, MN 55455, United States
| | - Misako Nagasaka
- Division of Hematology/Oncology, University of California Irvine School of Medicine, Orange, CA 92617, United States
| | - Sandra Algaze
- Division of Medical Oncology, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, United States
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, United States
| | - Stephen V Liu
- Georgetown Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, United States
| | - Balazs Halmos
- Montefiore Einstein Comprehensive Cancer Center, Bronx, NY 10461, United States
| | - Dave S B Hoon
- Saint John’s Cancer Institute, Providence Health System, Santa Monica, CA 90404, United States
| | - Andreas Seeber
- Tyrolean Cancer Research Institute, Innsbruck Medical University, Innsbruck 6020, Austria
| | - Patrick C Ma
- Division of Hematology/Oncology, Penn State Cancer Institute, Hershey, PA 17033, United States
| | - Wafik S El-Deiry
- Legorreta Cancer Center, Warren Alpert Medical School of Brown University, Providence, RI 02912, United States
| | | | - Gilberto Lopes
- Department of Medicine, Division of Medical Oncology, University of Miami Sylvester Comprehensive Cancer Center/Jackson Memorial Hospital, Miami, FL 33131, United States
| |
Collapse
|
32
|
Liang B, Xing X, Storts H, Ye Z, Claybon H, Austin R, Ding R, Liu B, Wen H, Miles WO, Fishel R, Wang JJ. Antagonistic roles of cGAS/STING signaling in colorectal cancer chemotherapy. Front Oncol 2024; 14:1441935. [PMID: 39469633 PMCID: PMC11513249 DOI: 10.3389/fonc.2024.1441935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024] Open
Abstract
FOLFOX, composed of 5-FU, oxaliplatin and leucovorin, is a first line chemotherapy regimen for colorectal cancer (CRC) treatment. In this study, we show that 5-FU and oxaliplatin induce DNA damage and activate cGAS/STING signaling leading to enhanced expression of interferon (IFN) β, IFN-stimulated genes and inflammatory cytokines in mouse and human colon cancer cells as well as increased intratumoral CD8+ T cells in mice. Crucially, 5-FU and oxaliplatin increase PD-L1 expression at the mRNA and protein levels, which has been shown to inhibit CD8+ T cell function. Depletion of cGAS, STING, IRF3, or IFNα/β receptor 1 (IFNAR1) abolishes this increase, indicating that 5-FU/oxaliplatin mediated upregulation of PD-L1 expression is dependent on tumor cell intrinsic cGAS/STING signaling. These results imply opposing roles for FOLFOX during cancer treatment. On one hand, 5-FU and oxaliplatin activate the innate immune response to facilitate anti-tumor immunity, and conversely upregulate PD-L1 expression to evade immune surveillance. Analysis of TCGA colon cancer dataset shows a positive correlation between expression of PD-L1 and components of the cGAS/STING pathway, supporting a role for cGAS/STING signaling in upregulating PD-L1 expression in colon cancer patients. Tumor studies in syngeneic immune competent mice demonstrate that the combination of 5-FU/oxaliplatin and anti-PD-1 significantly reduced tumor growth of colon cancer cells compared to 5-FU/oxaliplatin treatment alone. Taken together, our studies have identified a unique pathway leading to chemoresistance and provide a rationale to combine FOLFOX with anti-PD-1/PD-L1 as an effective CRC treatment.
Collapse
Affiliation(s)
- Beiyuan Liang
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
| | - Xuanxuan Xing
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
| | - Hayden Storts
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
| | - Zhen Ye
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
| | - Hazel Claybon
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
| | - Ryan Austin
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
| | - Rachel Ding
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
| | - Bei Liu
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
- Pelotonia Institute for Immuno-Oncology, James Comprehensive Cancer Center, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Haitao Wen
- Pelotonia Institute for Immuno-Oncology, James Comprehensive Cancer Center, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Wayne O. Miles
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
| | - Richard Fishel
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
| | - Jing J. Wang
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States
- Pelotonia Institute for Immuno-Oncology, James Comprehensive Cancer Center, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
33
|
Liu Y, Yao Y, Yang X, Wei M, Lu B, Dong K, Lyu D, Li Y, Guan W, Huang R, Xu G, Pan X. Lymphocyte activation gene 3 served as a potential prognostic and immunological biomarker across various cancer types: a clinical and pan-cancer analysis. Clin Transl Immunology 2024; 13:e70009. [PMID: 39372371 PMCID: PMC11450455 DOI: 10.1002/cti2.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/29/2024] [Accepted: 09/19/2024] [Indexed: 10/08/2024] Open
Abstract
Objectives Lymphocyte activation gene 3 (LAG3), an inhibitory receptor in T-cell activation, is a negative prognostic factor. However, its impact on tumours has yet to be comprehensively elucidated on a pan-cancer scale. Thus, we aim to reveal its role at the pan-cancer level. Methods We performed IHC staining on a retrospective cohort of 370 patients. Then we assessed the prognostic effect of LAG3 using Kaplan-Meier survival analysis and multivariate Cox regression analysis. In pan-cancer analysis, we constructed competing endogenous RNA and protein-protein interaction networks, conducted gene set enrichment analysis and identified correlations between LAG3 gene expression and various factors, including clinical characteristics, tumour purity, mutations, tumour immunity and drug sensitivity across 33 cancer types. Results LAG3 was expressed higher in normal kidney tissues than in tumours. A high level of LAG3 gene expression was an independent prognostic factor for OS (HR = 6.60, 95% CI = 2.43-17.90, P < 0.001) and PFS (HR = 3.44, 95% CI = 1.68-7.10, P < 0.001). In pan-cancer analysis, LAG3 exhibited robust correlations with survival and tumour stages in various cancers. Moreover, LAG3 was strongly associated with immune-related genes, proteins and signalling pathways. LAG3 gene expression was positively associated with increased infiltration of activated immune cells and decreased infiltration of several resting cells. LAG3 gene expression was associated with tumour mutation burden and microsatellite instability in multiple cancers. Conclusion High LAG3 gene expression was an independent risk factor in kidney neoplasms. It also functioned as a biomarker for prognosis, TIME and immunotherapy efficacy in the pan-cancer dimension.
Collapse
Affiliation(s)
- Yifan Liu
- Department of UrologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yuntao Yao
- Department of UrologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xinyue Yang
- Department of UrologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Maodong Wei
- Department of UrologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Bingnan Lu
- Department of UrologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Keqing Dong
- Department of UrologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Donghao Lyu
- Department of UrologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yuanan Li
- Department of UrologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wenbin Guan
- Department of PathologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Runzhi Huang
- Department of Burn SurgeryThe First Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Guofeng Xu
- Department of UrologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiuwu Pan
- Department of UrologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
34
|
Chen J, Ji C, Liu S, Wang J, Wang C, Pan J, Qiao J, Liang Y, Cai M, Ma J. Transforming growth factor-β (TGF-β) signaling pathway-related genes in predicting the prognosis of colon cancer and guiding immunotherapy. CANCER PATHOGENESIS AND THERAPY 2024; 2:299-313. [PMID: 39371100 PMCID: PMC11447362 DOI: 10.1016/j.cpt.2023.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 10/08/2024]
Abstract
Background Colon cancer is a malignant tumor with high malignancy and a low survival rate whose heterogeneity limits systemic immunotherapy. Transforming growth factor-β (TGF-β) signaling pathway-related genes are associated with multiple tumors, but their role in prognosis prediction and tumor microenvironment (TME) regulation in colon cancer is poorly understood. Using bioinformatics, this study aimed to construct a risk prediction signature for colon cancer, which may provide a means for developing new effective treatment strategies. Methods Using consensus clustering, patients in The Cancer Genome Atlas (TCGA) with colon adenocarcinoma were classified into several subtypes based on the expression of TGF-β signaling pathway-related genes, and differences in survival, molecular, and immunological TME characteristics and drug sensitivity were examined in each subtype. Ten genes that make up a TGF-β-related predictive signature were found by least absolute shrinkage and selector operation (LASSO) regression using colon cancer data from the TCGA database and confirmed using a Gene Expression Omnibus (GEO) dataset. A nomogram incorporating risk scores and clinicopathologic factors was developed to stratify the prognosis of patients with colon cancer for accurate clinical diagnosis and therapy. Results Two TGF-β subtypes were identified, with the TGF-β-high subtype being associated with a poorer prognosis and superior sensitivity to immunotherapy. Mutation analyses showed a high incidence of gene mutations in the TGF-β-high subtype. After completing signature construction, patients with colon cancer were categorized into high- and low-risk subgroups based on the median risk score of the TGF-β-related predictive signature. The risk score exhibited superior predictive performance relative to age, gender, and stage, as evidenced by its AUC of 0.686. Patients in the high-risk subgroup had higher levels of immunosuppressive cell infiltration and immune checkpoints in the TME, suggesting that these patients had better responses to immunotherapy. Conclusions Patients with colon cancer were divided into two subtypes with different survival and immune characteristics using consensus clustering analysis based on TGF-β signaling pathway-related genes. The constructed risk prediction signature may show promise as a biomarker for evaluating the prognosis of colon cancer, with potential utility for screening individuals for immunotherapy.
Collapse
Affiliation(s)
- Jie Chen
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Chao Ji
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Silin Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jin Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Che Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jue Pan
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jinyu Qiao
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yu Liang
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Mengjiao Cai
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jinlu Ma
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| |
Collapse
|
35
|
Azimi M, Cho S, Bozkurt E, McDonough E, Kisakol B, Matveeva A, Salvucci M, Dussmann H, McDade S, Firat C, Urganci N, Shia J, Longley DB, Ginty F, Prehn JH. Spatial effects of infiltrating T cells on neighbouring cancer cells and prognosis in stage III CRC patients. J Pathol 2024; 264:148-159. [PMID: 39092716 DOI: 10.1002/path.6327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/03/2024] [Accepted: 06/03/2024] [Indexed: 08/04/2024]
Abstract
Colorectal cancer (CRC) is one of the most frequently occurring cancers, but prognostic biomarkers identifying patients at risk of recurrence are still lacking. In this study, we aimed to investigate in more detail the spatial relationship between intratumoural T cells, cancer cells, and cancer cell hallmarks as prognostic biomarkers in stage III colorectal cancer patients. We conducted multiplexed imaging of 56 protein markers at single-cell resolution on resected fixed tissue from stage III CRC patients who received adjuvant 5-fluorouracil (5FU)-based chemotherapy. Images underwent segmentation for tumour, stroma, and immune cells, and cancer cell 'state' protein marker expression was quantified at a cellular level. We developed a Python package for estimation of spatial proximity, nearest neighbour analysis focusing on cancer cell-T-cell interactions at single-cell level. In our discovery cohort (Memorial Sloan Kettering samples), we processed 462 core samples (total number of cells: 1,669,228) from 221 adjuvant 5FU-treated stage III patients. The validation cohort (Huntsville Clearview Cancer Center samples) consisted of 272 samples (total number of cells: 853,398) from 98 stage III CRC patients. While there were trends for an association between the percentage of cytotoxic T cells (across the whole cancer core), it did not reach significance (discovery cohort: p = 0.07; validation cohort: p = 0.19). We next utilised our region-based nearest neighbour approach to determine the spatial relationships between cytotoxic T cells, helper T cells, and cancer cell clusters. In both cohorts, we found that shorter distance between cytotoxic T cells, T helper cells, and cancer cells was significantly associated with increased disease-free survival. An unsupervised trained model that clustered patients based on the median distance between immune cells and cancer cells, as well as protein expression profiles, successfully classified patients into low-risk and high-risk groups (discovery cohort: p = 0.01; validation cohort: p = 0.003). © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Mohammadreza Azimi
- Department of Physiology and Medical Physics, RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - Sanghee Cho
- GE HealthCare Technology and Innovation Center (formerly GE Research Center), Niskayuna, NY, USA
| | - Emir Bozkurt
- Department of Physiology and Medical Physics, RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - Elizabeth McDonough
- GE HealthCare Technology and Innovation Center (formerly GE Research Center), Niskayuna, NY, USA
| | - Batuhan Kisakol
- Department of Physiology and Medical Physics, RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - Anna Matveeva
- Department of Physiology and Medical Physics, RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - Manuela Salvucci
- Department of Physiology and Medical Physics, RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - Heiko Dussmann
- Department of Physiology and Medical Physics, RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - Simon McDade
- School of Medicine, Dentistry and Biomedical Sciences, Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Canan Firat
- Memorial Sloan Kettering Cancer Centre, New York, NY, USA
| | - Nil Urganci
- Memorial Sloan Kettering Cancer Centre, New York, NY, USA
| | - Jinru Shia
- Memorial Sloan Kettering Cancer Centre, New York, NY, USA
| | - Daniel B Longley
- School of Medicine, Dentistry and Biomedical Sciences, Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Fiona Ginty
- GE HealthCare Technology and Innovation Center (formerly GE Research Center), Niskayuna, NY, USA
| | - Jochen Hm Prehn
- Department of Physiology and Medical Physics, RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| |
Collapse
|
36
|
Kim JH, Park SJ. [Current Status of Chemotherapy in Colorectal Cancer: Updated Treatment Strategies]. THE KOREAN JOURNAL OF GASTROENTEROLOGY = TAEHAN SOHWAGI HAKHOE CHI 2024; 84:123-127. [PMID: 39319433 DOI: 10.4166/kjg.2024.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024]
Abstract
Colorectal cancer remains a significant health burden in South Korea, being the third most diagnosed cancer in the country. Despite advances in treatment, patients with metastatic colorectal cancer still face limited survival rates, with resection often deemed impossible for the majority. This review discusses the current state of chemotherapy in colorectal cancer treatment, focusing on both adjuvant chemotherapy post-surgery and palliative chemotherapy for metastatic cases. The article highlights recent updates in treatment guidelines, including the use of immunotherapy and the role of circulating tumor DNA (ctDNA) in personalized medicine. The integration of these novel approaches aims to enhance treatment efficacy, improve patient survival, and reduce recurrence rates, paving the way for more tailored and effective therapeutic strategies in colorectal cancer management.
Collapse
Affiliation(s)
- Jae Hyun Kim
- Department of Internal Medicine, Kosin University College of Medicine, Busan, Korea
| | - Seun Ja Park
- Department of Internal Medicine, Kosin University College of Medicine, Busan, Korea
| |
Collapse
|
37
|
Zhang Y, Li J. Recent advancements in understanding of biological role of homeobox C9 in human cancers. World J Clin Oncol 2024; 15:1168-1176. [PMID: 39351453 PMCID: PMC11438841 DOI: 10.5306/wjco.v15.i9.1168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/14/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024] Open
Abstract
Homeobox (HOX) C9, a member of the HOX family, is an important transcription factor, and it plays a significant role in various biological processes. This family of genes is highly valued for their essential roles in establishing and maintaining the body axis during embryonic development and adult tissues. Further, HOXC9 plays a central role in neuronal differentiation, angiogenesis, and adipose distribution, which are essential for the development of the nervous system, maturation of tissues and organs, and maintenance of energy balance and metabolic health. Recent research has found that abnormal HOXC9 expression is closely associated with the development and progression of various tumor types. The HOXC9 expression level can be an indicator of tumor prognosis. Therefore, elucidating the association between HOXC9 expression and its regulatory mechanisms and tumorigenesis can provide novel insights on the diagnosis and treatment of patients with cancer.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Clinical Laboratory, The Affiliated Lianyungang Oriental Hospital of Kangda College of Nanjing Medical University, Lianyungang 222042, Jiangsu Province, China
| | - Jing Li
- Department of Respiratory and Critical Care Medicine, The Affiliated Lianyungang Oriental Hospital of Kangda College of Nanjing Medical University, Lianyungang 222042, Jiangsu Province, China
| |
Collapse
|
38
|
Chen D, Zou B, Li B, Gao A, Huang W, Shao Q, Meng X, Zhang P, Tang X, Hu X, Zhang Y, Guo J, Zhao C, Yuan J, Li Q, Zhu C, Yu J, Wang L. Adebrelimab plus chemotherapy and sequential thoracic radiotherapy as first-line therapy for extensive-stage small-cell lung cancer (ES-SCLC): a phase II trial. EClinicalMedicine 2024; 75:102795. [PMID: 39252865 PMCID: PMC11381814 DOI: 10.1016/j.eclinm.2024.102795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/11/2024] Open
Abstract
Background This phase II prospective trial aimed to investigate the efficacy and safety of adebrelimab (PD-L1 antibody) plus first-line chemotherapy followed by sequential thoracic radiotherapy (TRT) combined with adebrelimab in extensive-stage small-cell lung cancer (ES-SCLC). Biomarkers associated with potential therapeutic effects were also explored. Methods Patients with previously untreated ES-SCLC were enrolled at Shandong Cancer Hospital and Institute (Jinan, China). Patients received 4-6 cycles of adebrelimab (20 mg/kg, D1, Q3W) combined with EP/EC (etoposide, 100 mg/m2, D1-3, Q3W and cisplatin, 75 mg/m2, D1, Q3W or carboplatin, AUC = 5, D1, Q3W). Then patients with response sequentially underwent consolidative TRT (≥30 Gy in 10 fractions or ≥50 Gy in 25 fractions, involved-field irradiation), and maintenance adebrelimab until disease progression or intolerable adverse events (AEs). The primary endpoint was overall survival (OS). Genomic and circulating tumour DNA (ctDNA) profiling were also analyzed with tumour tissues and peripheral blood. This trial was registered with ClinicalTrials.gov, NCT04562337. Findings From October 2020 to April 2023, 67 patients diagnosed with ES-SCLC were enrolled and received at least one dose of study treatment. All patients were included in the efficacy and safety analyses. 45 patients received sequential TRT as planned. The median OS and progression-free survival (PFS) was 21.4 months (95% CI: 17.2-not reached months) and 10.1 months (95% CI: 6.9-15.5 months), respectively. The confirmed objective response rate was 71.6% (48/67, 95% CI: 59.3-82.0%) and disease control rate was 89.6% (60/67, 95% CI: 79.7-95.7%). There were no treatment-related deaths. The most common grade 3 or higher treatment-related adverse events (TRAEs) were hematological toxicities. The incidence of any grade and G3+ pneumonitis was 25% (17/67) and 6% (4/67), respectively. No unexpected adverse events were observed. Patients without co-mutations of TP53/RB1 in both tissue and peripheral blood displayed longer PFS (tissue, P = 0.071; ctDNA, P = 0.060) and OS (tissue, P = 0.032; ctDNA, P = 0.031). Interpretation Adebrelimab plus chemotherapy and sequential TRT as first-line therapy for ES-SCLC showed promising efficacy and acceptable safety. Funding This study was funded by the National Natural Science Foundation of China (82172865), Jiangsu Hengrui Pharmaceuticals Co., Ltd. and Amoy Diagnostics Co., Ltd.
Collapse
Affiliation(s)
- Dawei Chen
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Bing Zou
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Butuo Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Aiqin Gao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Wei Huang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Qian Shao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiangjiao Meng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Pinliang Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiaoyong Tang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xudong Hu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yan Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jun Guo
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Changhong Zhao
- Jiangsu Hengrui Pharmaceuticals Co., Ltd., Shanghai, China
| | - Jiajia Yuan
- Jiangsu Hengrui Pharmaceuticals Co., Ltd., Shanghai, China
| | - Qian Li
- Amoy Diagnostics Co., Ltd., Xiamen, Fujian, China
| | - Changbin Zhu
- Amoy Diagnostics Co., Ltd., Xiamen, Fujian, China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Linlin Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
39
|
Zou D, Xin X, Xu Y, Xu H, Huang L, Xu T. Improving the efficacy of immunotherapy for colorectal cancer: Targeting tumor microenvironment-associated immunosuppressive cells. Heliyon 2024; 10:e36446. [PMID: 39262952 PMCID: PMC11388603 DOI: 10.1016/j.heliyon.2024.e36446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 09/13/2024] Open
Abstract
Currently, immune checkpoint inhibitors (ICIs) have changed the treatment paradigm for many malignant tumors. As the most common digestive tract malignancy, colorectal cancer (CRC) shows a good response to ICIs only in a small subset of patients with MSI-H/dMMR CRC. In contrast, patients with MSS/pMMR CRC show minimal response to ICIs. The results of the REGONIVO study suggest that targeting the tumor microenvironment (TME) to improve immunotherapy outcomes in MSS/pMMR CRC patients is a feasible strategy. Therefore, this article focuses on exploring the feasibility of targeting the TME to enhance immunotherapy outcomes in CRC, collecting recent basic research on targeting the TME to enhance immunotherapy outcomes in CRC and analyzing ongoing clinical trials to provide a theoretical basis and future research directions for improving immunotherapy outcomes in MSS/pMMR CRC.
Collapse
Affiliation(s)
- Daoyang Zou
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Xi Xin
- Ganzhou People's Hospital, Ganzhou, 341000, China
| | - Yunxian Xu
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Huangzhen Xu
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Linyan Huang
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Tianwen Xu
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| |
Collapse
|
40
|
Zhu W, Shao M, Tian C, Yang J, Zhou H, Liu J, Sun C, Liu M, Wang J, Wei L, Li S, Li X, Li J. The Oncolytic virus VT1092M and an Anti-PD-L1 antibody synergize to induce systemic antitumor immunity in a murine bilateral tumor model. Transl Oncol 2024; 46:102020. [PMID: 38843659 PMCID: PMC11214513 DOI: 10.1016/j.tranon.2024.102020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/16/2024] [Accepted: 05/29/2024] [Indexed: 06/19/2024] Open
Abstract
This study investigated the synergistic potential of an oncolytic herpes simplex virus armed with interleukin 12 (VT1092M) in combination with immune checkpoint inhibitors for enhancing antitumor responses. The potential of this combination treatment to induce systemic antitumor immunity was assessed using bilateral subcutaneous tumor and tumor re-challenge mouse models. The antitumor efficacy of various OV and ICI treatment combinations and the underlying mechanisms were explored through diverse analytical techniques, including flow cytometry and RNA sequencing. Using VT1092M, either alone or in combination with an anti-PD-L1 antibody, significantly reduced the sizes of both the injected and untreated abscopal tumors in a bilateral tumor mouse model. The combination therapy demonstrated superior antitumor efficacy to the other treatment conditions tested, which was accompanied by an increase in T cell numbers and CD8+T cell activation. Results from the survival and tumor re-challenge experiments showed that the combination therapy elicited long-term, tumor-specific immune responses, which were associated with tumor clearance and prolonged survival. Immune cell depletion assays identified CD8+T cells as the crucial mediators of systemic antitumor immunity during combination therapy. In conclusion, the combination of VT1092M and PD-L1 blockade emerged as a potent inducer of antitumor immune responses, surpassing the efficacy of each monotherapy. This synergistic approach holds promise for achieving robust and sustained antitumor immunity, with potential implications for preventing tumor metastasis in patients with cancer.
Collapse
Affiliation(s)
- Wei Zhu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Mingxia Shao
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Chao Tian
- Beijing WellGene Company, Ltd, Beijing 100085, PR China
| | | | - Hua Zhou
- Beijing WellGene Company, Ltd, Beijing 100085, PR China
| | - Jiajia Liu
- Beijing WellGene Company, Ltd, Beijing 100085, PR China
| | - Chunyang Sun
- Beijing WellGene Company, Ltd, Beijing 100085, PR China
| | - Min Liu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Jinyu Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Lijun Wei
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Shuzhen Li
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, PR China
| | - Xiaopeng Li
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, PR China; Beijing WellGene Company, Ltd, Beijing 100085, PR China.
| | - Jingfeng Li
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, PR China.
| |
Collapse
|
41
|
Yu H, Wang X, Pan Y, Li H. Myasthenia gravis due to anti-PD-1 treatment for an advanced colon cancer patient: a case report and literature review. J Neurol 2024; 271:5326-5332. [PMID: 38864881 DOI: 10.1007/s00415-024-12494-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024]
Abstract
With the advancement of cancer treatment technologies, immunotherapy has begun to be widely utilized. Colon cancer is one of the most common types of cancer, with metastasis being a frequent occurrence in late-stage patients. Hence, immunotherapy, as an emerging and potentially effective treatment modality, merits exploration to enhance patient survival rates and clinical benefits. However, various immune-related adverse events cannot be entirely avoided. Myasthenia gravis induced by immunotherapy serves as a rare but potentially lethal adverse event, and it has been increasingly reported. Understanding the mechanisms of irAEs can aid in controlling the side effects induced by treatment. Here, we reported a case of myasthenia gravis occurring after anti-PD-1 therapy for late-stage colon cancer.
Collapse
Affiliation(s)
- Hansong Yu
- General Surgery Department, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Xiaoxiao Wang
- General Surgery Department, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yuetong Pan
- General Surgery Department, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Hongyan Li
- General Surgery Department, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
42
|
Chi XJ, Song YB, Zhang H, Wei LQ, Gao Y, Miao XJ, Yang ST, Lin CY, Lan D, Zhang X. TBC1D10B promotes tumor progression in colon cancer via PAK4‑mediated promotion of the PI3K/AKT/mTOR pathway. Apoptosis 2024; 29:1185-1197. [PMID: 38824479 DOI: 10.1007/s10495-024-01972-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2024] [Indexed: 06/03/2024]
Abstract
This study aimed to explore the expression, function, and mechanisms of TBC1D10B in colon cancer, as well as its potential applications in the diagnosis and treatment of the disease.The expression levels of TBC1D10B in colon cancer were assessed by analyzing the TCGA and CCLE databases. Immunohistochemistry analysis was conducted using tumor and adjacent non-tumor tissues from 68 colon cancer patients. Lentiviral infection techniques were employed to silence and overexpress TBC1D10B in colon cancer cells. The effects on cell proliferation, migration, and invasion were evaluated using CCK-8, EDU, wound healing, and Transwell invasion assays. Additionally, GSEA enrichment analysis was used to explore the association of TBC1D10B with biological pathways related to colon cancer. TBC1D10B was significantly upregulated in colon cancer and closely associated with patient prognosis. Silencing of TBC1D10B notably inhibited proliferation, migration, and invasion of colon cancer cells and promoted apoptosis. Conversely, overexpression of TBC1D10B enhanced these cellular functions. GSEA analysis revealed that TBC1D10B is enriched in the AKT/PI3K/mTOR signaling pathway and highly correlated with PAK4. The high expression of TBC1D10B in colon cancer is associated with poor prognosis. It influences cancer progression by regulating the proliferation, migration, and invasion capabilities of colon cancer cells, potentially acting through the AKT/PI3K/mTOR signaling pathway. These findings provide new targets and therapeutic strategies for the treatment of colon cancer.
Collapse
Affiliation(s)
- Xiao-Jv Chi
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Guangxi Zhuang Autonomous Region, 6 Shuangyong Road, Nanning, 530021, China
| | - Yi-Bei Song
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Guangxi Zhuang Autonomous Region, 6 Shuangyong Road, Nanning, 530021, China
| | - Haoran Zhang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Jinan University, 613 Huangpu Avenue West, Guangzhou, 510632, China
| | - Li-Qiang Wei
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Guangxi Zhuang Autonomous Region, 6 Shuangyong Road, Nanning, 530021, China
| | - Yong Gao
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Guangxi Zhuang Autonomous Region, 6 Shuangyong Road, Nanning, 530021, China
| | - Xue-Jing Miao
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Guangxi Zhuang Autonomous Region, 6 Shuangyong Road, Nanning, 530021, China
| | - Shu-Ting Yang
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Guangxi Zhuang Autonomous Region, 6 Shuangyong Road, Nanning, 530021, China
| | - Chun-Yu Lin
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Guangxi Zhuang Autonomous Region, 6 Shuangyong Road, Nanning, 530021, China
| | - Dong Lan
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, 6 Shuangyong Road, Nanning, 530021, China.
| | - Xiquan Zhang
- Department of Oncology, Jiangxi provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, China.
| |
Collapse
|
43
|
Hu X, Zhu X, Chen Y, Zhang W, Li L, Liang H, Usmanov BB, Donadon M, Yusupbekov AA, Zheng Y. Senescence-related signatures predict prognosis and response to immunotherapy in colon cancer. J Gastrointest Oncol 2024; 15:1020-1034. [PMID: 38989417 PMCID: PMC11231866 DOI: 10.21037/jgo-24-339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/21/2024] [Indexed: 07/12/2024] Open
Abstract
Background Colorectal cancer (CRC) is one of the most common cancers. Cellular senescence plays a vital role in carcinogenesis by activating many pathways. In this study, we aimed to identify biomarkers for predicting the survival and recurrence of CRC through cellular senescence-related genes. Methods Utilizing The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, RNA-sequencing data and clinical information for CRC were collected. A risk model for predicting overall survival was established based on five differentially expressed genes using least absolute shrinkage and selection operator-Cox regression (LASSO-Cox regression), receiver operating characteristic (ROC), and Kaplan-Meier analyses. The study also delved into both the tumor microenvironment and the response to immunotherapy. Moreover, we gathered clinical sample data from our center in order to confirm the findings of public database analysis. Results Through ROC and Kaplan-Meier analyses, a risk model was developed using five cellular senescence-related genes [i.e., CDKN2A, SERPINE1, SNAI1, CXCL1, and ETS2] to categorize patients into high- and low-risk groups. In the TCGA-colon adenocarcinoma (COAD) and GEO-COAD cohorts, the high-risk group was associated with a bleaker forecast (P<0.05), immune cell inactivation, and insensitivity to immunotherapy in IMvigor210 database (http://research-pub.gene.com/IMvigor210CoreBiologies/). Clinical samples were then used to confirm that ETS2 and CDKN2A could serve as independent prognostic biomarkers in CRC. Conclusions Gene signatures related to cellular senescence, specifically involving CDKN2A and ETS2, are emerging as promising biomarkers for predicting CRC prognosis and guiding immunotherapy.
Collapse
Affiliation(s)
- Xiaoshan Hu
- Department of Medical Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Xiongjie Zhu
- Department of Medical Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Yifan Chen
- Department of Medical Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Wenkai Zhang
- Department of Medical Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Laiqing Li
- Guangzhou Youdi Bio-technology Co., Ltd., Guangzhou, China
| | - Huankun Liang
- Guangzhou Youdi Bio-technology Co., Ltd., Guangzhou, China
| | - Bekzod B Usmanov
- Department of Oncology and Hematology, Tashkent State Pediatric Institute, Tashkent, Uzbekistan
| | - Matteo Donadon
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
- Department of Surgery, University Maggiore Hospital della Carità, Novara, Italy
| | - Abrorjon A Yusupbekov
- Republican Specialized Scientific and Practical Medical Center of Oncology and Radiology (National Cancer Center of Uzbekistan), Tashkent, Uzbekistan
| | - Yanfang Zheng
- Department of Medical Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
44
|
Zhang C, Huo Y, Shang X, Zhang T, Tang N, Wang H. Tumor mutational burden adjusted by neutrophil-to-lymphocyte ratio serves as a potential biomarker for atezolizumab-treated patients with extensive stage small cell lung cancer. Respir Res 2024; 25:253. [PMID: 38902698 PMCID: PMC11191253 DOI: 10.1186/s12931-024-02885-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 06/14/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND There is a desperate for the identification of more accurate and efficient biomarkers for ICI responses in patients with SCLC. METHODS The data of our study was obtained from IMpower133 study. A total of 202 patients with SCLC received the treatment of placebo plus carboplatin plus etoposide (EC) while a total of 201 patients with SCLC received the treatment of atezolizumab plus EC. Overall survival (OS) was compared using Kaplan Meier analyses. Univariate and multivariate Cox regression analysis were used to determine independent prognostic variables affecting OS in patients with SCLC. RESULTS We have demonstrated that a higher TMB adjusted by a lower neutrophil-to-lymphocyte ratio (NLR) is significantly correlated with improved OS, in patients with SCLC subject to either atezolizumab or placebo (P = 0.001 for atezolizumab and P = 0.034 for placebo). Moreover, Cox model showed that TMB < 10 mut/Mb adjusted by NLR ≥ median was an independent factor of OS for atezolizumab-treated SCLC patients (hazard ratio [HR], 2.82; 95% confidence interval; 1.52-5.24; P = 0.001). Both univariate and multivariate cox regression analysis showed that for patients with SCLC harboring low NLR and high TMB, survival is significantly longer in those treated with atezolizumab than those treated with placebo. Survival benefit is significantly higher in atezolizumab-treated patients with SCLC than those treated with placebo (P = 0.018 for TMB cutoff = 10 mut/Mb, P = 0.034 for TMB cutoff = 16 mut/Mb). CONCLUSION Our findings provide a promising insight into the utility of NLR-adjusted TMB in the prognosis and immune responses in patients with SCLC.
Collapse
Affiliation(s)
- Chenyue Zhang
- Department of Integrated Therapy, Fudan University Shanghai Cancer Center, Shanghai Medical College, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yanfei Huo
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Xiaoling Shang
- Shandong Cancer Hospital and Institute, Shandong University, Jinan, 250117, China
| | - Tongming Zhang
- Department of Internal Medicine-Oncology, Shandong Rizhao Port Hospital, Rizhao, 276800, China
| | - Ning Tang
- Department of Internal Medicine-Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China.
| | - Haiyong Wang
- Department of Internal Medicine-Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China.
| |
Collapse
|
45
|
Du YJ, Jiang Y, Hou YM, Shi YB. Complement factor I knockdown inhibits colon cancer development by affecting Wnt/β-catenin/c-Myc signaling pathway and glycolysis. World J Gastrointest Oncol 2024; 16:2634-2650. [DOI: 10.4251/wjgo.v16.i6.2634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/24/2024] [Accepted: 03/27/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Colon cancer (CC) occurrence and progression are considerably influenced by the tumor microenvironment. However, the exact underlying regulatory mechanisms remain unclear.
AIM To investigate immune infiltration-related differentially expressed genes (DEGs) in CC and specifically explored the role and potential molecular mechanisms of complement factor I (CFI).
METHODS Immune infiltration-associated DEGs were screened for CC using bioinformatics. Quantitative reverse transcription polymerase chain reaction was used to examine hub DEGs expression in the CC cell lines. Stable CFI-knockdown HT29 and HCT116 cell lines were constructed, and the diverse roles of CFI in vitro were assessed using CCK-8, 5-ethynyl-2’-deoxyuridine, wound healing, and transwell assays. Hematoxylin and eosin staining and immunohistochemistry staining were employed to evaluate the influence of CFI on the tumorigenesis of CC xenograft models constructed using BALB/c male nude mice. Key proteins associated with glycolysis and the Wnt pathway were measured using western blotting.
RESULTS Six key immune infiltration-related DEGs were screened, among which the expression of CFI, complement factor B, lymphoid enhancer binding factor 1, and SRY-related high-mobility-group box 4 was upregulated, whereas that of fatty acid-binding protein 1, and bone morphogenic protein-2 was downregulated. Furthermore, CFI could be used as a diagnostic biomarker for CC. Functionally, CFI silencing inhibited CC cell proliferation, migration, invasion, and tumor growth. Mechanistically, CFI knockdown downregulated the expression of key glycolysis-related proteins (glucose transporter type 1, hexokinase 2, lactate dehydrogenase A, and pyruvate kinase M2) and the Wnt pathway-related proteins (β-catenin and c-Myc). Further investigation indicated that CFI knockdown inhibited glycolysis in CC by blocking the Wnt/β-catenin/c-Myc pathway.
CONCLUSION The findings of the present study demonstrate that CFI plays a crucial role in CC development by influencing glycolysis and the Wnt/β-catenin/c-Myc pathway, indicating that it could serve as a promising target for therapeutic intervention in CC.
Collapse
Affiliation(s)
- Yong-Jun Du
- Department of Proctology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| | - Yue Jiang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Yan-Mei Hou
- Department of Proctology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| | - Yong-Bo Shi
- Department of Proctology, Zigong Hospital of Traditional Chinese Medicine, Zigong 643000, Sichuan Province, China
| |
Collapse
|
46
|
Du YJ, Jiang Y, Hou YM, Shi YB. Complement factor I knockdown inhibits colon cancer development by affecting Wnt/β-catenin/c-Myc signaling pathway and glycolysis. World J Gastrointest Oncol 2024; 16:2646-2662. [PMID: 38994157 PMCID: PMC11236223 DOI: 10.4251/wjgo.v16.i6.2646] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/24/2024] [Accepted: 03/27/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Colon cancer (CC) occurrence and progression are considerably influenced by the tumor microenvironment. However, the exact underlying regulatory mechanisms remain unclear. AIM To investigate immune infiltration-related differentially expressed genes (DEGs) in CC and specifically explored the role and potential molecular mechanisms of complement factor I (CFI). METHODS Immune infiltration-associated DEGs were screened for CC using bioinformatics. Quantitative reverse transcription polymerase chain reaction was used to examine hub DEGs expression in the CC cell lines. Stable CFI-knockdown HT29 and HCT116 cell lines were constructed, and the diverse roles of CFI in vitro were assessed using CCK-8, 5-ethynyl-2'-deoxyuridine, wound healing, and transwell assays. Hematoxylin and eosin staining and immunohistochemistry staining were employed to evaluate the influence of CFI on the tumorigenesis of CC xenograft models constructed using BALB/c male nude mice. Key proteins associated with glycolysis and the Wnt pathway were measured using western blotting. RESULTS Six key immune infiltration-related DEGs were screened, among which the expression of CFI, complement factor B, lymphoid enhancer binding factor 1, and SRY-related high-mobility-group box 4 was upregulated, whereas that of fatty acid-binding protein 1, and bone morphogenic protein-2 was downregulated. Furthermore, CFI could be used as a diagnostic biomarker for CC. Functionally, CFI silencing inhibited CC cell proliferation, migration, invasion, and tumor growth. Mechanistically, CFI knockdown downregulated the expression of key glycolysis-related proteins (glucose transporter type 1, hexokinase 2, lactate dehydrogenase A, and pyruvate kinase M2) and the Wnt pathway-related proteins (β-catenin and c-Myc). Further investigation indicated that CFI knockdown inhibited glycolysis in CC by blocking the Wnt/β-catenin/c-Myc pathway. CONCLUSION The findings of the present study demonstrate that CFI plays a crucial role in CC development by influencing glycolysis and the Wnt/β-catenin/c-Myc pathway, indicating that it could serve as a promising target for therapeutic intervention in CC.
Collapse
Affiliation(s)
- Yong-Jun Du
- Department of Proctology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| | - Yue Jiang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Yan-Mei Hou
- Department of Proctology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| | - Yong-Bo Shi
- Department of Proctology, Zigong Hospital of Traditional Chinese Medicine, Zigong 643000, Sichuan Province, China
| |
Collapse
|
47
|
Jing PF, Chen J, Yu ED, Miao CY. Predictive value of preoperative routine examination for the prognosis of patients with pT2N0M0 or pT3N0M0 colorectal cancer. World J Gastrointest Oncol 2024; 16:2429-2438. [PMID: 38994158 PMCID: PMC11236233 DOI: 10.4251/wjgo.v16.i6.2429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/03/2024] [Accepted: 04/09/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND In recent years, the incidence of colorectal cancer (CRC) has been increasing. With the popularization of endoscopic technology, a number of early CRC has been diagnosed. However, despite current treatment methods, some patients with early CRC still experience postoperative recurrence and metastasis. AIM To search for indicators associated with early CRC recurrence and metastasis to identify high-risk populations. METHODS A total of 513 patients with pT2N0M0 or pT3N0M0 CRC were retrospectively enrolled in this study. Results of blood routine test, liver and kidney function tests and tumor markers were collected before surgery. Patients were followed up through disease-specific database and telephone interviews. Tumor recurrence, metastasis or death were used as the end point of study to find the risk factors and predictive value related to early CRC recurrence and metastasis. RESULTS We comprehensively compared the predictive value of preoperative blood routine, blood biochemistry and tumor markers for disease-free survival (DFS) and overall survival (OS) of CRC. Cox multivariate analysis demonstrated that low platelet count was significantly associated with poor DFS [hazard ratio (HR) = 0.995, 95% confidence interval (CI): 0.991-0.999, P = 0.015], while serum carcinoembryonic antigen (CEA) level (HR = 1.008, 95%CI: 1.001-1.016, P = 0.027) and serum total cholesterol level (HR = 1.538, 95%CI: 1.026-2.305, P = 0.037) were independent risk factors for OS. The cutoff value of serum CEA level for predicting OS was 2.74 ng/mL. Although the OS of CRC patients with serum CEA higher than the cutoff value was worse than those with lower CEA level, the difference between the two groups was not statistically significant (P = 0.075). CONCLUSION For patients with T2N0M0 or T3N0M0 CRC, preoperative platelet count was a protective factor for DFS, while serum CEA level was an independent risk factor for OS. Given that these measures are easier to detect and more acceptable to patients, they may have broader applications.
Collapse
Affiliation(s)
- Peng-Fei Jing
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai 200433, China
| | - Jin Chen
- Department of Endocrinology and Metabolism, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai 200433, China
| | - En-Da Yu
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai 200433, China
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai 200433, China
| |
Collapse
|
48
|
Jing PF, Chen J, Yu ED, Miao CY. Predictive value of preoperative routine examination for the prognosis of patients with pT2N0M0 or pT3N0M0 colorectal cancer. World J Gastrointest Oncol 2024; 16:2417-2426. [DOI: 10.4251/wjgo.v16.i6.2417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/03/2024] [Accepted: 04/09/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND In recent years, the incidence of colorectal cancer (CRC) has been increasing. With the popularization of endoscopic technology, a number of early CRC has been diagnosed. However, despite current treatment methods, some patients with early CRC still experience postoperative recurrence and metastasis.
AIM To search for indicators associated with early CRC recurrence and metastasis to identify high-risk populations.
METHODS A total of 513 patients with pT2N0M0 or pT3N0M0 CRC were retrospectively enrolled in this study. Results of blood routine test, liver and kidney function tests and tumor markers were collected before surgery. Patients were followed up through disease-specific database and telephone interviews. Tumor recurrence, metastasis or death were used as the end point of study to find the risk factors and predictive value related to early CRC recurrence and metastasis.
RESULTS We comprehensively compared the predictive value of preoperative blood routine, blood biochemistry and tumor markers for disease-free survival (DFS) and overall survival (OS) of CRC. Cox multivariate analysis demonstrated that low platelet count was significantly associated with poor DFS [hazard ratio (HR) = 0.995, 95% confidence interval (CI): 0.991-0.999, P = 0.015], while serum carcinoembryonic antigen (CEA) level (HR = 1.008, 95%CI: 1.001-1.016, P = 0.027) and serum total cholesterol level (HR = 1.538, 95%CI: 1.026-2.305, P = 0.037) were independent risk factors for OS. The cutoff value of serum CEA level for predicting OS was 2.74 ng/mL. Although the OS of CRC patients with serum CEA higher than the cutoff value was worse than those with lower CEA level, the difference between the two groups was not statistically significant (P = 0.075).
CONCLUSION For patients with T2N0M0 or T3N0M0 CRC, preoperative platelet count was a protective factor for DFS, while serum CEA level was an independent risk factor for OS. Given that these measures are easier to detect and more acceptable to patients, they may have broader applications.
Collapse
Affiliation(s)
- Peng-Fei Jing
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai 200433, China
| | - Jin Chen
- Department of Endocrinology and Metabolism, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai 200433, China
| | - En-Da Yu
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai 200433, China
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai 200433, China
| |
Collapse
|
49
|
Wang Z, Niu D. To explore the prognostic characteristics of colon cancer based on tertiary lymphoid structure-related genes and reveal the characteristics of tumor microenvironment and drug prediction. Sci Rep 2024; 14:13555. [PMID: 38867070 PMCID: PMC11169531 DOI: 10.1038/s41598-024-64308-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024] Open
Abstract
In order to construct a prognostic evaluation model of TLS features in COAD and better realize personalized precision medicine in COAD. Colon adenocarcinoma (COAD) is a common malignant tumor of the digestive system. At present, there is no effective prognostic marker to predict the prognosis of patients. Tertiary lymphoid structure (TLS) affects cancer progression by regulating immune microenvironment. Mining COAD biomarkers based on TLS-related genes helps to improve the prognosis of patients. In order to construct a prognostic evaluation model of TLS features in COAD and better realize personalized precision medicine in COAD. The mRNA expression data and clinical information of COAD and adjacent tissues were downloaded from the Cancer Genome Atlas database. The differentially expressed TLS-related genes of COAD relative to adjacent tissues were obtained by differential analysis. TLS gene co-expression analysis was used to mine genes highly related to TLS, and the intersection of the two was used to obtain candidate genes. Univariate, LASSO, and multivariate Cox regression analysis were performed on candidate genes to screen prognostic markers to construct a risk assessment model. The differences of immune characteristics were evaluated by ESTIMATE, ssGSEA and CIBERSORT in high and low risk groups of prognostic model. The difference of genomic mutation between groups was evaluated by tumor mutation burden score. Screening small molecule drugs through the GDSC library. Finally, a nomogram was drawn to evaluate the clinical value of the prognostic model. Seven TLS-related genes ADAM8, SLC6A1, PAXX, RIMKLB, PTH1R, CD1B, and MMP10 were screened to construct a prognostic model. Survival analysis showed that patients in the high-risk group had significantly lower overall survival rates. Immune microenvironment analysis showed that patients in the high-risk group had higher immune indicators, indicating higher immunity. The genomic mutation patterns of the high-risk and low-risk groups were significantly different, especially the KRAS mutation frequency was significantly higher in the high-risk group. Drug sensitivity analysis showed that the low-risk group was more sensitive to Erlotinib, Savolitinib and VE _ 822, which may be used as a potential drug for COAD treatment. Finally, the nomogram constructed by pathological features combined with RiskScore can accurately evaluate the prognosis of COAD patients. This study constructed and verified a TLS model that can predict COAD. More importantly, it provides a reference standard for guiding the prognosis and immunotherapy of COAD patients.
Collapse
Affiliation(s)
- Zhanmei Wang
- Department of Oncology, Qilu Hospital of Shandong University, Qingdao, 266000, China
| | - Dongguang Niu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, Qingdao City, 266000, Shandong Province, China.
| |
Collapse
|
50
|
Claudio Quiros A, Coudray N, Yeaton A, Yang X, Liu B, Le H, Chiriboga L, Karimkhan A, Narula N, Moore DA, Park CY, Pass H, Moreira AL, Le Quesne J, Tsirigos A, Yuan K. Mapping the landscape of histomorphological cancer phenotypes using self-supervised learning on unannotated pathology slides. Nat Commun 2024; 15:4596. [PMID: 38862472 PMCID: PMC11525555 DOI: 10.1038/s41467-024-48666-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 05/08/2024] [Indexed: 06/13/2024] Open
Abstract
Cancer diagnosis and management depend upon the extraction of complex information from microscopy images by pathologists, which requires time-consuming expert interpretation prone to human bias. Supervised deep learning approaches have proven powerful, but are inherently limited by the cost and quality of annotations used for training. Therefore, we present Histomorphological Phenotype Learning, a self-supervised methodology requiring no labels and operating via the automatic discovery of discriminatory features in image tiles. Tiles are grouped into morphologically similar clusters which constitute an atlas of histomorphological phenotypes (HP-Atlas), revealing trajectories from benign to malignant tissue via inflammatory and reactive phenotypes. These clusters have distinct features which can be identified using orthogonal methods, linking histologic, molecular and clinical phenotypes. Applied to lung cancer, we show that they align closely with patient survival, with histopathologically recognised tumor types and growth patterns, and with transcriptomic measures of immunophenotype. These properties are maintained in a multi-cancer study.
Collapse
Affiliation(s)
- Adalberto Claudio Quiros
- School of Computing Science, University of Glasgow, Glasgow, Scotland, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Nicolas Coudray
- Applied Bioinformatics Laboratories, NYU Grossman School of Medicine, New York, NY, USA
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY, USA
- Department of Medicine, Division of Precision Medicine, NYU Grossman School of Medicine, New York, USA
| | - Anna Yeaton
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Xinyu Yang
- School of Computing Science, University of Glasgow, Glasgow, Scotland, UK
| | - Bojing Liu
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Soln, Sweden
| | - Hortense Le
- Department of Medicine, Division of Precision Medicine, NYU Grossman School of Medicine, New York, USA
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Luis Chiriboga
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Afreen Karimkhan
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Navneet Narula
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - David A Moore
- Department of Cellular Pathology, University College London Hospital, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Christopher Y Park
- Department of Medicine, Division of Precision Medicine, NYU Grossman School of Medicine, New York, USA
| | - Harvey Pass
- Department of Cardiothoracic Surgery, NYU Grossman School of Medicine, New York, NY, USA
| | - Andre L Moreira
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - John Le Quesne
- School of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK.
- Cancer Research UK Scotland Institute, Glasgow, Scotland, UK.
- Queen Elizabeth University Hospital, Greater Glasgow and Clyde NHS Trust, Glasgow, Scotland, UK.
| | - Aristotelis Tsirigos
- Applied Bioinformatics Laboratories, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Medicine, Division of Precision Medicine, NYU Grossman School of Medicine, New York, USA.
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA.
| | - Ke Yuan
- School of Computing Science, University of Glasgow, Glasgow, Scotland, UK.
- School of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK.
- Cancer Research UK Scotland Institute, Glasgow, Scotland, UK.
| |
Collapse
|