1
|
Krishnan A. Radiomics and machine learning for predicting metachronous liver metastasis in rectal cancer. World J Gastrointest Oncol 2025; 17:102324. [DOI: 10.4251/wjgo.v17.i4.102324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 03/25/2025] Open
Abstract
A recent study by Long et al used a predictive model to explore the efficacy of radiomics based on multiparametric magnetic resonance imaging in predicting metachronous liver metastasis (MLM) in newly diagnosed rectal cancer (RC) patients. The machine learning algorithms, particularly the random forest model (RFM), appeared well-matched to the complex nature of radiomics data. The predictive capabilities of the RFM, as evidenced by the area under the curve of 0.919 in the training cohort and 0.901 in the validation cohort, highlighted its potential clinical utility. However, we highlighted several methodological limitations, including excluding genomic markers, potential biases from the retrospective design, limited generalizability due to a single-center study, and variability in image interpretation. We propose further investigation into integrating multi-omic data, conducting larger multicenter studies, and utilizing advanced imaging techniques. Additionally, we highlighted the importance of interdisciplinary collaboration to improve predictive model development and advocate for cost-effectiveness analyses to facilitate clinical integration. Overall, this predictive model may improve the early detection and management of MLM in RC patients, with promising avenues for future exploration. Ongoing research in this domain can potentially improve clinical outcomes and the quality of care for RC patients.
Collapse
Affiliation(s)
- Arunkumar Krishnan
- Department of Supportive Oncology, Atrium Health Levine Cancer, Charlotte, NC 28204, United States
| |
Collapse
|
2
|
Aydın Ş, Özdemir S, Adıgüzel A. The Potential of cfDNA as Biomarker: Opportunities and Challenges for Neurodegenerative Diseases. J Mol Neurosci 2025; 75:34. [PMID: 40080233 PMCID: PMC11906534 DOI: 10.1007/s12031-025-02317-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 02/06/2025] [Indexed: 03/15/2025]
Abstract
Neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), and amyotrophic lateral sclerosis (ALS), are characterized by the progressive and gradual degeneration of neurons. The prevalence and rates of these disorders rise significantly with age. As life spans continue to increase in many countries, the number of cases is expected to grow in the foreseeable future. Early and precise diagnosis, along with appropriate surveillance, continues to pose a challenge. The high heterogeneity of neurodegenerative diseases calls for more accurate and definitive biomarkers to improve clinical therapy. Cell-free DNA (cfDNA), including fragmented DNA released into bodily fluids via apoptosis, necrosis, or active secretion, has emerged as a promising non-invasive diagnostic tool for various disorders including neurodegenerative diseases. cfDNA can serve as an indicator of ongoing cellular damage and mortality, including neuronal loss, and may provide valuable insights into disease processes, progression, and therapeutic responses. This review will first cover the key aspects of cfDNA and then examine recent advances in its potential use as a biomarker for neurodegenerative disorders.
Collapse
Affiliation(s)
- Şeyma Aydın
- Department of Genetics, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Selçuk Özdemir
- Department of Genetics, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| | - Ahmet Adıgüzel
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Turkey.
| |
Collapse
|
3
|
Xu S, Hu D, Ye Y, Mu Y, Xiong Y, Zhang Y. Identification of serum small non-coding RNA as biomarkers for endometrial receptivity. Genomics 2025; 117:111002. [PMID: 39848478 DOI: 10.1016/j.ygeno.2025.111002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/30/2024] [Accepted: 01/19/2025] [Indexed: 01/25/2025]
Abstract
BACKGROUND Current endometrial receptivity analysis is invasive, preventing embryo transfer during the biopsy cycle. This study aims to screen serum sncRNAs as non-invasive biomarkers for ERA tests. METHODS The study included 12 infertile patients undergoing IVF-ET and ERA, whose serum samples were collected for high-energy sequencing technology to detect sncRNA expression profiles. We overexpressed and knocked down tsRNA-35:73-Asp-GTC-1 in the decidualized Immortalized Human Eutopic Endometrial Stromal Cells (HESC) model cultured in vitro to further investigate the its effect on decidualization. The predicted tsRNA-35:73-Asp-GTC-1 target gene was verified by PCR analysis. RESULTS We screened 286 differentially expressed tsRNAs, 46 miRNAs, and 106 piRNAs. KEGG analysis indicated that differentially expressed tsRNAs were associated with pathways such as 'Calcium signaling pathway,' 'Sphingolipid signaling pathway,' etc. The results of RT-qPCR validation showed that the trends of four significantly differentially expressed tsRNAs in serum and endometrium were consistent with sequencing results. ROC curves demonstrated that these four tsRNAs have good predictive value for endometrial receptivity. Overexpression of tsRNA-35:73-Asp-GTC-1 affected the morphology of decidualized cells, and the decidualization indicators also showed a decreasing trend. While knocking down tsRNA-35:73-Asp-GTC-1 had the opposite effect. The RT-qPCR results showed that tsRNA-35:73-Asp-GTC-1 was associated with the Wnt3 target gene. CONCLUSION Serum sncRNA analysis shows potential for studying the molecular mechanisms of endometrial receptivity. Four serum tsRNAs can serve as novel biomarkers for non-invasive endometrial receptivity detection. TsRNA-35:73-Asp-GTC-1 may further regulate endometrial receptivity by targeting Wnt3.
Collapse
Affiliation(s)
- Shaoyuan Xu
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China; Reproductive Medicine Center, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China; Hubei Clinical Research Center for Reproductive Medicine, Shiyan, Hubei 442000, China
| | - Dongling Hu
- Reproductive Medicine Center, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China; Hubei Clinical Research Center for Reproductive Medicine, Shiyan, Hubei 442000, China
| | - Yanqin Ye
- Reproductive Medicine Center, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China; Hubei Clinical Research Center for Reproductive Medicine, Shiyan, Hubei 442000, China
| | - Yanli Mu
- Reproductive Medicine Center, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China; Hubei Clinical Research Center for Reproductive Medicine, Shiyan, Hubei 442000, China
| | - Yao Xiong
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China; Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, Hubei 430071, China.
| | - Yuanzhen Zhang
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China; Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, Hubei 430071, China.
| |
Collapse
|
4
|
Ciappina G, Toscano E, Ottaiano A, Capuozzo M, Consolo P, Maiorana E, Carroccio P, Franchina T, Ieni A, Di Mauro A, Berretta M. Negative Hyperselection in Metastatic Colorectal Cancer for First-Line Anti-EGFR Therapy: A Narrative Review. Int J Mol Sci 2025; 26:2216. [PMID: 40076838 PMCID: PMC11900077 DOI: 10.3390/ijms26052216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
Colorectal cancer (CRC) remains a leading cause of cancer-related mortality, with metastatic disease posing significant therapeutic challenges. While anti-EGFR therapy has improved outcomes for patients with RAS and BRAF wild-type tumors, resistance remains a major hurdle, limiting treatment efficacy. The concept of negative hyperselection has emerged as a refinement of molecular profiling, identifying additional genomic alterations-such as HER2 and MET amplificationsand MAP2K1 mutations-that predict resistance to anti-EGFR agents. Studies incorporating these expanded assessments have demonstrated that nearly half of patients with RAS/BRAF wild-type tumors harbor alternative resistance biomarkers, underscoring the need for expanded selection criteria. Liquid biopsies, particularly circulating tumor DNA (ctDNA) analysis, have revolutionized precision oncology by providing a minimally invasive, real-time assessment of tumor dynamics. ctDNA-based hyperselection enables the detection of resistance-associated alterations, guiding treatment decisions with greater accuracy than conventional tissue biopsies. Recent trials support the predictive value of ctDNA-defined negative hyperselection, revealing superior outcomes for patients stratified through liquid biopsy. This narrative review explores the evolving role of molecular hyperselection in first-line anti-EGFR therapy, emphasizing the integration of ctDNA to refine patient selection, enhance therapeutic efficacy, and pave the way for personalized treatment strategies in metastatic CRC.
Collapse
Affiliation(s)
- Giuliana Ciappina
- Division of Medical Oncology, AOU “G. Martino” Hospital, University of Messina, 98125 Messina, Italy
| | - Enrica Toscano
- School of Specialization in Medical Oncology, Department of Human Pathology “G. Barresi”, University of Messina, 98125 Messina, Italy
| | - Alessandro Ottaiano
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy
| | - Maurizio Capuozzo
- Pharmaceutical Department, Asl Napoli 3 Sud, Marittima Street 3, 80056 Ercolano, Italy
| | - Pierluigi Consolo
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Enrica Maiorana
- School of Specialization in Medical Oncology, Department of Human Pathology “G. Barresi”, University of Messina, 98125 Messina, Italy
| | - Patrizia Carroccio
- School of Specialization in Medical Oncology, Department of Human Pathology “G. Barresi”, University of Messina, 98125 Messina, Italy
| | - Tindara Franchina
- Department of Human Pathology of Adult and Childhood “Gaetano Barresi”, University of Messina, 98121 Messina, Italy
| | - Antonio Ieni
- Department of Human Pathology of Adult and Childhood “Gaetano Barresi”, University of Messina, 98121 Messina, Italy
| | - Annabella Di Mauro
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy
| | - Massimiliano Berretta
- Division of Medical Oncology, AOU “G. Martino” Hospital, University of Messina, 98125 Messina, Italy
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| |
Collapse
|
5
|
Wong J, Muralidhar R, Wang L, Huang CC. Epigenetic modifications of cfDNA in liquid biopsy for the cancer care continuum. Biomed J 2025; 48:100718. [PMID: 38522508 PMCID: PMC11745953 DOI: 10.1016/j.bj.2024.100718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/28/2024] [Accepted: 03/14/2024] [Indexed: 03/26/2024] Open
Abstract
This review provides a comprehensive overview of the latest advancements in the clinical utility of liquid biopsy, with a particular focus on epigenetic approaches aimed at overcoming challenges in cancer diagnosis and treatment. It begins by elucidating key epigenetic terms, including methylomics, fragmentomics, and nucleosomics. The review progresses to discuss methods for analyzing circulating cell-free DNA (cfDNA) and highlights recent studies showcasing the clinical relevance of epigenetic modifications in areas such as diagnosis, drug treatment response, minimal residual disease (MRD) detection, and prognosis prediction. While acknowledging hurdles like the complexity of interpreting epigenetic data and the absence of standardization, the review charts a path forward. It advocates for the integration of multi-omic data through machine learning algorithms to refine predictive models and stresses the importance of collaboration among clinicians, researchers, and data scientists. Such cooperative efforts are essential to fully leverage the potential of epigenetic features in clinical practice.
Collapse
Affiliation(s)
- Jodie Wong
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Rohit Muralidhar
- Nova Southeastern University, Kiran C. Patel College of Osteopathic Medicine, Davie, FL, USA
| | - Liang Wang
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| | - Chiang-Ching Huang
- Zilber College of Public Health, University of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
6
|
Yu B, Shao S, Ma W. Frontiers in pancreatic cancer on biomarkers, microenvironment, and immunotherapy. Cancer Lett 2025; 610:217350. [PMID: 39581219 DOI: 10.1016/j.canlet.2024.217350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/06/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Pancreatic cancer remains one of the most challenging malignancies to treat due to its late-stage diagnosis, aggressive progression, and high resistance to existing therapies. This review examines the latest advancements in early detection, and therapeutic strategies, with a focus on emerging biomarkers, tumor microenvironment (TME) modulation, and the integration of artificial intelligence (AI) in data analysis. We highlight promising biomarkers, including microRNAs (miRNAs) and circulating tumor DNA (ctDNA), that offer enhanced sensitivity and specificity for early-stage diagnosis when combined with multi-omics panels. A detailed analysis of the TME reveals how components such as cancer-associated fibroblasts (CAFs), immune cells, and the extracellular matrix (ECM) contribute to therapy resistance by creating immunosuppressive barriers. We also discuss therapeutic interventions that target these TME components, aiming to improve drug delivery and overcome immune evasion. Furthermore, AI-driven analyses are explored for their potential to interpret complex multi-omics data, enabling personalized treatment strategies and real-time monitoring of treatment response. We conclude by identifying key areas for future research, including the clinical validation of biomarkers, regulatory frameworks for AI applications, and equitable access to innovative therapies. This comprehensive approach underscores the need for integrated, personalized strategies to improve outcomes in pancreatic cancer.
Collapse
Affiliation(s)
- Baofa Yu
- Taimei Baofa Cancer Hospital, Dongping, Shandong, 271500, China; Jinan Baofa Cancer Hospital, Jinan, Shandong, 250000, China; Beijing Baofa Cancer Hospital, Beijing, 100010, China; Immune Oncology Systems, Inc, San Diego, CA, 92102, USA.
| | - Shengwen Shao
- Institute of Microbiology and Immunology, Huzhou University School of Medicine, Huzhou, Zhejiang, 313000, China.
| | - Wenxue Ma
- Department of Medicine, Sanford Stem Cell Institute, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
7
|
Papalexis P, Georgakopoulou VE, Drossos PV, Thymara E, Nonni A, Lazaris AC, Zografos GC, Spandidos DA, Kavantzas N, Thomopoulou GE. Precision medicine in breast cancer (Review). Mol Clin Oncol 2024; 21:78. [PMID: 39246849 PMCID: PMC11375768 DOI: 10.3892/mco.2024.2776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 08/07/2024] [Indexed: 09/10/2024] Open
Abstract
Precision medicine in breast cancer is a revolutionary approach that customizes diagnosis and treatment based on individual and tumor characteristics, departing from the traditional one-size-fits-all approach. Breast cancer is diverse, with various subtypes driven by distinct genetic mutations. Understanding this diversity is crucial for tailored treatment strategies that target specific vulnerabilities in each tumor. Genetic testing, particularly for mutations in breast cancer gene (BRCA) DNA repair-associated genes, helps assess hereditary risks and influences treatment decisions. Molecular subtyping guides personalized treatments, such as hormonal therapies for receptor-positive tumors and human epidermal growth factor receptor 2 (HER2)-targeted treatments. Targeted therapies, including those for HER2-positive and hormone receptor-positive breast cancers, offer more effective and precise interventions. Immunotherapy, especially checkpoint inhibitors, shows promise, particularly in certain subtypes such as triple-negative breast cancer, with ongoing research aiming to broaden its effectiveness. Integration of big data and artificial intelligence enhances personalized treatment strategies, while liquid biopsies provide real-time insights into tumor dynamics, aiding in treatment monitoring and modification. Challenges persist, including accessibility and tumor complexity, but emerging technologies and precision prevention offer hope for improved outcomes. Ultimately, precision medicine aims to optimize treatment efficacy, minimize adverse effects and enhance the quality of life for patients with breast cancer.
Collapse
Affiliation(s)
- Petros Papalexis
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece
| | | | - Panagiotis V Drossos
- Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece
| | - Eirini Thymara
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Aphrodite Nonni
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Andreas C Lazaris
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - George C Zografos
- Department of Propedeutic Surgery, Hippokration Hospital, University of Athens Medical School, 11527 Athens, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Nikolaos Kavantzas
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Georgia Eleni Thomopoulou
- Cytopathology Department, 'Attikon' University General Hospital, School of Medicine, National and Kapodistrian University of Athens, 12461 Athens, Greece
| |
Collapse
|
8
|
Kuligina ES, Yanus GA, Imyanitov EN. Diversity of the Circulating Tumor Markers: Perspectives of a Multimodal Liquid Biopsy. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1985-1997. [PMID: 39647827 DOI: 10.1134/s0006297924110129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 12/10/2024]
Abstract
Over the past decade, liquid biopsy (LB) has become a routine diagnostic test essential for the treatment of malignant tumors of various localizations. Its capabilities include early diagnosis, molecular genotyping, prognosis, prediction, and monitoring of tumor response. Typically, liquid biopsy involves the extraction of a single type of tumor-derived molecules or cellular elements from blood and subsequent molecular analysis. These elements may include circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), circulating tumor RNA (ctRNA), or contents of extracellular vesicles (exosomes). Despite the technical sophistication of molecular analysis methods for circulating biomarkers, this diagnostic approach has limited relevance. In a significant proportion of cancer patients (ranging from 10 to 50%, depending on the tumor type), none of these analytes can be detected and analyzed, even in the presence of large, progressing neoplastic foci in the body. It seems reasonable to suggest that heterogeneous fractions of the circulating tumor-specific biomarkers complement each other, thus simultaneous analysis of several fractions will not only increase sensitivity of the method but also more accurately characterize and predict the clinical situation. This review examines the possibilities and advantages of applying a combined multiparametric approach to liquid biopsy, which involves testing multiple circulating analytes in a single blood sample.
Collapse
Affiliation(s)
- Ekaterina S Kuligina
- N. N. Petrov National Medical Research Center of Oncology, St. Petersburg, 197758, Russia.
| | - Grigoriy A Yanus
- N. N. Petrov National Medical Research Center of Oncology, St. Petersburg, 197758, Russia
- St. Petersburg State Pediatric Medical University, St. Petersburg, 194100, Russia
| | - Evgeny N Imyanitov
- N. N. Petrov National Medical Research Center of Oncology, St. Petersburg, 197758, Russia
- St. Petersburg State Pediatric Medical University, St. Petersburg, 194100, Russia
| |
Collapse
|
9
|
Giuliani P, De Simone C, Febo G, Bellasame A, Tupone N, Di Virglio V, di Giuseppe F, Ciccarelli R, Di Iorio P, Angelucci S. Proteomics Studies on Extracellular Vesicles Derived from Glioblastoma: Where Do We Stand? Int J Mol Sci 2024; 25:9778. [PMID: 39337267 PMCID: PMC11431518 DOI: 10.3390/ijms25189778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Like most tumors, glioblastoma multiforme (GBM), the deadliest brain tumor in human adulthood, releases extracellular vesicles (EVs). Their content, reflecting that of the tumor of origin, can be donated to nearby and distant cells which, by acquiring it, become more aggressive. Therefore, the study of EV-transported molecules has become very important. Particular attention has been paid to EV proteins to uncover new GBM biomarkers and potential druggable targets. Proteomic studies have mainly been performed by "bottom-up" mass spectrometry (MS) analysis of EVs isolated by different procedures from conditioned media of cultured GBM cells and biological fluids from GBM patients. Although a great number of dysregulated proteins have been identified, the translation of these findings into clinics remains elusive, probably due to multiple factors, including the lack of standardized procedures for isolation/characterization of EVs and analysis of their proteome. Thus, it is time to change research strategies by adopting, in addition to harmonized EV selection techniques, different MS methods aimed at identifying selected tumoral protein mutations and/or isoforms due to post-translational modifications, which more deeply influence the tumor behavior. Hopefully, these data integrated with those from other "omics" disciplines will lead to the discovery of druggable pathways for novel GBM therapies.
Collapse
Affiliation(s)
- Patricia Giuliani
- Department of Medical, Oral and Biotechnological Sciences, ‘G. D’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy; (P.G.); (C.D.S.); (G.F.); (A.B.); (P.D.I.)
- Center for Advanced Studies and Technology (CAST), ‘G. D’Annunzio’ University of Chieti-Pescara, Via L Polacchi 13, 66100 Chieti, Italy; (N.T.); (V.D.V.); (F.d.G.)
| | - Chiara De Simone
- Department of Medical, Oral and Biotechnological Sciences, ‘G. D’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy; (P.G.); (C.D.S.); (G.F.); (A.B.); (P.D.I.)
- Center for Advanced Studies and Technology (CAST), ‘G. D’Annunzio’ University of Chieti-Pescara, Via L Polacchi 13, 66100 Chieti, Italy; (N.T.); (V.D.V.); (F.d.G.)
| | - Giorgia Febo
- Department of Medical, Oral and Biotechnological Sciences, ‘G. D’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy; (P.G.); (C.D.S.); (G.F.); (A.B.); (P.D.I.)
- Center for Advanced Studies and Technology (CAST), ‘G. D’Annunzio’ University of Chieti-Pescara, Via L Polacchi 13, 66100 Chieti, Italy; (N.T.); (V.D.V.); (F.d.G.)
| | - Alessia Bellasame
- Department of Medical, Oral and Biotechnological Sciences, ‘G. D’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy; (P.G.); (C.D.S.); (G.F.); (A.B.); (P.D.I.)
- Center for Advanced Studies and Technology (CAST), ‘G. D’Annunzio’ University of Chieti-Pescara, Via L Polacchi 13, 66100 Chieti, Italy; (N.T.); (V.D.V.); (F.d.G.)
| | - Nicola Tupone
- Center for Advanced Studies and Technology (CAST), ‘G. D’Annunzio’ University of Chieti-Pescara, Via L Polacchi 13, 66100 Chieti, Italy; (N.T.); (V.D.V.); (F.d.G.)
- Department of Innovative Technologies in Medicine and Dentistry, ‘G. D’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy;
| | - Vimal Di Virglio
- Center for Advanced Studies and Technology (CAST), ‘G. D’Annunzio’ University of Chieti-Pescara, Via L Polacchi 13, 66100 Chieti, Italy; (N.T.); (V.D.V.); (F.d.G.)
- Department of Innovative Technologies in Medicine and Dentistry, ‘G. D’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy;
| | - Fabrizio di Giuseppe
- Center for Advanced Studies and Technology (CAST), ‘G. D’Annunzio’ University of Chieti-Pescara, Via L Polacchi 13, 66100 Chieti, Italy; (N.T.); (V.D.V.); (F.d.G.)
- Department of Innovative Technologies in Medicine and Dentistry, ‘G. D’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy;
| | - Renata Ciccarelli
- Center for Advanced Studies and Technology (CAST), ‘G. D’Annunzio’ University of Chieti-Pescara, Via L Polacchi 13, 66100 Chieti, Italy; (N.T.); (V.D.V.); (F.d.G.)
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnological Sciences, ‘G. D’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy; (P.G.); (C.D.S.); (G.F.); (A.B.); (P.D.I.)
- Center for Advanced Studies and Technology (CAST), ‘G. D’Annunzio’ University of Chieti-Pescara, Via L Polacchi 13, 66100 Chieti, Italy; (N.T.); (V.D.V.); (F.d.G.)
| | - Stefania Angelucci
- Department of Innovative Technologies in Medicine and Dentistry, ‘G. D’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy;
- Stem TeCh Group, Via L Polacchi 13, 66100 Chieti, Italy
| |
Collapse
|
10
|
Martins-de-Barros AV, Barros AMI, Lazo RJGS, Barbosa Neto AG, Araújo FADC, Carvalho MDV. BRAF V600E mutation detected in cell-free DNA from conventional ameloblastomas fluid aspirate. Oral Dis 2024; 30:3962-3965. [PMID: 38168084 DOI: 10.1111/odi.14855] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/14/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024]
Affiliation(s)
- Allan Vinícius Martins-de-Barros
- School of Dentistry, Post-Graduation Program in Dentistry, University of Pernambuco (UPE), Recife, Pernambuco, Brazil
- Hospital Universitário Oswaldo Cruz (HUOC/UPE), Centro Integrado de Anatomia Patológica (CIAP), Recife, Pernambuco, Brazil
| | - Ana Maria Ipólito Barros
- School of Dentistry, Post-Graduation Program in Dentistry, University of Pernambuco (UPE), Recife, Pernambuco, Brazil
- Hospital Universitário Oswaldo Cruz (HUOC/UPE), Centro Integrado de Anatomia Patológica (CIAP), Recife, Pernambuco, Brazil
| | - Raisa Jordana Geraldine Severino Lazo
- School of Dentistry, Post-Graduation Program in Dentistry, University of Pernambuco (UPE), Recife, Pernambuco, Brazil
- Hospital Universitário Oswaldo Cruz (HUOC/UPE), Centro Integrado de Anatomia Patológica (CIAP), Recife, Pernambuco, Brazil
| | - Adauto Gomes Barbosa Neto
- Laboratório Multiusuário em Saúde, Instituto de Ciências Biológicas, University of Pernambuco (UPE), Recife, Pernambuco, Brazil
| | - Fábio Andrey da Costa Araújo
- School of Dentistry, Post-Graduation Program in Dentistry, University of Pernambuco (UPE), Recife, Pernambuco, Brazil
| | - Marianne de Vasconcelos Carvalho
- School of Dentistry, Post-Graduation Program in Dentistry, University of Pernambuco (UPE), Recife, Pernambuco, Brazil
- Hospital Universitário Oswaldo Cruz (HUOC/UPE), Centro Integrado de Anatomia Patológica (CIAP), Recife, Pernambuco, Brazil
| |
Collapse
|
11
|
Seo SY, Youn SH, Bae JH, Lee SH, Lee SY. Detection and Characterization of Methylated Circulating Tumor DNA in Gastric Cancer. Int J Mol Sci 2024; 25:7377. [PMID: 39000483 PMCID: PMC11242052 DOI: 10.3390/ijms25137377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024] Open
Abstract
Gastric cancer is the fifth most common disease in the world and the fourth most common cause of death. It is diagnosed through esophagogastroduodenoscopy with biopsy; however, there are limitations in finding lesions in the early stages. Recently, research has been actively conducted to use liquid biopsy to diagnose various cancers, including gastric cancer. Various substances derived from cancer are reflected in the blood. By analyzing these substances, it was expected that not only the presence or absence of cancer but also the type of cancer can be diagnosed. However, the amount of these substances is extremely small, and even these have various variables depending on the characteristics of the individual or the characteristics of the cancer. To overcome these, we collected methylated DNA fragments using MeDIP and compared them with normal plasma to characterize gastric cancer tissue or patients' plasma. We attempted to diagnose gastric cancer using the characteristics of cancer reflected in the blood through the cancer tissue and patients' plasma. As a result, we confirmed that the consistency of common methylated fragments between tissue and plasma was approximately 41.2% and we found the possibility of diagnosing and characterizing cancer using the characteristics of the fragments through SFR and 5'end-motif analysis.
Collapse
Affiliation(s)
- Seung Young Seo
- Department of Internal Medicine, Jeonbuk National University Medical School, Jeonju-si 54907, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute, Jeonbuk National University Hospital, 634-18 Keuman-dong, Dukjin-gu, Jeonju-si 54907, Republic of Korea
| | - Sang Hee Youn
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute, Jeonbuk National University Hospital, 634-18 Keuman-dong, Dukjin-gu, Jeonju-si 54907, Republic of Korea
- Department of Radiation Oncology, Jeonbuk National University Medical School, Jeonju-si 54907, Republic of Korea
| | - Jin-Han Bae
- Research Center, Cancer Breaker, Yongin-si 16942, Republic of Korea
- Cancer Genomic Research Institute, Clinomics, Chungju-si 28161, Republic of Korea
| | - Sung-Hun Lee
- Cancer Genomic Research Institute, Clinomics, Chungju-si 28161, Republic of Korea
| | - Sun Young Lee
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute, Jeonbuk National University Hospital, 634-18 Keuman-dong, Dukjin-gu, Jeonju-si 54907, Republic of Korea
- Department of Radiation Oncology, Jeonbuk National University Medical School, Jeonju-si 54907, Republic of Korea
| |
Collapse
|
12
|
Bao Y, Zhang D, Guo H, Ma W. Beyond blood: Advancing the frontiers of liquid biopsy in oncology and personalized medicine. Cancer Sci 2024; 115:1060-1072. [PMID: 38308498 PMCID: PMC11007055 DOI: 10.1111/cas.16097] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 02/04/2024] Open
Abstract
Liquid biopsy is emerging as a pivotal tool in precision oncology, offering a noninvasive and comprehensive approach to cancer diagnostics and management. By harnessing biofluids such as blood, urine, saliva, cerebrospinal fluid, and pleural effusions, this technique profiles key biomarkers including circulating tumor DNA, circulating tumor cells, microRNAs, and extracellular vesicles. This review discusses the extended scope of liquid biopsy, highlighting its indispensable role in enhancing patient outcomes through early detection, continuous monitoring, and tailored therapy. While the advantages are notable, we also address the challenges, emphasizing the necessity for precision, cost-effectiveness, and standardized methodologies in its broader application. The future trajectory of liquid biopsy is set to expand its reach in personalized medicine, fueled by technological advancements and collaborative research.
Collapse
Affiliation(s)
- Ying Bao
- Key Laboratory for Translational MedicineThe First Hospital Affiliated with Huzhou UniversityHuzhouChina
| | - Dejing Zhang
- Department of General SurgeryPuyang Oilfield General HospitalPuyangChina
| | - Huihui Guo
- Key Laboratory for Translational MedicineThe First Hospital Affiliated with Huzhou UniversityHuzhouChina
| | - Wenxue Ma
- Department of Medicine, Moores Cancer Center, and Sanford Stem Cell InstituteUniversity of California San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
13
|
Mansur A, Radovanovic I. The expansion of liquid biopsies to vascular care: an overview of existing principles, techniques and potential applications to vascular malformation diagnostics. Front Genet 2024; 15:1348096. [PMID: 38304336 PMCID: PMC10832994 DOI: 10.3389/fgene.2024.1348096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024] Open
Abstract
Vascular malformations are congenital lesions that occur due to mutations in major cellular signalling pathways which govern angiogenesis, cell proliferation, motility, and cell death. These pathways have been widely studied in oncology and are substrates for various small molecule inhibitors. Given their common molecular biology, there is now a potential to repurpose these cancer drugs for vascular malformation care; however, a molecular diagnosis is required in order to tailour specific drugs to the individual patient's mutational profile. Liquid biopsies (LBs), emerging as a transformative tool in the field of oncology, hold significant promise in this feat. This paper explores the principles and technologies underlying LBs and evaluates their potential to revolutionize the management of vascular malformations. The review begins by delineating the fundamental principles of LBs, focusing on the detection and analysis of circulating biomarkers such as cell-free DNA, circulating tumor cells, and extracellular vesicles. Subsequently, an in-depth analysis of the technological advancements driving LB platforms is presented. Lastly, the paper highlights the current state of research in applying LBs to various vascular malformations, and uses the aforementioned principles and techniques to conceptualize a liquid biopsy framework that is unique to vascular malformation research and clinical care.
Collapse
Affiliation(s)
- Ann Mansur
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, School of Graduate Studies, University of Toronto, Toronto, ON, Canada
| | - Ivan Radovanovic
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
14
|
Li M, Zhou T, Han M, Wang H, Bao P, Tao Y, Chen X, Wu G, Liu T, Wang X, Lu Q, Zhu Y, Lu ZJ. cfOmics: a cell-free multi-Omics database for diseases. Nucleic Acids Res 2024; 52:D607-D621. [PMID: 37757861 PMCID: PMC10767897 DOI: 10.1093/nar/gkad777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Liquid biopsy has emerged as a promising non-invasive approach for detecting, monitoring diseases, and predicting their recurrence. However, the effective utilization of liquid biopsy data to identify reliable biomarkers for various cancers and other diseases requires further exploration. Here, we present cfOmics, a web-accessible database (https://cfomics.ncRNAlab.org/) that integrates comprehensive multi-omics liquid biopsy data, including cfDNA, cfRNA based on next-generation sequencing, and proteome, metabolome based on mass-spectrometry data. As the first multi-omics database in the field, cfOmics encompasses a total of 17 distinct data types and 13 specimen variations across 69 disease conditions, with a collection of 11345 samples. Moreover, cfOmics includes reported potential biomarkers for reference. To facilitate effective analysis and visualization of multi-omics data, cfOmics offers powerful functionalities to its users. These functionalities include browsing, profile visualization, the Integrative Genomic Viewer, and correlation analysis, all centered around genes, microbes, or end-motifs. The primary objective of cfOmics is to assist researchers in the field of liquid biopsy by providing comprehensive multi-omics data. This enables them to explore cell-free data and extract profound insights that can significantly impact disease diagnosis, treatment monitoring, and management.
Collapse
Affiliation(s)
- Mingyang Li
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Institute for Precision Medicine, Tsinghua University, Beijing 100084, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100084, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Tianxiu Zhou
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Institute for Precision Medicine, Tsinghua University, Beijing 100084, China
| | - Mingfei Han
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 38 Life Science Park, Changping District, Beijing 102206, China
| | - Hongke Wang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Institute for Precision Medicine, Tsinghua University, Beijing 100084, China
| | - Pengfei Bao
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Institute for Precision Medicine, Tsinghua University, Beijing 100084, China
| | - Yuhuan Tao
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Institute for Precision Medicine, Tsinghua University, Beijing 100084, China
| | - Xiaoqing Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 38 Life Science Park, Changping District, Beijing 102206, China
| | - Guansheng Wu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Tianyou Liu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaojuan Wang
- Institute for Precision Medicine, Tsinghua University, Beijing 100084, China
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, No. 168, Litang Road, Changping District, Beijing 102218, China
| | - Qian Lu
- Institute for Precision Medicine, Tsinghua University, Beijing 100084, China
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, No. 168, Litang Road, Changping District, Beijing 102218, China
| | - Yunping Zhu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 38 Life Science Park, Changping District, Beijing 102206, China
| | - Zhi John Lu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Institute for Precision Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
15
|
Santorelli L, Caterino M, Costanzo M. Proteomics and Metabolomics in Biomedicine. Int J Mol Sci 2023; 24:16913. [PMID: 38069240 PMCID: PMC10706996 DOI: 10.3390/ijms242316913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The technological advances of recent years have significantly enhanced medical discoveries [...].
Collapse
Affiliation(s)
- Lucia Santorelli
- Department of Oncology and Hematology-Oncology, University of Milano, 20122 Milan, Italy;
| | - Marianna Caterino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy;
- CEINGE–Biotecnologie Avanzate Franco Salvatore, 80145 Naples, Italy
| | - Michele Costanzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy;
- CEINGE–Biotecnologie Avanzate Franco Salvatore, 80145 Naples, Italy
| |
Collapse
|
16
|
Khalyfa A, Marin JM, Sanz-Rubio D, Lyu Z, Joshi T, Gozal D. Multi-Omics Analysis of Circulating Exosomes in Adherent Long-Term Treated OSA Patients. Int J Mol Sci 2023; 24:16074. [PMID: 38003263 PMCID: PMC10671639 DOI: 10.3390/ijms242216074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Obstructive sleep apnea (OSA) is a highly prevalent chronic disease affecting nearly a billion people globally and increasing the risk of multi-organ morbidity and overall mortality. However, the mechanisms underlying such adverse outcomes remain incompletely delineated. Extracellular vesicles (exosomes) are secreted by most cells, are involved in both proximal and long-distance intercellular communication, and contribute toward homeostasis under physiological conditions. A multi-omics integrative assessment of plasma-derived exosomes from adult OSA patients prior to and after 1-year adherent CPAP treatment is lacking. We conducted multi-omic integrative assessments of plasma-derived exosomes from adult OSA patients prior to and following 1-year adherent CPAP treatment to identify potential specific disease candidates. Fasting morning plasma exosomes isolated from 12 adult patients with polysomnographically-diagnosed OSA were analyzed before and after 12 months of adherent CPAP therapy (mean ≥ 6 h/night) (OSAT). Exosomes were characterized by flow cytometry, transmission electron microscopy, and nanoparticle tracking analysis. Endothelial cell barrier integrity, wound healing, and tube formation were also performed. Multi-omics analysis for exosome cargos was integrated. Exosomes derived from OSAT improved endothelial permeability and dysfunction as well as significant improvement in tube formation compared with OSA. Multi-omic approaches for OSA circulating exosomes included lipidomic, proteomic, and small RNA (miRNAs) assessments. We found 30 differentially expressed proteins (DEPs), 72 lipids (DELs), and 13 miRNAs (DEMs). We found that the cholesterol metabolism (has04979) pathway is associated with lipid classes in OSA patients. Among the 12 subjects of OSA and OSAT, seven subjects had complete comprehensive exosome cargo information including lipids, proteins, and miRNAs. Multi-omic approaches identify potential signature biomarkers in plasma exosomes that are responsive to adherent OSA treatment. These differentially expressed molecules may also play a mechanistic role in OSA-induced morbidities and their reversibility. Our data suggest that a multi-omic integrative approach might be useful in understanding how exosomes function, their origin, and their potential clinical relevance, all of which merit future exploration in the context of relevant phenotypic variance. Developing an integrated molecular classification should lead to improved diagnostic classification, risk stratification, and patient management of OSA by assigning molecular disease-specific therapies.
Collapse
Affiliation(s)
- Abdelnaby Khalyfa
- Department of Child Health, Child Health Research Institute, School of Medicine, University of Missouri, Columbia, MO 65211, USA;
| | - Jose M. Marin
- Translational Research Unit, Hospital Universitario Miguel Servet & IISAragon, CIBERES, 50009 Zaragoza, Spain
| | - David Sanz-Rubio
- Translational Research Unit, Hospital Universitario Miguel Servet & IISAragon, CIBERES, 50009 Zaragoza, Spain
| | - Zhen Lyu
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65201, USA; (Z.L.); (T.J.)
| | - Trupti Joshi
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65201, USA; (Z.L.); (T.J.)
- Department of Health Management and Informatics, MU Institute for Data Science and Informatics and Christopher S Bond Life Science Center, University of Missouri, Columbia, MO 65211, USA
| | - David Gozal
- Department of Child Health, Child Health Research Institute, School of Medicine, University of Missouri, Columbia, MO 65211, USA;
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| |
Collapse
|
17
|
Rapanotti MC, Cugini E, Campione E, Di Raimondo C, Costanza G, Rossi P, Ferlosio A, Bernardini S, Orlandi A, De Luca A, Bianchi L. Epithelial-to-Mesenchymal Transition Gene Signature in Circulating Melanoma Cells: Biological and Clinical Relevance. Int J Mol Sci 2023; 24:11792. [PMID: 37511550 PMCID: PMC10380315 DOI: 10.3390/ijms241411792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
The most promising method for monitoring patients with minimal morbidity is the detection of circulating melanoma cells (CMCs). We have shown that CD45-CD146+ABCB5+ CMCs identify a rare primitive stem/mesenchymal CMCs population associated with disease progression. The epithelial-to-mesenchymal transition (EMT) confers cancer cells a hybrid epithelial/mesenchymal phenotype promoting metastatization. Thus, we investigated the potential clinical value of the EMT gene signature of these primitive CMCs. A reliable quantitative real-time polymerase chain reaction (qRT-PCR) protocol was settled up using tumor cell lines RNA dilutions. Afterwards, immune-magnetically isolated CMCs from advanced melanoma patients, at onset and at the first checkpoint (following immune or targeted therapy), were tested for the level of EMT hallmarks and EMT transcription factor genes. Despite the small cohort of patients, we obtained promising results. Indeed, we observed a deep gene rewiring of the EMT investigated genes: in particular we found that the EMT gene signature of isolated CMCs correlated with patients' clinical outcomes. In conclusion, We established a reliable qRT-PCR protocol with high sensitivity and specificity to characterize the gene expression of isolated CMCs. To our knowledge, this is the first evidence demonstrating the impact of immune or targeted therapies on EMT hallmark gene expressions in CMCs from advanced melanoma patients.
Collapse
Affiliation(s)
- Maria Cristina Rapanotti
- Department of Anatomic Pathology, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
- Department of Laboratory Medicine, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Elisa Cugini
- Department of Laboratory Medicine, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Elena Campione
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Cosimo Di Raimondo
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Gaetana Costanza
- Department of Laboratory Medicine, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Piero Rossi
- Surgery Division, Department of Surgery Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Amedeo Ferlosio
- Department of Anatomic Pathology, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Sergio Bernardini
- Department of Laboratory Medicine, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Augusto Orlandi
- Department of Anatomic Pathology, University of Rome Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Anastasia De Luca
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Luca Bianchi
- Dermatology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
18
|
Abstract
Liquid biopsy has become a significant tool in personalized medicine, enabling real-time monitoring of cancer evolution and patient follow-up. This minimally invasive procedure analyzes circulating tumor cells (CTCs) and circulating tumor-derived materials, such as ctDNA, miRNAs, and EVs. CTC analysis significantly impacts prognosis, detection of minimal residual disease (MRD), treatment selection, and monitoring of cancer patients. Liquid biopsy is an attractive option for mouth cancer detection and treatment progress monitoring in many countries. It is not invasive and requires no surgical expertise, making it an attractive option for mouth cancer detection. Liquid biopsy is a diagnostic repeatable test that can profile cancer genomes in real-time with minimal invasiveness and tailor oncological decision-making. It analyzes different blood-circulating biomarkers, with ctDNA being the preferred one. While tissue biopsy remains the gold standard for molecular evaluation of solid tumors, liquid biopsy is a complementary tool in various clinical settings, including treatment selection, monitoring response, cancer clonal evolution, prognostic evaluation, early disease detection, and minimal residual disease (MRD).
Collapse
Affiliation(s)
- Shrikant B Mali
- Mahatma Gandhi Vidyamandir's Karmaveer Bhausaheb Hiray Dental College & Hospital, Nashik, India.
| |
Collapse
|