1
|
Tan CY, Ong HF, Lim CH, Tan MS, Ooi EH, Wong K. Amogel: a multi-omics classification framework using associative graph neural networks with prior knowledge for biomarker identification. BMC Bioinformatics 2025; 26:94. [PMID: 40155814 PMCID: PMC11954243 DOI: 10.1186/s12859-025-06111-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/10/2025] [Indexed: 04/01/2025] Open
Abstract
The advent of high-throughput sequencing technologies, such as DNA microarray and DNA sequencing, has enabled effective analysis of cancer subtypes and targeted treatment. Furthermore, numerous studies have highlighted the capability of graph neural networks (GNN) to model complex biological systems and capture non-linear interactions in high-throughput data. GNN has proven to be useful in leveraging multiple types of omics data, including prior biological knowledge from various sources, such as transcriptomics, genomics, proteomics, and metabolomics, to improve cancer classification. However, current works do not fully utilize the non-linear learning potential of GNN and lack of the integration ability to analyse high-throughput multi-omics data simultaneously with prior biological knowledge. Nevertheless, relying on limited prior knowledge in generating gene graphs might lead to less accurate classification due to undiscovered significant gene-gene interactions, which may require expert intervention and can be time-consuming. Hence, this study proposes a graph classification model called associative multi-omics graph embedding learning (AMOGEL) to effectively integrate multi-omics datasets and prior knowledge through GNN coupled with association rule mining (ARM). AMOGEL employs an early fusion technique using ARM to mine intra-omics and inter-omics relationships, forming a multi-omics synthetic information graph before the model training. Moreover, AMOGEL introduces multi-dimensional edges, with multi-omics gene associations or edges as the main contributors and prior knowledge edges as auxiliary contributors. Additionally, it uses a gene ranking technique based on attention scores, considering the relationships between neighbouring genes. Several experiments were performed on BRCA and KIPAN cancer subtypes to demonstrate the integration of multi-omics datasets (miRNA, mRNA, and DNA methylation) with prior biological knowledge of protein-protein interactions, KEGG pathways and Gene Ontology. The experimental results showed that the AMOGEL outperformed the current state-of-the-art models in terms of classification accuracy, F1 score and AUC score. The findings of this study represent a crucial step forward in advancing the effective integration of multi-omics data and prior knowledge to improve cancer subtype classification.
Collapse
Affiliation(s)
- Chia Yan Tan
- School of Information Technology, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Petaling Jaya, Selangor, Malaysia.
| | - Huey Fang Ong
- School of Information Technology, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Petaling Jaya, Selangor, Malaysia
| | - Chern Hong Lim
- School of Information Technology, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Petaling Jaya, Selangor, Malaysia
| | - Mei Sze Tan
- School of Information Technology, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Petaling Jaya, Selangor, Malaysia
| | - Ean Hin Ooi
- School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Petaling Jaya, Selangor, Malaysia
| | - KokSheik Wong
- School of Information Technology, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Petaling Jaya, Selangor, Malaysia
| |
Collapse
|
2
|
Wang HY, Diao Y, Tan PZ, Liang H. Four centrosome-related genes to predict the prognosis and drug sensitivity of patients with colon cancer. World J Gastrointest Oncol 2024; 16:1908-1924. [PMID: 38764831 PMCID: PMC11099447 DOI: 10.4251/wjgo.v16.i5.1908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/08/2024] [Accepted: 02/22/2024] [Indexed: 05/09/2024] Open
Abstract
BACKGROUND As the primary microtubule organizing center in animal cells, centrosome abnormalities are involved in human colon cancer. AIM To explore the role of centrosome-related genes (CRGs) in colon cancer. METHODS CRGs were collected from public databases. Consensus clustering analysis was performed to separate the Cancer Genome Atlas cohort. Univariate Cox and least absolute shrinkage selection operator regression analyses were performed to identify candidate prognostic CRGs and construct a centrosome-related signature (CRS) to score colon cancer patients. A nomogram was developed to evaluate the CRS risk in colon cancer patients. An integrated bioinformatics analysis was conducted to explore the correlation between the CRS and tumor immune microenvironment and response to immunotherapy, chemotherapy, and targeted therapy. Single-cell transcriptome analysis was conducted to examine the immune cell landscape of core prognostic genes. RESULTS A total of 726 CRGs were collected from public databases. A CRS was constructed, which consisted of the following four genes: TSC1, AXIN2, COPS7A, and MTUS1. Colon cancer patients with a high-risk signature had poor survival. Patients with a high-risk signature exhibited decreased levels of plasma cells and activated memory CD4+ T cells. Regarding treatment response, patients with a high-risk signature were resistant to immunotherapy, chemotherapy, and targeted therapy. COPS7A expression was relatively high in endothelial cells and fibroblasts. MTUS1 expression was high in endothelial cells, fibroblasts, and malignant cells. CONCLUSION We constructed a centrosome-related prognostic signature that can accurately predict the prognosis of colon cancer patients, contributing to the development of individualized treatment for colon cancer.
Collapse
Affiliation(s)
- Hui-Yan Wang
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin 150086, Heilongjiang Province, China
| | - Yan Diao
- Department of Clinical Laboratory, Heilongjiang Province Hospital, Harbin 150000, Heilongjiang Province, China
| | - Pei-Zhu Tan
- Translational Medicine Center of Northern China, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Huan Liang
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin 150086, Heilongjiang Province, China
| |
Collapse
|
3
|
Yuan H, Fang R, Fu C, Wang S, Tong X, Feng D, Wei X, Hu X, Wang Y. ATIP/ATIP1 regulates prostate cancer metastasis through mitochondrial dynamic-dependent signaling. Acta Biochim Biophys Sin (Shanghai) 2024; 56:304-314. [PMID: 38282475 PMCID: PMC10984865 DOI: 10.3724/abbs.2024006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/24/2023] [Indexed: 01/30/2024] Open
Abstract
Mitochondria play a fundamental role in cell survival and motility. Abnormalities in mitochondria are associated with carcinogenesis, especially with tumor metastasis. In this study, we explore the biological function of ATIP1, which is a mitochondrial-located isoform of angiotensin II AT2 receptor interacting proteins (ATIPs) in prostate cancer cells. The results showed that ATIP is downregulated in prostate cancer tissues and is negatively correlated with the disease-free survival rate of prostate cancer patients. Silencing of ATIP promotes mitochondrial fission and enhances tumor cell migration and invasion. Reconstitution of ATIP1 in ATIP-deficient cells significantly attenuates mitochondrial trafficking and tumor cell movement. Therefore, ATIP1 is a negative regulator of mitochondrial dynamics and tumor cell motility and is also a potential biomarker for predicting prostate cancer malignancy.
Collapse
Affiliation(s)
- Haokun Yuan
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory MedicineSichuan Provincial People′s HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengdu610072China
- The School of MedicineUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Ruiqin Fang
- The School of Life ScienceUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Chi Fu
- The School of MedicineUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Shuo Wang
- The School of MedicineUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Xiaoqin Tong
- The School of MedicineUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Deyi Feng
- State Key Laboratory of Cellular Stress BiologySchool of Life SciencesXiamen UniversityXiamen361104China
| | - Xiaoqing Wei
- The School of MedicineUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Xirong Hu
- The School of MedicineUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Yuan Wang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory MedicineSichuan Provincial People′s HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengdu610072China
- The School of MedicineUniversity of Electronic Science and Technology of ChinaChengdu610054China
| |
Collapse
|
4
|
Low MTUS1 Protein Expression Is Associated with Poor Survival in Patients with Colorectal Adenocarcinoma. Diagnostics (Basel) 2023; 13:diagnostics13061140. [PMID: 36980447 PMCID: PMC10047814 DOI: 10.3390/diagnostics13061140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Introduction: Microtubule-associated tumor suppressor 1 (MTUS1) is a novel tumor suppressor protein involved in cell proliferation, migration, and tumor growth. MTUS1 is thought to be downregulated in various human cancers and associated with poor prognosis. We evaluated the clinicopathologic significance and prognostic value of MTUS1 in colorectal adenocarcinoma. Methods: Immunohistochemical staining for MTUS1 was performed on tissue microarrays of 393 colorectal adenocarcinoma cases, and MTUS1 staining was classified into high- and low-expression groups. Then, we investigated the correlations between MTUS1 protein expression and various clinicopathological parameters and patient survival. Results: MTUS1 protein was expressed at various grade levels in the cytoplasm of tumor cells, which showed loss or decreased expression of MTUS1. A total of 253 cases (64.4%) were classified into the low MTUS1 protein expression group and 140 cases (35.6%) into the high MTUS1 expression group. A low level of MTUS1 protein significantly correlated with tumor size (p = 0.047), histological grade (p < 0.001), lymphovascular invasion (p < 0.001), perineural invasion (p = 0.047), and lymph node metastasis (p < 0.001). Survival analyses showed that patients with low MTUS1 protein expression had worse overall survival (p = 0.007, log-rank test) and worse recurrence-free survival (p = 0.019, log-rank test) than those with high MTUS1 expression. Conclusions: Low MTUS1 protein expression is associated with adverse clinicopathological characteristics and poor survival outcomes in patients with colorectal adenocarcinoma. These results suggest that MTUS1 functions as a tumor suppressor in colorectal adenocarcinoma and could be a potential prognostic biomarker.
Collapse
|
5
|
Jakoube P, Cutano V, González-Morena JM, Keckesova Z. Mitochondrial Tumor Suppressors-The Energetic Enemies of Tumor Progression. Cancer Res 2021; 81:4652-4667. [PMID: 34183354 PMCID: PMC9397617 DOI: 10.1158/0008-5472.can-21-0518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/09/2021] [Accepted: 06/24/2021] [Indexed: 01/07/2023]
Abstract
Tumor suppressors represent a critical line of defense against tumorigenesis. Their mechanisms of action and the pathways they are involved in provide important insights into cancer progression, vulnerabilities, and treatment options. Although nuclear and cytosolic tumor suppressors have been extensively investigated, relatively little is known about tumor suppressors localized within the mitochondria. However, recent research has begun to uncover the roles of these important proteins in suppressing tumorigenesis. Here, we review this newly developing field and summarize available information on mitochondrial tumor suppressors.
Collapse
Affiliation(s)
- Pavel Jakoube
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Valentina Cutano
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Juan M. González-Morena
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Keckesova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic.,Corresponding Author: Zuzana Keckesova, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Namesti 2, Prague 16000, Czech Republic. Phone: 420-2201-83584; E-mail:
| |
Collapse
|
6
|
Jee S, Kim H, Bang S, Kim Y, Park HY, Paik SS, Sim J, Jang K. Low-Level Expression of MTUS1 Is Associated with Poor Survival in Patients with Lung Adenocarcinoma. Diagnostics (Basel) 2021; 11:diagnostics11071250. [PMID: 34359333 PMCID: PMC8306423 DOI: 10.3390/diagnostics11071250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 07/09/2021] [Indexed: 11/17/2022] Open
Abstract
Microtubule-associated tumor suppressor 1 (MTUS1) is thought to be downregulated in arious human cancers, which suggests its role as a tumor suppressor. This study investigated the clinicopathological significance of MTUS1 expression in lung adenocarcinoma. Tissue microarray blocks consisting of 161 cases were constructed, and immunohistochemical staining was used to assess MTUS1 expression. Correlations of MTUS1 expression and clinicopathological parameters were analyzed. In addition, we used public databases and performed bioinformatics analysis. Low level of MTUS1 was significantly associated with higher clinical stage (p = 0.006), higher tumor stage (p = 0.044), lymph node metastasis (p = 0.01), worse histologic grade (p = 0.007), lymphovascular invasion (p = 0.014), and higher Ki-67 proliferation index (p < 0.001). Patients with low MTUS1 expression also showed shorter disease-free survival (p = 0.002) and cancer-specific survival (p = 0.006). Analysis of data from the Cancer Genome Atlas confirmed that the mRNA expression of MTUS1 in lung adenocarcinoma was significantly lower than that of normal lung tissue (p = 0.02), and patients with decreased MTUS1 expression showed significantly shorter overall survival (p = 0.008). These results suggest that MTUS1 may be a potential biomarker for predicting clinical outcomes in lung adenocarcinoma patients.
Collapse
Affiliation(s)
- Seungyun Jee
- Department of Pathology, Hanyang University College of Medicine, Seoul 04763, Korea; (S.J.); (H.K.); (S.B.); (S.S.P.)
| | - Hyunsung Kim
- Department of Pathology, Hanyang University College of Medicine, Seoul 04763, Korea; (S.J.); (H.K.); (S.B.); (S.S.P.)
| | - Seongsik Bang
- Department of Pathology, Hanyang University College of Medicine, Seoul 04763, Korea; (S.J.); (H.K.); (S.B.); (S.S.P.)
| | - Yeseul Kim
- Department of Pathology, Asan Medical Center, Seoul 05505, Korea;
| | - Ha Young Park
- Department of Pathology, Busan Paik Hospital, Inje University College of Medicine, Busan 47392, Korea;
| | - Seung Sam Paik
- Department of Pathology, Hanyang University College of Medicine, Seoul 04763, Korea; (S.J.); (H.K.); (S.B.); (S.S.P.)
| | - Jongmin Sim
- Department of Pathology, Anam Hospital, Korea University College of Medicine, Seoul 02841, Korea
- Correspondence: (J.S.); (K.J.)
| | - Kiseok Jang
- Department of Pathology, Hanyang University College of Medicine, Seoul 04763, Korea; (S.J.); (H.K.); (S.B.); (S.S.P.)
- Correspondence: (J.S.); (K.J.)
| |
Collapse
|
7
|
Haykal MM, Rodrigues-Ferreira S, Nahmias C. Microtubule-Associated Protein ATIP3, an Emerging Target for Personalized Medicine in Breast Cancer. Cells 2021; 10:cells10051080. [PMID: 34062782 PMCID: PMC8147298 DOI: 10.3390/cells10051080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/29/2021] [Accepted: 04/29/2021] [Indexed: 12/17/2022] Open
Abstract
Breast cancer is the leading cause of death by malignancy among women worldwide. Clinical data and molecular characteristics of breast tumors are essential to guide clinician’s therapeutic decisions. In the new era of precision medicine, that aims at personalizing the treatment for each patient, there is urgent need to identify robust companion biomarkers for new targeted therapies. This review focuses on ATIP3, a potent anti-cancer protein encoded by candidate tumor suppressor gene MTUS1, whose expression levels are markedly down-regulated in breast cancer. ATIP3 is a microtubule-associated protein identified both as a prognostic biomarker of patient survival and a predictive biomarker of breast tumors response to taxane-based chemotherapy. We present here recent studies pointing out ATIP3 as an emerging anti-cancer protein and a potential companion biomarker to be combined with future personalized therapy against ATIP3-deficient breast cancer.
Collapse
Affiliation(s)
- Maria M. Haykal
- Institut Gustave Roussy, Université Paris-Saclay, Inserm U981, Biomarqueurs Prédictifs et Nouvelles Stratégies Thérapeutiques en Oncologie, 94800 Villejuif, France; (M.M.H.); (S.R.-F.)
- LERMIT Laboratory, 92296 Chatenay-Malabry, France
| | - Sylvie Rodrigues-Ferreira
- Institut Gustave Roussy, Université Paris-Saclay, Inserm U981, Biomarqueurs Prédictifs et Nouvelles Stratégies Thérapeutiques en Oncologie, 94800 Villejuif, France; (M.M.H.); (S.R.-F.)
- LERMIT Laboratory, 92296 Chatenay-Malabry, France
- Inovarion, 75005 Paris, France
| | - Clara Nahmias
- Institut Gustave Roussy, Université Paris-Saclay, Inserm U981, Biomarqueurs Prédictifs et Nouvelles Stratégies Thérapeutiques en Oncologie, 94800 Villejuif, France; (M.M.H.); (S.R.-F.)
- LERMIT Laboratory, 92296 Chatenay-Malabry, France
- Correspondence:
| |
Collapse
|