1
|
Poirah I, Chakraborty S, Padhan PK, Mishra AK, Chakraborty D, Dixit P, Samal S, Rout N, Singh SP, Nath G, Smoot DT, Ashktorab H, Bhattacharyya A. Hypoxia and Hypoxia-Reoxygenation Potentiate Helicobacter pylori Infection and Gastric Epithelial Cell Proliferation. Cancer Med 2025; 14:e70860. [PMID: 40325849 PMCID: PMC12053057 DOI: 10.1002/cam4.70860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 02/20/2025] [Accepted: 03/28/2025] [Indexed: 05/07/2025] Open
Abstract
INTRODUCTION The gastric epithelium experiences intermittent hypoxia due to various physiological and pathological conditions. However, the impact of hypoxia and hypoxia-reoxygenation of gastric epithelial cells (GECs) on Helicobacter pylori-mediated gastric cancer (GC) has never been investigated. Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) facilitate H. pylori adhesion onto GECs. We evaluated the effect of hypoxia and hypoxia-reoxygenation on CEACAM6-mediated H. pylori binding, infection, reactive oxygen species (ROS) generation, and GEC proliferation. METHODS Hypoxia-inducible factor 1 (HIF1α) and CEACAM6 levels were assessed in various GECs. ROS were measured using 2',7'-dichlorofluorescin diacetate (DCFDA). Bioinformatics analyses were performed to identify the most prominent stomach adenocarcinoma (STAD)-associated NADPH oxidase (NOX) followed by validation by overexpression/suppression studies and western blotting. GC biopsies were examined by immunofluorescence microscopy. Hypoxia-exposed, reoxygenated, or control cells were compared for ROS generation and H. pylori infection. MTT assay determined cell proliferation. RESULTS AND CONCLUSIONS Hypoxia and HIF1 mediated upregulation of CEACAM6 in GECs. CEACAM6 significantly promoted ROS generation by inducing NOX4 in hypoxic GECs. HIF1α, CEACAM6, and NOX4 upregulation was detected in gastritis and GC tissues. H. pylori infection significantly increased in hypoxia-exposed GECs as compared to normoxic GECs. Infection of hypoxia-reoxygenated GECs also resulted in significantly increased CEACAM6 and NOX4-mediated ROS generation compared to normoxic GECs. In addition, adhesion of H. pylori, cytotoxin-associated gene A (CagA) translocation, and GEC proliferation were significantly enhanced in hypoxia-reoxygenated GECs. Collectively, this study established that hypoxia and hypoxia-reoxygenation of GECs facilitate H. pylori infection and infection-mediated GEC proliferation.
Collapse
Affiliation(s)
- Indrajit Poirah
- School of Biological Sciences, National Institute of Science Education and Research (NISER) BhubaneswarAn OCC of Homi Bhabha National InstituteOdishaIndia
| | - Soumyadeep Chakraborty
- School of Biological Sciences, National Institute of Science Education and Research (NISER) BhubaneswarAn OCC of Homi Bhabha National InstituteOdishaIndia
| | - Pratyush Kumar Padhan
- School of Biological Sciences, National Institute of Science Education and Research (NISER) BhubaneswarAn OCC of Homi Bhabha National InstituteOdishaIndia
| | - Ashish Kumar Mishra
- School of Biological Sciences, National Institute of Science Education and Research (NISER) BhubaneswarAn OCC of Homi Bhabha National InstituteOdishaIndia
| | - Debashish Chakraborty
- School of Biological Sciences, National Institute of Science Education and Research (NISER) BhubaneswarAn OCC of Homi Bhabha National InstituteOdishaIndia
| | - Pragyesh Dixit
- School of Biological Sciences, National Institute of Science Education and Research (NISER) BhubaneswarAn OCC of Homi Bhabha National InstituteOdishaIndia
- Dioscuri Centre for Physics and Chemistry of BacteriaInstitute of Physical Chemistry‐Polish Academy of SciencesWarsawPoland
| | - Supriya Samal
- School of Biological Sciences, National Institute of Science Education and Research (NISER) BhubaneswarAn OCC of Homi Bhabha National InstituteOdishaIndia
| | - Niranjan Rout
- Digestive Diseases CentreBeam Diagnostics BuildingOdishaIndia
| | | | - Gautam Nath
- Department of GastroenterologyAcharya Harihar Post Graduate Institute of CancerCuttackIndia
| | - Duane T. Smoot
- Department of MedicineMeharry Medical CenterNashvilleTNUSA
| | | | - Asima Bhattacharyya
- School of Biological Sciences, National Institute of Science Education and Research (NISER) BhubaneswarAn OCC of Homi Bhabha National InstituteOdishaIndia
- Centre for Interdisciplinary Sciences (CIS), NISERAn OCC of Homi Bhabha National InstituteOdishaIndia
| |
Collapse
|
2
|
Barua A, Masum MHU, Mahdeen AA. A Reverse Vaccinology and Immunoinformatic Approach for the Designing of a Novel mRNA Vaccine Against Stomach Cancer Targeting the Potent Pathogenic Proteins of Helicobacter pylori. Bioinform Biol Insights 2025; 19:11779322251331104. [PMID: 40290636 PMCID: PMC12033411 DOI: 10.1177/11779322251331104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 03/14/2025] [Indexed: 04/30/2025] Open
Abstract
Helicobacter pylori infection of the stomach's epithelial cells is a significant risk factor for stomach cancer. Various H pylori proteins (CagA, GGT, NapA, PatA, urease, and VacA) were targeted to design 2 messenger RNA (mRNA) vaccines, V1 and V2, using bioinformatics tools. Physicochemical parameters, secondary and tertiary structure, molecular docking and dynamic simulation, codon optimization, and RNA structure prediction have also been estimated for these developed vaccines. Physicochemical analyses revealed that these developed vaccines are soluble (GRAVY < 0), basic (pI < 7), and stable (aliphatic index < 80). The secondary and tertiary structure of the vaccines demonstrated robustness. The docking with toll-like receptors (TLRs) revealed that the vaccines have a potential affinity for TLR-2 (V1: -1132.3 kJ/mol, V2: -1093.6 kJ/mol) and TLR-4 (V1: -1042.7 kJ/mol, V2: -1201.2 kJ/mol), and molecular dynamics simulations confirmed their dynamic stability. Structural analyses of V1 (-505.96 kcal/mol) and V2 (-634.92 kcal/mol) mRNA vaccines underscored their stability. In addition, the vaccine showed a considerable rise in the counts of B cells and extended activation of both T cells was also observed for the vaccines, suggesting the potential for long-lasting immunity, and offering enhanced protection against H pylori. These findings not only suggest potential long-lasting immunity against H pylori but also offer hope for the future of stomach cancer prevention. Notably, the study emphasizes the need for subsequent animal and human-based studies to confirm these promising results.
Collapse
Affiliation(s)
- Abanti Barua
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md. Habib Ullah Masum
- Department of Genomics and Bioinformatics, Faculty of Biotechnology and Genetic Engineering, Chattogram Veterinary and Animal Sciences University, Khulshi, Chattogram, Bangladesh
| | - Ahmad Abdullah Mahdeen
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| |
Collapse
|
3
|
Umar Z, Tang JW, Marshall BJ, Tay ACY, Wang L. Rapid diagnosis and precision treatment of Helicobacter pylori infection in clinical settings. Crit Rev Microbiol 2025; 51:369-398. [PMID: 38910506 DOI: 10.1080/1040841x.2024.2364194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/08/2024] [Accepted: 05/25/2024] [Indexed: 06/25/2024]
Abstract
Helicobacter pylori is a gram-negative bacterium that colonizes the stomach of approximately half of the worldwide population, with higher prevalence in densely populated areas like Asia, the Caribbean, Latin America, and Africa. H. pylori infections range from asymptomatic cases to potentially fatal diseases, including peptic ulcers, chronic gastritis, and stomach adenocarcinoma. The management of these conditions has become more difficult due to the rising prevalence of drug-resistant H. pylori infections, which ultimately lead to gastric cancer and mucosa-associated lymphoid tissue (MALT) lymphoma. In 1994, the International Agency for Research on Cancer (IARC) categorized H. pylori as a Group I carcinogen, contributing to approximately 780,000 cancer cases annually. Antibiotic resistance against drugs used to treat H. pylori infections ranges between 15% and 50% worldwide, with Asian countries having exceptionally high rates. This review systematically examines the impacts of H. pylori infection, the increasing prevalence of antibiotic resistance, and the urgent need for accurate diagnosis and precision treatment. The present status of precision treatment strategies and prospective approaches for eradicating infections caused by antibiotic-resistant H. pylori will also be evaluated.
Collapse
Affiliation(s)
- Zeeshan Umar
- Marshall Laboratory of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, Guangdong Province, China
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jia-Wei Tang
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
- The Marshall Centre for Infectious Diseases Research and Training, The University of Western Australia, Crawley, Western Australia, China
| | - Barry J Marshall
- Marshall Laboratory of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, Guangdong Province, China
- The Marshall Centre for Infectious Diseases Research and Training, The University of Western Australia, Crawley, Western Australia, China
- Marshall International Digestive Diseases Hospital, Zhengzhou University, Zhengzhou, Henan Province, China
- Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Alfred Chin Yen Tay
- Marshall Laboratory of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, Guangdong Province, China
- The Marshall Centre for Infectious Diseases Research and Training, The University of Western Australia, Crawley, Western Australia, China
- Marshall International Digestive Diseases Hospital, Zhengzhou University, Zhengzhou, Henan Province, China
- Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Liang Wang
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
- Division of Microbiology and Immunology, School of Biomedical Sciences, The University of Western Australia, Crawley, Western Australia, China
- Center for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, China
- School of Agriculture and Food Sustainability, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
4
|
Saviano A, Morabito Loprete MR, Pignataro G, Piccioni A, Gasbarrini A, Franceschi F, Candelli M. Helicobacter pylori, Atherosclerosis, and Coronary Artery Disease: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:346. [PMID: 40005462 PMCID: PMC11857399 DOI: 10.3390/medicina61020346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/11/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025]
Abstract
Coronary artery disease (CAD) is one of the leading causes of death worldwide, significantly contributing to mortality in both developed and developing nations. CAD arises from a combination of risk factors, including atherosclerosis, dyslipidemia, hypertension, diabetes, and smoking. In recent years, growing evidence has suggested a potential link between infectious agents and cardiovascular diseases. Among these, Helicobacter pylori (H. pylori) infection has been hypothesized for over a decade to play a role in the pathogenesis of CAD. This hypothesis is based on the bacterium's ability to trigger host inflammatory or autoimmune responses, potentially contributing to the progression of atherosclerotic plaques and coronary events. The association between H. pylori infection and CAD is of considerable interest as it opens new avenues for prevention and management strategies in cardiovascular health. Understanding this relationship could lead to innovative approaches to reducing the burden of CAD, particularly in populations with a high prevalence of H. pylori. In this review, we aim to provide a comprehensive overview of the most recent evidence on the involvement of H. pylori in the development and prognosis of CAD. By analyzing and synthesizing current findings, we seek to shed light on unresolved questions and clarify the ambiguous aspects of this potential connection. Our goal is to contribute to a deeper understanding of how H. pylori, may influence cardiovascular disease and to inspire further research in this critical area.
Collapse
Affiliation(s)
- Angela Saviano
- Emergency, Anesthesiological and Reanimation Sciences Department, Fondazione Policlinico Universitario A. Gemelli—IRCCS of Rome, 00168 Rome, Italy; (A.S.); (M.R.M.L.); (G.P.); (A.P.); (F.F.)
| | - Maria Rita Morabito Loprete
- Emergency, Anesthesiological and Reanimation Sciences Department, Fondazione Policlinico Universitario A. Gemelli—IRCCS of Rome, 00168 Rome, Italy; (A.S.); (M.R.M.L.); (G.P.); (A.P.); (F.F.)
| | - Giulia Pignataro
- Emergency, Anesthesiological and Reanimation Sciences Department, Fondazione Policlinico Universitario A. Gemelli—IRCCS of Rome, 00168 Rome, Italy; (A.S.); (M.R.M.L.); (G.P.); (A.P.); (F.F.)
| | - Andrea Piccioni
- Emergency, Anesthesiological and Reanimation Sciences Department, Fondazione Policlinico Universitario A. Gemelli—IRCCS of Rome, 00168 Rome, Italy; (A.S.); (M.R.M.L.); (G.P.); (A.P.); (F.F.)
| | - Antonio Gasbarrini
- Medical and Surgical Science Department, Fondazione Policlinico Universitario A. Gemelli—IRCCS of Rome, 00168 Rome, Italy;
| | - Francesco Franceschi
- Emergency, Anesthesiological and Reanimation Sciences Department, Fondazione Policlinico Universitario A. Gemelli—IRCCS of Rome, 00168 Rome, Italy; (A.S.); (M.R.M.L.); (G.P.); (A.P.); (F.F.)
| | - Marcello Candelli
- Emergency, Anesthesiological and Reanimation Sciences Department, Fondazione Policlinico Universitario A. Gemelli—IRCCS of Rome, 00168 Rome, Italy; (A.S.); (M.R.M.L.); (G.P.); (A.P.); (F.F.)
| |
Collapse
|
5
|
Fauzia KA, Rathnayake J, Doohan D, Lamawansa MD, Alfaray RI, Batsaikhan S, Phuc BH, Waskito LA, Tuan VP, Kabamba ET, Ansari S, Matsumoto T, Akada J, Matsuhisa T, Yamaoka Y. Beyond Low Prevalence: Exploring Antibiotic Resistance and Virulence Profiles in Sri Lankan Helicobacter pylori with Comparative Genomics. Microorganisms 2025; 13:420. [PMID: 40005785 PMCID: PMC11858055 DOI: 10.3390/microorganisms13020420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/05/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Helicobacter pylori infects at least half the population worldwide, and its highly diverse genomic content correlates with its geographic distribution because of its prolonged relationship with humans. The extremely low infection prevalence alongside low inflammation severity observed in some countries might be caused by strains with low virulence potential. Therefore, this study aimed to investigate whole-genome analysis datasets of Sri Lankan H. pylori strains. H. pylori strains were isolated from biopsy specimens and underwent whole-genome sequencing to investigate their antibiotic resistance and virulence potential. The prevalence of H. pylori infection in Sri Lanka is extremely low (1.7% in a previous study), and only six H. pylori strains were successfully isolated from bacterial culture. Antibiotic resistance analysis showed a high prevalence of metronidazole resistance (83.3%, five out of six strains), and investigation of the related genes showed truncation of the rdxA and frxA genes and single-nucleotide polymorphisms in the rdxA, frxA, ribF, omp11, and fur genes. Most virulence genes of the 144 assessed were present, except for the cag pathogenicity island (cagPAI) (absent in four out of six strains), babA/B/C, and tlpB genes. An incomplete type 4 secretion system (tfs) was found in three strains. A pan-genome analysis with non-Sri Lankan H. pylori strains showed that the htpX gene was found only in Sri Lankan strains (p-corrected = 0.0008). A phylogenetic analysis showed that the Sri Lankan strains clustered with strains from hpAsia2 and hpEurope. This comparative genomic study shows that H. pylori strains with low virulence potential are present in countries with a low prevalence of infection and disease severity, indicating a strain-type geographical pattern. The tailored guidelines for screening and treatment strategy for each region are necessary to obtain effective and efficient eradication.
Collapse
Grants
- 18KK0266 Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan
- 19H03473 Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan
- 21H00346 Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan
- 22H02871 Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan
- 21K07898 Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan
- 21K08010 Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan
- ) [e-ASIA JRP, Science and Technology Research Partnership for Sustainable Development (SATREPS)] Japan Agency for Medical Research and Development (AMED)
- Japan International Cooperation Agency (JICA)
Collapse
Affiliation(s)
- Kartika Afrida Fauzia
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu 879-5593, Japan; (K.A.F.); (D.D.); (R.I.A.); (S.B.); (L.A.W.); (V.P.T.); (E.T.K.); (S.A.); (T.M.); (J.A.)
- Research Center for Preclinical and Clinical Medicine, National Research and Innovation Agency, Bogor 16915, Indonesia
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Jeewantha Rathnayake
- Department of Surgery, University of Peradeniya & Teaching Hospital Peradeniya, Kandy 2017, Sri Lanka; (J.R.); (M.D.L.)
| | - Dalla Doohan
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu 879-5593, Japan; (K.A.F.); (D.D.); (R.I.A.); (S.B.); (L.A.W.); (V.P.T.); (E.T.K.); (S.A.); (T.M.); (J.A.)
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60115, Indonesia
- Department of Anatomy, Histology and Pharmacology, Faculty of Medicine, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Meegahalande Durage Lamawansa
- Department of Surgery, University of Peradeniya & Teaching Hospital Peradeniya, Kandy 2017, Sri Lanka; (J.R.); (M.D.L.)
| | - Ricky Indra Alfaray
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu 879-5593, Japan; (K.A.F.); (D.D.); (R.I.A.); (S.B.); (L.A.W.); (V.P.T.); (E.T.K.); (S.A.); (T.M.); (J.A.)
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Saruuljavkhlan Batsaikhan
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu 879-5593, Japan; (K.A.F.); (D.D.); (R.I.A.); (S.B.); (L.A.W.); (V.P.T.); (E.T.K.); (S.A.); (T.M.); (J.A.)
| | - Bui Hoang Phuc
- Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh 700000, Vietnam;
| | - Langgeng Agung Waskito
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu 879-5593, Japan; (K.A.F.); (D.D.); (R.I.A.); (S.B.); (L.A.W.); (V.P.T.); (E.T.K.); (S.A.); (T.M.); (J.A.)
| | - Vo Phuoc Tuan
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu 879-5593, Japan; (K.A.F.); (D.D.); (R.I.A.); (S.B.); (L.A.W.); (V.P.T.); (E.T.K.); (S.A.); (T.M.); (J.A.)
- Department of Endoscopy, Cho Ray Hospital, Ho Chi Minh 749000, Vietnam
| | - Evariste Tshibangu Kabamba
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu 879-5593, Japan; (K.A.F.); (D.D.); (R.I.A.); (S.B.); (L.A.W.); (V.P.T.); (E.T.K.); (S.A.); (T.M.); (J.A.)
- Research Center for Infectious Sciences, Department of Parasitology, Graduate School of Medicine, Osaka City University, Osaka 585-8585, Japan
| | - Shamshul Ansari
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu 879-5593, Japan; (K.A.F.); (D.D.); (R.I.A.); (S.B.); (L.A.W.); (V.P.T.); (E.T.K.); (S.A.); (T.M.); (J.A.)
- Health Science Division, Higher Colleges of Technology, Abu Dhabi Campus, Abu Dhabi 25026, United Arab Emirates
| | - Takashi Matsumoto
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu 879-5593, Japan; (K.A.F.); (D.D.); (R.I.A.); (S.B.); (L.A.W.); (V.P.T.); (E.T.K.); (S.A.); (T.M.); (J.A.)
| | - Junko Akada
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu 879-5593, Japan; (K.A.F.); (D.D.); (R.I.A.); (S.B.); (L.A.W.); (V.P.T.); (E.T.K.); (S.A.); (T.M.); (J.A.)
| | - Takeshi Matsuhisa
- Department of Gastroenterology, Nippon Medical School Tama Nagayama Hospital, Tama 206-8512, Japan;
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu 879-5593, Japan; (K.A.F.); (D.D.); (R.I.A.); (S.B.); (L.A.W.); (V.P.T.); (E.T.K.); (S.A.); (T.M.); (J.A.)
- Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya 60115, Indonesia
- Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX 77030, USA
- The Research Center for GLOBAL and LOCAL Infectious Diseases (RCGLID), Oita University, Yufu 879-5593, Japan
| |
Collapse
|
6
|
Hemeda MS, Elsayed HA, Mohamad ALMME, Ibrahim MM, Farahat AMA, Abdel Rahman ARZ, Salama BM, Badawy GM, Amin AI, Elyamany MI, Abdelmottaleb HAA, Ibrahim MA, Alsaid AAE, Elhagary AA, El-Amir MI. Investigation of metronidazole resistance-associated mutations and virulence genotypes in helicobacter pylori isolates from the Egyptian population: A cross-sectional study. J Infect Chemother 2025; 31:102533. [PMID: 39366454 DOI: 10.1016/j.jiac.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
INTRODUCTION This cross-sectional study assesses the prevalence of metronidazole resistance-associated mutations and virulence genotypes in Helicobacter pylori (H. pylori) strains isolated from the Egyptian population. H. pylori infection is a significant public health concern, with antibiotic resistance challenging its eradication. METHODS Gastric biopsy samples were collected from symptomatic patients referred for upper gastrointestinal endoscopy at selected healthcare facilities. The study included 250 participants with symptoms suggestive of H. pylori infection and aged 18 years or older. Biopsy samples were obtained using standard endoscopic techniques, and H. pylori strains were isolated and identified in the laboratory. Antimicrobial susceptibility testing was conducted using standard methods. Molecular analysis, including polymerase chain reaction (PCR) and sequencing, was performed to identify metronidazole resistance-associated mutations (rdxA and frxA) and virulence genotypes (cagA and vacA). RESULTS Antimicrobial susceptibility testing revealed that 43.6 % of the isolates were resistant to metronidazole, while 11.8 %, 4.5 %, and 55.4 % were resistant to clarithromycin, amoxicillin, and levofloxacin. Molecular analysis identified rdxA and frxA mutations in 36.3 % and 31.8 % of the isolates, respectively, indicating metronidazole resistance-associated mutations. Additionally, 60.0 % of the isolates were positive for the cagA gene, and 80.0 % had the vacA s1 type, both associated with increased virulence. A significant association was found between metronidazole resistance and the presence of cagA gene, vacA s1 type, rdxA mutation, and frxA mutation. Statistical analysis revealed associations between specific mutations and virulence genotypes with respective odds ratios, indicating higher likelihoods of metronidazole resistance in isolates exhibiting these genetic characteristics. CONCLUSIONS This study highlights the prevalence of metronidazole resistance and the association between specific mutations and virulence genotypes in H. pylori strains isolated from the Egyptian population. The findings underscore the importance of monitoring antibiotic resistance patterns and understanding the genetic determinants of virulence in H. pylori for effective management and treatment strategies.
Collapse
Affiliation(s)
- Mohamed S Hemeda
- Department of Forensic Medicine and Clinical Toxicology Faculty of Medicine, Port Said University, Port Said, Egypt.
| | - Heba A Elsayed
- Department of Microbiology, Faculty of Medicine, Port Said University, Port Said, Egypt
| | - ALMoatazbellah Mahmoud Elsayed Mohamad
- Lecturer of Pathology, Al Azhar Faculty of Medicine, Assiut, Egypt; Pathology, Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqaa University, Zarqaa, Jordan
| | - Moustafa M Ibrahim
- Department of Forensic Medicine and Clinical Toxicology Faculty of Medicine, Al Azhar Faculty of Medicine, Assiut, Egypt
| | - Alsayed Magdi Alsayed Farahat
- Department of Forensic Medicine and Clinical Toxicology Faculty of Medicine, Al Azhar Faculty of Medicine, Assiut, Egypt
| | - Abdel Rahman Z Abdel Rahman
- Department of Forensic Medicine and Clinical Toxicology Faculty of Medicine, Al Azhar Faculty of Medicine, Assiut, Egypt
| | - Bassam Mansour Salama
- Infection and Endemic Disease Department Faculty of Medicine, Suez Canal University, Egypt
| | | | - Ahmed I Amin
- Department of Internal Medicine, Port Said University Faculty of Medicine, Port Said, Egypt
| | | | - Hatem Ali Ahmed Abdelmottaleb
- Department of Forensic Medicine and Clinical Toxicology Faculty of Medicine, Al Azhar Faculty of Medicine, Assiut, Egypt
| | - Mohamed A Ibrahim
- Microbiology and Immunology Department, Faculty of Medicine, Al Azhar University, Assiut, Egypt
| | | | - Ahmed A Elhagary
- Internal Medicine Department, Faculty of Medicine, Al Azhar University, Assiut, Egypt
| | - Mostafa I El-Amir
- Department of Medical Microbiology and Immunology, Faculty of Medicine, South Valley University, Qena, Egypt
| |
Collapse
|
7
|
Sirit IS, Peek RM. Decoding the Ability of Helicobacter pylori to Evade Immune Recognition and Cause Disease. Cell Mol Gastroenterol Hepatol 2025; 19:101470. [PMID: 39889829 PMCID: PMC11946503 DOI: 10.1016/j.jcmgh.2025.101470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 02/03/2025]
Abstract
Helicobacter pylori (H pylori) successfully and chronically colonizes the gastric mucosa of approximately 43% of the world's population. Infection with this organism is the strongest known risk factor for the development of gastric cancer, and disease development is dependent on several interactive components. One H pylori determinant that augments cancer risk is the strain-specific cag type IV secretion system, which not only translocates a pro-inflammatory and oncogenic protein, CagA, into host cells but also DNA, peptidoglycan, and a lipopolysaccharide intermediate, heptose-1,7-bisphosphate. However, cognate interactions between certain microbial and host constituents can also attenuate pro-inflammatory responses, and H pylori harbors multiple effectors that function differently than the respective counterparts in other mucosal pathogens. In this review, we discuss current data related to mechanisms utilized by H pylori to evade the immune response, sustain its longevity in the host, and further disease progression, as well as implications for developing targeted, immune-based eradication strategies.
Collapse
Affiliation(s)
- Isabella S Sirit
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; Molecular Pathology and Immunology Training Program, Vanderbilt University, Nashville, Tennessee
| | - Richard M Peek
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
8
|
Chhabra M, Kolatkar A, Chawla S, Joshi A, Karjalainen M, Holopainen H, Hendolin P, Syrjänen K. Point-of-Care Diagnosis of Atrophic Gastritis by Serological Biomarker Test (GastroPanel ® Quick Test) in Gastroscopy Referral Patients in India. J Clin Med 2025; 14:787. [PMID: 39941460 PMCID: PMC11818877 DOI: 10.3390/jcm14030787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Background: Increased demand of the serological biomarker test (GastroPanel®) in non-invasive diagnosis of gastric cancer (GC) risk conditions, i.e., atrophic gastritis (AG) and Helicobacter pylori (Hp) infection, prompted the design of GastroPanel® Quick test (GPQT) (Biohit Oyj, Helsinki, Finland) for point-of-care (POC) settings. Objective: This study validated the diagnostic accuracy (DA) of GPQT in diagnosis of AG and Hp among gastroscopy referral patients. Methods: Altogether, 266 patients were enrolled among the consecutive gastroscopy referrals at the Department of Gastroenterology, Fortis Hospital (Punjab, India). All patients underwent gastroscopy with biopsies (n = 249) classified using the Updated Sydney System (USS) and finger prick blood sampling for GPQT testing. Results: Biopsy-confirmed AG was found in 15.3% (38/249) of the patients. The overall agreement between the GPQT and the USS classification was 71.4% (95% CI 65.4-77.0%), with the weighted kappa (κw) of 0.823 (95% CI 0.773-0.862). In ROC analysis for moderate/severe AG of the corpus (AGC) endpoint, AUC = 0.990 (95% CI 0.979-1.000) and AUC = 0.971 (95% CI 0.948-0.995) for PGI and PGI/PGII, respectively. Hp IgG Ab test detected biopsy-confirmed Hp with AUC = 0.836 (95% CI 0.783-0.889). Conclusions: The GPQT favourably competes in accuracy with the ELISA test version (unified-GP) in diagnosis of AG and Hp in patients referred for diagnostic gastroscopy.
Collapse
Affiliation(s)
- Mohinish Chhabra
- GI Physiology and Motility Laboratory, Department of Gastroenterology, Fortis Hospital and Research Centre, Sector 62, Lamba, Sahibzada Ajit Singh Nagar 160062, Punjab, India; (M.C.); (S.C.)
| | - Ajit Kolatkar
- GastroLab India Pvt Ltd., 202, Specialy Business Centre, Balewadi Rd, Balewadi, Pune 411045, Maharashtra, India; (A.K.); (A.J.)
| | - Suresh Chawla
- GI Physiology and Motility Laboratory, Department of Gastroenterology, Fortis Hospital and Research Centre, Sector 62, Lamba, Sahibzada Ajit Singh Nagar 160062, Punjab, India; (M.C.); (S.C.)
| | - Aniket Joshi
- GastroLab India Pvt Ltd., 202, Specialy Business Centre, Balewadi Rd, Balewadi, Pune 411045, Maharashtra, India; (A.K.); (A.J.)
| | - Marika Karjalainen
- Department of Clinical Research, Biohit Oyj, 00880 Helsinki, Finland; (M.K.); (H.H.); (P.H.)
| | - Heli Holopainen
- Department of Clinical Research, Biohit Oyj, 00880 Helsinki, Finland; (M.K.); (H.H.); (P.H.)
| | - Panu Hendolin
- Department of Clinical Research, Biohit Oyj, 00880 Helsinki, Finland; (M.K.); (H.H.); (P.H.)
| | - Kari Syrjänen
- SMW Consultants, Ltd., Kylliäisentie 9, 21620 Kaarina, Finland
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos CEP 14784-400, Brazil
| |
Collapse
|
9
|
Chiscuzzu F, Crescio C, Varrucciu S, Rizzo D, Sali M, Delogu G, Bussu F. Current Evidence on the Relation Between Microbiota and Oral Cancer-The Role of Fusobacterium nucleatum-A Narrative Review. Cancers (Basel) 2025; 17:171. [PMID: 39857953 PMCID: PMC11763498 DOI: 10.3390/cancers17020171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one the most prevalent head and neck cancers and represents a major cause of morbidity and mortality worldwide. The main established risk factors for OSCC include tobacco and alcohol consumption and betel quid chewing, which may contribute alone or in combination with other environmental factors to carcinogenesis. The oral microbiota is emerging as a key player in the establishment of the molecular and cellular mechanisms that may trigger or promote carcinogenesis, including in the oral cavity. Among the bacterial species found in the oral microbiota, Fusobacterium nucleatum, an anaerobic bacterium commonly found in oral biofilms and a periodontal pathogen, has gained attention due to solid evidence implicating F. nucleatum in colorectal cancer (CRC). F. nucleatum has been shown to induce chronic inflammation, promote cell proliferation and trigger cellular invasion while deploying immune evasion mechanisms. These experimental findings were first obtained in in vitro and in vivo models of CRC and are being confirmed in studies on OSCC. In this review, we summarize the most recent findings on the role of F. nucleatum in OSCC, discuss the clinical implications in terms of prognosis and provide an overview of the key mechanisms involved. Moreover, we identify research questions and aspects that require investigations to clarify the role of F. nucleatum in OSCC. We anticipate that studies in this emerging field may have a significant clinical impact on the diagnosis, prognosis and management of OSCC.
Collapse
Affiliation(s)
| | - Claudia Crescio
- Otolaryngology Division, Azienda Ospedaliera Universitaria di Sassari, 07100 Sassari, Italy; (D.R.); (F.B.)
| | - Simona Varrucciu
- Department of Medicine Surgery and Pharmacy, Sassari University, 07100 Sassari, Italy;
| | - Davide Rizzo
- Otolaryngology Division, Azienda Ospedaliera Universitaria di Sassari, 07100 Sassari, Italy; (D.R.); (F.B.)
- Department of Medicine Surgery and Pharmacy, Sassari University, 07100 Sassari, Italy;
| | - Michela Sali
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie-Sezione di Microbiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- Department of Laboratory and Infectivology Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Giovanni Delogu
- Mater Olbia Hospital, 07026 Olbia, Italy; (F.C.); (G.D.)
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie-Sezione di Microbiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Francesco Bussu
- Otolaryngology Division, Azienda Ospedaliera Universitaria di Sassari, 07100 Sassari, Italy; (D.R.); (F.B.)
- Department of Medicine Surgery and Pharmacy, Sassari University, 07100 Sassari, Italy;
| |
Collapse
|
10
|
Nasier-Hussain M, Samanje JN, Mokhtari K, Nabi-Afjadi M, Fathi Z, Hoseini A, Bahreini E. Serum levels of oxidative stress, IL-8, and pepsinogen I/II ratio in Helicobacter pylori and gastric cancer patients: potential diagnostic biomarkers. BMC Gastroenterol 2025; 25:2. [PMID: 39748276 PMCID: PMC11697901 DOI: 10.1186/s12876-024-03564-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 12/13/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND AND AIM Helicobacter pylori (H.pylori), a gram-negative bacterial pathogen associated with an increased risk of gastric cancer. This study investigates potential factors in the incidence of gastric cancer in patients with H.pylori, including oxidative stress, inflammatory biomarkers, serum pepsinogens (PG) of I and II, and PG-I/PG-II ratio. METHODS The study comprised individuals with Helicobacter pylori (H.pylori) infection, gastric cancer patients, and healthy individuals. Biochemical parameters such as FBS (fasting blood sugar), lipid profile, and liver and kidney functional factors were evaluated using colorimetric techniques. Oxidative markers such as total oxidant status (TOS) and malondialdehyde (MDA) were quantified through colorimetric methods. IL-8, PG-II, and PG-II levels were also determined using the ELISA technique. RESULTS Individuals with H. pylori infection exhibited elevated levels of IL-8 (940.5 ± 249.7 vs. 603.4 ± 89.1 pg/ml, P < 0.0001) and oxidative species (5.47 ± 0.7 vs. 1.64 ± 0.7 nM, P < 0.05) compared to gastric cancer patients, who, despite having lower levels of IL-8 and oxidative species, showed higher levels of MDA. H.pylori patients exhibited significantly higher levels of PG-I (7.28 ± 2.1 vs. 2.61 ± 1.4 ng/ml, P < 0.001), PG-II (3.21 ± 1 vs. 2.6 ± 0.6 ng/ml, P < 0.001), and the PG-I/PG-II ratio (2.27 ± 1.2 vs. 1 ± 0.4, P < 0.001) compared to gastric cancer patients. The findings were substantiated using various data analysis platforms such as Gene Expression Profiling Interactive Analysis (GEPIA), UALCAN (The University of ALabama at Birmingham CANcer data analysis), cBioPortal, and TIMER (Tumor IMmune Estimation Resource). These parameters could serve as potential diagnostic biomarkers for screening and therapeutic interventions based on the cut-off values derived from ROC (receiver operating characteristic) curves for IL-8, PGI, PGII, and PGI/PGII across the three groups. CONCLUSIONS IL-8, PGI, PGII, and PGI/PGII parameters could serve as potential diagnostic markers for the screening and treatment of gastric conditions.
Collapse
Affiliation(s)
- Marwa Nasier-Hussain
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614525, Tehran, Iran
| | - Jaleel Najah Samanje
- Collage of Health and Medical Technology, Middle Technical University, Baghdad, Iraq
| | - Khatere Mokhtari
- Department of Modern Biology, ACECR Institute of Higher Education (Isfahan Branch), Isfahan, Iran
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zeinab Fathi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Asieh Hoseini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Elham Bahreini
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614525, Tehran, Iran.
| |
Collapse
|
11
|
Saraswat I, Goel A. Therapeutic Modulation of the Microbiome in Oncology: Current Trends and Future Directions. Curr Pharm Biotechnol 2025; 26:680-699. [PMID: 39543873 DOI: 10.2174/0113892010353600241109132441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/17/2024] [Accepted: 10/01/2024] [Indexed: 11/17/2024]
Abstract
Cancer is a predominant cause of mortality worldwide, necessitating the development of innovative therapeutic techniques. The human microbiome, particularly the gut microbiota, has become a significant element in cancer research owing to its essential role in sustaining health and influencing disease progression. This review examines the microbiome's makeup and essential functions, including immunological modulation and metabolic regulation, which may be evaluated using sophisticated methodologies such as metagenomics and 16S rRNA sequencing. The microbiome influences cancer development by promoting inflammation, modulating the immune system, and producing carcinogenic compounds. Dysbiosis, or microbial imbalance, can undermine the epithelial barrier and facilitate cancer. The microbiome influences chemotherapy and radiation results by modifying drug metabolism, either enhancing or reducing therapeutic efficacy and contributing to side effects and toxicity. Comprehending these intricate relationships emphasises the microbiome's significance in oncology and accentuates the possibility for microbiome-targeted therapeutics. Contemporary therapeutic approaches encompass the utilisation of probiotics and dietary components to regulate the microbiome, enhance treatment efficacy, and minimise unwanted effects. Advancements in research indicate that personalised microbiome-based interventions, have the potential to transform cancer therapy, by providing more effective and customised treatment alternatives. This study aims to provide a comprehensive analysis of the microbiome's influence on the onset and treatment of cancer, while emphasising current trends and future possibilities for therapeutic intervention.
Collapse
Affiliation(s)
- Istuti Saraswat
- Department of Biotechnology, GLA University, 17km Stone, NH-2 Mathura-Delhi Road Mathura, Chaumuhan, Mathura, Uttar Pradesh, India
| | - Anjana Goel
- Department of Biotechnology, GLA University, 17km Stone, NH-2 Mathura-Delhi Road Mathura, Chaumuhan, Mathura, Uttar Pradesh, India
| |
Collapse
|
12
|
Apari P, Földvári G. How Do Trematodes Induce Cancer? A Possible Evolutionary Adaptation of an Oncogenic Agent Transmitted by Flukes. Evol Appl 2025; 18:e70070. [PMID: 39845579 PMCID: PMC11751881 DOI: 10.1111/eva.70070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/11/2024] [Accepted: 12/27/2024] [Indexed: 01/24/2025] Open
Abstract
There is strong epidemiological evidence that development of various cancer types is linked to infection with flukes (Platyhelminthes: Trematoda) in Africa, Asia and the Middle East. The exact nature of the mechanism by which cancer is induced by these parasites is unknown. Here, we provide a new hypothesis suggesting that flukes are not the primary cause of cancer but act as vectors of cancer-inducing microbial pathogens. These pathogens adaptively induce tumours to attract and help flukes to feed on blood from the tumour. Pathogen take-up by fluke vectors also takes place in the tumour; therefore, tumour formation in this case is the result of a mutualistic and adaptive relationship between the microbe and the helminth parasite. The suggested mechanism for cancer induction provided here may help us gain deeper understanding about cancer in general and its relationship with microbes and parasites. By further elaborating the unique nexus between flukes, carcinogenic microbes and cancer, in the future it will also help us to broaden our oncological perspective to reduce human death and suffering from this serious disease group.
Collapse
Affiliation(s)
| | - Gábor Földvári
- Institute of EvolutionHUN‐REN Centre for Ecological ResearchBudapestHungary
- Centre for Eco‐EpidemiologyNational Laboratory for Health SecurityBudapestHungary
| |
Collapse
|
13
|
Lemos LMS, Ọlọ Ba-Whẹ Nù OA, Olasupo IA, Balogun SO, Macho A, Pavan E, de Oliveira Martins DT. Brasiliensic acid: in vitro cytotoxic and genotoxic, in vivo acute toxicity and in silico pharmacological prediction of a new promising molecule. J Biomol Struct Dyn 2025; 43:197-210. [PMID: 38054294 DOI: 10.1080/07391102.2023.2280713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/31/2023] [Indexed: 12/07/2023]
Abstract
Brasiliensic acid (Bras) is a chromanone isolated from Calophyllum brasiliense Cambèss. bark extracts with confirmed potential activity on gastric ulcer and Helicobacter pylori infection. This study aimed to investigate the in vitro and in vivo toxicity of Bras and molecular docking studies on its interactions with the H. pylori virulence factors and selected gastric cancer-related proteins. Cytotoxicity was evaluated by alamarBlue© assay, genotoxicity by micronucleus and comet assays, and on cell cycle by flow cytometry, using Chinese hamster epithelial ovary cells. Bras was not cytotoxic to CHO-K1 cells, and caused no chromosomal aberrations, nor altered DNA integrity. Furthermore, Bras inhibited damages to DNA by H2O2 at 1.16 µM. No cell cycle arrest was observed, but apoptosis accounted for 31.2% of the cell death observed in the CHO-K1 at 24 h incubation of the IC50. Oral acute toxicity by Hippocratic screening test in mice showed no relevant behavioral change/mortality seen up to 1,000 mg/kg. The molecular docking approach indicated potential interactions between Bras and the various targets for peptic ulcer and gastric cancer, notably CagA virulence factor of H. pylori and VEGFR-2. In conclusion, Bras is apparently safe and an optimization for Bras can be considered for gastric ulcer and cancer.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Larissa Maria Scalon Lemos
- Área de Farmacologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, MT, Brazil
- Área de Farmacologia, Faculdade de Ciências da Saúde, Universidade do Estado de Mato Grosso (Unemat), Cáceres, MT, Brazil
| | | | | | - Sikiru Olaitan Balogun
- Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Universidade Federal da Grande Dourados (UFGD), Dourados, MS, Brazil
| | - Antonio Macho
- Área de Farmacologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, MT, Brazil
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada (NuPMIA). Pós-Graduação em Ciências Médicas, Faculdade de Medicina, Universidade de Brasília (UnB), Brasília, DF, Brazil
| | - Eduarda Pavan
- Área de Farmacologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, MT, Brazil
| | - Domingos Tabajara de Oliveira Martins
- Área de Farmacologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, MT, Brazil
| |
Collapse
|
14
|
Singhal S, Bhadana R, Jain BP, Gautam A, Pandey S, Rani V. Role of gut microbiota in tumorigenesis and antitumoral therapies: an updated review. Biotechnol Genet Eng Rev 2024; 40:3716-3742. [PMID: 36632709 DOI: 10.1080/02648725.2023.2166268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 01/13/2023]
Abstract
Gut microbiota plays a prominent role in regulation of host nutrientmetabolism, drug and xenobiotics metabolism, immunomodulation and defense against pathogens. It synthesizes numerous metabolites thatmaintain the homeostasis of host. Any disbalance in the normalmicrobiota of gut can lead to pathological conditions includinginflammation and tumorigenesis. In the past few decades, theimportance of gut microbiota and its implication in various diseases, including cancer has been a prime focus in the field of research. Itplays a dual role in tumorigenesis, where it can accelerate as wellas inhibit the process. Various evidences validate the effects of gutmicrobiota in development and progression of malignancies, wheremanipulation of gut microbiota by probiotics, prebiotics, dietarymodifications and faecal microbiota transfer play a significant role.In this review, we focus on the current understanding of theinterrelationship between gut microbiota, immune system and cancer,the mechanisms by which they play dual role in promotion andinhibition of tumorigenesis. We have also discussed the role ofcertain bacteria with probiotic characteristics which can be used tomodulate the outcome of the various anti-cancer therapies under theinfluence of the alteration in the composition of gut microbiota.Future research primarily focusing on the microbiota as a communitywhich affect and modulate the treatment for cancer would benoteworthy in the field of oncology. This necessitates acomprehensive knowledge of the roles of individual as well asconsortium of microbiota in relation to physiology and response ofthe host.
Collapse
Affiliation(s)
- Shivani Singhal
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Renu Bhadana
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Buddhi Prakash Jain
- Department of Zoology, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Akash Gautam
- Centre for Neural and Cognitive Sciences, School of Medical Sciences, University of Hyderabad, Hyderabad, India
| | - Shweta Pandey
- Department of Biotechnology, Govt Vishwanath Yadav Tamaskar Post-Graduate Autonomous College Durg, Chhattisgarh, India
| | - Vibha Rani
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| |
Collapse
|
15
|
Ataollahi H, Hedayati M, Zia-Jahromi N, Daneshpour M, Siadat SD. Investigating the role of the intratumoral microbiome in thyroid cancer development and progression. Crit Rev Oncol Hematol 2024; 204:104545. [PMID: 39476992 DOI: 10.1016/j.critrevonc.2024.104545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/14/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024] Open
Abstract
The intratumoral microbiome (ITM) is in the spotlight due to its possible contribution to the initiation, progression, and invasion of a wide range of cancers. Its precise contribution to cancer tumorigenesis is still elusive, though. Thyroid cancer(TC), the ninth leading cause of cancer globally and the most prevalent endocrine malignancy with a rapidly rising incidence among all cancers, has attracted much attention nowadays. Still, the association between the tumor's microbiome and TC progression and development is an evolving area of investigation with significant consequences for disease understanding and intervention. Therefore, this review offers an appropriate perspective on this emerging concept in TC based on prior studies on the ITM among the most common tumors worldwide, concentrating on TC. Moreover, information on the origin of the ITM and practical methods can pave the way for researchers to opt for the most appropriate method for further investigations on the ITM more accurately.
Collapse
Affiliation(s)
- Hanieh Ataollahi
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No 23, Shahid Arabi St.Yemen St, Velenjak, PO Box:19395-4763, Tehran, Iran.
| | - Noosha Zia-Jahromi
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Maryam Daneshpour
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No 23, Shahid Arabi St.Yemen St, Velenjak, PO Box:19395-4763, Tehran, Iran
| | - Seyed Davar Siadat
- Microbiology Research Center(MRC), Pasteur Institute of Iran, Tehran, Iran; Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
16
|
Bhatnagar K, Jha K, Dalal N, Patki N, Gupta G, Kumar A, Kumar A, Chaudhary S. Exploring micronutrients and microbiome synergy: pioneering new paths in cancer therapy. Front Immunol 2024; 15:1442788. [PMID: 39676876 PMCID: PMC11638209 DOI: 10.3389/fimmu.2024.1442788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024] Open
Abstract
The human microbiome is the complex ecosystem consisting of trillions of microorganisms that play a key role in developing the immune system and nutrient metabolism. Alterations in the gut microbiome have been linked to cancer initiation, progression, metastasis, and response to treatment. Accumulating evidence suggests that levels of vitamins and minerals influence the gut environment and may have implications for cancer risk and progression. Bifidobacterium has been reported to reduce the colorectal cancer risk by binding to free iron. Additionally, zinc ions have been shown to activate the immune cells and enhance the effectiveness of immunotherapy. Higher selenium levels have been associated with a reduced risk of several cancers, including colorectal cancer. In contrast, enhanced copper uptake has been implicated in promoting cancer progression, including colon cancer. The interaction between cancer and gut bacteria, as well as dysbiosis impact has been studied in animal models. The interplay between prebiotics, probiotics, synbiotics, postbiotics and gut bacteria in cancer offers the diverse physiological benefits. We also explored the particular probiotic formulations like VSL#3, Prohep, Lactobacillus rhamnosus GG (LGG), etc., for their ability to modulate immune responses and reduce tumor burden in preclinical models. Targeting the gut microbiome through antibiotics, bacteriophage, microbiome transplantation-based therapies will offer a new perspective in cancer research. Hence, to understand this interplay, we outline the importance of micronutrients with an emphasis on the immunomodulatory function of the microbiome and highlight the microbiome's potential as a target for precision medicine in cancer treatment.
Collapse
Affiliation(s)
- Kartik Bhatnagar
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, Uttar Pradesh, India
| | - Kanupriya Jha
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, Uttar Pradesh, India
| | - Nishu Dalal
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, India
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Ninad Patki
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, Uttar Pradesh, India
| | - Garima Gupta
- Biological Engineering and Sciences, Indian Institute of Technology Gandhinagar Palaj, Gandhinagar, Gujarat, India
| | - Amit Kumar
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, Uttar Pradesh, India
| | - Anil Kumar
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, India
| | - Sarika Chaudhary
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
17
|
Tu Z, Wang Y, Liang J, Liu J. Helicobacter pylori-targeted AI-driven vaccines: a paradigm shift in gastric cancer prevention. Front Immunol 2024; 15:1500921. [PMID: 39669583 PMCID: PMC11634812 DOI: 10.3389/fimmu.2024.1500921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/08/2024] [Indexed: 12/14/2024] Open
Abstract
Helicobacter pylori (H. pylori), a globally prevalent pathogen Group I carcinogen, presents a formidable challenge in gastric cancer prevention due to its increasing antimicrobial resistance and strain diversity. This comprehensive review critically analyzes the limitations of conventional antibiotic-based therapies and explores cutting-edge approaches to combat H. pylori infections and associated gastric carcinogenesis. We emphasize the pressing need for innovative therapeutic strategies, with a particular focus on precision medicine and tailored vaccine development. Despite promising advancements in enhancing host immunity, current Helicobacter pylori vaccine clinical trials have yet to achieve long-term efficacy or gain approval regulatory approval. We propose a paradigm-shifting approach leveraging artificial intelligence (AI) to design precision-targeted, multiepitope vaccines tailored to multiple H. pylori subtypes. This AI-driven strategy has the potential to revolutionize antigen selection and optimize vaccine efficacy, addressing the critical need for personalized interventions in H. pylori eradication efforts. By leveraging AI in vaccine design, we propose a revolutionary approach to precision therapy that could significantly reduce H. pylori -associated gastric cancer burden.
Collapse
Affiliation(s)
| | | | | | - Jinping Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
18
|
Ji X, Sun Z, Wu H, Zhang J, Liu S, Cao X, Wang B, Wang F, Zhang Y, Li B, Feng J, Zhao H. More powerful dysregulation of Helicobacter pylori East Asian-type CagA on intracellular signalings. BMC Microbiol 2024; 24:467. [PMID: 39528935 PMCID: PMC11552142 DOI: 10.1186/s12866-024-03619-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Chronic infection by Helicobacter pylori strains expressing cytotoxin-associated gene A (CagA) are the strongest risk factor for gastric cancer. CagA can be classified into East Asian-type and Western-type (CagAE and CagAW), with CagAE being more closely associated with gastric cancer. This study aimed to investigate the impact of CagAE on intracellular signaling pathways to explain its high oncogenicity. RESULTS Mutant H. pylori strains expressing either CagAE or CagAW were generated by transforming CagAE/W-expression plasmid into CagA-deleted G27 strain (G27ΔCagA). In human gastric epithelial cells (GES-1) infection, CagAE induced more severe cytopathic changes, including higher interleukin-8 (IL-8) secretion, reduced cell viability, more pronounced "hummingbird phenotype" alterations, and increased cell migration and invasion compared to CagAW. Transcriptome analysis revealed that CagAE had a stronger effect on the up-regulation of key intracellular processes, including tumor necrosis factor-ɑ (TNF-ɑ) signal pathway via nuclear factor kappa-B (NF-κB), inflammatory response, interferon-γ (IFN-γ) response, hypoxia, ultraviolet (UV) response, and Kirsten Rat Sarcoma Viral Oncogene Homolog (KRAS) signaling. A significant upregulation of hypoxia-related genes was a notable feature of CagAE. GES-1 cells infected with CagAE exhibited more severe intracellular hypoxia and higher levels of reactive oxygen species (ROS) than those infected with CagAW. Inhibition of hypoxia-inducible factor-1α (HIF-1α), which blocks hypoxia signaling, mitigated CagAE-induced cell migration, emphasizing the role of hypoxia in mediating CagAE effects. CONCLUSIONS The study provides transcriptome evidence of CagA-associated intracellular regulation during H. pylori infection, demonstrating that CagAE exerts stronger effects on intracellular signaling than CagAW. These findings offer insights into the heightened carcinogenic potential of CagAE in H. pylori-induced gastric cancer.
Collapse
Affiliation(s)
- Xiaofei Ji
- Binzhou Medical University, Yantai, China
| | - Zekun Sun
- Binzhou Medical University, Yantai, China
| | - Hao Wu
- Binzhou Medical University, Yantai, China
- Department of Blood Transfusion, Jining First People's Hospital, Jining, China
| | | | | | | | - Bin Wang
- Binzhou Medical University, Yantai, China
| | | | - Ying Zhang
- Binzhou Medical University, Yantai, China
| | - Boqing Li
- Binzhou Medical University, Yantai, China
| | | | | |
Collapse
|
19
|
Halawa M, Newman PM, Aderibigbe T, Carabetta VJ. Conjugated therapeutic proteins as a treatment for bacteria which trigger cancer development. iScience 2024; 27:111029. [PMID: 39635133 PMCID: PMC11615139 DOI: 10.1016/j.isci.2024.111029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
In recent years, an increasing amount of research has focused on the intricate and complex correlation between bacterial infections and the development of cancer. Some studies even identified specific bacterial species as potential culprits in the initiation of carcinogenesis, which generated a great deal of interest in the creation of innovative therapeutic strategies aimed at addressing both the infection and the subsequent risk of cancer. Among these strategies, there has been a recent emergence of the use of conjugated therapeutic proteins, which represent a highly promising avenue in the field of cancer therapeutics. These proteins offer a dual-targeting approach that seeks to effectively combat both the bacterial infection and the resulting malignancies that may arise because of such infections. This review delves into the landscape of conjugated therapeutic proteins that have been intricately designed with the purpose of specifically targeting bacteria that have been implicated in the induction of cancer.
Collapse
Affiliation(s)
- Mohamed Halawa
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | - Precious M. Newman
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | - Tope Aderibigbe
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | - Valerie J. Carabetta
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| |
Collapse
|
20
|
Saravanan V, Gopalakrishnan V, Mahendran MIMS, Vaithianathan R, Srinivasan S, Boopathy V, Krishnamurthy S. Biofilm mediated integrin activation and directing acceleration of colorectal cancer. APMIS 2024; 132:688-705. [PMID: 39246244 DOI: 10.1111/apm.13466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/15/2024] [Indexed: 09/10/2024]
Abstract
Bacterial biofilm plays a vital role in influencing several diseases, infections, metabolic pathways and communication channels. Biofilm influence over colorectal cancer (CRC) has been a booming area of research interest. The virulence factors of bacterial pathogen have a high tendency to induce metabolic pathway to accelerate CRC. The bacterial species biofilm may induce cancer through regulating the major signalling pathways responsible for cell proliferation, differentiation, survival and growth. Activation of cancer signals may get initiated from the chronic infections through bacterial biofilm species. Integrin mediates in the activation of major pathway promoting cancer. Integrin-mediated signals are expected to be greatly influenced by biofilm. Integrins are identified as an important dimer, whose dysfunction may alter the signalling cascade specially focusing on TGF-β, PI3K/Akt/mToR, MAPK and Wnt pathway. Along with biofilm shield, the tumour gains greater resistance from radiation, chemotherapy and also from other antibiotics. The biofilm barrier is known to cause challenges for CRC patients undergoing treatment.
Collapse
Affiliation(s)
- Vaijayanthi Saravanan
- MGM Advanced Research Institute, Sri Balaji Vidhyapeeth (Deemed to be University), Pondicherry, Tamil Nadu, India
| | - Vinoj Gopalakrishnan
- MGM Advanced Research Institute, Sri Balaji Vidhyapeeth (Deemed to be University), Pondicherry, Tamil Nadu, India
| | | | - Rajan Vaithianathan
- Mahatma Gandhi Medical College and Research Institute, Sri Balaji Vidhyapeeth (Deemed to be University), Pondicherry, Tamil Nadu, India
| | - Sowmya Srinivasan
- Mahatma Gandhi Medical College and Research Institute, Sri Balaji Vidhyapeeth (Deemed to be University), Pondicherry, Tamil Nadu, India
| | | | | |
Collapse
|
21
|
Shyanti RK, Greggs J, Malik S, Mishra M. Gut dysbiosis impacts the immune system and promotes prostate cancer. Immunol Lett 2024; 268:106883. [PMID: 38852888 PMCID: PMC11249078 DOI: 10.1016/j.imlet.2024.106883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/11/2024]
Abstract
The gut microbiota is a system of microorganisms in the human gastrointestinal (GI) system, consisting of trillions of microorganisms residing in epithelial surfaces of the body. Gut microbiota are exposed to various external and internal factors and form a unique gut-associated immunity maintained through a balancing act among diverse groups of microorganisms. The role of microbiota in dysbiosis of the gut in aiding prostate cancer development has created an urgency for extending research toward comprehension and preventative measures. The gut microbiota varies among persons based on diet, race, genetic background, and geographic location. Bacteriome, mainly, has been linked to GI complications, metabolism, weight gain, and high blood sugar. Studies have shown that manipulating the microbiome (bacteriome, virome, and mycobiome) through the dietary intake of phytochemicals positively influences physical and emotional health, preventing and delaying diseases caused by microbiota. In this review, we discuss the wealth of knowledge about the GI tract and factors associated with dysbiosis-mediated compromised gut immunity. This review also focuses on the relationship of dysbiosis to prostate cancer, the impact of microbial metabolites short-chain fatty acids (SCFAs) on host health, and the phytochemicals improving health while inhibiting prostate cancer.
Collapse
Affiliation(s)
- Ritis K Shyanti
- Cancer Biology Research and Training Program, Department of Biological Sciences, Alabama State University, AL 36104, USA
| | - Jazmyn Greggs
- Cancer Biology Research and Training Program, Department of Biological Sciences, Alabama State University, AL 36104, USA
| | - Shalie Malik
- Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh 226007, India
| | - Manoj Mishra
- Cancer Biology Research and Training Program, Department of Biological Sciences, Alabama State University, AL 36104, USA.
| |
Collapse
|
22
|
Feng Z, Yang X, Zhang B, Mo C, Li C, Tian X, Zhang C, Ou M, Hou X. Exploring the relationship between infectious agents and autoimmune diseases: a review. Eur J Clin Microbiol Infect Dis 2024; 43:1505-1516. [PMID: 38829448 DOI: 10.1007/s10096-024-04869-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
The relationship between infectious agents and autoimmune diseases is a complex issue. In recent years, increasing clinical cases have indicated that infectious agents play an important role in the development of autoimmune diseases. Molecular mimicry is currently widely regarded as the primary pathogenic mechanism of various autoimmune diseases in humans. Components of infectious agents can undergo molecular mimicry with components in patients' bodies, leading to the development of various autoimmune diseases. In this article, we provide a brief overview of current research of the current research status on the relationship between infectious agents and autoimmune diseases, and describe our current understanding of their mechanisms of action in order to better understand the pathogenesis, diagnosis, and treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Zhihui Feng
- Laboratory Central, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Xueli Yang
- Laboratory Central, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Biao Zhang
- Laboratory Central, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Chune Mo
- Laboratory Central, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Chunhong Li
- Laboratory Central, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Xiayu Tian
- Laboratory Central, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Chong Zhang
- Department of Neurology, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541199, China
| | - Minglin Ou
- Laboratory Central, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Xianliang Hou
- Laboratory Central, Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China.
- Department of Central Laboratory, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China.
| |
Collapse
|
23
|
Xu S, Wu X, Chen E, Ying K. Anti-Helicobacter pylori Infection Treatment and Pulmonary Hypersensitivity: Case Series and Review of the Literature. THE CLINICAL RESPIRATORY JOURNAL 2024; 18:e13816. [PMID: 39118282 PMCID: PMC11310268 DOI: 10.1111/crj.13816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Helicobacter pylori (H. pylori) infection is currently widespread throughout the world. Bismuth-containing quadruple therapy is widely used, but it has rarely been associated with interstitial lung disease. CASE PRESENTATION We described six cases with similar clinical symptoms and typical pulmonary interstitial imaging changes during anti-H. pylori therapy, usually on Days 7-12 following treatment. Anti-H. pylori infection treatment was discontinued when it was suspected to be the cause of the clinical symptoms, and all of the patients accepted observation therapy. All of them had a favorable outcome, the clinical symptoms returned to normal almost 1 week later, and the chest computed tomography (CT) scan images showed remarkable absorption 4 weeks later. CONCLUSIONS Drug interactions could be the cause, and the most likely drug was furazolidone. All of the patients recovered quickly after drug discontinuation, and low-dose steroid may help shorten the recovery time.
Collapse
Affiliation(s)
- Shan Xu
- Respiratory and Critical Care Medicine, Regional Medical Center for National Institute of Respiratory Disease, Sir Run Run Shaw Hospital, School of MedicineZhejiang University
- Cancer CenterZhejiang UniversityHangzhouChina
| | - Xiaohong Wu
- Respiratory and Critical Care Medicine, Regional Medical Center for National Institute of Respiratory Disease, Sir Run Run Shaw Hospital, School of MedicineZhejiang University
- Cancer CenterZhejiang UniversityHangzhouChina
| | - Enguo Chen
- Respiratory and Critical Care Medicine, Regional Medical Center for National Institute of Respiratory Disease, Sir Run Run Shaw Hospital, School of MedicineZhejiang University
- Cancer CenterZhejiang UniversityHangzhouChina
| | - Kejing Ying
- Respiratory and Critical Care Medicine, Regional Medical Center for National Institute of Respiratory Disease, Sir Run Run Shaw Hospital, School of MedicineZhejiang University
- Cancer CenterZhejiang UniversityHangzhouChina
| |
Collapse
|
24
|
Pete D, Salama NR, Lampe JW, Wu MC, Phipps AI. The prevalence and risk factors of Helicobacter pylori infection and cagA virulence gene carriage in adults in the Navajo Nation. MICROBIOTA IN HEALTH AND DISEASE 2024; 6:e1007. [PMID: 39071941 PMCID: PMC11282893 DOI: 10.26355/mhd_20247_1007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Background American Indian and Alaska Native people in the United States experience high rates of stomach cancer. Helicobacter pylori infection is a significant risk factor for stomach cancer, and H. pylori strains that carry the cagA gene are linked to greater gastrointestinal disease severity. Yet, little is known about H. pylori and cagA infections in American Indian and Alaska Native people, particularly at the tribal level. We assessed the prevalence and risk factors of H. pylori infection and cagA gene carriage in tribal members from the Navajo Nation. Materials and Methods We conducted a cross-sectional study with adults from the Navajo Nation. Stool samples collected from participants were analyzed with droplet digital PCR for H. pylori 16S ribosomal and cagA virulence genes. Self-administered health and food questionnaires were mailed to participants to collect information on sociodemographic, health, lifestyle, and environmental risk factors for H. pylori infection. Logistic regression assessed the association between risk factors and H. pylori infection and cagA gene carriage. Results Among 99 adults, the median age was 45 (age range: 18 to 79 years), and 73.7% were female. About 56.6% (95% CI: 46.2-66.5) of participants were infected with H. pylori. Of H. pylori-infected participants, 78.6% (95% CI: 65.6-88.4) were cagA-gene positive. No significant associations of relevant risk factors with H. pylori and cagA-gene positive infections were noted. Conclusions In a community-based study population, a substantial proportion of adult tribal members had H. pylori and cagA-gene positive infections. Given these high proportions, culturally appropriate prevention strategies and interventions addressing H. pylori infections present an avenue for additional research and stomach cancer prevention in the Navajo Nation.
Collapse
Affiliation(s)
- Dornell Pete
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA
| | - Nina R Salama
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Johanna W Lampe
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Michael C Wu
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Amanda I Phipps
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA
| |
Collapse
|
25
|
Tohumcu E, Kaitsas F, Bricca L, Ruggeri A, Gasbarrini A, Cammarota G, Ianiro G. Helicobacter pylori and the Human Gastrointestinal Microbiota: A Multifaceted Relationship. Antibiotics (Basel) 2024; 13:584. [PMID: 39061266 PMCID: PMC11274338 DOI: 10.3390/antibiotics13070584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Helicobacter pylori is a type of Gram-negative bacteria belonging to the Proteobacteria phylum which is known to cause gastrointestinal disorders such as gastritis and gastric ulcers. Its treatment is based on current eradication regimens, which are composed of combinations of antibiotics such as clarithromycin, metronidazole, levofloxacin and amoxicillin, often combined with a proton pump inhibitor (PPI). With the development of sequencing technologies, it has been demonstrated that not only does the colonization of the gastric and gut environment by H. pylori cause microbial changes, but also the treatment regimens used for its eradication have a significant altering effect on both the gastric and gut microbiota. Here, we review current knowledge on microbiota modulations of current therapies in both environments. We also summarize future perspectives regarding H. pylori infection, the integration of probiotics into therapy and what challenges are being faced on a global basis when we talk about eradication.
Collapse
Affiliation(s)
- Ege Tohumcu
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (E.T.); (F.K.); (A.R.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
| | - Francesco Kaitsas
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (E.T.); (F.K.); (A.R.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
| | - Ludovica Bricca
- Department of Surgical, Oncological and Gastroenterological Sciences (DiSCOG), Padua Univeristy, 35123 Padova, Italy;
| | - Alessandro Ruggeri
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (E.T.); (F.K.); (A.R.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (E.T.); (F.K.); (A.R.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
| | - Giovanni Cammarota
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (E.T.); (F.K.); (A.R.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
| | - Gianluca Ianiro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (E.T.); (F.K.); (A.R.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
26
|
Deane C, Kelly O, O’Morain C. Current and Future Perspectives on the Management of Helicobacter pylori: A Narrative Review. Antibiotics (Basel) 2024; 13:541. [PMID: 38927207 PMCID: PMC11201059 DOI: 10.3390/antibiotics13060541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
The prevalence of Helicobacter pylori (H. pylori), a pathogen, has decreased globally in the last decade. To date, the management of H. pylori has focused on a reactive approach, whereby those diagnosed are treated with antimicrobials and acid suppression in combination. This review article provides an overview of the shift in the management of H. pylori from a reactive approach towards a proactive 'screen and treat' approach; the article reflects the current pharmacological landscape for H. pylori treatment by exploring similarities such as the first-line prescription of quadruple therapy in most countries and provides a summary table of the best practice guidance from Europe, Asia, and North America. It explores significant ongoing challenges in management, such as rising antimicrobial resistance rates, and explores a potential 'work smart' approach to antimicrobial susceptibility testing. We explore the role of registry databases in providing data on treatment efficacy and safety and how they can support a strategic approach to H. pylori treatment. We question if such a database's availability, update, and regular audit should serve as a key quality indicator in a population screening programme. Despite a call for vaccination against H. pylori and decades of research, not many have made it to a phase-three clinical trial. We explore the challenges that have complicated the development of such a vaccine, such as the genetic diversity of H. pylori, immunotolerance, and limitations of mouse models in research; we reflect on how these challenges are contributing to a low likelihood of having a vaccine in the short-medium term. Lastly, it explores the heterogeneity in research on probiotics and their role as an adjunct in the management of H. pylori.
Collapse
Affiliation(s)
- Charlene Deane
- Beacon Hospital Research Institute, D18 AK68 Dublin, Ireland
- Connolly Hospital, D15 X40D Dublin, Ireland
- Department of Medicine, Royal College of Surgeons Ireland, D02 YN77 Dublin, Ireland
| | - Orlaith Kelly
- Connolly Hospital, D15 X40D Dublin, Ireland
- Department of Medicine, Royal College of Surgeons Ireland, D02 YN77 Dublin, Ireland
| | - Colm O’Morain
- Beacon Hospital Research Institute, D18 AK68 Dublin, Ireland
- Department of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Tallaght University Hospital, D24 NR0A Dublin, Ireland
| |
Collapse
|
27
|
Vieira RV, Peiter GC, de Melo FF, Zarpelon-Schutz AC, Teixeira KN. In silico prospective analysis of the medicinal plants activity on the CagA oncoprotein from Helicobacter pylori. World J Clin Oncol 2024; 15:653-663. [PMID: 38835850 PMCID: PMC11145963 DOI: 10.5306/wjco.v15.i5.653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/01/2024] [Accepted: 04/18/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Colonization with Helicobacter pylori (H. pylori) has a strong correlation with gastric cancer, and the virulence factor CagA is implicated in carcinogenesis. Studies have been conducted using medicinal plants with the aim of eliminating the pathogen; however, the possibility of blocking H. pylori-induced cell differentiation to prevent the onset and/or progression of tumors has not been addressed. This type of study is expensive and time-consuming, requiring in vitro and/or in vivo tests, which can be solved using bioinformatics. Therefore, prospective computational analyses were conducted to assess the feasibility of interaction between phenolic compounds from medicinal plants and the CagA oncoprotein. AIM To perform a computational prospecting of the interactions between phenolic compounds from medicinal plants and the CagA oncoprotein of H. pylori. METHODS In this in silico study, the structures of the phenolic compounds (ligands) kaempferol, myricetin, quercetin, ponciretin (flavonoids), and chlorogenic acid (phenolic acid) were selected from the PubChem database. These phenolic compounds were chosen based on previous studies that suggested medicinal plants as non-drug treatments to eliminate H. pylori infection. The three-dimensional structure model of the CagA oncoprotein of H. pylori (receptor) was obtained through molecular modeling using computational tools from the I-Tasser platform, employing the threading methodology. The primary sequence of CagA was sourced from GenBank (BAK52797.1). A screening was conducted to identify binding sites in the structure of the CagA oncoprotein that could potentially interact with the ligands, utilizing the GRaSP online platform. Both the ligands and receptor were prepared for molecular docking using AutoDock Tools 4 (ADT) software, and the simulations were carried out using a combination of ADT and AutoDock Vina v.1.2.0 software. Two sets of simulations were performed: One involving the central region of CagA with phenolic compounds, and another involving the carboxy-terminus region of CagA with phenolic compounds. The receptor-ligand complexes were then analyzed using PyMol and BIOVIA Discovery Studio software. RESULTS The structure model obtained for the CagA oncoprotein exhibited high quality (C-score = 0.09) and was validated using parameters from the MolProbity platform. The GRaSP online platform identified 24 residues (phenylalanine and leucine) as potential binding sites on the CagA oncoprotein. Molecular docking simulations were conducted with the three-dimensional model of the CagA oncoprotein. No complexes were observed in the simulations between the carboxy-terminus region of CagA and the phenolic compounds; however, all phenolic compounds interacted with the central region of the oncoprotein. Phenolic compounds and CagA exhibited significant affinity energy (-7.9 to -9.1 kcal/mol): CagA/kaempferol formed 28 chemical bonds, CagA/myricetin formed 18 chemical bonds, CagA/quercetin formed 16 chemical bonds, CagA/ponciretin formed 13 chemical bonds, and CagA/chlorogenic acid formed 17 chemical bonds. Although none of the phenolic compounds directly bound to the amino acid residues of the K-Xn-R-X-R membrane binding motif, all of them bound to residues, mostly positively or negatively charged, located near this region. CONCLUSION In silico, the tested phenolic compounds formed stable complexes with CagA. Therefore, they could be tested in vitro and/or in vivo to validate the findings, and to assess interference in CagA/cellular target interactions and in the oncogenic differentiation of gastric cells.
Collapse
Affiliation(s)
| | | | - Fabrício Freire de Melo
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde-Campus Anísio Teixeira, Vitória da Conquista 45029-094, Brazil
| | - Ana Carla Zarpelon-Schutz
- Universidade Federal do Paraná, Campus Toledo, Toledo 85919-899, Brazil
- Universidade Federal do Paraná-Setor Palotina, Programa de Pós-graduação em Biotecnologia, Palotina 85950-000, Brazil
| | - Kádima Nayara Teixeira
- Universidade Federal do Paraná, Campus Toledo, Toledo 85919-899, Brazil
- Universidade Federal do Paraná-Setor Palotina, Programa de Pós-graduação em Biotecnologia, Palotina 85950-000, Brazil
| |
Collapse
|
28
|
Müller SM, Jücker M. The Functional Roles of the Src Homology 2 Domain-Containing Inositol 5-Phosphatases SHIP1 and SHIP2 in the Pathogenesis of Human Diseases. Int J Mol Sci 2024; 25:5254. [PMID: 38791291 PMCID: PMC11121230 DOI: 10.3390/ijms25105254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
The src homology 2 domain-containing inositol 5-phosphatases SHIP1 and SHIP2 are two proteins involved in intracellular signaling pathways and have been linked to the pathogenesis of several diseases. Both protein paralogs are well known for their involvement in the formation of various kinds of cancer. SHIP1, which is expressed predominantly in hematopoietic cells, has been implicated as a tumor suppressor in leukemogenesis especially in myeloid leukemia, whereas SHIP2, which is expressed ubiquitously, has been implicated as an oncogene in a wider variety of cancer types and is suggested to be involved in the process of metastasis of carcinoma cells. However, there are numerous other diseases, such as inflammatory diseases as well as allergic responses, Alzheimer's disease, and stroke, in which SHIP1 can play a role. Moreover, SHIP2 overexpression was shown to correlate with opsismodysplasia and Alzheimer's disease, as well as metabolic diseases. The SHIP1-inhibitor 3-α-aminocholestane (3AC), and SHIP1-activators, such as AQX-435 and AQX-1125, and SHIP2-inhibitors, such as K161 and AS1949490, have been developed and partly tested in clinical trials, which indicates the importance of the SHIP-paralogs as possible targets in the therapy of those diseases. The aim of this article is to provide an overview of the current knowledge about the involvement of SHIP proteins in the pathogenesis of cancer and other human diseases and to create awareness that SHIP1 and SHIP2 are more than just tumor suppressors and oncogenes.
Collapse
Affiliation(s)
| | - Manfred Jücker
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| |
Collapse
|
29
|
Rao RSP, Ghate SD, Pinto L, Suravajhala P, Patil P, Shetty P, Ahsan N. Extent of Virulence and Antibiotic Resistance Genes in Helicobacter pylori and Campylobacteria. Curr Microbiol 2024; 81:154. [PMID: 38652129 DOI: 10.1007/s00284-024-03653-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/26/2024] [Indexed: 04/25/2024]
Abstract
Helicobacter pylori, a member of the clade campylobacteria, is the leading cause of chronic gastritis and gastric cancer. Virulence and antibiotic resistance of H. pylori are of great concern to public health. However, the relationship between virulence and antibiotic resistance genes in H. pylori in relation to other campylobacteria remains unclear. Using the virulence and comprehensive antibiotic resistance databases, we explored all available 354 complete genomes of H. pylori and compared it with 90 species of campylobacteria for virulence and antibiotic resistance genes/proteins. On average, H. pylori had 129 virulence genes, highest among Helicobacter spp. and 71 antibiotic resistance genes, one of the lowest among campylobacteria. Just 2.6% of virulence genes were shared by all campylobacterial members, whereas 9.4% were unique to H. pylori. The cytotoxin-associated genes (cags) seemed to be exclusive to H. pylori. Majority of the isolates from Asia and South America were cag2-negative and many antibiotic resistance genes showed isolate-specific patterns of occurrence. Just 15 (8.8%) antibiotic resistance genes, but 103 (66%) virulence genes including 25 cags were proteomically identified in H. pylori. Arcobacterial members showed large variation in the number of antibiotic resistance genes and there was a positive relation with the genome size. Large repository of antibiotic resistance genes in campylobacteria and a unique set of virulence genes might have important implications in shaping the course of virulence and antibiotic resistance in H. pylori.
Collapse
Affiliation(s)
- R Shyama Prasad Rao
- Center for Bioinformatics, NITTE Deemed to be University, Mangaluru, 575018, India.
| | - Sudeep D Ghate
- Center for Bioinformatics, NITTE Deemed to be University, Mangaluru, 575018, India.
| | - Larina Pinto
- Center for Bioinformatics, NITTE Deemed to be University, Mangaluru, 575018, India
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Prashanth Suravajhala
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana, Kerala, 690525, India
| | - Prakash Patil
- Central Research Laboratory, KS Hegde Medical Academy (KSHEMA), NITTE Deemed to be University, Mangaluru, 575018, India
| | - Praveenkumar Shetty
- Central Research Laboratory, KS Hegde Medical Academy (KSHEMA), NITTE Deemed to be University, Mangaluru, 575018, India
- Department of Biochemistry, KS Hegde Medical Academy (KSHEMA), NITTE Deemed to be University, Mangaluru, 575018, India
| | - Nagib Ahsan
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
- Mass Spectrometry, Proteomics and Metabolomics Core Facility, Stephenson Life Sciences Research Center, The University of Oklahoma, Norman, OK, USA
| |
Collapse
|
30
|
Karataş L, Tatar Z, James EA, Colakogullari M. Investigating Associations between HLA-DR Genotype, H. pylori Infection, and Anti-CagA IgA Seropositivity in a Turkish Gastritis Cohort. Genes (Basel) 2024; 15:339. [PMID: 38540398 PMCID: PMC10969812 DOI: 10.3390/genes15030339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 06/14/2024] Open
Abstract
Helicobacter pylori (H. pylori) is associated with gastric inflammation and mucosal antibodies against its cytotoxin-associated gene A (CagA) are protective. Vaccine-elicited immunity against H. pylori requires MHC class II expression, indicating that CD4+ T cells are protective. We hypothesized that the HLA-DR genotypes in human populations include protective alleles that more effectively bind immunogenic CagA peptide fragments and susceptible alleles with an impaired capacity to present CagA peptides. We recruited patients (n = 170) admitted for gastroendoscopy procedures and performed high-resolution HLA-DRB1 typing. Serum anti-CagA IgA levels were analyzed by ELISA (23.2% positive) and H. pylori classified as positive or negative in gastric mucosal tissue slides (72.9% positive). Pearson Chi-square analysis revealed that H. pylori infection was significantly increased in DRB1*11:04-positive individuals (p = 0.027). Anti-CagA IgA was significantly decreased in DRB1*11:04 positive individuals (p = 0.041). In contrast, anti-CagA IgA was significantly increased in DRB1*03:01 positive individuals (p = 0.030). For these HLA-DRB1 alleles of interest, we utilized two in silico prediction methods to compare their capacity to present CagA peptides. Both methods predicted increased numbers of peptides for DRB1*03:01 than DRB1*11:04. In addition, both alleles preferred distinctively different CagA 15mer peptide sequences for high affinity binding. These observations suggest that DRB1*11:04 is a susceptible genotype with impaired CagA immunity, whereas DRB1*03:01 is a protective genotype that promotes enhanced CagA immunity.
Collapse
Affiliation(s)
- Lokman Karataş
- Health Sciences Institution, Istanbul Medipol University, Istanbul 34815, Turkey;
- HLA Laboratory, Istinye University, Istanbul 34010, Turkey
| | - Zeynep Tatar
- Patomer Pathology Laboratory, Fatih, Istanbul 34096, Turkey;
| | - Eddie A. James
- Translational Research Program, Benaroya Research Institute, Seattle, WA 98101, USA
| | - Mukaddes Colakogullari
- Clinical Biochemistry Department, Faculty of Medicine, Izmir Democracy University, Izmir 35140, Turkey
| |
Collapse
|
31
|
Maciel DN, Silva LLDL, Assunção LDP, Rasmussen LT, Barbosa MS. HELICOBACTER PYLORI OIPA VIRULENCE GENE AS A MOLECULAR MARKER OF SEVERE GASTROPATHIES. ARQUIVOS DE GASTROENTEROLOGIA 2024; 61:e23110. [PMID: 38451664 DOI: 10.1590/s0004-2803.24612023-110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/02/2023] [Indexed: 03/08/2024]
Abstract
BACKGROUND Helicobacter pylori is an etiologic agent of gastroduodenal diseases. The microorganism, considered a type I carcinogen, affects about 50% of the global population. H. pylori virulence factors are determinant for the clinical outcome of the infection. The outer inflammatory protein A (oipA) gene encodes an outer membrane adhesin and is related to severe gastropathies, such as gastric cancer. OBJECTIVE The aim of this study was to evaluate the association of the oipA gene with the severity of gastroduodenal diseases in dyspeptic patients in region Central Brazil. METHODS The polymerase chain reaction (PCR) was used to determine the presence of H. pylori. Samples positives were used for molecular screening of the oipA gene. Gastropathies were categorized as non-severe and severe diseases. RESULTS Approximately 68% of patients had H. pylori and 36% were infected with H. pylori oipA+ strains. Infection was significantly associated in patients aged over 44 years (P=0.004). However, there was no association between oipA and patients' age (P=0.89). Approximately 46% of patients infected with oipA+ strains had some severe illness. Gastric adenocarcinoma was the most frequent severe gastropathy. The H. pylori oipA genotype was inversely associated with the severity of gastroduodenal diseases (OR=0.247, 95%CI: 0.0804-0.7149 and P=0.007). CONCLUSION The characterization of possible molecular markers will contribute to personalized medicine, impacting the prognosis of patients.
Collapse
|
32
|
Zaman T, Haq A, Ahmad R, Sinha S, Chowdhury K, Parvin S, Imran M, Humayra ZU, Kumar S, Haque M. The Role of Probiotics in the Eradication of Helicobacter pylori and Overall Impact on Management of Peptic Ulcer: A Study Involving Patients Undergoing Triple Therapy in Bangladesh. Cureus 2024; 16:e56283. [PMID: 38495972 PMCID: PMC10944298 DOI: 10.7759/cureus.56283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2024] [Indexed: 03/19/2024] Open
Abstract
Background Helicobacter pylori infection has been identified to cause constantly recurring inflammation, leading to gastrointestinal tract disorders, including carcinoma. The standard triple therapy (STT), used to eradicate H. pylori, includes two antimicrobials and a proton pump inhibitor for two weeks. Other drug regimens have also been developed since H. pylori exhibits antimicrobial resistance. These regimens, including probiotics, have been shown to lower adverse drug reactions (ADR), improve drug adherence, exert bacteriostatic effect, and reduce inflammation. Objective This study intended to explore probiotic intervention for improving eradication rates and mitigating adverse effects while administrating STT. Methods This prospective study was conducted from May to December, 2021, in the Department of Gastroenterology of Ship International Hospital, Dhaka, Bangladesh, to observe the effects of probiotics inclusion along with STT on H. pylori eradication. A total of 100 patients aged ≥18 years who tested positive for H. pylori were included. The experimental group (n=50) was given STT and probiotics, and the control group (n=50) was given only STT without probiotics for 14 days. Necessary follow-up was done six weeks after treatment. An independent sample t-test, chi-square test, and multiple regression analysis were used for statistical analysis. Result The odds of getting rapid urease test (RUT) negative results from positive were 2.06 times higher (95%CI= 0.95, 3.22, p=0.054) in the experimental group. ADRs were crucially towering in the control group (p=0.045) compared to the probiotics group. The probiotics group had a lower risk of having adverse effects by 0.54 times (95%CI=0.19, 0.84, p=0.032) than the control group. Conclusion Using probiotics and STT together to eradicate H. pylori may lower ADR and improve treatment adherence. It may also help terminate H. pylori infection more effectively. More research is required as H. pylori is very contagious and can ultimately cause life-threatening gastric cancer.
Collapse
Affiliation(s)
- Taslima Zaman
- Department of Gastroenterology, United Hospital Ltd, Dhaka, BGD
| | - Ahsanul Haq
- Department of Biostatistics, RNA Biotech Limited, Dhaka, BGD
| | - Rahnuma Ahmad
- Department of Physiology, Medical College for Women & Hospital, Dhaka, BGD
| | - Susmita Sinha
- Department of Physiology, Khulna City Medical College and Hospital, Khulna, BGD
| | - Kona Chowdhury
- Department of Pediatrics, Gonoshasthaya Samaj Vittik Medical College, Dhaka, BGD
| | - Sultana Parvin
- Department of Medical Gastroenterology, Sheikh Russel National Gastroliver Institute & Hospital, Dhaka, BGD
| | - Mostofa Imran
- Department of Gastroenterology, Ibn Sina Medical College & Hospital, Dhaka, BGD
| | - Zaman U Humayra
- Department of Plastic and Reconstructive Surgery, Ship International Hospital, Dhaka, BGD
| | - Santosh Kumar
- Department of Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Mainul Haque
- Karnavati Scientific Research Center (KSRC), Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
- Unit of Pharmacology and Therapeutics, National Defence University of Malaysia, Kuala Lumpur, MYS
| |
Collapse
|
33
|
Wang X, Dong Y, Zhang H, Zhao Y, Miao T, Mohseni G, Du L, Wang C. DNA methylation drives a new path in gastric cancer early detection: Current impact and prospects. Genes Dis 2024; 11:847-860. [PMID: 37692483 PMCID: PMC10491876 DOI: 10.1016/j.gendis.2023.02.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/24/2023] [Indexed: 03/31/2023] Open
Abstract
Gastric cancer (GC) is one of the most common and deadly cancers worldwide. Early detection offers the best chance for curative treatment and reducing its mortality. However, the optimal population-based early screening for GC remains unmet. Aberrant DNA methylation occurs in the early stage of GC, exhibiting cancer-specific genetic and epigenetic changes, and can be detected in the media such as blood, gastric juice, and feces, constituting a valuable biomarker for cancer early detection. Furthermore, DNA methylation is a stable epigenetic alteration, and many innovative methods have been developed to quantify it rapidly and accurately. Nonetheless, large-scale clinical validation of DNA methylation serving as tumor biomarkers is still lacking, precluding their implementation in clinical practice. In conclusion, after a critical analysis of the recent existing literature, we summarized the evolving roles of DNA methylation during GC occurrence, expounded the newly discovered noninvasive DNA methylation biomarkers for early detection of GC, and discussed its challenges and prospects in clinical applications.
Collapse
Affiliation(s)
- Xinhui Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
| | - Yaqi Dong
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
| | - Hong Zhang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
- Department of Clinical Laboratory, Fuling Hospital, Chongqing University, Chongqing 402774, China
| | - Yinghui Zhao
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
- Suzhou Research Institute of Shandong University, Suzhou, Jiangsu 215123, China
| | - Tianshu Miao
- Department of Biochemistry and Molecular Biology, Shandong University School of Basic Medical Sciences, Jinan, Shandong 250012, China
| | - Ghazal Mohseni
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, Shandong 250033, China
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, Shandong 250033, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, Shandong 250033, China
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, Shandong 250033, China
| |
Collapse
|
34
|
Colakogullari M, Karatas L, Tatar Z. Investigating associations between HLA DQA1 ~ DQB1 haplotypes, H. pylori infection, metaplasia, and anti-CagA IgA seropositivity in a Turkish gastritis cohort. Immunogenetics 2024; 76:1-13. [PMID: 37979046 DOI: 10.1007/s00251-023-01325-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/29/2023] [Indexed: 11/19/2023]
Abstract
Helicobacter pylori was reported as an important cause of gastritis, and gastric ulcers and CagA oncoprotein-producing H. pylori subgroups were blamed to increase the severity of gastritis. Disparities were reported in that the presence of serum anti-CagA IgA was not parallel with CagA-positive H. pylori cohabitation. We hypothesized that the HLA-DQA1 ~ DQB1 haplotypes in human populations include protective haplotypes that more effectively present immunogenic CagA peptides and susceptible haplotypes with an impaired capacity to present CagA peptides. We recruited patients (n = 201) admitted for gastroendoscopy procedures and performed high-resolution HLA-DQA1 and DQB1 typing. Serum anti-CagA IgA levels were analyzed by ELISA (23.0% positive), and H. pylori was classified as positive or negative in gastric mucosal tissue slides (72.6% positive). The HLA DQA1*05:05 allele (29.1%) and HLA DQB1*03:01 allele (32.8%) were found at the highest frequency among gastritis patients of Turkish descent. In HLA DQA1*05:05 ~ DQB1*03:01 double homozygous (7.3%) and heterozygous (40.7%) haplotype carriers, the presence of anti-CagA IgA decreased dramatically, the presence of H. pylori increased, and the presence of metaplasia followed a decreasing trend. The DQ protein encoded by HLA DQA1*05:05-DQ*03:01 showed a low binding affinity to the CagA peptide when binding capacity was analyzed by the NetMHCIIPan 4.0 prediction method. In conclusion, HLA DQA1 ~ DQB1 polymorphisms are crucial as host defense mechanisms against CagA H. pylori since antigen binding capacity plays a crucial role in anti-CagA IgA production.
Collapse
|
35
|
Shuman JHB, Lin AS, Westland MD, Bryant KN, Piazuelo MB, Reyzer ML, Judd AM, McDonald WH, McClain MS, Schey KL, Algood HMS, Cover TL. Remodeling of the gastric environment in Helicobacter pylori-induced atrophic gastritis. mSystems 2024; 9:e0109823. [PMID: 38059647 PMCID: PMC10805037 DOI: 10.1128/msystems.01098-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 12/08/2023] Open
Abstract
Helicobacter pylori colonization of the human stomach is a strong risk factor for gastric cancer. To investigate H. pylori-induced gastric molecular alterations, we used a Mongolian gerbil model of gastric carcinogenesis. Histologic evaluation revealed varying levels of atrophic gastritis (a premalignant condition characterized by parietal and chief cell loss) in H. pylori-infected animals, and transcriptional profiling revealed a loss of markers for these cell types. We then assessed the spatial distribution and relative abundance of proteins in the gastric tissues using imaging mass spectrometry and liquid chromatography with tandem mass spectrometry. We detected striking differences in the protein content of corpus and antrum tissues. Four hundred ninety-two proteins were preferentially localized to the corpus in uninfected animals. The abundance of 91 of these proteins was reduced in H. pylori-infected corpus tissues exhibiting atrophic gastritis compared with infected corpus tissues exhibiting non-atrophic gastritis or uninfected corpus tissues; these included numerous proteins with metabolic functions. Fifty proteins localized to the corpus in uninfected animals were diffusely delocalized throughout the stomach in infected tissues with atrophic gastritis; these included numerous proteins with roles in protein processing. The corresponding alterations were not detected in animals infected with a H. pylori ∆cagT mutant (lacking Cag type IV secretion system activity). These results indicate that H. pylori can cause loss of proteins normally localized to the gastric corpus as well as diffuse delocalization of corpus-specific proteins, resulting in marked changes in the normal gastric molecular partitioning into distinct corpus and antrum regions.IMPORTANCEA normal stomach is organized into distinct regions known as the corpus and antrum, which have different functions, cell types, and gland architectures. Previous studies have primarily used histologic methods to differentiate these regions and detect H. pylori-induced alterations leading to stomach cancer. In this study, we investigated H. pylori-induced gastric molecular alterations in a Mongolian gerbil model of carcinogenesis. We report the detection of numerous proteins that are preferentially localized to the gastric corpus but not the antrum in a normal stomach. We show that stomachs with H. pylori-induced atrophic gastritis (a precancerous condition characterized by the loss of specialized cell types) exhibit marked changes in the abundance and localization of proteins normally localized to the gastric corpus. These results provide new insights into H. pylori-induced gastric molecular alterations that are associated with the development of stomach cancer.
Collapse
Affiliation(s)
- Jennifer H. B. Shuman
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Aung Soe Lin
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mandy D. Westland
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kaeli N. Bryant
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - M. Blanca Piazuelo
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Michelle L. Reyzer
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Audra M. Judd
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - W. Hayes McDonald
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Mark S. McClain
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kevin L. Schey
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Holly M. S. Algood
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Timothy L. Cover
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
36
|
Yamaguchi N, Sakaguchi T, Taira M, Fukuda D, Ohnita K, Hirayama T, Yashima K, Isomoto H, Tsukamoto K. Autophagy-Related Gene ATG7 Polymorphism Could Potentially Serve as a Biomarker of the Progression of Atrophic Gastritis. J Clin Med 2024; 13:629. [PMID: 38276136 PMCID: PMC10817077 DOI: 10.3390/jcm13020629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/09/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Cytotoxin-associated gene A (CagA) is an oncoprotein that H. pylori injects into the host's gastric epithelial cells and that induces proinflammatory cytokines, such as interleukin (IL)-18 and IL-1β. As a result, it leads to atrophic gastritis (AG), a precancerous lesion of gastric cancer. On the other hand, host cells degrade CagA using autophagy systems. However, few studies exist about the single nucleotide polymorphisms (SNPs) in MAP1LC3A, MAP1LC3B, ATG4A, ATG4B, ATG4C, ATG7, and ATG13, which belong to the autophagy-related genes concerning AG. This study aimed to detect biomarkers associated with AG. Herein, H. pylori-positive subjects (n = 200) were divided into the AG (n = 94) and non-AG (n = 106) groups. Thirty tag SNPs were selected from the above seven candidate genes. The SNP frequency between the two groups was analyzed. The frequency of the C/T or T/T genotype at rs4683787 of ATG7 was significantly lower in the AG group than in the non-AG group (p = 0.034, odds ratio = 0.535). Based on multivariate analysis, the C/C genotype of rs4684787 and age were independently associated with gastric mucosal atrophy. This finding helps stratify the patients needing timely endoscopic screening or early eradication of H. pylori.
Collapse
Affiliation(s)
- Naoyuki Yamaguchi
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biological Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Takuki Sakaguchi
- Department of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago 683-8504, Japan
| | - Miki Taira
- Department of Pharmacotherapeutics, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Daisuke Fukuda
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biological Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
- Department of Surgical Oncology, Nagasaki University Graduate School of Biological Science, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
- Fukuda Yutaka Clinic, 3-5 Hamaguchi-machi, Nagasaki 852-8107, Japan
| | - Ken Ohnita
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biological Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
- Shunkaikai Inoue Hospital, 6-12 Takara-machi, Nagasaki 850-0045, Japan
| | - Tatsuro Hirayama
- Department of Pharmacotherapeutics, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Kazuo Yashima
- Department of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago 683-8504, Japan
| | - Hajime Isomoto
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biological Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
- Department of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago 683-8504, Japan
| | - Kazuhiro Tsukamoto
- Department of Pharmacotherapeutics, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| |
Collapse
|
37
|
Ali A, AlHussaini KI. Helicobacter pylori: A Contemporary Perspective on Pathogenesis, Diagnosis and Treatment Strategies. Microorganisms 2024; 12:222. [PMID: 38276207 PMCID: PMC10818838 DOI: 10.3390/microorganisms12010222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/07/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Helicobacter pylori (H. pylori) is a Gram-negative bacterium that colonizes the gastric mucosa and is associated with various gastrointestinal disorders. H. pylori is a pervasive pathogen, infecting nearly 50% of the world's population, and presents a substantial concern due to its link with gastric cancer, ranking as the third most common cause of global cancer-related mortality. This review article provides an updated and comprehensive overview of the current understanding of H. pylori infection, focusing on its pathogenesis, diagnosis, and treatment strategies. The intricate mechanisms underlying its pathogenesis, including the virulence factors and host interactions, are discussed in detail. The diagnostic methods, ranging from the traditional techniques to the advanced molecular approaches, are explored, highlighting their strengths and limitations. The evolving landscape of treatment strategies, including antibiotic regimens and emerging therapeutic approaches, is thoroughly examined. Through a critical synthesis of the recent research findings, this article offers valuable insights into the contemporary knowledge of Helicobacter pylori infection, guiding both clinicians and researchers toward effective management and future directions in combating this global health challenge.
Collapse
Affiliation(s)
- Asghar Ali
- Clinical Biochemistry Laboratory, Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Khalid I. AlHussaini
- Department of Internal Medicine, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 4233-13317, Saudi Arabia
| |
Collapse
|
38
|
Chen J, Yin D, Wong HYH, Duan X, Yu KHO, Ho JWK. Vulture: cloud-enabled scalable mining of microbial reads in public scRNA-seq data. Gigascience 2024; 13:giad117. [PMID: 38195165 PMCID: PMC10776309 DOI: 10.1093/gigascience/giad117] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/17/2023] [Accepted: 12/16/2023] [Indexed: 01/11/2024] Open
Abstract
The rapidly growing collection of public single-cell sequencing data has become a valuable resource for molecular, cellular, and microbial discovery. Previous studies mostly overlooked detecting pathogens in human single-cell sequencing data. Moreover, existing bioinformatics tools lack the scalability to deal with big public data. We introduce Vulture, a scalable cloud-based pipeline that performs microbial calling for single-cell RNA sequencing (scRNA-seq) data, enabling meta-analysis of host-microbial studies from the public domain. In our benchmarking experiments, Vulture is 66% to 88% faster than local tools (PathogenTrack and Venus) and 41% faster than the state-of-the-art cloud-based tool Cumulus, while achieving comparable microbial read identification. In terms of the cost on cloud computing systems, Vulture also shows a cost reduction of 83% ($12 vs. ${\$}$70). We applied Vulture to 2 coronavirus disease 2019, 3 hepatocellular carcinoma (HCC), and 2 gastric cancer human patient cohorts with public sequencing reads data from scRNA-seq experiments and discovered cell type-specific enrichment of severe acute respiratory syndrome coronavirus 2, hepatitis B virus (HBV), and Helicobacter pylori-positive cells, respectively. In the HCC analysis, all cohorts showed hepatocyte-only enrichment of HBV, with cell subtype-associated HBV enrichment based on inferred copy number variations. In summary, Vulture presents a scalable and economical framework to mine unknown host-microbial interactions from large-scale public scRNA-seq data. Vulture is available via an open-source license at https://github.com/holab-hku/Vulture.
Collapse
Affiliation(s)
- Junyi Chen
- Laboratory of Data Discovery for Health Limited (D4H), Hong Kong Science Park, Hong Kong SAR, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Danqing Yin
- Laboratory of Data Discovery for Health Limited (D4H), Hong Kong Science Park, Hong Kong SAR, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Harris Y H Wong
- Laboratory of Data Discovery for Health Limited (D4H), Hong Kong Science Park, Hong Kong SAR, China
| | - Xin Duan
- Laboratory of Data Discovery for Health Limited (D4H), Hong Kong Science Park, Hong Kong SAR, China
| | - Ken H O Yu
- Laboratory of Data Discovery for Health Limited (D4H), Hong Kong Science Park, Hong Kong SAR, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Joshua W K Ho
- Laboratory of Data Discovery for Health Limited (D4H), Hong Kong Science Park, Hong Kong SAR, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
39
|
Parida S, Jena M, Behera AK, Mandal AK, Nayak R, Patra S. A Novel Phytocolorant, Neoxanthin, as a Potent Chemopreventive: Current Progress and Future Prospects. Curr Med Chem 2024; 31:5149-5164. [PMID: 38173069 DOI: 10.2174/0109298673273106231208102105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/18/2023] [Accepted: 11/10/2023] [Indexed: 01/05/2024]
Abstract
Cancer is a general term for a group of similar diseases. It is a combined process that results from an accumulation of abnormalities at different biological levels, which involves changes at both genetic and biochemical levels in the cells. Several modifiable risk factors for each type of cancer include heredity, age, and institutional screening guidelines, including colonoscopy, mammograms, prostate-specific antigen testing, etc., which an individual cannot modify. Although a wide range of resources is available for cancer drugs and developmental studies, the cases are supposed to increase by about 70% in the next two decades due to environmental factors commonly driven by the way of living. The drugs used in cancer prevention are not entirely safe, have potential side effects and are generally unsuitable owing to substantial monetary costs. Interventions during the initiation and progression of cancer can prevent, diminish, or stop the transformation of healthy cells on the way to malignancy. Diet modifications are one of the most promising lifestyle changes that can decrease the threat of cancer development by nearly 40%. Neoxanthin is a xanthophyll pigment found in many microalgae and macroalgae, having significant anti-cancer, antioxidant and chemo-preventive activity. In this review, we have focused on the anti-cancer activity of neoxanthin on different cell lines and its cancer-preventive activity concerning obesity and oxidative stress. In addition to this, the preclinical studies and future perspectives are also discussed in this review.
Collapse
Affiliation(s)
- Sudhamayee Parida
- Algal Biotechnology and Molecular Systematics Laboratory, Post Graduate Department of Botany, Berhampur University, Berhampur, 760007, India
| | - Mrutyunjay Jena
- Algal Biotechnology and Molecular Systematics Laboratory, Post Graduate Department of Botany, Berhampur University, Berhampur, 760007, India
| | - Akshaya Kumar Behera
- Algal Biotechnology and Molecular Systematics Laboratory, Post Graduate Department of Botany, Berhampur University, Berhampur, 760007, India
| | - Amiya Kumar Mandal
- Algal Biotechnology and Molecular Systematics Laboratory, Post Graduate Department of Botany, Berhampur University, Berhampur, 760007, India
| | - Rabindra Nayak
- Algal Biotechnology and Molecular Systematics Laboratory, Post Graduate Department of Botany, Berhampur University, Berhampur, 760007, India
| | - Srimanta Patra
- Department of Life Science, NIT Rourkela, Rourkela, India
| |
Collapse
|
40
|
OKAMOTO M, MIURA A, ITO R, KAMADA T, MIZUKAMI Y, KAWAMOTO K. G-protein-coupled estrogen receptor prevents nuclear factor-kappa B promoter activation by Helicobacter pylori cytotoxin-associated gene A in gastric cancer cells. J Vet Med Sci 2023; 85:1348-1354. [PMID: 37952974 PMCID: PMC10788165 DOI: 10.1292/jvms.23-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 10/20/2023] [Indexed: 11/14/2023] Open
Abstract
Helicobacter pylori is a well-known pathogen that causes chronic gastritis, leading to the development of gastric cancer. This bacterium has also been detected in dogs, and symptoms similar to those in humans have been reported. The cytotoxin-associated gene A (CagA) is involved in pathogenesis through aberrant activation of host signal transduction, including the nuclear factor-kappa B (NF-κB) pathway. We have previously shown the anti-inflammatory effect of the G-protein-coupled estrogen receptor (GPER) via inhibiting of NF-κB activation in several cells. Therefore, here, we investigated the effect of GPER on CagA-mediated NF-κB promoter activity and showed that CagA overexpression in gastric cancer cells activated the NF-κB reporter and induced interleukin 8 (il-8) expression, both of which were inhibited by the GPER agonist.
Collapse
Affiliation(s)
- Mariko OKAMOTO
- Laboratory of Immunology and Infection Control, Department
of Veterinary Medicine, School of Veterinary Medicine, Azabu University, Kanagawa,
Japan
| | - Atsushi MIURA
- Laboratory of Immunology and Infection Control, Department
of Veterinary Medicine, School of Veterinary Medicine, Azabu University, Kanagawa,
Japan
| | - Ryota ITO
- Laboratory of Immunology and Infection Control, Department
of Veterinary Medicine, School of Veterinary Medicine, Azabu University, Kanagawa,
Japan
| | - Toshiki KAMADA
- Laboratory of Immunology and Infection Control, Department
of Veterinary Medicine, School of Veterinary Medicine, Azabu University, Kanagawa,
Japan
| | - Yoichi MIZUKAMI
- Institute of Gene Research, Yamaguchi University Science
Research Center, Yamaguchi, Japan
| | - Keiko KAWAMOTO
- Laboratory of Immunology and Infection Control, Department
of Veterinary Medicine, School of Veterinary Medicine, Azabu University, Kanagawa,
Japan
| |
Collapse
|
41
|
Candelli M, Franza L, Cianci R, Pignataro G, Merra G, Piccioni A, Ojetti V, Gasbarrini A, Franceschi F. The Interplay between Helicobacter pylori and Gut Microbiota in Non-Gastrointestinal Disorders: A Special Focus on Atherosclerosis. Int J Mol Sci 2023; 24:17520. [PMID: 38139349 PMCID: PMC10744166 DOI: 10.3390/ijms242417520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
The discovery of Helicobacter pylori (H. pylori) in the early 1980s by Nobel Prize winners in medicine Robin Warren and Barry Marshall led to a revolution in physiopathology and consequently in the treatment of peptic ulcer disease. Subsequently, H. pylori has also been linked to non-gastrointestinal diseases, such as autoimmune thrombocytopenia, acne rosacea, and Raynaud's syndrome. In addition, several studies have shown an association with cardiovascular disease and atherosclerosis. Our narrative review aims to investigate the connection between H. pylori infection, gut microbiota, and extra-gastric diseases, with a particular emphasis on atherosclerosis. We conducted an extensive search on PubMed, Google Scholar, and Scopus, using the keywords "H. pylori", "dysbiosis", "microbiota", "atherosclerosis", "cardiovascular disease" in the last ten years. Atherosclerosis is a complex condition in which the arteries thicken or harden due to plaque deposits in the inner lining of an artery and is associated with several cardiovascular diseases. Recent research has highlighted the role of the microbiota in the pathogenesis of this group of diseases. H. pylori is able to both directly influence the onset of atherosclerosis and negatively modulate the microbiota. H. pylori is an important factor in promoting atherosclerosis. Progress is being made in understanding the underlying mechanisms, which could open the way to interesting new therapeutic perspectives.
Collapse
Affiliation(s)
- Marcello Candelli
- Emergency, Anesthesiological and Reanimation Sciences Department, Fondazione Policlinico Universitario A. Gemelli—IRCCS of Rome, 00168 Rome, Italy; (L.F.); (G.P.); (A.P.); (V.O.); (F.F.)
| | - Laura Franza
- Emergency, Anesthesiological and Reanimation Sciences Department, Fondazione Policlinico Universitario A. Gemelli—IRCCS of Rome, 00168 Rome, Italy; (L.F.); (G.P.); (A.P.); (V.O.); (F.F.)
| | - Rossella Cianci
- Department of Translational Medicine and Surgery, Catholic University, Fondazione Policlinico Universitario A. Gemelli—IRCCS, 00168 Rome, Italy;
| | - Giulia Pignataro
- Emergency, Anesthesiological and Reanimation Sciences Department, Fondazione Policlinico Universitario A. Gemelli—IRCCS of Rome, 00168 Rome, Italy; (L.F.); (G.P.); (A.P.); (V.O.); (F.F.)
| | - Giuseppe Merra
- Biomedicine and Prevention Department, Section of Clinical Nutrition and Nutrigenomics, Facoltà di Medicina e Chirurgia, Università degli Studi di Roma Tor Vergata, 00133 Rome, Italy;
| | - Andrea Piccioni
- Emergency, Anesthesiological and Reanimation Sciences Department, Fondazione Policlinico Universitario A. Gemelli—IRCCS of Rome, 00168 Rome, Italy; (L.F.); (G.P.); (A.P.); (V.O.); (F.F.)
| | - Veronica Ojetti
- Emergency, Anesthesiological and Reanimation Sciences Department, Fondazione Policlinico Universitario A. Gemelli—IRCCS of Rome, 00168 Rome, Italy; (L.F.); (G.P.); (A.P.); (V.O.); (F.F.)
| | - Antonio Gasbarrini
- Medical, Abdominal Surgery and Endocrine-Metabolic Science Department, Fondazione Policlinico Universitario A. Gemelli—IRCCS of Rome, 00168 Rome, Italy;
| | - Francesco Franceschi
- Emergency, Anesthesiological and Reanimation Sciences Department, Fondazione Policlinico Universitario A. Gemelli—IRCCS of Rome, 00168 Rome, Italy; (L.F.); (G.P.); (A.P.); (V.O.); (F.F.)
| |
Collapse
|
42
|
Li D, Shah SC, Corley DA. Reply. Gastroenterology 2023; 165:1585-1586. [PMID: 37776908 DOI: 10.1053/j.gastro.2023.09.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Affiliation(s)
- Dan Li
- Department of Gastroenterology, The Permanente Medical Group, Kaiser Permanente Northern California, Santa Clara, California; Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Shailja C Shah
- Division of Gastroenterology, University of California, San Diego; Gastroenterology Section, VA San Diego Healthcare System, San Diego, California
| | - Douglas A Corley
- Division of Research, Kaiser Permanente Northern California, Oakland, California; Department of Gastroenterology, The Permanente Medical Group, Kaiser Permanente Northern California, San Francisco, California
| |
Collapse
|
43
|
Thai TD, Chuenchom C, Donsa W, Faksri K, Sripa B, Edwards SW, Salao K. Helicobacter pylori extract induces purified neutrophils to produce reactive oxygen species only in the presence of plasma. Biomed Rep 2023; 19:89. [PMID: 37901879 PMCID: PMC10603375 DOI: 10.3892/br.2023.1671] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/04/2023] [Indexed: 10/31/2023] Open
Abstract
H. pylori is a bacterial pathogen infecting over half of the world's population and induces several gastric and extra-gastric diseases through its various virulence factors, especially cagA. These factors may be released from the bacteria during interactions with host immune cells. Neutrophils play key roles in innate immunity, and their activity is regulated by plasma factors, which can alter how these cells may interact with pathogens. The aim of the present study was to determine whether purified neutrophils could produce reactive oxygen species (ROS), one of the key functions of their anti-microbial functions, in response to extracts of cagA+ and cagA- H. pylori. Extracts from either cagA+ or cagA- H. pylori were co-cultured with human neutrophils in the presence or absence of plasma, and the neutrophil ROS production was measured. In the absence of plasma, extracts from cagA+ and cagA- H. pylori did not induce neutrophil ROS production, whereas in the presence of plasma, extracts from both cagA+ and cagA- H. pylori-induced ROS production. Furthermore, when peripheral blood mononuclear cells (PBMCs) were added to the purified neutrophils in the absence of plasma, there was no neutrophil ROS production after challenging with extracts from either cagA+ or cagA- H. pylori. Thus, it is suggested that plasma contains immunological components that change the responsiveness of neutrophils, such that when neutrophils encounter the bacterial antigens in H. pylori extracts, they become activated and produce ROS. This study also revealed a potential novel immunopathogenic pathway by which cagA activation of neutrophils contributed to inflammatory damage.
Collapse
Affiliation(s)
- Tran Duong Thai
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chalida Chuenchom
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wachiraporn Donsa
- World Health Organization Collaborating Centre for Research and Control of Opisthorchiasis, Tropical Disease Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Kiatichai Faksri
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Banchob Sripa
- World Health Organization Collaborating Centre for Research and Control of Opisthorchiasis, Tropical Disease Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Steven W. Edwards
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZX, United Kingdom
| | - Kanin Salao
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
44
|
Lemos FFB, Freire de Melo F. Interplay of homologous-recombination genes and Helicobacter pylori in gastric cancer susceptibility. Transl Cancer Res 2023; 12:2984-2988. [PMID: 38130304 PMCID: PMC10731346 DOI: 10.21037/tcr-23-1570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/18/2023] [Indexed: 12/23/2023]
|
45
|
Tandoro Y, Chen BK, Ali A, Wang CK. Review of Phytochemical Potency as a Natural Anti- Helicobacter pylori and Neuroprotective Agent. Molecules 2023; 28:7150. [PMID: 37894629 PMCID: PMC10609179 DOI: 10.3390/molecules28207150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Phytochemicals are plant secondary metabolites that show health benefits for humans due to their bioactivity. There is a huge variety of phytochemicals that have already been identified, and these compounds can act as antimicrobial and neuroprotection agents. Due to their anti-microbial activity and neuroprotection, several phytochemicals might have the potency to be used as natural therapeutic agents, especially for Helicobacter pylori infection and neurodegenerative disease, which have become a global health concern nowadays. According to previous research, there are some connections between H. pylori infection and neurodegenerative diseases, especially Alzheimer's disease. Hence, this comprehensive review examines different kinds of phytochemicals from natural sources as potential therapeutic agents to reduce H. pylori infection and improve neurodegenerative disease. An additional large-scale study is needed to establish the connection between H. pylori infection and neurodegenerative disease and how phytochemicals could improve this condition.
Collapse
Affiliation(s)
- Yohanes Tandoro
- Department of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung 40201, Taiwan; (Y.T.); (B.-K.C.); (A.A.)
- Faculty of Agricultural Technology, Widya Mandala Catholic University Surabaya, Surabaya 60265, Indonesia
| | - Bo-Kai Chen
- Department of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung 40201, Taiwan; (Y.T.); (B.-K.C.); (A.A.)
| | - Asif Ali
- Department of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung 40201, Taiwan; (Y.T.); (B.-K.C.); (A.A.)
| | - Chin-Kun Wang
- Department of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung 40201, Taiwan; (Y.T.); (B.-K.C.); (A.A.)
| |
Collapse
|
46
|
Sun J, Chen F, Wu G. Potential effects of gut microbiota on host cancers: focus on immunity, DNA damage, cellular pathways, and anticancer therapy. THE ISME JOURNAL 2023; 17:1535-1551. [PMID: 37553473 PMCID: PMC10504269 DOI: 10.1038/s41396-023-01483-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 08/10/2023]
Abstract
The symbiotic bacteria that live in the human gut and the metabolites they produce have long influenced local and systemic physiological and pathological processes of the host. The gut microbiota are increasingly being recognized for its impact on a range of human diseases, including cancer, it may play a key role in the occurrence, progression, treatment, and prognosis of many types of cancer. Understanding the functional role of the gut microbiota in cancer is crucial for the development of the era of personalized medicine. Here, we review recent advances in research and summarize the important associations and clear experimental evidence for the role of the gut microbiota in a variety of human cancers, focus on the application and possible challenges associated with the gut microbiota in antitumor therapy. In conclusion, our research demonstrated the multifaceted mechanisms of gut microbiota affecting human cancer and provides directions and ideas for future clinical research.
Collapse
Affiliation(s)
- Jiaao Sun
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Feng Chen
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| |
Collapse
|
47
|
Rezaei F, Alebouyeh M, Mirbagheri SZ, Ebrahimi A, Foroushani AR, Bakhtiari R. Transcriptional analysis of Helicobacter pylori cytotoxic-associated gene-pathogenicity island in response to different pH levels and proton pump inhibitor exposure. Indian J Gastroenterol 2023; 42:686-693. [PMID: 37665542 DOI: 10.1007/s12664-023-01422-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 06/21/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Long-term use of proton pump inhibitors (PPIs) can increase the risk of gastric cancer in Helicobacter pylori-infected patients; nevertheless, there is no data about their impact on the pathogenicity of H. pylori. This study aimed at investigating the transcriptional alteration of key gene mediators of cytotoxin-associated gene-pathogenicity island (cag-PAI) among clinical H. pylori isolates in response to omeprazole at different pH levels. METHODS Accordingly, H. pylori isolates with the same virulence genotypes selected from the gastric biopsies of patients and transcriptional alteration in the cag-PAI genes studied in the presence or absence of omeprazole (2 mg/mL) at pH 2.0, 4.0 and 7.0 after 30 and 90 minutes of the treatment. Relative changes in the transcriptional levels were recorded in each assay, separately. RESULTS Of 18 H. pylori isolates, the cag-PAI empty site was detected in four strains, while the presence of cagA, cagL and cagY was characterized in 77.7%, 83.3% and 83.3% of the cag-PAI-positive strains, respectively. Transcriptional analysis of the selected strains showed up-regulation of cagA and cagL, mainly at pH 2.0 and 4.0 after 30 and 90-minute exposure. A diversity in the expression levels of cag-PAI genes was seen among the strains at the extent and time of induction. CONCLUSION Our results showed that omeprazole could increase the expression of H. pylori cagA and cagL at acidic pH. Heterogeneity among the strains probably has an impact on the extent of their interplay with PPIs. Further studies are needed to establish this correlation.
Collapse
Affiliation(s)
- Fatemeh Rezaei
- Department of Pathobiology, School of Public Health and Institute Health Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Alebouyeh
- Pediatric Infections Research Centre, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyedeh Zohre Mirbagheri
- Department of Pathobiology, School of Public Health and Institute Health Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ebrahimi
- Department of Pathobiology, School of Public Health and Institute Health Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Rahimi Foroushani
- Department of Epidemiology and Biostatistics, School of Public Health and Institute Health Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Ronak Bakhtiari
- Department of Pathobiology, School of Public Health and Institute Health Research, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
48
|
Yamaguchi N, Sakaguchi T, Isomoto H, Inamine T, Ueda H, Fukuda D, Ohnita K, Kanda T, Kurumi H, Matsushima K, Hirayama T, Yashima K, Tsukamoto K. ATG16L1 and ATG12 Gene Polymorphisms Are Involved in the Progression of Atrophic Gastritis. J Clin Med 2023; 12:5384. [PMID: 37629426 PMCID: PMC10455120 DOI: 10.3390/jcm12165384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection causes a progression to atrophic gastritis and results in gastric cancer. Cytotoxin-associated gene A (CagA), a major virulence factor of H. pylori, is injected into gastric epithelial cells using the type IV secretion system. On the other hand, gastric epithelial cells degrade CagA using an autophagy system, which is strictly regulated by the autophagy-related (ATG) genes. This study aimed to identify SNPs in ATG5, ATG10, ATG12, and ATG16L1 associated with gastric mucosal atrophy (GMA). Here, two-hundred H. pylori-positive participants without gastric cancer were included. The degree of GMA was evaluated via the pepsinogen method. Twenty-five SNPs located in the four candidate genes were selected as tag SNPs. The frequency of each SNP between the GMA and the non-GMA group was evaluated. The rs6431655, rs6431659, and rs4663136 in ATG16L1 and rs26537 in ATG12 were independently associated with GMA. Of these four SNPs, the G/G genotype of rs6431659 in ATG16L1 has the highest odd ratio (Odds ratio = 3.835, 95% confidence intervals = 1.337-1.005, p = 0.008). Further functional analyses and prospective analyses with a larger sample size are required.
Collapse
Affiliation(s)
- Naoyuki Yamaguchi
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biological Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Takuki Sakaguchi
- Department of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago 683-8504, Japan
| | - Hajime Isomoto
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biological Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
- Department of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago 683-8504, Japan
| | - Tatsuo Inamine
- Department of Pharmacotherapeutics, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Haruka Ueda
- Department of Pharmacotherapeutics, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Daisuke Fukuda
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biological Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
- Department of Surgical Oncology, Nagasaki University Graduate School of Biological Science, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
- Fukuda Yutaka Clinic, 3-5 Hamaguchi-machi, Nagasaki 852-8107, Japan
| | - Ken Ohnita
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biological Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
- Shunkaikai Inoue Hospital, 6-12 Takara-machi, Nagasaki 850-0045, Japan
| | - Tsutomu Kanda
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biological Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
- Department of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago 683-8504, Japan
| | - Hiroki Kurumi
- Department of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago 683-8504, Japan
| | - Kayoko Matsushima
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biological Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Tatsuro Hirayama
- Department of Pharmacotherapeutics, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Kazuo Yashima
- Department of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago 683-8504, Japan
| | - Kazuhiro Tsukamoto
- Department of Pharmacotherapeutics, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| |
Collapse
|
49
|
Feilstrecker Balani G, dos Santos Cortez M, Picasky da Silveira Freitas JE, Freire de Melo F, Zarpelon-Schutz AC, Teixeira KN. Immune response modulation in inflammatory bowel diseases by Helicobacter pylori infection. World J Gastroenterol 2023; 29:4604-4615. [PMID: 37662864 PMCID: PMC10472898 DOI: 10.3748/wjg.v29.i30.4604] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/01/2023] [Accepted: 07/24/2023] [Indexed: 08/10/2023] Open
Abstract
Many studies point to an association between Helicobacter pylori (H. pylori) infection and inflammatory bowel diseases (IBD). Although controversial, this association indicates that the presence of the bacterium somehow affects the course of IBD. It appears that H. pylori infection influences IBD through changes in the diversity of the gut microbiota, and hence in local chemical characteristics, and alteration in the pattern of gut immune response. The gut immune response appears to be modulated by H. pylori infection towards a less aggressive inflammatory response and the establishment of a targeted response to tissue repair. Therefore, a T helper 2 (Th2)/macrophage M2 response is stimulated, while the Th1/macrophage M1 response is suppressed. The immunomodulation appears to be associated with intrinsic factors of the bacteria, such as virulence factors - such oncogenic protein cytotoxin-associated antigen A, proteins such H. pylori neutrophil-activating protein, but also with microenvironmental changes that favor permanence of H. pylori in the stomach. These changes include the increase of gastric mucosal pH by urease activity, and suppression of the stomach immune response promoted by evasion mechanisms of the bacterium. Furthermore, there is a causal relationship between H. pylori infection and components of the innate immunity such as the NLR family pyrin domain containing 3 inflammasome that directs IBD toward a better prognosis.
Collapse
Affiliation(s)
| | | | | | - Fabrício Freire de Melo
- Campus Anísio Teixeira, Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Vitória da Conquista 45.029-094, Bahia, Brazil
| | - Ana Carla Zarpelon-Schutz
- Campus Toledo, Universidade Federal do Paraná, Toledo 85.919-899, Paraná, Brazil
- Programa de Pós-graduação em Biotecnologia - Setor Palotina, Universidade Federal do Paraná, Palotina 85.950-000, Paraná, Brazil
| | - Kádima Nayara Teixeira
- Campus Toledo, Universidade Federal do Paraná, Toledo 85.919-899, Paraná, Brazil
- Programa Multicêntrico de Pós-graduação em Bioquímica e Biologia Molecular - Setor Palotina, Universidade Federal do Paraná, Palotina 85.950-000, Paraná, Brazil
| |
Collapse
|
50
|
Yao P, Kartsonaki C, Butt J, Jeske R, de Martel C, Plummer M, Guo Y, Clark S, Walters RG, Chen Y, Avery D, Lv J, Yu C, Wang H, Hill M, Peto R, Li L, Waterboer T, Chen Z, Millwood IY, Yang L. Helicobacter pylori multiplex serology and risk of non-cardia and cardia gastric cancer: a case-cohort study and meta-analysis. Int J Epidemiol 2023; 52:1197-1208. [PMID: 36913255 PMCID: PMC10396410 DOI: 10.1093/ije/dyad007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/19/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND Helicobacter pylori infection is a major cause of non-cardia gastric cancer (NCGC), but uncertainty remains about the associations between sero-positivity to different H. pylori antigens and risk of NCGC and cardia gastric cancer (CGC) in different populations. METHODS A case-cohort study in China included ∼500 each of incident NCGC and CGC cases and ∼2000 subcohort participants. Sero-positivity to 12 H. pylori antigens was measured in baseline plasma samples using a multiplex assay. Hazard ratios (HRs) of NCGC and CGC for each marker were estimated using Cox regression. These were further meta-analysed with studies using same assay. RESULTS In the subcohort, sero-positivity for 12 H. pylori antigens varied from 11.4% (HpaA) to 70.8% (CagA). Overall, 10 antigens showed significant associations with risk of NCGC (adjusted HRs: 1.33 to 4.15), and four antigens with CGC (HRs: 1.50 to 2.34). After simultaneous adjustment for other antigens, positive associations remained significant for NCGC (CagA, HP1564, HP0305) and CGC (CagA, HP1564, HyuA). Compared with CagA sero-positive only individuals, those who were positive for all three antigens had an adjusted HR of 5.59 (95% CI 4.68-6.66) for NCGC and 2.17 (95% CI 1.54-3.05) for CGC. In the meta-analysis of NCGC, the pooled relative risk for CagA was 2.96 (95% CI 2.58-3.41) [Europeans: 5.32 (95% CI 4.05-6.99); Asians: 2.41 (95% CI 2.05-2.83); Pheterogeneity<0.0001]. Similar pronounced population differences were also evident for GroEL, HP1564, HcpC and HP0305. In meta-analyses of CGC, two antigens (CagA, HP1564) were significantly associated with a higher risk in Asians but not Europeans. CONCLUSIONS Sero-positivity to several H. pylori antigens was significantly associated with an increased risk of NCGC and CGC, with varying effects between Asian and European populations.
Collapse
Affiliation(s)
- Pang Yao
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Christiana Kartsonaki
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Julia Butt
- Infections and Cancer Epidemiology Division, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rima Jeske
- Infections and Cancer Epidemiology Division, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Catherine de Martel
- Early Detection, Prevention and Infections Branch, International Agency for Research on Cancer, Lyon, France
| | - Martyn Plummer
- Department of Statistics, University of Warwick, Coventry, UK
| | - Yu Guo
- National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Sarah Clark
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Robin G Walters
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Yiping Chen
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Daniel Avery
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Jun Lv
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Center for Public Health and Epidemic Preparedness & Response, Peking University, Beijing, China
| | - Canqing Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Center for Public Health and Epidemic Preparedness & Response, Peking University, Beijing, China
| | - Hao Wang
- NCDs Prevention and Control Department, Zhejiang CDC, Zhejiang, China
| | - Michael Hill
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Richard Peto
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Center for Public Health and Epidemic Preparedness & Response, Peking University, Beijing, China
| | - Tim Waterboer
- Infections and Cancer Epidemiology Division, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Zhengming Chen
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Iona Y Millwood
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Ling Yang
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| |
Collapse
|