1
|
Xu C, Fang Q, Cui H, Lin Y, Dai C, Li X, Tu P, Cui X. Comparison of the components of fresh Panax notoginseng processed by different methods and their anti-anemia effects on cyclophosphamide-treated mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118148. [PMID: 38583734 DOI: 10.1016/j.jep.2024.118148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The traditional Chinese herb Panax notoginseng (PN) tonifies blood, and its main active ingredient is saponin. PN is processed by different methods, resulting in different compositions and effects. AIM OF THE STUDY To investigate changes in the microstructure and composition of fresh PN processed by different techniques and the anti-anemia effects on tumor-bearing BALB/c mice after chemotherapy with cyclophosphamide (CTX). MATERIALS AND METHODS Fresh PN was processed by hot-air drying (raw PN, RPN), steamed at 120 °C for 5 h (steamed PN, SPN), or fried at 130 °C, 160 °C, or 200 °C for 8 min (fried PN, FPN1, FPN2, or FPN3, respectively); then, the microstructures were compared with 3D optical microscopy, quasi-targeted metabolites were detected by liquid chromatography tandem mass spectrometry (LC‒MS/MS), and saponins were detected by high-performance liquid chromatography (HPLC). An anemic mouse model was established by subcutaneous H22 cell injection and treatment with CTX. The antianemia effects of PN after processing via three methods were investigated by measuring peripheral blood parameters, performing HE staining and measuring cell proliferation via immunofluorescence. RESULTS 3D optical profiling revealed that the surface roughness of the SPN and FPN was greater than that of the other materials. Quasi-targeted metabolomics revealed that SPN and FPN had more differentially abundant metabolites whose abundance increased, while SPN had greater amounts of terpenoids and flavones. Analysis of the composition and content of the targeted saponins revealed that the contents of rare saponins (ginsenoside Rh1, 20(S)-Rg3, 20(R)-Rg3, Rh4, Rk3, Rg5) were greater in the SPN. In animal experiments, the RBC, WBC, HGB and HCT levels in peripheral blood were increased by SPN and FPN. HE staining and immunofluorescence showed that H-SPN and M-FPN promoted bone marrow and spleen cell proliferation. CONCLUSION The microstructure and components of fresh PN differed after processing via different methods. SPN and FPN ameliorated CTX-induced anemia in mice, but the effects of PN processed by these two methods did not differ.
Collapse
Affiliation(s)
- Cuiping Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China; Southwest United Graduate School, Kunming, 650500, China; Yunnan Key Laboratory of Panax Notoginseng, Kunming, 650500, China
| | - Qionglian Fang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China; Yunnan Key Laboratory of Panax Notoginseng, Kunming, 650500, China
| | - Hao Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China; Yunnan Key Laboratory of Panax Notoginseng, Kunming, 650500, China
| | - Yameng Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China; Yunnan Key Laboratory of Panax Notoginseng, Kunming, 650500, China
| | - Chunyan Dai
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China; Yunnan Key Laboratory of Panax Notoginseng, Kunming, 650500, China
| | - Xiaoxun Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China; Yunnan Key Laboratory of Panax Notoginseng, Kunming, 650500, China
| | - Pengfei Tu
- Southwest United Graduate School, Kunming, 650500, China; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Xiuming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China; Southwest United Graduate School, Kunming, 650500, China; Yunnan Key Laboratory of Panax Notoginseng, Kunming, 650500, China; Laboratory of Sustainable Utilization of Panax Notoginseng Resources, State Administration of Traditional Chinese Medicine, Kunming, 650500, China.
| |
Collapse
|
2
|
Jia YS, Yang L, Zhu YQ, Ma CB. Beta-catenin knockdown impairs the viability of ovarian cancer cells by modulating YAP-dependent glycolysis. Am J Transl Res 2023; 15:982-994. [PMID: 36915794 PMCID: PMC10006774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/26/2022] [Indexed: 03/16/2023]
Abstract
OBJECTIVES Ovarian cancer (OC) ranks fifth among the main causes of cancer-related deaths in women worldwide. PCLAF/KIAA0101 and Yes-associated protein (YAP) have been linked to several human malignant cancers, including OC. However, the roles of KIAA0101 and YAP in glycolysis-dependent OC cell proliferation remain unknown. METHODS qRT-PCR and western blot were performed to analyze the KIAA0101 expression. Short hairpin RNA transfection was performed to silence KIAA0101 expression in cells. Cell viability and apoptosis were assayed by colony formation and flow cytometry, respectively. Glucose uptake, lactate production, and glycolytic enzyme expression were assessed to determine the level of cellular glycolysis. Phosphorylation and the nuclear localization of YAP were assessed to determine YAP activation. RESULTS OC tissue and cell lines exhibited higher KIAA0101 expression than the non-cancerous tissues and cells. KIAA0101 silencing reduced the proliferation and increased the apoptosis of both A2780 and ES-2 OC cell lines. Furthermore, KIAA0101 depletion suppressed glycolysis and YAP activation, as evidenced by increased YAP phosphorylation and decreased nuclear localization. Reactivation of YAP was performed by administration of mitochonic acid 5 in both OC cell lines with KIAA0101 knockdown. Glucose uptake, lactate production, phosphofructokinase, pyruvate dehydrogenase beta, pyruvate kinase M2, triosephosphate isomerase 1, glucose-6-phosphate dehydrogenase, enolase 1, and lactate dehydrogenase expression levels in cells recovered after the reactivation of YAP. Additionally, YAP reactivation increased cell proliferation and inhibited apoptosis. CONCLUSIONS This study showed that KIAA0101 could promote glycolysis during nasopharyngeal carcinoma development through YAP signaling activation, suggesting that KIAA0101 could serve as a target for OC treatment.
Collapse
Affiliation(s)
- Yan-Shuang Jia
- Department of Gynecology, Changning Maternity and Infant Health Hospital, East China Normal University Shanghai 200051, China
| | - Ling Yang
- Department of Gynecology, Changning Maternity and Infant Health Hospital, East China Normal University Shanghai 200051, China
| | - Yong-Qing Zhu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University Shanghai 200090, China
| | - Cheng-Bin Ma
- Department of Gynecology, Changning Maternity and Infant Health Hospital, East China Normal University Shanghai 200051, China
| |
Collapse
|
3
|
Liu LJ, Liao JM, Zhu F. Proliferating cell nuclear antigen clamp associated factor, a potential proto-oncogene with increased expression in malignant gastrointestinal tumors. World J Gastrointest Oncol 2021; 13:1425-1439. [PMID: 34721775 PMCID: PMC8529917 DOI: 10.4251/wjgo.v13.i10.1425] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/11/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal (GI) cancers, including malignancies in the gastrointestinal tract and accessory organs of digestion, represent the leading cause of death worldwide due to the poor prognosis of most GI cancers. An investigation into the potential molecular targets of prediction, diagnosis, prognosis, and therapy in GI cancers is urgently required. Proliferating cell nuclear antigen (PCNA) clamp associated factor (PCLAF), which plays an essential role in cell proliferation, apoptosis, and cell cycle regulation by binding to PCNA, is a potential molecular target of GI cancers as it contributes to a series of malignant properties, including tumorigenesis, epithelial-mesenchymal transition, migration, and invasion. Furthermore, PCLAF is an underlying plasma prediction target in colorectal cancer and liver cancer. In addition to GI cancers, PCLAF is also involved in other types of cancers and autoimmune diseases. Several pivotal pathways, including the Rb/E2F pathway, NF-κB pathway, and p53-p21 cascade, are implicated in PCLAF-mediated diseases. PCLAF also contributes to some diseases through dysregulation of the p53 pathway, WNT signal pathway, MEK/ERK pathway, and PI3K/AKT/mTOR signal cascade. This review mainly describes in detail the role of PCLAF in physiological status and GI cancers. The signaling pathways involved in PCLAF are also summarized. Suppression of the interaction of PCLAF/PCNA or the expression of PCLAF might be potential biological therapeutic strategies for GI cancers.
Collapse
Affiliation(s)
- Li-Juan Liu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy & Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Jian-Ming Liao
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy & Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, Hubei Province, China
- Department of Neurosurgery, Renmin Hospital, Wuhan University, Wuhan 430060, Hubei Province, China
| | - Fan Zhu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy & Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, Hubei Province, China
| |
Collapse
|
4
|
Zhang Y, Yao H, Li Y, Yang L, Zhang L, Chen J, Wang Y, Li X. Circular RNA TADA2A promotes proliferation and migration via modulating of miR‑638/KIAA0101 signal in non‑small cell lung cancer. Oncol Rep 2021; 46:201. [PMID: 34296306 PMCID: PMC8317161 DOI: 10.3892/or.2021.8152] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 04/12/2021] [Indexed: 12/24/2022] Open
Abstract
Accumulating evidence indicates that circular (circ)RNAs exhibit complex functions in diverse malignant tumors, including non-small cell lung cancer (NSCLC). The role of the circRNA transcription adaptor 2A (circTADA2A) in NSCLC remains unclear. The expression, function and mechanism of circTADA2A in NSCLC development were investigated in the present study. The results revealed that circTADA2A was upregulated in NSCLC, and that knockdown of circTADA2A inhibited cell proliferation and migration in the NSCLC cell lines A549 and H1299. Functional assays demonstrated that circTADA2A promoted proliferation and migration via interacting with microRNA (miR)-638. Bioinformatics and reverse transcription-quantitative PCR assay confirmed that miR-638 was expressed at low levels in NSCLC. In addition, it was found that miR-638 served a tumor-suppressive role and suppressed proliferation and migration via PCNA clamp associated factor (KIAA0101) inhibition in A549 and H1299 cells. Lastly, it was verified that circTADA2A promoted cell proliferation and migration, at least partially, via miR-638/KIAA0101 signaling in A549 and H1299 cells. In summary, the present study showed that circTADA2A promoted NSCLC cell proliferation and migration via modulating miR-638/KIAA0101 signaling.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Radiation Oncology, Cancer Hospital of China Medical University/Liaoning Cancer Hospital and Institute, Dadong, Shenyang, Liaoning 110042, P.R. China
| | - Hongmin Yao
- Department of Radiation Oncology, Cancer Hospital of China Medical University/Liaoning Cancer Hospital and Institute, Dadong, Shenyang, Liaoning 110042, P.R. China
| | - Ying Li
- Department of Radiation Oncology, Cancer Hospital of China Medical University/Liaoning Cancer Hospital and Institute, Dadong, Shenyang, Liaoning 110042, P.R. China
| | - Lu Yang
- First Department of Gastroenterology, Cancer Hospital of China Medical University/Liaoning Cancer Hospital and Institute, Dadong, Shenyang, Liaoning 110042, P.R. China
| | - Liang Zhang
- Department of Breast Internal Medicine, Cancer Hospital of China Medical University/Liaoning Cancer Hospital and Institute, Dadong, Shenyang, Liaoning 110042, P.R. China
| | - Jinxin Chen
- Department of Gynecological Oncology, Cancer Hospital of China Medical University/Liaoning Cancer Hospital and Institute, Dadong, Shenyang, Liaoning 110042, P.R. China
| | - Yong Wang
- Central Laboratory, Central Hospital Affiliated to Shenyang Medical College, Dadong, Shenyang, Liaoning 110024, P.R. China
| | - Xia Li
- Department of Radiation Oncology, Cancer Hospital of China Medical University/Liaoning Cancer Hospital and Institute, Dadong, Shenyang, Liaoning 110042, P.R. China
| |
Collapse
|
5
|
Liu J, Gao L, Liao J, Yang J, Yuan F, Chen Q. Kiaa0101 serves as a prognostic marker and promotes invasion by regulating p38/snail1 pathway in glioma. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:260. [PMID: 33708887 PMCID: PMC7940917 DOI: 10.21037/atm-20-3219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Background Kiaa0101, a regulator of cell proliferation, is overexpressed in many malignant tumors. However, its role in promoting invasion of glioma is poorly understood. Here, we investigated the effects of Kiaa0101 on glioma invasion and elucidated the underlying mechanisms of action. Methods We analyzed Kiaa0101 expression using datasets from four public databases, namely TCGA, CGGA, Gravendeel and Rembrandt as well as experimentally on 123 glioma samples via western blot (WB), RT-PCR and immunohistochemistry (IHC). We further quantified migration and invasion using wound healing and transwell assays. WB, IHC and immunofluorescence (IF) were used to detect expression of invasion related markers. Moreover, we detected tumor invasion of glioma cells in vivo in 5-week-old Balb/c nude mice. Results Kiaa0101 was upregulated in glioma, relative to non-tumor brain tissues, with the expression increasing with increase in glioma grade. Kiaa0101 mRNA expression was especially enriched in isocitrate dehydrogenase (IDH)1 wild-type glioma. Kaplan-Meier analysis, based on the aforementioned datasets, revealed that high Kiaa0101 levels were significantly associated with worse overall survival. Besides, shRNA-mediated Kiaa0101 knockdown inhibited migration and invasion of glioma cells by reducing snail1 expression both in vitro and in vivo, whereas its upregulation enhanced malignant behaviors of these cells. Furthermore, Kiaa0101 regulated snail1 expression by activating the p38MAPK signaling pathway. Conclusions Our findings strongly indicate that Kiaa0101 is a prognostic biomarker for malignant tumors, and its inhibition may be an effective strategy for treating glioma.
Collapse
Affiliation(s)
- Junhui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lun Gao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jianmin Liao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ji'an Yang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fan'en Yuan
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Zeng Y, He T, Liu J, Li Z, Xie F, Chen C, Xing Y. Bioinformatics analysis of multi-omics data identifying molecular biomarker candidates and epigenetically regulatory targets associated with retinoblastoma. Medicine (Baltimore) 2020; 99:e23314. [PMID: 33217867 PMCID: PMC7676602 DOI: 10.1097/md.0000000000023314] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Retinoblastoma (RB) is the commonest malignant tumor of the infant retina. Besides genetic changes, epigenetic events are also considered to implicate the occurrence of RB. This study aimed to identify significantly altered protein-coding genes, DNA methylation, microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and their molecular functions and pathways associated with RB, and investigate the epigenetically regulatory mechanism of DNA methylation modification and non-coding RNAs on key genes of RB via bioinformatics method.We obtained multi-omics data on protein-coding genes, DNA methylation, miRNAs, and lncRNAs from the Gene Expression Omnibus database. We identified differentially expressed genes (DEGs) using the Limma package in R, discerned their biological functions and pathways using enrichment analysis, and conducted the modular analysis based on protein-protein interaction network to identify hub genes of RB. Survival analyses based on The Cancer Genome Atlas clinical database were performed to analyze prognostic values of key genes of RB. Subsequently, we identified the differentially methylated genes, differentially expressed miRNAs (DEMs) and lncRNAs (DELs), and intersected them with key genes to analyze possible targets of the underlying epigenetic regulatory mechanisms. Finally, the ceRNA network of lncRNAs-miRNAs-mRNAs was constructed using Cytoscape.A total of 193 DEGs, 74 differentially methylated-DEGs (DM-DEGs), 45 DEMs, 5 DELs were identified. The molecular pathways of DEGs were enriched in cell cycle, p53 signaling pathway, and DNA replication. A total of 10 key genes were identified and found significantly associated with poor survival outcome based on survival analyses, including CDK1, BUB1, CCNB2, TOP2A, CCNB1, RRM2, KIF11, KIF20A, NDC80, and TTK. We further found that hub genes MCM6 and KIF14 were differentially methylated, key gene RRM2 was targeted by DEMs, and key genes TTK, RRM2, and CDK1 were indirectly regulated by DELs. Additionally, the ceRNA network with 222 regulatory associations was constructed to visualize the correlations between lncRNAs-miRNAs-mRNAs.This study presents an integrated bioinformatics analysis of genetic and epigenetic changes that may be associated with the development of RB. Findings may yield many new insights into the molecular biomarker candidates and epigenetically regulatory targets of RB.
Collapse
|
7
|
Raimondo F, Pitto M. Prognostic significance of proteomics and multi-omics studies in renal carcinoma. Expert Rev Proteomics 2020; 17:323-334. [PMID: 32428425 DOI: 10.1080/14789450.2020.1772058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Renal carcinoma, and in particular its most common variant, the clear cell subtype, is often diagnosed incidentally through abdominal imaging and frequently, the tumor is discovered at an early stage. However, 20% to 40% of patients undergoing nephrectomy for clinically localized renal cancer, even after accurate histological and clinical classification, will develop metastasis or recurrence, justifying the associated mortality rate. Therefore, even if renal carcinoma is not among the most frequent nor deadly cancers, a better prognostication is needed. AREAS COVERED Recently proteomics or other omics combinations have been applied to both cancer tissues, on the neoplasia itself and surrounding microenvironment, cultured cells, and biological fluids (so-called liquid biopsy) generating a list of prognostic molecular tools that will be reviewed in the present paper. EXPERT OPINION Although promising, none of the approaches listed above has been yet translated in clinics. This is likely due to the peculiar genetic and phenotypic heterogeneity of this cancer, which makes nearly each tumor different from all the others. Attempts to overcome this issue will be also revised. In particular, we will discuss how the application of omics-integrated approaches could provide the determinants of response to the different targeted drugs.
Collapse
Affiliation(s)
- Francesca Raimondo
- Clinical Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano - Bicocca , Vedano al Lambro, Italy
| | - Marina Pitto
- Clinical Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano - Bicocca , Vedano al Lambro, Italy
| |
Collapse
|
8
|
Zhao H, Chen M, Wang J, Cao G, Chen W, Xu J. PCNA-associated factor KIAA0101 transcriptionally induced by ELK1 controls cell proliferation and apoptosis in nasopharyngeal carcinoma: an integrated bioinformatics and experimental study. Aging (Albany NY) 2020; 12:5992-6017. [PMID: 32275642 PMCID: PMC7185143 DOI: 10.18632/aging.102991] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 03/09/2020] [Indexed: 12/16/2022]
Abstract
KIAA0101, previously identified as PCNA-associated factor, is overexpressed among almost majority of human cancers and has emerged as an important regulator of cancer progression; however, its function in human nasopharyngeal carcinoma (NPC) remain unknown. Integrated bioinformatics approaches were employed to determine the KIAA0101 expressions in the NPC samples. Lentiviral vectors carrying KIAA0101 shRNA were constructed and stable transfected cells were validated by qRT-PCR and western blot. Cellular functions were then evaluated by MTT, colony formation, Brdu staining, and flow cytometry. Mechanistic studies were systematically investigated by UCSC Genome Browser, GEO, UALCAN, QIAGEN, PROMO and JASPAR, ChIP, and the cBioPortal, et al. The results showed that KIAA0101 ranked top overexpressed gene lists in GSE6631 dataset. KIAA0101 was highly expressed in NPC tissues and cell lines. Furthermore, knockdown of KIAA0101 significantly inhibited cell proliferation and DNA replication, promoted apoptosis and cell cycle arrest in vitro. Meanwhile, the mechanistic study revealed that MAP kinase phosphorylation-dependent activation of ELK1 may enhance neighbor gene expressions of KIAA0101 and TRIP4 by binding both promotor regions in the NPC cells. Taken together, our findings indicate that overexpression of KIAA0101 activated by MAP kinase phosphorylation-dependent activation of ELK1 may play an important role in NPC progression.
Collapse
Affiliation(s)
- Hu Zhao
- Fujian Provincial Key Laboratory of Transplant Biology, Department of Urology, 900 Hospital of the Joint Logistics Team, Xiamen University, Fuzhou 350025, Fujian, P.R. China.,Office of Science Education, 900 Hospital of the Joint Logistics Team, Xiamen University, Fuzhou 350025, Fujian, P.R. China
| | - Miaosheng Chen
- Pathology Department, Longyan First Hospital Affiliated to Fujian Medical University, Longyan 364000, Fujian, P.R. China
| | - Jie Wang
- Fujian Provincial Key Laboratory of Transplant Biology, Department of Urology, 900 Hospital of the Joint Logistics Team, Xiamen University, Fuzhou 350025, Fujian, P.R. China
| | - Gang Cao
- Department of Oral and Maxillofacial Surgery, Medical School of Nanjing University, Nanjing 210002, Jiangsu, P.R. China
| | - Wei Chen
- Department of Oral and Maxillofacial Surgery, Medical School of Nanjing University, Nanjing 210002, Jiangsu, P.R. China
| | - Jinke Xu
- Department of Oral and Maxillofacial Surgery, Medical School of Nanjing University, Nanjing 210002, Jiangsu, P.R. China
| |
Collapse
|
9
|
Wang L, Zhao H, Zhang L, Luo H, Chen Q, Zuo X. HSP90AA1, ADRB2, TBL1XR1 and HSPB1 are chronic obstructive pulmonary disease-related genes that facilitate squamous cell lung cancer progression. Oncol Lett 2020; 19:2115-2122. [PMID: 32194709 PMCID: PMC7039115 DOI: 10.3892/ol.2020.11318] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 06/12/2019] [Indexed: 12/28/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) and squamous cell lung carcinoma (SCC) are smoking-related diseases. However, the connection between the two is poorly understood. Microarray gene expression profiles in bronchial epithelium from patients with SCC with or without COPD were downloaded from the Gene Expression Omnibus repository. Differentially expressed genes associated with COPD and SCC were identified and visualized using the Advanced Network Merger module in Cytoscape. COPD-associated genes in SCC progression were further identified using the BisoGenet plug-in in Cytoscape. The genetic interaction network was predicted using the Network Analysis function. Heat shock protein 90 α family class A member 1 (HSP90AA1), adrenoceptor β2 (ADRB2), transducin β like 1 X-linked receptor 1 (TBL1XR1) and heat shock protein family B (small) member 1 (HSPB1) were identified to be differentially expressed in SCC and COPD cases. The overall survival rate associated with the gene signatures was investigated using clinical samples from patients with SCC and COPD from the PROGgene database. The results suggest that the pathogenesis of SCC caused by COPD is regulated by HSP90AA1, ADRB2, TBL1XR1 and HSPB1. These genes may serve as potential therapeutic targets for the treatment of patients with COPD-related SCC.
Collapse
Affiliation(s)
- Lijing Wang
- Department of Gerontology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Hongjun Zhao
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Lemeng Zhang
- Department of Thoracic Oncology, Hunan Cancer Hospital, Central South University, Changsha, Hunan 410008, P.R. China.,Department of Thoracic Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Hui Luo
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Qiong Chen
- Department of Gerontology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xiaoxia Zuo
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
10
|
Li Z, Sang M, Tian Z, Liu Z, Lv J, Zhang F, Shan B. Identification of key biomarkers and potential molecular mechanisms in lung cancer by bioinformatics analysis. Oncol Lett 2019; 18:4429-4440. [PMID: 31611952 PMCID: PMC6781723 DOI: 10.3892/ol.2019.10796] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 06/06/2019] [Indexed: 02/07/2023] Open
Abstract
Lung cancer is one of the most widespread neoplasms worldwide. To identify the key biomarkers in its carcinogenesis and development, the mRNA microarray datasets GSE102287, GSE89047, GSE67061 and GSE74706 were obtained from the Gene Expression Omnibus database. GEO2R was used to identify the differentially expressed genes (DEGs) in lung cancer. The Database for Annotation, Visualization and Integrated Discovery was used to analyze the functions and pathways of the DEGs, while the Search Tool for the Retrieval of Interacting Genes/Proteins and Cytoscape were used to obtain the protein-protein interaction (PPI) network. Kaplan Meier curves were used to analyze the effect of the hub genes on overall survival (OS). Module analysis was completed using Molecular Complex Detection in Cytoscape, and one co-expression network of these significant genes was obtained with cBioPortal. A total of 552 DEGs were identified among the four microarray datasets, which were mainly enriched in 'cell proliferation', 'cell growth', 'cell division', 'angiogenesis' and 'mitotic nuclear division'. A PPI network, composed of 44 nodes and 886 edges, was constructed, and its significant module had 16 hub genes in the whole network: Opa interacting protein 5, exonuclease 1, PCNA clamp-associated factor, checkpoint kinase 1, hyaluronan-mediated motility receptor, maternal embryonic leucine zipper kinase, non-SMC condensin I complex subunit G, centromere protein F, BUB1 mitotic checkpoint serine/threonine kinase, cyclin A2, thyroid hormone receptor interactor 13, TPX2 microtubule nucleation factor, nucleolar and spindle associated protein 1, kinesin family member 20A, aurora kinase A and centrosomal protein 55. Survival analysis of these hub genes revealed that they were markedly associated with poor OS in patients with lung cancer. In summary, the hub genes and DEGs delineated in the research may aid the identification of potential targets for diagnostic and therapeutic strategies in lung cancer.
Collapse
Affiliation(s)
- Zhenhua Li
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Meixiang Sang
- Hebei Cancer Research Center, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Ziqiang Tian
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Zhao Liu
- Department of Gastrointestinal Surgery, Peking University Cancer Hospital, Beijing 100142, P.R. China
| | - Jian Lv
- Second Department of Surgery, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Fan Zhang
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Baoen Shan
- Hebei Cancer Research Center, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
11
|
Mitchell D, Chintala S, Fetcko K, Henriquez M, Tewari BN, Ahmed A, Bentley RT, Dey M. Common Molecular Alterations in Canine Oligodendroglioma and Human Malignant Gliomas and Potential Novel Therapeutic Targets. Front Oncol 2019; 9:780. [PMID: 31475119 PMCID: PMC6702544 DOI: 10.3389/fonc.2019.00780] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/31/2019] [Indexed: 01/05/2023] Open
Abstract
Spontaneous canine (Canis lupus) oligodendroglioma (ODG) holds tremendous potential as an immunocompetent large animal model of human malignant gliomas (MG). However, the feasibility of utilizing this model in pre-clinical studies depends on a thorough understanding of the similarities and differences of the molecular pathways associated with gliomas between the two species. We have previously shown that canine ODG has an immune landscape and expression pattern of commonly described oncogenes similar to that of human MG. In the current study, we performed a comprehensive analysis of canine ODG RNAseq data from 4 dogs with ODG and 2 normal controls to identify highly dysregulated genes in canine tumors. We then evaluated the expression of these genes in human MG using Xena Browser, a publicly available database. STRING-database inquiry was used in order to determine the suggested protein associations of these differentially expressed genes as well as the dysregulated pathways commonly enriched by the protein products of these genes in both canine ODG and human MG. Our results revealed that 3,712 (23%) of the 15,895 differentially expressed genes demonstrated significant up- or downregulation (log2-fold change > 2.0). Of the 3,712 altered genes, ~50% were upregulated (n = 1858) and ~50% were downregulated (n = 1854). Most of these genes were also found to have altered expression in human MG. Protein association and pathway analysis revealed common pathways enriched by members of the up- and downregulated gene categories in both species. In summary, we demonstrate that a similar pattern of gene dysregulation characterizes both human MG and canine ODG and provide additional support for the use of the canine model in order to therapeutically target these common genes. The results of such therapeutic targeting in the canine model can serve to more accurately predict the efficacy of anti-glioma therapies in human patients.
Collapse
Affiliation(s)
- Dana Mitchell
- Department of Neurosurgery, Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Sreenivasulu Chintala
- Department of Neurosurgery, Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Kaleigh Fetcko
- Department of Neurosurgery, Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Mario Henriquez
- Department of Neurosurgery, Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Brij N Tewari
- Department of Neurosurgery, Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Atique Ahmed
- Department of Neurological Surgery, Northwestern University, Chicago, IL, United States
| | - R Timothy Bentley
- Department of Veterinary Clinical Sciences, Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| | - Mahua Dey
- Department of Neurosurgery, Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
12
|
Xie ZC, Huang JC, Zhang LJ, Gan BL, Wen DY, Chen G, Li SH, Yan HB. Exploration of the diagnostic value and molecular mechanism of miR‑1 in prostate cancer: A study based on meta‑analyses and bioinformatics. Mol Med Rep 2018; 18:5630-5646. [PMID: 30365107 PMCID: PMC6236292 DOI: 10.3892/mmr.2018.9598] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 09/24/2018] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer (PCa) remains a principal issue to be addressed in male cancer-associated mortality. Therefore, the present study aimed to examine the clinical value and associated molecular mechanism of microRNA (miR)-1 in PCa. A meta-analysis was conducted to evaluate the diagnosis of miR-1 in PCa via Gene Expression Omnibus and ArrayExpress datasets, The Cancer Genome Atlas miR-1 expression data and published literature. It was identified that expression of miR-1 was significantly downregulated in PCa. Decreased miR-1 expression possessed moderate diagnostic value, with area under the curve, sensitivity, specificity and odds ratio values at 0.73, 0.77, 0.57 and 4.60, respectively. Using bioinformatics methods, it was revealed that a number of pathways, including the ‘androgen receptor signaling pathway’, ‘androgen receptor activity’, ‘transcription factor binding’ and ‘protein processing in the endoplasmic reticulum’, were important in PCa. A total of seven hub genes, including phosphoribosylaminoimidazole carboxylase and phosphoribosylaminoimidazolesuccin ocarboxamide synthase (PAICS), cadherin 1 (CDH1), SRC proto-oncogene, non-receptor tyrosine kinase, twist family bHLH transcription factor 1 (TWIST1), ZW10 interacting kinetochore protein (ZWINT), PCNA clamp associated factor (KIAA0101) and androgen receptor, among which, five (PAICS, CDH1, TWIST1, ZWINT and KIAA0101) were significantly upregulated and negatively correlated with miR-1, were identified as key miR-1 target genes in PCa. Additionally, it was investigated whether miR-1 and its hub genes were associated with clinical features, including age, tumor status, residual tumor, lymph node metastasis, pathological T stage and prostate specific antigen level. Collectively the results suggest that miR-1 may be involved in the progression of PCa, and consequently be a promising diagnostic marker. The ‘androgen receptor signaling pathway’, ‘androgen receptor activity’, ‘transcription factor binding’ and ‘protein processing in the endoplasmic reticulum’ may be crucial interactive pathways in PCa. Furthermore, PAICS, CDH1, TWIST1, ZWINT and KIAA0101 may serve as crucial miR-1 target genes in PCa.
Collapse
Affiliation(s)
- Zu-Cheng Xie
- Department of Urological Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jia-Cheng Huang
- Department of Urological Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Li-Jie Zhang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Bin-Liang Gan
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Dong-Yue Wen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Sheng-Hua Li
- Department of Urological Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Hai-Biao Yan
- Department of Urological Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
13
|
Jin C, Liu Z, Li Y, Bu H, Wang Y, Xu Y, Qiu C, Yan S, Yuan C, Li R, Diao N, Zhang Z, Wang X, Liu L, Kong B. PCNA-associated factor P15PAF, targeted by FOXM1, predicts poor prognosis in high-grade serous ovarian cancer patients. Int J Cancer 2018; 143:2973-2984. [PMID: 30129654 DOI: 10.1002/ijc.31800] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 05/24/2018] [Accepted: 08/01/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Chengjuan Jin
- Department of Obstetrics and Gynecology; Qilu Hospital, Shandong University; 107 Wenhua Xi Road, Jinan China
- Department of Obstetrics and Gynecology; Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University; 650 XinSongjiang Road, Shanghai People's Republic of China
| | - Zhaojian Liu
- Department of Cell Biology; Shandong University School of Medicine; 44 Wenhua Xi Road, Jinan China
| | - Yingwei Li
- Department of Obstetrics and Gynecology; Qilu Hospital, Shandong University; 107 Wenhua Xi Road, Jinan China
| | - Hualei Bu
- Department of Obstetrics and Gynecology; Qilu Hospital, Shandong University; 107 Wenhua Xi Road, Jinan China
| | - Yu Wang
- Department of Obstetrics and Gynecology; Qilu Hospital, Shandong University; 107 Wenhua Xi Road, Jinan China
| | - Ying Xu
- Department of Obstetrics and Gynecology; Qilu Hospital, Shandong University; 107 Wenhua Xi Road, Jinan China
| | - Chunping Qiu
- Department of Obstetrics and Gynecology; Qilu Hospital, Shandong University; 107 Wenhua Xi Road, Jinan China
| | - Shi Yan
- Department of Obstetrics and Gynecology; Qilu Hospital, Shandong University; 107 Wenhua Xi Road, Jinan China
| | - Cunzhong Yuan
- Department of Obstetrics and Gynecology; Qilu Hospital, Shandong University; 107 Wenhua Xi Road, Jinan China
| | - Rongrong Li
- Department of Obstetrics and Gynecology; Qilu Hospital, Shandong University; 107 Wenhua Xi Road, Jinan China
| | - Nannan Diao
- Institute of Diagnostics, School of Medicine; Shandong University; 44 Wenhua Xi Road, Jinan China
| | - Zhiwei Zhang
- Department of Obstetrics and Gynecology; Qilu Hospital, Shandong University; 107 Wenhua Xi Road, Jinan China
| | - Xiangxiang Wang
- Department of Obstetrics and Gynecology; Qilu Hospital, Shandong University; 107 Wenhua Xi Road, Jinan China
| | - Lidong Liu
- Department of Obstetrics and Gynecology; Qilu Hospital, Shandong University; 107 Wenhua Xi Road, Jinan China
| | - Beihua Kong
- Department of Obstetrics and Gynecology; Qilu Hospital, Shandong University; 107 Wenhua Xi Road, Jinan China
| |
Collapse
|
14
|
Wang L, Huang W, Zhang L, Chen Q, Zhao H. Molecular pathogenesis involved in human idiopathic pulmonary fibrosis based on an integrated microRNA‑mRNA interaction network. Mol Med Rep 2018; 18:4365-4373. [PMID: 30221703 PMCID: PMC6172385 DOI: 10.3892/mmr.2018.9456] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/06/2018] [Indexed: 01/27/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is considered to be an ailment of the lungs that cannot be cured, wherein the lung tissues are characterized by increased thickness and stiffness, and/or scars. Despite the fact that extensive success has been achieved regarding the molecular diagnostics and pathobiology, the basic pathogenesis associated with IPF has not yet been fully elucidated and requires further clarification. In the current research, the changes in microRNA (miRNA) and mRNA expression in IPF were investigated through an integrative network technique. The authentic miRNA and mRNA expression profiling datasets were downloaded from Gene Expression Omnibus, followed by identification of differentially expressed miRNAs and mRNAs with use of the Significance Analysis of Microarrays algorithm. Expansion of the molecular targets associated with miRNAs was performed with the use of CyTargetLinker in Cytoscape, which was succeeded by validation with the use of mRNA array expression profiling. The incorporated miRNA‑mRNA network covered 27 genes, in addition to 22 miRNAs that were associated with IPF development. As revealed by the functional enrichment analysis, the cytokine‑cytokine receptor interaction and glycine, serine and threonine metabolism signalling pathways were extensively associated with IPF development. Overall, the present incorporated network illustrated the key link between miRNA and genes in IPF; in particular, it was elucidated that miR‑409‑5p and has‑miR‑376c, together with their target genes (C‑C motif chemokine ligand 20 and oncostatin M), are likely candidates involved in the promotion of IPF initiation and progression.
Collapse
Affiliation(s)
- Lijing Wang
- Department of Gerontology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Wei Huang
- Division of Cellular Therapy, Duke University, Durham, NC 27710, USA
| | - Lemeng Zhang
- Department of Thoracic Oncology, Hunan Cancer Hospital, Changsha, Hunan 410008, P.R. China
| | - Qiong Chen
- Department of Gerontology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Hongjun Zhao
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
15
|
Chen X, Pei Z, Peng H, Zheng Z. Exploring the molecular mechanism associated with breast cancer bone metastasis using bioinformatic analysis and microarray genetic interaction network. Medicine (Baltimore) 2018; 97:e12032. [PMID: 30212931 PMCID: PMC6156059 DOI: 10.1097/md.0000000000012032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Bone metastases are common in advanced breast cancer patients and frequently leading to skeletal-related morbidity and deterioration in the quality of life. Although chemotherapy and hormone therapy are able to control the symptoms caused by bone destruction, the underlying molecular mechanisms for the affinity of breast cancer cells towards skeletal bones are still not completely understood. METHODS In this study, bioinformatic analysis was performed on patients' microarray gene expression data to explore the molecular mechanism associated with breast cancer bone metastasis. Microarray gene expression profile regarding patients with breast cancer and disseminated tumor cells was downloaded from Gene Expression Omnibus (GEO) database (NCBI, NIH). Raw data were normalized and differently expressed genes were identified by using Significance Analysis of Microarrays (SAM) methods. Protein interaction networks were expanded using String. Moreover, molecular functions, biological processes and signaling pathway enrichment analysis were performed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). RESULTS We identified 66 differentially expressed genes. After submitting the set of genes to String, genetic interaction network was expanded, which consisted of 110 nodes and 869 edges. Pathway enrichment analysis suggested that adhesion kinase, ECM-receptor interaction, calcium signaling, Wnt pathways, and PI3K/AKT signaling pathway are highly associated with breast cancer bone metastasis. CONCLUSION In this study, we established a microarray genetic interaction network associated with breast cancer bone metastasis. This information provides some potential molecular therapeutic targets for breast cancer initiation and progression.
Collapse
Affiliation(s)
- Xinhua Chen
- Department of Medical Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, Fujian, China
| | - Zhe Pei
- Duke University Medical School, Durham, NC
| | - Hao Peng
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi, China
| | - Zhihong Zheng
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| |
Collapse
|
16
|
Zhao J, Lv T, Quan J, Zhao W, Song J, Li Z, Lei H, Huang W, Ran L. Identification of target genes in cardiomyopathy with fibrosis and cardiac remodeling. J Biomed Sci 2018; 25:63. [PMID: 30115125 PMCID: PMC6094872 DOI: 10.1186/s12929-018-0459-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/06/2018] [Indexed: 02/07/2023] Open
Abstract
Background Identify genes probably associated with chronic heart failure and predict potential target genes for dilated cardiomyopathy using bioinformatics analyses. Methods Gene expression profiles (series number GSE3585 and GSE42955) of cardiomyopathy patients and healthy controls were downloaded from the Expression Omnibus Gene (GEO) database. Differential expression of genes (DEGS) between the two groups of total 14 cardiomyopathy patients and 10 healthy controls were subsequently identified by limma package of R. Database for Annotation, Visualization, and Integrated Discovery (DAVID Tool), which is an analysis of enriched biological processes. Search Tool for the Retrieval Interacting Genes (STRING) was used as well for the analysis of protein-protein interaction network (PPI). Prediction of the potential drugs was suggested based on the preliminarily identified genes using Connectivity Map (CMap). Results Eighty-nine DEGs were identified (57 up-regulated and 32 down-regulated). The most enrichment Gene Ontology (GO) terms (P < 0.05) contain genes involved in extracellular matrix (ECM) and biological adhesion signal pathways (P < 0.05, ES > 1.5) such as ECM-receptors, focal adhesion and transforming growth factor beta (TGF-β), etc. Fifty-one differentially expressed genes were found to encode interacting proteins. Eleven key genes along with related transcription factors were identified including CTGF, POSTN, CORIN, FIGF, etc. Conclusion Bioinformatics-based analyses reveal the targeted genes probably associated with cardiomyopathy, which provide clues for pharmacological therapies aiming at the targets.
Collapse
Affiliation(s)
- Jianquan Zhao
- Department of Cardiology, Bayannaoer City Hospital, 35 Xinhua District, Bayannaoer, 015000, Inner Mongolia, China.
| | - Tiewei Lv
- Department of Cardiology, Children's hospital, Chongqing Medical University, Chongqing, China
| | - Junjun Quan
- Department of Cardiology, Children's hospital, Chongqing Medical University, Chongqing, China
| | - Weian Zhao
- Department of Cardiology, Children's hospital, Chongqing Medical University, Chongqing, China
| | - Jing Song
- Department of Bioinformatics, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Zhuolin Li
- Department of Vascular Cardiology, the First Affiliated Hospital of Chongqing, Medical University, Chongqing, China
| | - Han Lei
- Department of Vascular Cardiology, the First Affiliated Hospital of Chongqing, Medical University, Chongqing, China
| | - Wei Huang
- Department of Vascular Cardiology, the First Affiliated Hospital of Chongqing, Medical University, Chongqing, China
| | - Longke Ran
- Department of Bioinformatics, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
17
|
Anti-tumor roles of both strands of the miR-455 duplex: their targets SKA1 and SKA3 are involved in the pathogenesis of renal cell carcinoma. Oncotarget 2018; 9:26638-26658. [PMID: 29928475 PMCID: PMC6003567 DOI: 10.18632/oncotarget.25410] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/28/2018] [Indexed: 01/11/2023] Open
Abstract
Recent studies revealed that some passenger strands of miRNAs acted as anti-tumor or oncogenic miRNAs in cancer cells. In this study, we focused on miR-455-5p (the passenger strand) and miR-455-3p (the guide strand) based on microRNA (miRNA) expression signatures of cancer cells. Both miR-455-5p and miR-455-3p were downregulated in renal cell carcinoma (RCC) tissues and low expression of these miRNAs was significantly associated with poor prognosis. Cancer cell proliferation, migration and invasive abilities were significantly inhibited by ectopic expression of miR-455-5p and miR-455-3p. To identify their oncogenic targets, we applied a combination of genome-wide gene expression and in silico miRNA database analyses. We focused on spindle and kinetochore-associated proteins, SKA1 and SKA3 and demonstrated direct regulation of SKA1 by miR-455-5p and SKA3 by miR-455-3p in RCC cells. Our present data demonstrated overexpression of SKA3 in RCC clinical specimens. Moreover, the study showed that the miR-455-3p/SKA3 axis contributed to cancer cell aggressiveness. Analytic strategies based on anti-tumor miRNAs, including passenger strands of miRNAs, are effective approaches for the elucidation of the molecular pathogenesis of RCC.
Collapse
|
18
|
Liu L, Liu Y, Chen X, Wang M, Zhou Y, Zhou P, Li W, Zhu F. Variant 2 of KIAA0101, antagonizing its oncogenic variant 1, might be a potential therapeutic strategy in hepatocellular carcinoma. Oncotarget 2018; 8:43990-44003. [PMID: 28410205 PMCID: PMC5546456 DOI: 10.18632/oncotarget.16702] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 03/06/2017] [Indexed: 12/22/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal malignant tumors worldwide and effective therapies, including molecular therapy, remain elusive. Our previous work demonstrates that oncogenic KIAA0101 transcript variant (tv) 1 promotes HCC development and might be a HCC therapeutic target. However, the function of another KIAA0101 variant, KIAA0101 tv2, remains unknown. In this study, we reported that KIAA0101 tv2 was highly expressed in adjacent non-tumorous liver tissues (NTs) compared to HCC tissues. In vivo and in vitro results showed that KIAA0101 tv2 decreased cell survival, colony formation, tumor xenografts, migration, and invasion, as well as induced cell cycle arrest and apoptosis. Interestingly, it could inhibit the function of KIAA0101 tv1 by partially down-regulating KIAA0101 tv1, acting similar to KIAA0101 tv1 short hairpin RNA (shRNA). Further studies illustrated that KIAA0101 tv2 could increase the activity of p53 by competing with KIAA0101 tv1 for P53 binding. In conclusion, KIAA0101 tv2 exerts anti-tumor activity in HCC and acts as an endogenous competitor of tumor-associated KIAA0101 tv1. KIAA0101 tv2 has a potential to work as a therapeutic drug targeting the KIAA0101 tv1 in HCC.
Collapse
Affiliation(s)
- Lijuan Liu
- Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, P.R. China.,College of Life Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Youyi Liu
- Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, P.R. China
| | - Xiaobei Chen
- Department of Infectious Diseases, Ren-Min Hospital of Wuhan University, Wuhan 430060, P.R. China
| | - Miao Wang
- Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, P.R. China
| | - Yan Zhou
- Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, P.R. China
| | - Ping Zhou
- Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, P.R. China
| | - Wenxin Li
- College of Life Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Fan Zhu
- Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, P.R. China.,Hubei Province Key Laboratory of Allergy and Immunology, Wuhan 430071, P.R. China
| |
Collapse
|
19
|
Li X, Fan S, Pan X, Xiaokaiti Y, Duan J, Shi Y, Pan Y, Tie L, Wang X, Li Y, Li X. Nordihydroguaiaretic acid impairs prostate cancer cell migration and tumor metastasis by suppressing neuropilin 1. Oncotarget 2018; 7:86225-86238. [PMID: 27863391 PMCID: PMC5349909 DOI: 10.18632/oncotarget.13368] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 11/07/2016] [Indexed: 12/25/2022] Open
Abstract
Tumor metastasis is a major cause leading to the deaths of cancer patients. Nordihydroguaiaretic acid (NDGA) is a natural product that has been demonstrated to show therapeutic values in multiple diseases. In this study, we report that NDGA can inhibit cell migration and tumor metastasis via a novel mechanism. NDGA suppresses NRP1 function by downregulating its expression, which leads to attenuated cell motility, cell adhesion to ECM and FAK signaling in cancer cells. Moreover, due to its cross-cell type activity on NRP1 suppression, NDGA also impairs angiogenesis function of endothelial cells and fibronectin assembly by fibroblasts, both of which are critical to promote metastasis. Based on these comprehensive effects, NDGA effectively suppresses tumor metastasis in nude mice model. Our findings reveal a novel mechanism underlying the anti-metastasis function of NDGA and indicate the potential value of NDGA in NRP1 targeting therapy for selected subtypes of cancer.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing 100191, China
| | - Shengjun Fan
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing 100191, China
| | - Xueyang Pan
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing 100191, China.,Current address: University of Minnesota, Twin cities, MN 55455, USA
| | - Yilixiati Xiaokaiti
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing 100191, China
| | - Jianhui Duan
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing 100191, China
| | - Yundi Shi
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing 100191, China
| | - Yan Pan
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing 100191, China
| | - Lu Tie
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing 100191, China
| | - Xin Wang
- Current address: University of Minnesota, Twin cities, MN 55455, USA
| | - Yuhua Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing 100191, China
| | - Xuejun Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing 100191, China
| |
Collapse
|
20
|
MAPK, NFκB, and VEGF signaling pathways regulate breast cancer liver metastasis. Oncotarget 2017; 8:101452-101460. [PMID: 29254177 PMCID: PMC5731887 DOI: 10.18632/oncotarget.20843] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 08/07/2017] [Indexed: 12/31/2022] Open
Abstract
In this study, we investigated the molecular pathways regulating breast cancer liver metastasis. We identified 48 differentially expressed genes (4 upregulated and 44 downregulated) by analyzing microarray dataset GSE62598 from Gene Expression Omnibus (GEO). We constructed a genetic interaction network with 84 nodes and 237 edges using the String consortium database. The network was reliably robust with a clustering coefficient (cc) of 0.598 and protein-protein interaction (PPI) enrichment p value of zero. Using the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases, we identified MAPK, NFκB and VEGF signaling pathways as the most critical pathways regulating breast cancer liver metastasis. These results indicate that the distinct breast cancer metastatic stages, including dissemination from the primary breast tumor, transit through the vasculature, and survival and proliferation in the liver, are regulated by the MAPK, NFκB, and VEGF signaling pathways.
Collapse
|
21
|
Yang Q, Xu B, Sun H, Wang X, Zhang J, Yu X, Ma X. A genome-wide association scan of biological processes involved in oral lichen planus and oral squamous cell carcinoma. Medicine (Baltimore) 2017; 96:e7012. [PMID: 28640079 PMCID: PMC5484187 DOI: 10.1097/md.0000000000007012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/23/2017] [Accepted: 04/25/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND In this study, the molecular mechanisms underlying malignant transformation from oral lichen planus (OLP) to oral squamous cell carcinoma (OSCC) were examined. METHODS High-throughput sequencing of long noncoding RNAs (lncRNAs) and mRNAs of normal subjects and patients with OLP and OSCC was conducted. RNA-seq reads were mapped, lncRNA and mRNA transcripts were assembled, and expression levels were estimated. The targets of lncRNAs were predicted. Finally, Gene Ontology (GO) and pathway enrichment analyses of differentially expressed genes (DEGs) and lncRNA targets were performed. RESULTS High-quality sequence data were generated and the mapping ratios for OSCC, normal, and OLP samples were high. In total, 820, 656, and 582 DEGs were obtained from OPL vs. normal, OSCC vs. normal, and OSCC vs. OPL, respectively. A total of 1721 known lncRNAs and 133 predicted lncRNAs and targets were obtained. Keratinization was significantly enriched by OSCC-related DEGs, but not OPL-related DEGs. The pathway of olfactory transduction was enriched by OPL- and OSCC-related DEGs. Defense response to virus and viral carcinogenesis were enriched by DEGs and lncRNA targets in all comparisons. GO term related to the metabolic process was enriched by lncRNA targets in the OPL vs normal comparison, and antigen processing and presentation via MHC class I was significantly enriched by lncRNA targets in the other 2 comparisons. CONCLUSION Keratinization and MHC class I antigen processing and presentation were activated during the malignant transformation from OLP to OSCC. Additionally, the olfactory transduction pathway may be important for OSCC.
Collapse
|
22
|
Chen ZZ, Zhang XD, Chen Y, Wu YB. The role of circulating miR-146a in patients with rheumatoid arthritis treated by Tripterygium wilfordii Hook F. Medicine (Baltimore) 2017; 96:e6775. [PMID: 28514293 PMCID: PMC5440130 DOI: 10.1097/md.0000000000006775] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is polygenic autoimmune disease with unclear etiology. MicroRNAs (miRNAs) play a critical role in the pathogenesis of RA. The objective of this study was to evaluate the role of miR-146a in patients with RA receiving Tripterygium wilfordii Hook F (TwHF) treatment.In total, 69 patients with RA and 69 healthy controls (HC) were included in the study, and patients with RA received TwHF treatment for 24 weeks. Blood samples were collected from RA patients and HC, and peripheral blood mononuclear cells (PBMCs) were isolated. Expression of miR-146a was analyzed in RA patients (baseline, 12 weeks and 24 weeks) and HC.Circulating miR-146a expression was markedly increased in patients with RA compared with healthy controls (P < .001), ROC analysis of miR-146a for diagnosis for RA showed that the AUC was 0.908 (95% CI: 0.862-0.955) with a sensitivity of 87.0% and a specificity of 82.6% at best cutoff. And miR-146a expression was positively associated with the DAS28 score and CRP level (P = .002 and P = .019). Moreover, miR-146a expression was markedly reduced after TwHF therapy (P < .001), and baseline miR-146a level was observed to present an increased tendency in responders compared with non-responders at 24 weeks (P = .066).Our study presented that circulating miR-146a level was correlated with risk and disease activity of RA patients by TwHF treatment, which could strikingly decrease expression of miR-146a in RA patients, and miR-146a may have a value in predicting clinical response of TwHF treatment. It indicates that circulating miR-146a plays a prominent role in RA patients treated by TwHF.
Collapse
Affiliation(s)
- Zhen-Zhou Chen
- General Surgery Department, Dongzhimen Hospital of Beijing University of Chinese Medicine
| | - Xue-Dan Zhang
- Chinese Medicine Department, People's Hospital of Beijing Daxing District
| | - Ying Chen
- Education Department, Dongfang Hospital of Beijing University of Chinese Medicine
| | - Ya-Bing Wu
- Urinary Surgery Department, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
23
|
Zuo X, Zhang L, Luo H, Li Y, Zhu H. Systematic approach to understanding the pathogenesis of systemic sclerosis. Clin Genet 2017; 92:365-371. [PMID: 27918067 DOI: 10.1111/cge.12946] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/24/2016] [Accepted: 11/27/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Xiaoxia Zuo
- Department of Rheumatology, Xiangya Hospital; Central South University; Changsha People's Republic of China
| | - Lihua Zhang
- Department of Rheumatology, Xiangya Hospital; Central South University; Changsha People's Republic of China
| | - Hui Luo
- Department of Rheumatology, Xiangya Hospital; Central South University; Changsha People's Republic of China
| | - Yisha Li
- Department of Rheumatology, Xiangya Hospital; Central South University; Changsha People's Republic of China
| | - Honglin Zhu
- Department of Rheumatology, Xiangya Hospital; Central South University; Changsha People's Republic of China
| |
Collapse
|
24
|
Zheng Z, Liu T, Zheng J, Hu J. Clarifying the molecular mechanism associated with carfilzomib resistance in human multiple myeloma using microarray gene expression profile and genetic interaction network. Onco Targets Ther 2017; 10:1327-1334. [PMID: 28280367 PMCID: PMC5338971 DOI: 10.2147/ott.s130742] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Carfilzomib is a Food and Drug Administration-approved selective proteasome inhibitor for patients with multiple myeloma (MM). However, recent studies indicate that MM cells still develop resistance to carfilzomib, and the molecular mechanisms associated with carfilzomib resistance have not been studied in detail. In this study, to better understand its potential resistant effect and its underlying mechanisms in MM, microarray gene expression profile associated with carfilzomib-resistant KMS-11 and its parental cell line was downloaded from Gene Expression Omnibus database. Raw fluorescent signals were normalized and differently expressed genes were identified using Significance Analysis of Microarrays method. Genetic interaction network was expanded using String, a biomolecular interaction network JAVA platform. Meanwhile, molecular function, biological process and signaling pathway enrichment analysis were performed based on Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. Totally, 27 upregulated and 36 downregulated genes were identified and a genetic interaction network associated with the resistant effect was expanded basing on String, which consisted of 100 nodes and 249 edges. In addition, signaling pathway enrichment analysis indicated that cytokine–cytokine receptor interaction, autophagy, ErbB signaling pathway, microRNAs in cancer and fatty acid metabolism pathways were aberrant in carfilzomib-resistant KMS-11 cells. Thus, in this study, we demonstrated that carfilzomib potentially conferred drug resistance to KMS-11 cells by cytokine–cytokine receptor interaction, autophagy, ErbB signaling pathway, microRNAs in cancer and fatty acid metabolism pathways, which may provide some potential molecular therapeutic targets for drug combination therapy against carfilzomib resistance.
Collapse
Affiliation(s)
- Zhihong Zheng
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China
| | - Tingbo Liu
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China
| | - Jing Zheng
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China
| | - Jianda Hu
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China
| |
Collapse
|
25
|
Chinello C, L'imperio V, Stella M, Smith AJ, Bovo G, Grasso A, Grasso M, Raimondo F, Pitto M, Pagni F, Magni F. The proteomic landscape of renal tumors. Expert Rev Proteomics 2016; 13:1103-1120. [PMID: 27748142 DOI: 10.1080/14789450.2016.1248415] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Renal cell carcinoma (RCC) is the most fatal of the common urologic cancers, with approximately 35% of patients dying within 5 years following diagnosis. Therefore, there is a need for non-invasive markers that are capable of detecting and determining the severity of small renal masses at an early stage in order to tailor treatment and follow-up. Proteomic studies have proved to be very useful in the study of tumors. Areas covered: In this review, we will detail the current knowledge obtained by the different proteomic approaches, focusing on MS-based strategies, used to investigate RCC biology in order to identify diagnostic, prognostic and predictive biomarkers on tissue, cultured cells and biological fluids. Expert commentary: Currently, no reliable biomarkers or targets for RCC have been translated into the clinical setting. Moreover, despite the efforts of proteomics and other -omics disciplines, only a small number of them have been observed as shared targets between the different analytical platforms and biological specimens. The difficulty to define a specific molecular pattern for RCC and its subtypes highlights a peculiar profile and a heterogeneity that must be taken into account in future studies.
Collapse
Affiliation(s)
- Clizia Chinello
- a Department of Medicine and Surgery , University Milan Bicocca , Monza , Italy
| | - Vincenzo L'imperio
- a Department of Medicine and Surgery , University Milan Bicocca , Monza , Italy
| | - Martina Stella
- a Department of Medicine and Surgery , University Milan Bicocca , Monza , Italy
| | - Andrew James Smith
- a Department of Medicine and Surgery , University Milan Bicocca , Monza , Italy
| | - Giorgio Bovo
- b Pathology unit , San Gerardo Hospital , Monza , Italy
| | - Angelica Grasso
- c Department of Specialistic Surgical Sciences, Urology unit , Ospedale Maggiore Policlinico Foundation , Milano , Italy
| | - Marco Grasso
- d Department of Urology , San Gerardo Hospital , Monza , Italy
| | - Francesca Raimondo
- a Department of Medicine and Surgery , University Milan Bicocca , Monza , Italy
| | - Marina Pitto
- a Department of Medicine and Surgery , University Milan Bicocca , Monza , Italy
| | - Fabio Pagni
- a Department of Medicine and Surgery , University Milan Bicocca , Monza , Italy
| | - Fulvio Magni
- a Department of Medicine and Surgery , University Milan Bicocca , Monza , Italy
| |
Collapse
|
26
|
Paiva P, Lockhart MG, Girling JE, Olshansky M, Woodrow N, Marino JL, Hickey M, Rogers PAW. Identification of genes differentially expressed in menstrual breakdown and repair. Mol Hum Reprod 2016; 22:898-912. [PMID: 27609758 DOI: 10.1093/molehr/gaw060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/30/2016] [Accepted: 09/02/2016] [Indexed: 12/26/2022] Open
Abstract
STUDY QUESTION Does the changing molecular profile of the endometrium during menstruation correlate with the histological profile of menstruation. SUMMARY ANSWER We identified several genes not previously associated with menstruation; on Day 2 of menstruation (early-menstruation), processes related to inflammation are predominantly up-regulated and on Day 4 (late-menstruation), the endometrium is predominantly repairing and regenerating. WHAT IS KNOWN ALREADY Menstruation is induced by progesterone withdrawal at the end of the menstrual cycle and involves endometrial tissue breakdown, regeneration and repair. Perturbations in the regulation of menstruation may result in menstrual disorders including abnormal uterine bleeding. STUDY DESIGN, SIZE DURATION Endometrial samples were collected by Pipelle biopsy on Days 2 (n = 9), 3 (n = 9) or 4 (n = 6) of menstruation. PARTICIPANTS/MATERIALS, SETTING, METHODS RNA was extracted from endometrial biopsies and analysed by genome wide expression Illumina Sentrix Human HT12 arrays. Data were analysed using 'Remove Unwanted Variation-inverse (RUV-inv)'. Ingenuity pathway analysis (IPA) and the Database for Annotation, Visualization and Integrated Discovery (DAVID) v6.7 were used to identify canonical pathways, upstream regulators and functional gene clusters enriched between Days 2, 3 and 4 of menstruation. Selected individual genes were validated by quantitative PCR. MAIN RESULTS AND THE ROLE OF CHANCE Overall, 1753 genes were differentially expressed in one or more comparisons. Significant canonical pathways, gene clusters and upstream regulators enriched during menstrual bleeding included those associated with immune cell trafficking, inflammation, cell cycle regulation, extracellular remodelling and the complement and coagulation cascade. We provide the first evidence for a role for glutathione-mediated detoxification (glutathione-S-transferase mu 1 and 2; GSTM1 and GSTM2) during menstruation. The largest number of differentially expressed genes was between Days 2 and 4 of menstruation (n = 1176). We identified several genes not previously associated with menstruation including lipopolysaccharide binding protein, serpin peptidase inhibitor, clade B (ovalbumin), member 3 (SERPINB3) and -4 (SERPINB4), interleukin-17C (IL17C), V-set domain containing T-cell activation inhibitor 1 (VTCN1), proliferating cell nuclear antigen factor (KIAA0101/PAF), trefoil factor 3 (TFF3), laminin alpha 2 (LAMA2) and serine peptidase inhibitor, Kazal type 1 (SPINK1). Genes related to inflammatory processes were up-regulated on Day 2 (early-menstruation), and those associated with endometrial repair and regeneration were up-regulated on Day 4 (late-menstruation). LIMITATIONS, REASONS FOR CAUTION Participants presented with a variety of endometrial pathologies related to bleeding status and other menstrual characteristics. These variations may also have influenced the menstrual process. WIDER IMPLICATIONS OF THE FINDINGS The temporal molecular profile of menstruation presented in this study identifies a number of genes not previously associated with the menstrual process. Our findings provide valuable insight into the menstrual process and may present novel targets for therapeutic intervention in cases of endometrial dysfunction. LARGE SCALE DATA All microarray data have been deposited in the public data repository Gene Expression Omnibus (GSE86003). STUDY FUNDING AND COMPETING INTERESTS Funding for this work was provided by a National Health and Medical Research Council of Australia (NHMRC) Project Grant APP1008553 to M.H., P.R. and J.G. M.H. is supported by an NHMRC Practitioner Fellowship. P.P. is supported by a NHMRC Early Career Fellowship. The authors have no conflict of interest to declare.
Collapse
Affiliation(s)
- Premila Paiva
- Department of Obstetrics and Gynaecology, The University of Melbourne, Gynaecology Research Centre, Royal Women's Hospital, Cnr Flemington Rd and Grattan St, Parkville, VIC 3052, Australia
| | - Michelle G Lockhart
- Department of Obstetrics and Gynaecology, The University of Melbourne, Gynaecology Research Centre, Royal Women's Hospital, Cnr Flemington Rd and Grattan St, Parkville, VIC 3052, Australia
| | - Jane E Girling
- Department of Obstetrics and Gynaecology, The University of Melbourne, Gynaecology Research Centre, Royal Women's Hospital, Cnr Flemington Rd and Grattan St, Parkville, VIC 3052, Australia
| | - Moshe Olshansky
- Bioinformatics Division, Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC 3052, Australia.,Department of Microbiology, Monash University, Wellington Road and Blackburn Road, Clayton, VIC 3800, Australia
| | - Nicole Woodrow
- Pauline Gandel Imaging Centre, Royal Women's Hospital, 20 Flemington Road, Parkville, VIC 3052, Australia
| | - Jennifer L Marino
- Department of Obstetrics and Gynaecology, The University of Melbourne, Gynaecology Research Centre, Royal Women's Hospital, Cnr Flemington Rd and Grattan St, Parkville, VIC 3052, Australia
| | - Martha Hickey
- Department of Obstetrics and Gynaecology, The University of Melbourne, Gynaecology Research Centre, Royal Women's Hospital, Cnr Flemington Rd and Grattan St, Parkville, VIC 3052, Australia
| | - Peter A W Rogers
- Department of Obstetrics and Gynaecology, The University of Melbourne, Gynaecology Research Centre, Royal Women's Hospital, Cnr Flemington Rd and Grattan St, Parkville, VIC 3052, Australia
| |
Collapse
|