1
|
Sánchez-Álvarez AA, Velasco-Velázquez MA, Cordova-Bahena L. In Silico Identification of 2,4-Diaminopyrimidine-Based Compounds as Potential CK1ε Inhibitors. Pharmaceuticals (Basel) 2025; 18:741. [PMID: 40430559 PMCID: PMC12114667 DOI: 10.3390/ph18050741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 05/10/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
Background: Casein kinase 1 epsilon (CK1ε) plays a critical role in cancer progression by activating oncogenic signaling pathways, making it a target for cancer therapy. However, no inhibitors are currently available for clinical use, highlighting the need for novel therapeutic candidates. Methods: This study aimed to identify potential CK1ε inhibitors. To achieve this, a modified version of a previously reported pharmacophore model was applied to an ultra-large database of over 100 million compounds for virtual screening. Hits were filtered based on drug-likeness and pH-dependent pharmacophore compliance and then grouped according to their structural core. A representative compound from each structural group underwent molecular dynamic (MD) simulations and binding free energy calculations to predict its stability and affinity, allowing extrapolation of the results to the entire set of candidates. Results: Pharmacophore matching initially identified 290 compounds. After energy minimization, and an assessment of drug-likeness and pharmacophore compliance, we selected 29 structurally related candidates. MD simulations showed that most of the compounds representative of structural groups had stable binding modes, favorable intermolecular interactions, and free energies comparable to those of previously reported CK1ε inhibitors. An analysis of additional members of the most promising structural group showed that two 2,4-diaminopyrimidine-based compounds likely inhibit CK1ε. Conclusions: These findings provide structural insights into the design of CK1ε inhibitors, supporting compound optimization and the eventual development of targeted cancer therapeutics.
Collapse
Affiliation(s)
- Axel A. Sánchez-Álvarez
- School of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico;
- Graduate Program in Chemical Sciences, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | | | - Luis Cordova-Bahena
- School of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico;
- Secretaría de Ciencia, Humanidades, Tecnología e Innovación (SECIHTI), Mexico City 04510, Mexico
| |
Collapse
|
2
|
Peng P, Sun J, Li MS, Cheng RX, Liu SQ, Qin MB, Zhang JX, Huang JA. SPDL1 inhibition enhances colorectal cancer progression via epidermal growth factor receptor/extracellular signal-regulated kinase pathways. World J Gastrointest Oncol 2025; 17:104686. [DOI: 10.4251/wjgo.v17.i5.104686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/11/2025] [Accepted: 04/10/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND In patients with colorectal cancer (CRC), tumour metastasis is the leading cause of death. The search for key genes involved in metastasis of CRC is imperative for improved prognoses and treatments. SPDL1 has been implicated in the development of CRC, however, its mechanism of action remains unclear.
AIM To investigate the role and mechanism of action by which SPDL1 inhibits the development and metastasis of CRC.
METHODS In this study, we examined the relationship between SPDL1 expression and CRC prognosis using immunohistochemistry. Survival analyses were performed using Kaplan-Meier analysis and log-rank test. After knocking down SPDL1 in the HCT116 cancer cell line changes in cell viability, migration, invasion, and gene expression were examined using a cell counting kit 8 assay, Transwell assay, and Western blot. The effect of SPDL1 on the cell cycle was assessed using flow cytometry. RNA sequencing was used to analyse the effect of SPDL1 on gene expression of CRC cells. The mechanism of action of SPDL1 in CRC was further clarified using U0126, an inhibitor of the mitogen-activated protein kinase signaling pathway.
RESULTS SPDL1 is expressed at low levels in tissues of patients with CRC, and this reduced expression is associated with poor prognosis. Functionally, low expression of SPDL1 in CRC promotes cell proliferation, migration, invasion, and affects the cell cycle. Mechanistically, SPDL1 affects the progression of CRC through its regulation of the process of epithelial-mesenchymal transition (EMT) and of the epidermal growth factor receptor (EGFR)/ extracellular signal-regulated kinase (ERK) signaling pathways.
CONCLUSION This study showed that the loss of SPDL1 may induce EMT and promote cell migration and invasion in CRC through the EGFR/ERK pathway.
Collapse
Affiliation(s)
- Peng Peng
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi Zhuang Autonomous Region, China
| | - Juan Sun
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi Zhuang Autonomous Region, China
| | - Meng-Shi Li
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi Zhuang Autonomous Region, China
| | - Ruo-Xi Cheng
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi Zhuang Autonomous Region, China
| | - Shi-Quan Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi Zhuang Autonomous Region, China
| | - Meng-Bin Qin
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi Zhuang Autonomous Region, China
| | - Jin-Xiu Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi Zhuang Autonomous Region, China
| | - Jie-An Huang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
3
|
Aquino A, Franzese O. Reciprocal Modulation of Tumour and Immune Cell Motility: Uncovering Dynamic Interplays and Therapeutic Approaches. Cancers (Basel) 2025; 17:1547. [PMID: 40361472 PMCID: PMC12072109 DOI: 10.3390/cancers17091547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/28/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
Dysregulated cell movement is a hallmark of cancer progression and metastasis, the leading cause of cancer-related mortality. The metastatic cascade involves tumour cell migration, invasion, intravasation, dissemination, and colonisation of distant organs. These processes are influenced by reciprocal interactions between cancer cells and the tumour microenvironment (TME), including immune cells, stromal components, and extracellular matrix proteins. The epithelial-mesenchymal transition (EMT) plays a crucial role in providing cancer cells with invasive and stem-like properties, promoting dissemination and resistance to apoptosis. Conversely, the mesenchymal-epithelial transition (MET) facilitates metastatic colonisation and tumour re-initiation. Immune cells within the TME contribute to either anti-tumour response or immune evasion. These cells secrete cytokines, chemokines, and growth factors that shape the immune landscape and influence responses to immunotherapy. Notably, immune checkpoint blockade (ICB) has transformed cancer treatment, yet its efficacy is often dictated by the immune composition of the tumour site. Elucidating the molecular cross-talk between immune and cancer cells, identifying predictive biomarkers for ICB response, and developing strategies to convert cold tumours into immune-active environments is critical to overcoming resistance to immunotherapy and improving patient survival.
Collapse
Affiliation(s)
| | - Ornella Franzese
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| |
Collapse
|
4
|
Weissenrieder JS, Peura J, Paudel U, Bhalerao N, Weinmann N, Johnson C, Wengyn M, Drager R, Furth EE, Simin K, Ruscetti M, Stanger BZ, Rustgi AK, Pitarresi JR, Foskett JK. Mitochondrial Ca 2+ controls pancreatic cancer growth and metastasis by regulating epithelial cell plasticity. Cell Rep 2025; 44:115627. [PMID: 40286270 DOI: 10.1016/j.celrep.2025.115627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/24/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025] Open
Abstract
Endoplasmic reticulum to mitochondria Ca2+ transfer is important for cancer cell survival, but the role of mitochondrial Ca2+ uptake through the mitochondrial Ca2+ uniporter (MCU) in pancreatic ductal adenocarcinoma (PDAC) is poorly understood. Here, we show that increased MCU expression is associated with malignancy and poorer outcomes in patients with PDAC. In isogenic murine PDAC models, Mcu deletion (McuKO) ablated mitochondrial Ca2+ uptake, which reduced proliferation and inhibited self-renewal. Orthotopic implantation of MCU-null tumor cells reduced primary tumor growth and metastasis. Mcu deletion reduced the cellular plasticity of tumor cells by inhibiting epithelial-to-mesenchymal transition (EMT), which contributes to metastatic competency in PDAC. Mechanistically, the loss of mitochondrial Ca2+ uptake reduced the expression of the key EMT transcription factor Snail and secretion of the EMT-inducing ligand TGF-β. Snail re-expression and TGF-β treatment rescued deficits in McuKO cells and restored their metastatic ability. Thus, MCU may present a therapeutic target in PDAC to limit cancer-cell-induced EMT and metastasis.
Collapse
Affiliation(s)
- Jillian S Weissenrieder
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jessica Peura
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Usha Paudel
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Nikita Bhalerao
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Natalie Weinmann
- Department of Chemistry, Millersville University, Millersville, PA, USA
| | - Calvin Johnson
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Maximilian Wengyn
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-5157, USA
| | - Rebecca Drager
- Department of Chemistry, The Ohio State University, Columbus, OH, USA
| | - Emma Elizabeth Furth
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Karl Simin
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Marcus Ruscetti
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ben Z Stanger
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-5157, USA
| | - Anil K Rustgi
- Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York City, NY 10032, USA
| | - Jason R Pitarresi
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| | - J Kevin Foskett
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Bagheri L, Javanbakht M, Malekian S, Ghahderijani BH, Taghipour S, Tanha FD, Ranjkesh M, Cegolon L, Zhao S. Antifibrotic therapeutic strategies in systemic sclerosis: Critical role of the Wnt/β-catenin and TGF-β signal transduction pathways as potential targets. Eur J Pharmacol 2025; 999:177607. [PMID: 40209848 DOI: 10.1016/j.ejphar.2025.177607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/25/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
Systemic sclerosis (SSc) is a prototypic fibrosing disorder characterized by widespread fibrosis and immune dysregulation. Current evidence highlights the intricate cross-talk between the canonical Wnt/β-catenin signaling pathway and transforming growth factor-beta (TGF-β) signaling, both of which play fundamental roles in the pathogenesis of fibrosis. This review aims to elucidate the central role of the Wnt/β-catenin-TGF-β pathway and TGF-β signal transduction pathway in fibrotic diseases, focusing on SSc. We summarized evidence from cellular biology studies, animal model investigations and clinical observations to provide a comprehensive view of the mechanisms causing pathological fibrosis. In addition, we explore the possibilities of antifibrotic therapeutic strategies against Wnt/β-catenin-TGF-β signaling to counteract fibrosis, delineating approaches for treatment of SSc patients by targeting these interconnected signaling pathways.
Collapse
Affiliation(s)
- Leyla Bagheri
- Department of Internal Medicine, Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Javanbakht
- Nephrology and Urology Research Center, Clinical Science Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sheida Malekian
- Department of Internal Medicine, Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Sadra Taghipour
- Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Fatemeh Davari Tanha
- Department of Infertility, Yas Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Luca Cegolon
- Department of Medical, Surgical & Health Sciences, University of Trieste, 34128, Trieste, Italy; Public Health Unit, University Health Agency Giuliano-Isontina (ASUGI), 34148, Trieste, Italy
| | - Shi Zhao
- School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| |
Collapse
|
6
|
Nadukkandy AS, Blaize B, Kumar CD, Mori G, Cordani M, Kumar LD. Non-coding RNAs as mediators of epithelial to mesenchymal transition in metastatic colorectal cancers. Cell Signal 2025; 127:111605. [PMID: 39842529 DOI: 10.1016/j.cellsig.2025.111605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/06/2025] [Accepted: 01/12/2025] [Indexed: 01/24/2025]
Abstract
Colorectal cancer (CRC) remains a leading cause of cancer-related mortality globally, necessitating the development of innovative treatment strategies. Recent research has underscored the significant role of non-coding RNAs (ncRNAs) in CRC pathogenesis, offering new avenues for diagnosis and therapy. In this review, we delve into the intricate roles of various ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), in CRC progression, epithelial-mesenchymal transition (EMT), metastasis, and drug resistance. We highlight the interaction of these ncRNAs with and regulation of key signaling pathways, such as Wnt/β-catenin, Notch, JAK-STAT, EGFR, and TGF-β, and the functional relevance of these interactions in CRC progression. Additionally, the review highlights the emerging applications of nanotechnology in enhancing the delivery and efficacy of ncRNA-based therapeutics, which could address existing challenges related to specificity and side effects. Future research directions, including advanced diagnostic tools, targeted therapeutics, strategies to overcome drug resistance, and the integration of personalized medicine approaches are discussed. Integrating nanotechnology with a deeper understanding of CRC biology offers the potential for more effective, targeted, and personalized strategies, though further research is essential to validate these approaches.
Collapse
Affiliation(s)
- Aisha Shigna Nadukkandy
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad 500007, India
| | - Britny Blaize
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad 500007, India
| | - Chethana D Kumar
- Department of Surgical ICU, Christian Medical College, IDA Scudder Road, Vellore 632004, Tamil Nadu, India
| | - Giulia Mori
- Department Of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain.
| | - Lekha Dinesh Kumar
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad 500007, India.
| |
Collapse
|
7
|
Sun J, Hosen MB, Deng WM, Tian A. Epithelial Polarity Loss and Multilayer Formation: Insights Into Tumor Growth and Regulatory Mechanisms. Bioessays 2025; 47:e202400189. [PMID: 39737681 DOI: 10.1002/bies.202400189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 01/01/2025]
Abstract
Epithelial tissues serve as critical barriers in metazoan organisms, maintaining structural integrity and facilitating essential physiological functions. Epithelial cell polarity regulates mechanical properties, signaling, and transport, ensuring tissue organization and homeostasis. However, the barrier function is challenged by cell turnover during development and maintenance. To preserve tissue integrity while removing dying or unwanted cells, epithelial tissues employ cell extrusion. This process removes both dead and live cells from the epithelial layer, typically causing detached cells to undergo apoptosis. Transformed cells, however, often resist apoptosis, leading to multilayered structures and early carcinogenesis. Malignant cells may invade neighboring tissues. Loss of cell polarity can lead to multilayer formation, cell extrusion, and invasion. Recent studies indicate that multilayer formation in epithelial cells with polarity loss involves a mixture of wild-type and mutant cells, leading to apical or basal accumulation. The directionality of accumulation is regulated by mutations in polarity complex genes. This phenomenon, distinct from traditional apical or basal extrusion, exhibits similarities to the endophytic or exophytic growth observed in human tumors. This review explores the regulation and implications of these phenomena for tissue biology and disease pathology.
Collapse
Affiliation(s)
- Jie Sun
- Department of Biochemistry and Molecular Biology, Louisiana Cancer Research Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Md Biplob Hosen
- Department of Biochemistry and Molecular Biology, Louisiana Cancer Research Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Wu-Min Deng
- Department of Biochemistry and Molecular Biology, Louisiana Cancer Research Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Tulane Aging Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Aiguo Tian
- Department of Biochemistry and Molecular Biology, Louisiana Cancer Research Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Tulane Aging Center, Tulane University School of Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
8
|
Tugizov S. HIV-1 Tat-induced disruption of epithelial junctions and epithelial-mesenchymal transition of oral and genital epithelial cells lead to increased invasiveness of neoplastic cells and the spread of herpes simplex virus and cytomegalovirus. Front Immunol 2025; 16:1541532. [PMID: 40018040 PMCID: PMC11866325 DOI: 10.3389/fimmu.2025.1541532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 01/28/2025] [Indexed: 03/01/2025] Open
Abstract
Human immunodeficiency virus (HIV-1) transactivator Tat is a unique multi-functional viral protein secreted by infected cells. Although its primary function is to promote HIV-1 transcription, secreted Tat interacts with neighboring cells and induces numerous disease-associated pathological changes. Despite the substantial reduction of viral load and disease burden, Tat expression and secretion persist in people living with HIV who are undergoing treatment with highly effective combination antiretroviral therapy (cART). Tat interacts with both oral and genital epithelial cells and impairs their mucosal barrier functions, which facilitates the entry of other pathogenic viruses. Tat-mediated interactions with both human papillomavirus (HPV) -infected and HPV-negative neoplastic epithelial cells lead to epithelial-mesenchymal transition and increased invasiveness of malignant cells. Likewise, Tat-induced disruption of oral epithelial cell junctions leads to herpes simplex virus-1 (HSV-1) infection and spread via exposure of its receptor, nectin-1. HIV-1 Tat facilitates infection and spread of human cytomegalovirus (HCMV) by activating mitogen-activated protein kinases (MAPK) and promoting NF-κB signaling, both critical for the replication and production of progeny virions. HIV extracellular Tat also plays a critical role in human herpesvirus 8 (HHV8) -caused Kaposi sarcoma (KS) pathogenesis by synergizing with HHV-8 lytic proteins and promoting the proliferation, angiogenesis, and migration of endothelial cells. Collectively, these findings emphasize the critical impact of HIV-1 Tat on HIV/AIDS pathogenesis during the cART era and highlight the need for further research on the molecular mechanisms underlying Tat-mediated interactions with oral and genital mucosal epithelial cells.
Collapse
Affiliation(s)
- Sharof Tugizov
- Department of Medicine, School of Medicine, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
9
|
Deb VK, Chauhan N, Jain U. Deciphering TGF-β1's role in drug resistance and leveraging plant bioactives for cancer therapy. Eur J Pharmacol 2025; 988:177218. [PMID: 39722325 DOI: 10.1016/j.ejphar.2024.177218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/24/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
The intricate regulatory mechanisms governing TGF-β1 expression play pivotal roles in tumor progression. Key proteins such as FKBP1A, SMAD6, and SMAD7 trigger this process, modulating cell growth inhibition via p15INK4b and p21CIP1 induction. Despite TGF-β's tumor-suppressive functions, cancer cells adeptly evade its effects, fueling disease advancement. Tumor microenvironmental TGF-β1 prompts epithelial-mesenchymal transition (EMT), facilitated by transcription factors like slug, twist-1, and snail. Notably, cancer-associated fibroblasts (CAFs) amplify this effect by secreting TGF-β1, fostering drug resistance. Of particular concern is the resistance observed with BRAF/MEK inhibitors (BRAFi/MEKi), highlighting the clinical significance of TGF-β signaling in cancer therapeutics. However, emerging interest in natural anti-cancer agents, with their distinct pharmacological actions on signaling proteins offers promising avenues for therapeutic intervention. This review emphasizes the multifaceted interplay between TGF-β signaling, tumor microenvironment dynamics, and therapeutic resistance mechanisms, illuminating potential targets for combating cancer progression by plant-derived-natural-bioactive compounds. However, this review additionally explores the currently available advanced methods for detecting various types of cancer. Not only that, but it also discussed the function of plant-derived compounds in clinical aspects, as well as its limitations.
Collapse
Affiliation(s)
- Vishal Kumar Deb
- School of Health Sciences and Technology (SoHST), UPES, Dehradun, Uttarakhand, 248007, India
| | - Nidhi Chauhan
- School of Health Sciences and Technology (SoHST), UPES, Dehradun, Uttarakhand, 248007, India
| | - Utkarsh Jain
- School of Health Sciences and Technology (SoHST), UPES, Dehradun, Uttarakhand, 248007, India.
| |
Collapse
|
10
|
MacDonald WJ, Purcell C, Pinho-Schwermann M, Stubbs NM, Srinivasan PR, El-Deiry WS. Heterogeneity in Cancer. Cancers (Basel) 2025; 17:441. [PMID: 39941808 PMCID: PMC11816170 DOI: 10.3390/cancers17030441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Cancer heterogeneity is a major challenge in oncology, complicating diagnosis, prognostication, and treatment. The clinical heterogeneity of cancer, which leads to differential treatment outcomes between patients with histopathologically similar cancers, is attributable to molecular diversity manifesting through genetic, epigenetic, transcriptomic, microenvironmental, and host biology differences. Heterogeneity is observed between patients, individual metastases, and within individual lesions. This review discusses clinical implications of heterogeneity, emphasizing need for personalized approaches to overcome challenges posed by cancer's diverse presentations. Understanding of emerging molecular diagnostic and analytical techniques can provide a view into the multidimensional complexity of cancer heterogeneity. With over 90% of cancer-related deaths associated with metastasis, we additionally explore the role heterogeneity plays in treatment resistance and recurrence of metastatic lesions. Molecular insights from next-generation sequencing, single-cell transcriptomics, liquid biopsy technology, and artificial intelligence will facilitate the development of combination therapy regimens that can potentially induce lasting and even curative treatment outcomes.
Collapse
Affiliation(s)
- William J. MacDonald
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; (W.J.M.); (M.P.-S.); (N.M.S.)
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Connor Purcell
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; (W.J.M.); (M.P.-S.); (N.M.S.)
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Maximilian Pinho-Schwermann
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; (W.J.M.); (M.P.-S.); (N.M.S.)
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Nolan M. Stubbs
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; (W.J.M.); (M.P.-S.); (N.M.S.)
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Praveen R. Srinivasan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; (W.J.M.); (M.P.-S.); (N.M.S.)
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Wafik S. El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; (W.J.M.); (M.P.-S.); (N.M.S.)
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- The Joint Program in Cancer Biology, Brown University and Brown University Health, Providence, RI 02903, USA
- Hematology-Oncology Division, Department of Medicine, Rhode Island Hospital, Brown University, Providence, RI 02903, USA
| |
Collapse
|
11
|
Xiao J, Wang J, Li J, Xiao J, Liu C, Tan L, Tu Y, Yang R, Pei Y, Wang M, Wong J, Zhou BP, Li J, Feng J. L3MBTL3 and STAT3 collaboratively upregulate SNAIL expression to promote metastasis in female breast cancer. Nat Commun 2025; 16:231. [PMID: 39747894 PMCID: PMC11696420 DOI: 10.1038/s41467-024-55617-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 12/18/2024] [Indexed: 01/04/2025] Open
Abstract
The STAT3 pathway promotes epithelial-mesenchymal transition, migration, invasion and metastasis in cancer. STAT3 upregulates the transcription of the key epithelial-mesenchymal transition transcription factor SNAIL in a DNA binding-independent manner. However, the mechanism by which STAT3 is recruited to the SNAIL promoter to upregulate its expression is still elusive. In our study, the lysine methylation binding protein L3MBTL3 is positively associated with metastasis and poor prognosis in female patients with breast cancer. L3MBTL3 also promotes epithelial-mesenchymal transition and metastasis in breast cancer. Mechanistic analysis reveals that L3MBTL3 interacts with STAT3 and recruits STAT3 to the SNAIL promoter to increase SNAIL transcription levels. The interaction between L3MBTL3 and STAT3 is required for SNAIL transcription upregulation and metastasis in breast cancer, while the methylated lysine binding activity of L3MBTL3 is not required for these functions. In conclusion, L3MBTL3 and STAT3 synergistically upregulate SNAIL expression to promote breast cancer metastasis.
Collapse
Affiliation(s)
- Jianpeng Xiao
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Laboratory Medicine & Central Laboratory, Southern Medical University Affiliated Fengxian Hospital, Shanghai, China
- The Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, China
| | - Jie Wang
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Laboratory Medicine & Central Laboratory, Southern Medical University Affiliated Fengxian Hospital, Shanghai, China
| | - Jialun Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jie Xiao
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - CuiCui Liu
- Department of Laboratory Medicine & Central Laboratory, Southern Medical University Affiliated Fengxian Hospital, Shanghai, China
| | - Libi Tan
- Department of Laboratory Medicine & Central Laboratory, Southern Medical University Affiliated Fengxian Hospital, Shanghai, China
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yanhong Tu
- The Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, China
| | - Ruifang Yang
- Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai, China
| | - Yujie Pei
- Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai, China
| | - Minghua Wang
- The Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, China
| | - Jiemin Wong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Binhua P Zhou
- Department of Molecular and Cellular Biochemistry, Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Jing Li
- Department of Laboratory Medicine & Central Laboratory, Southern Medical University Affiliated Fengxian Hospital, Shanghai, China.
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.
| | - Jing Feng
- Department of Laboratory Medicine & Central Laboratory, Southern Medical University Affiliated Fengxian Hospital, Shanghai, China.
- The Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, China.
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.
- The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
12
|
Basmaeil Y, Subayyil AA, Kulayb HB, Kondkar AA, Alrodayyan M, Khatlani T. Partial Inhibition of Epithelial-to-Mesenchymal Transition (EMT) Phenotypes by Placenta-Derived DBMSCs in Human Breast Cancer Cell Lines, In Vitro. Cells 2024; 13:2131. [PMID: 39768220 PMCID: PMC11674051 DOI: 10.3390/cells13242131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/09/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Stem cell-based therapies hold significant potential for cancer treatment due to their unique properties, including migration toward tumor niche, secretion of bioactive molecules, and immunosuppression. Mesenchymal stem cells (MSCs) from adult tissues can inhibit tumor progression, angiogenesis, and apoptosis of cancer cells. We have previously reported the isolation and characterization of placenta-derived decidua basalis mesenchymal stem cells (DBMSCs), which demonstrated higher levels of pro-migratory and anti-apoptotic genes, indicating potential anti-cancer effects. In this study, we analyzed the anti-cancer effects of DBMSCs on human breast cancer cell lines MDA231 and MCF7, with MCF 10A used as control. We also investigated how these cancer cells lines affect the functional competence of DBMSCs. By co-culturing DBMSCs with cancer cells, we analyzed changes in functions of both cell types, as well as alterations in their genomic and proteomic profile. Our results showed that treatment with DBMSCs significantly reduced the functionality of MDA231 and MCF7 cells, while MCF 10A cells remained unaffected. DBMSC treatment decreased epithelial-to-mesenchymal transition (EMT)-related protein levels in MDA231 cells and modulated expression of other cancer-related genes in MDA231 and MCF7 cells. Although cancer cells reduced DBMSC proliferation, they increased their expression of anti-apoptotic genes. These findings suggest that DBMSCs can inhibit EMT-related proteins and reduce the invasive characteristics of MDA231 and MCF7 breast cancer cells, highlighting their potential as candidates for cell-based cancer therapies.
Collapse
Affiliation(s)
- Yasser Basmaeil
- Stem Cells and Regenerative Medicine Unit, Blood and Cancer Research (BCR) Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU), Ministry of National Guard Health Affairs (MNGHA), Riyadh 11426, Saudi Arabia; (Y.B.); (A.A.S.); (H.B.K.); (M.A.)
| | - Abdullah Al Subayyil
- Stem Cells and Regenerative Medicine Unit, Blood and Cancer Research (BCR) Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU), Ministry of National Guard Health Affairs (MNGHA), Riyadh 11426, Saudi Arabia; (Y.B.); (A.A.S.); (H.B.K.); (M.A.)
| | - Haya Bin Kulayb
- Stem Cells and Regenerative Medicine Unit, Blood and Cancer Research (BCR) Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU), Ministry of National Guard Health Affairs (MNGHA), Riyadh 11426, Saudi Arabia; (Y.B.); (A.A.S.); (H.B.K.); (M.A.)
| | - Altaf A. Kondkar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia;
| | - Maha Alrodayyan
- Stem Cells and Regenerative Medicine Unit, Blood and Cancer Research (BCR) Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU), Ministry of National Guard Health Affairs (MNGHA), Riyadh 11426, Saudi Arabia; (Y.B.); (A.A.S.); (H.B.K.); (M.A.)
| | - Tanvir Khatlani
- Stem Cells and Regenerative Medicine Unit, Blood and Cancer Research (BCR) Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU), Ministry of National Guard Health Affairs (MNGHA), Riyadh 11426, Saudi Arabia; (Y.B.); (A.A.S.); (H.B.K.); (M.A.)
| |
Collapse
|
13
|
Sun Y, Zhou X, Hu X. Constructing a doxycycline-inducible system for an epithelial-to-mesenchymal transition model in MCF10A cells. Biol Open 2024; 13:bio061790. [PMID: 39648980 PMCID: PMC11655024 DOI: 10.1242/bio.061790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 11/18/2024] [Indexed: 12/10/2024] Open
Abstract
Epithelial to mesenchymal transition (EMT) has been shown to play an essential role in the early stages of cancer cell invasion and metastasis. Inducible EMT models can initiate EMT in a controlled manner, thereby providing the opportunity to determine whether a cancer-associated gene influences cancer metastasis by triggering EMT. Moreover, different inducible EMT models enable the investigation of specific mechanisms of EMT modulation by various genes, facilitating a more precise understanding of how these genes influence cancer metastasis through the induction of EMT. Unfortunately, current inducible EMT models still present unmet needs. Therefore, we aimed to establish an inducible EMT model in MCF10A cells, a spontaneously immortalized human fibrocystic mammary cell line, by manipulating the expression of mouse Twist1 (mTwist1). In this study, we first compared the EMT induction capacity between human TWIST1 (hTWIST1) and mTwist1, and selected mTwist1 for further investigation. By monitoring the changes in epithelial and mesenchymal markers at different induction time points, we examined the EMT process in both polyclonal and monoclonal MCF10A cells that express doxycycline (DOX)-inducible mTwist1. Furthermore, our results showed that doxycycline-induced mTwist1 expression triggered EMT at a similar rate to TGFβ1-induced EMT in MCF10A cells. Additionally, this process was reversible upon DOX withdrawal. Thus, we have established a robust inducible EMT model in MCF10A cells, which can be used to further study cancer metastasis-driving genes.
Collapse
Affiliation(s)
- Yaxuan Sun
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Xun Zhou
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Xiaohui Hu
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
14
|
Dey A, MacLean AL. Transition paths across the EMT landscape are dictated by network logic. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.626660. [PMID: 39677780 PMCID: PMC11642844 DOI: 10.1101/2024.12.03.626660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
During development and cancer metastasis, cells transition reversibly from epithelial to mesenchymal via intermediate cell states during epithelial-mesenchymal transition (EMT). EMT is controlled by gene regulatory networks (GRNs) and can be described by a three-node GRN that permits tristable EMT landscapes. In this GRN, multiple inputs regulate the transcription factor ZEB that induces EMT. It is unknown how to choose the network logic for such regulation. Here we explore the effects of network logic on a tristable EMT network. We discover that the choice of additive vs multiplicative logic affects EMT phenotypes, leading to opposing predictions regarding the factors controlling EMT transition paths. We show that strong inhibition of miR-200 destabilizes the epithelial state and initiates EMT for multiplicative (AND) but not additive (OR) logic, suggesting that AND logic is in better agreement with experimental measurements of the effects of miR-200 regulation on EMT. Using experimental single-cell data, stochastic simulations, and perturbation analysis, we demonstrate how our results can be used to design experiments to infer the network logic of an EMT GRN in live cells. Our results explain how the manipulation of molecular interactions can stabilize or destabilize EMT hybrid states, of relevance during cancer progression and metastasis. More generally, we highlight the importance of the choice of network logic in GRN models in the presence of biological noise and multistability.
Collapse
Affiliation(s)
- Anupam Dey
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Adam L. MacLean
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
15
|
McIntyre G, Jackson Z, Colina J, Sekhar S, DiFeo A. miR-181a: regulatory roles, cancer-associated signaling pathway disruptions, and therapeutic potential. Expert Opin Ther Targets 2024; 28:1061-1091. [PMID: 39648331 PMCID: PMC12054384 DOI: 10.1080/14728222.2024.2433687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/20/2024] [Indexed: 12/10/2024]
Abstract
INTRODUCTION microRNA-181a (miR-181a) is a crucial post-transcriptional regulator of many mRNA transcripts and noncoding-RNAs, influencing cell proliferation, cancer cell stemness, apoptosis, and immune responses. Its abnormal expression is well-characterized in numerous cancers, establishing it as a significant genomic vulnerability and biomarker in cancer research. AREAS COVERED Here, we summarize miR-181a's correlation with poor patient outcomes across numerous cancers and the mechanisms governing miR-181a's activity and processing. We comprehensively describe miR-181a's involvement in multiple regulatory cancer signaling pathways, cellular processes, and the tumor microenvironment. We also discuss current therapeutic approaches to targeting miR-181a, highlighting their limitations and future potential. EXPERT OPINION miR-181a is a clinically relevant pan-cancer biomarker with potential as a therapeutic target. Its regulatory control of tumorigenic signaling pathways and immune responses positions it as a promising candidate for personalized treatments. The success of miR-181a as a target relies on the development of specific therapeutics platforms. Future research on miR-181a's role in the tumor microenvironment and the RNA binding proteins that regulate its stability will help uncover new techniques to targeting miR-181a. Further research into miR-181a serum levels in patients undergoing therapy will help to better stratify patients and enhance therapeutic success.
Collapse
Affiliation(s)
- Grace McIntyre
- Department of Pathology, Rackham Graduate School, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Zoe Jackson
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jose Colina
- Department of Pathology, Rackham Graduate School, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Sreeja Sekhar
- Department of Pathology, Rackham Graduate School, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Analisa DiFeo
- Department of Pathology, Rackham Graduate School, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
16
|
Quan J, Xie D, Li Z, Yu X, Liang Z, Chen Y, Wu L, Huang D, Lin L, Fan L. Luteolin alleviates airway remodeling in asthma by inhibiting the epithelial-mesenchymal transition via β-catenin regulation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156090. [PMID: 39393303 DOI: 10.1016/j.phymed.2024.156090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 10/13/2024]
Abstract
BACKGROUND Asthma is a prevalent long-term inflammatory condition that causes airway inflammation and remodeling. Increasing evidence indicates that epithelial-mesenchymal transition (EMT) holds a prominent implication in airway reconstruction in patients with asthma. Flavonoids obtained from Chinese Materia Medica (CMM), such as Luteolin (Lut), exhibit various beneficial effects in various asthma models. Lut has been shown to mitigate various asthma symptoms, including airway inflammation, hyperresponsiveness, bronchoconstriction, excessive mucus production, pulmonary autophagy, and neutrophilic asthma. However, whether flavonoids can suppress EMT-associated airway remodeling in asthma and the fundamental mechanisms involved remain unclear, with no studies specifically addressing Lut in this context. PURPOSE To evaluate the inhibition of airway remodeling in asthma by Lut and its potential mechanisms, while examining the significance of β-catenin in this process through cellular and animal studies. METHODS A BEAS-2B cell model stimulated by lipopolysaccharide (LPS) was established in vitro. Wound closure and Transwell assays were utilized to assess the cellular migratory ability. EMT- and fibrosis-related markers in LPS-stimulated cells were evaluated using RT-qPCR and western blotting. The status of the β-catenin/E-cadherin and β-catenin destruction complexes was evaluated using western blotting, immunofluorescence (IF) staining, and co-immunoprecipitation (Co-IP) analysis. The regulatory function of Lut in β-catenin-dependent EMT was further validated by β-catenin overexpression with adenovirus transduction and siRNA-mediated knockdown of β-catenin. Moreover, the counts of different types of bronchoalveolar lavage fluid (BALF) inflammatory cells from mice with asthma induced by ovalbumin (OVA) were evaluated in vivo using Congo red staining. Hematoxylin and eosin (H&E), Masson's trichrome, and periodic acid-Schiff (PAS) staining were used to evaluate collagen deposition, mucus production, and inflammation in murine lung tissues. Western blotting and immunohistochemistry (IHC) assays were used to assess EMT- and fibrosis-related markers in the lung tissues in vivo. RESULT Six naturally derived flavonoids, including Lut, attenuated cell migration and prevented EMT in LPS-treated BEAS-2B cells. Moreover, Lut suppressed TGF-β1, MMP-9, fibronectin (FN), and α-smooth muscle actin (α-SMA) levels in LPS-stimulated BEAS-2B cells. Additionally, Lut downregulated the levels of β-catenin by modulating the β-catenin/E-cadherin and β-catenin destruction complexes, highlighting the pivotal role of β-catenin in EMT inhibition by Lut in LPS-stimulated BEAS-2B cells. Furthermore, Lut suppressed airway inflammation and attenuated EMT-associated airway remodeling through β-catenin blockade in OVA-induced asthmatic mice. The bronchial wall thickness notably reduced from 37.24 ± 4.00 μm in the asthmatic model group to 30.06 ± 4.40 μm in the Lut low-dose group and 24.69 ± 2.87 μm in the Lut high-dose group. CONCLUSION According to our current understanding, this research is the first to reveal that Lut diminishes airway remodeling in asthma by inhibiting EMT via β-catenin regulation, thereby filling a research gap concerning Lut and flavonoids. These results provide a theoretical basis for treating asthma with anti-asthmatic CMM, as well as a candidate and complementary therapeutic approach to treat asthma.
Collapse
Affiliation(s)
- Jingyu Quan
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Dan Xie
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Zihong Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Xuhua Yu
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Ziyao Liang
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Yuanbin Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Lei Wu
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Donghui Huang
- Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, China.
| | - Lin Lin
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China.
| | - Long Fan
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China.
| |
Collapse
|
17
|
Pranter R, Feiner N. Spatiotemporal distribution of neural crest cells in the common wall lizard Podarcis muralis. Dev Dyn 2024. [PMID: 39560189 DOI: 10.1002/dvdy.758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/23/2024] [Accepted: 10/06/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Neural crest cells (NCCs) are migratory embryonic stem cells that give rise to a diverse set of cell types. Here we describe the dynamic distribution of NCCs in developing embryos of the common wall lizard Podarcis muralis inferred from 10 markers. Our aim is to provide insights into the NCC development of lacertid lizards and to infer evolutionary modifications by comparisons to other tetrapods. RESULTS NCC migration is ongoing at oviposition, following three streams in the head and multiple in the trunk. From 21ss, we observe expression patterns indicating the beginning of differentiation toward mesenchymal and neuronal fates. By 35ss, migration is restricted to caudal levels, and fully differentiated chromaffin cells are observed. CONCLUSIONS We find that some markers show patterns that differ from other tetrapods. For example, the antibody HNK-1 labels three NCC streams from the hindbrain while some comparable reptile studies describe four. However, the information emerging from all markers combined shows that the overall spatiotemporal distribution of NCCs in the common wall lizard is largely conserved with that of other tetrapods. Our study highlights the dynamic nature of seemingly canonical marker genes and provides the first description of spatiotemporal NCC dynamics in a lacertid lizard.
Collapse
Affiliation(s)
- Robin Pranter
- Department of Biology, Lund University, Lund, Sweden
| | | |
Collapse
|
18
|
Wang J, Fang S, Jiang Y, Hua Q. Unraveling the Mechanism of Action of Ubiquitin-Specific Protease 5 and Its Inhibitors in Tumors. Clin Med Insights Oncol 2024; 18:11795549241281932. [PMID: 39391229 PMCID: PMC11465303 DOI: 10.1177/11795549241281932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 08/21/2024] [Indexed: 10/12/2024] Open
Abstract
Ubiquitin-specific protease 5 (USP5), a member of the ubiquitin-specific proteases (USPs) family, functions by specifically removing ubiquitin chains from target proteins for stabilization and degrading unbound polyubiquitin chains to maintain a steady-state monoubiquitin pool. Ubiquitin-specific protease 5 regulates various cellular activities, including DNA double-strand break repair, transmission of neuropathic and inflammatory pain signals, immune response, and tumor cell proliferation. Furthermore, USP5 is involved in the development of multiple tumors such as liver, lung, pancreatic, and breast cancers as well as melanoma. Downstream regulatory mechanisms associated with USP5 are complex and diverse. Ubiquitin-specific protease 5 has been revealed as an emerging target for tumor treatment. This study has introduced some molecules upstream to control the expression of USP5 at the levels of transcription, translation, and post-translation. Furthermore, the study incorporated inhibitors known to be associated with USP5, including partially selective deubiquitinase (DUB) inhibitors such as WP1130, EOAI3402143, vialinin A, and chalcone derivatives. It also included the ubiquitin-activating enzyme E1 inhibitor, PYR-41. These small molecule inhibitors impact the occurrence and development of various tumors. Therefore, this article comprehensively reviews the pivotal role of USP5 in different signaling pathways during tumor progression and resumes the progress made in developing USP5 inhibitors, providing a theoretical foundation for their clinical translation.
Collapse
Affiliation(s)
| | | | - Yang Jiang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qingquan Hua
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
19
|
Kong R, Zhao H, Li J, Ma Y, Li N, Shi L, Li Z. A regulatory loop of JAK/STAT signalling and its downstream targets represses cell fate conversion and maintains male germline stem cell niche homeostasis. Cell Prolif 2024; 57:e13648. [PMID: 38987866 PMCID: PMC11471429 DOI: 10.1111/cpr.13648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 07/12/2024] Open
Abstract
A specialised microenvironment, termed niche, provides extrinsic signals for the maintenance of residential stem cells. However, how residential stem cells maintain niche homeostasis and whether stromal niche cells could convert their fate into stem cells to replenish lost stem cells upon systemic stem cell loss remain largely unknown. Here, through systemic identification of JAK/STAT downstream targets in adult Drosophila testis, we show that Escargot (Esg), a member of the Snail family of transcriptional factors, is a putative JAK/STAT downstream target. esg is intrinsically required in cyst stem cells (CySCs) but not in germline stem cells (GSCs). esg depletion in CySCs results in CySC loss due to differentiation and non-cell autonomous GSC loss. Interestingly, hub cells are gradually lost by delaminating from the hub and converting into CySCs in esg-defective testes. Mechanistically, esg directly represses the expression of socs36E, the well-known downstream target and negative regulator of JAK/STAT signalling. Finally, further depletion of socs36E completely rescues the defects observed in esg-defective testes. Collectively, JAK/STAT target Esg suppresses SOCS36E to maintain CySC fate and repress niche cell conversion. Thus, our work uncovers a regulatory loop between JAK/STAT signalling and its downstream targets in controlling testicular niche homeostasis under physiological conditions.
Collapse
Affiliation(s)
- Ruiyan Kong
- Laboratory of Stem Cell Biology, College of Life SciencesCapital Normal UniversityBeijingChina
| | - Hang Zhao
- Laboratory of Stem Cell Biology, College of Life SciencesCapital Normal UniversityBeijingChina
| | - Juan Li
- Laboratory of Stem Cell Biology, College of Life SciencesCapital Normal UniversityBeijingChina
| | - Yankun Ma
- Laboratory of Stem Cell Biology, College of Life SciencesCapital Normal UniversityBeijingChina
| | - Ningfang Li
- Laboratory of Stem Cell Biology, College of Life SciencesCapital Normal UniversityBeijingChina
| | - Lin Shi
- Laboratory of Stem Cell Biology, College of Life SciencesCapital Normal UniversityBeijingChina
| | - Zhouhua Li
- Laboratory of Stem Cell Biology, College of Life SciencesCapital Normal UniversityBeijingChina
| |
Collapse
|
20
|
Yang X, Liu Z, Wang X, Tian W, Zhao T, Yang Q, Li W, Yang L, Yang H, Jia Y. Anti-cancer effects of nitazoxanide in epithelial ovarian cancer in-vitro and in-vivo. Chem Biol Interact 2024; 400:111176. [PMID: 39084502 DOI: 10.1016/j.cbi.2024.111176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/21/2024] [Accepted: 07/29/2024] [Indexed: 08/02/2024]
Abstract
Epithelial ovarian cancer is one of the most lethal gynecologic malignancies and poses a considerable threat to women's health. Although the progression-free survival of patients has been prolonged with the application of anti-angiogenesis drugs and Poly (ADP-ribose) polymerases (PARP) inhibitors, overall survival has not substantially improved. Thus, new therapeutic strategies are essential for the treatment of ovarian cancer. Nitazoxanide (NTZ), an FDA-approved anti-parasitic drug, has garnered attention for its potential anti-cancer activity. However, the anti-tumor effects and possible underlying mechanisms of NTZ on ovarian cancer remain unclear. In this study, we investigated the anti-tumor effects and the mechanism of NTZ on ovarian cancer in vitro and in vivo. We found that NTZ inhibited the proliferation of A2780 and SKOV3 epithelial ovarian cancer cells in a time- and concentration-dependent manner; Furthermore, NTZ suppressed the metastasis and invasion of A2780 and SKOV3 cells in vitro, correlating with the inhibition of epithelial-mesenchymal transition; Additionally, NTZ suppressed the Hippo/YAP/TAZ signaling pathway both in vitro and in vivo and demonstrated a good binding activity with core genes of Hippo pathway, including Hippo, YAP, TAZ, LATS1, and LATS2. Oral administration of NTZ inhibited tumor growth in xenograft ovarian cancer mice models without causing considerable damage to major organs. Overall, these data suggest that NTZ has therapeutic potential for treating epithelial ovarian cancer.
Collapse
Affiliation(s)
- Xiangqun Yang
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, 650118, PR China
| | - Zhenyan Liu
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, 650118, PR China
| | - Xin Wang
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, 650118, PR China
| | - Wenda Tian
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, 650118, PR China
| | - Taoyu Zhao
- Department of Obstetrics and Gynecology, Dehong Affiliated Hospital of Kunming Medical University, Dehong People's Hospital of Yunnan Province, Yunnan, 678400, PR China
| | - Qiaoling Yang
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, 650118, PR China
| | - Wenliang Li
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, 650118, PR China
| | - Linlin Yang
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, 650118, PR China.
| | - Hongying Yang
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, 650118, PR China.
| | - Yue Jia
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, 650118, PR China.
| |
Collapse
|
21
|
Weissenrieder JS, Peura J, Paudel U, Bhalerao N, Weinmann N, Johnson C, Wengyn M, Drager R, Furth EE, Simin K, Ruscetti M, Stanger BZ, Rustgi AK, Pitarresi JR, Foskett JK. Mitochondrial Ca 2+ controls pancreatic cancer growth and metastasis by regulating epithelial cell plasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.607195. [PMID: 39149344 PMCID: PMC11326289 DOI: 10.1101/2024.08.08.607195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Endoplasmic reticulum to mitochondria Ca2+ transfer is important for cancer cell survival, but the role of mitochondrial Ca2+ uptake through the mitochondrial Ca2+ uniporter (MCU) in pancreatic adenocarcinoma (PDAC) is poorly understood. Here, we show that increased MCU expression is associated with malignancy and poorer outcomes in PDAC patients. In isogenic murine PDAC models, Mcu deletion (Mcu KO) ablated mitochondrial Ca2+ uptake, which reduced proliferation and inhibited self-renewal. Orthotopic implantation of MCU-null tumor cells reduced primary tumor growth and metastasis. Mcu deletion reduced the cellular plasticity of tumor cells by inhibiting epithelial-to-mesenchymal transition (EMT), which contributes to metastatic competency in PDAC. Mechanistically, the loss of mitochondrial Ca2+ uptake reduced expression of the key EMT transcription factor Snail and secretion of the EMT-inducing ligand TGFβ. Snail re-expression and TGFβ treatment rescued deficits in Mcu KO cells and restored their metastatic ability. Thus, MCU may present a therapeutic target in PDAC to limit cancer-cell-induced EMT and metastasis.
Collapse
Affiliation(s)
- Jillian S Weissenrieder
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jessica Peura
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Usha Paudel
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Nikita Bhalerao
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Natalie Weinmann
- Department of Chemistry, Millersville University, Millersville, PA, USA
| | - Calvin Johnson
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Maximilian Wengyn
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Rebecca Drager
- Department of Chemistry, The Ohio State University, Columbus, OH, USA
| | - Emma Elizabeth Furth
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Karl Simin
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Marcus Ruscetti
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ben Z Stanger
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-5157, USA
| | - Anil K Rustgi
- Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York City, NY 10032, USA
| | - Jason R Pitarresi
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - J Kevin Foskett
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
22
|
Rajan AAN, Hutchins EJ. Post-transcriptional regulation as a conserved driver of neural crest and cancer-cell migration. Curr Opin Cell Biol 2024; 89:102400. [PMID: 39032482 PMCID: PMC11346372 DOI: 10.1016/j.ceb.2024.102400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/23/2024]
Abstract
Cells have evolved mechanisms to migrate for diverse biological functions. A process frequently deployed during metazoan cell migration is the epithelial-mesenchymal transition (EMT). During EMT, adherent epithelial cells undergo coordinated cellular transitions to mesenchymalize and reduce their intercellular attachments. This is achieved via tightly regulated changes in gene expression, which modulates cell-cell and cell-matrix adhesion to allow movement. The acquisition of motility and invasive properties following EMT allows some mesenchymal cells to migrate through complex environments to form tissues during embryogenesis; however, these processes may also be leveraged by cancer cells, which often co-opt these endogenous programs to metastasize. Post-transcriptional regulation is now emerging as a major conserved mechanism by which cells modulate EMT and migration, which we discuss here in the context of vertebrate development and cancer.
Collapse
Affiliation(s)
- Arvind Arul Nambi Rajan
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Erica J Hutchins
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
23
|
Aherne S, Donnelly M, Ryan ÉJ, Davey MG, Creavin B, McGrath E, McCarthy A, Geraghty R, Gibbons D, Nagtegaal I, Lugli A, Kirsch R, Martin ST, Winter DC, Sheahan K. Tumour budding as a prognostic biomarker in biopsies and resections of neoadjuvant-treated rectal adenocarcinoma. Histopathology 2024; 85:224-243. [PMID: 38629323 DOI: 10.1111/his.15192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/02/2024] [Accepted: 03/30/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Tumour budding (TB) is a marker of tumour aggressiveness which, when measured in rectal cancer resection specimens, predicts worse outcomes and response to neoadjuvant therapy. We investigated the utility of TB assessment in the setting of neoadjuvant treatment. METHODS AND RESULTS A single-centre, retrospective cohort study was conducted. TB was assessed using the hot-spot International Tumour Budding Consortium (ITBCC) method and classified by the revised ITBCC criteria. Haematoxylin and eosin (H&E) and AE1/AE3 cytokeratin (CK) stains for ITB (intratumoural budding) in biopsies with PTB (peritumoural budding) and ITB (intratumoural budding) in resection specimens were compared. Logistic regression assessed budding as predictors of lymph node metastasis (LNM). Cox regression and Kaplan-Meier analyses investigated their utility as a predictor of disease-free (DFS) and overall (OS) survival. A total of 146 patients were included; 91 were male (62.3%). Thirty-seven cases (25.3%) had ITB on H&E and 79 (54.1%) had ITB on CK assessment of biopsy tissue. In univariable analysis, H&E ITB [odds (OR) = 2.709, 95% confidence interval (CI) = 1.261-5.822, P = 0.011] and CK ITB (OR = 2.165, 95% CI = 1.076-4.357, P = 0.030) predicted LNM. Biopsy-assessed H&E ITB (OR = 2.749, 95% CI = 1.258-6.528, P = 0.022) was an independent predictor of LNM. In Kaplan-Meier analysis, ITB identified on biopsy was associated with worse OS (H&E, P = 0.003, CK: P = 0.009) and DFS (H&E, P = 0.012; CK, P = 0.045). In resection specimens, CK PTB was associated with worse OS (P = 0.047), and both CK PTB and ITB with worse DFS (PTB, P = 0.014; ITB: P = 0.019). In multivariable analysis H&E ITB predicted OS (HR = 2.930, 95% CI = 1.261-6.809) and DFS (HR = 2.072, 95% CI = 1.031-4.164). CK PTB grading on resection also independently predicted OS (HR = 3.417, 95% CI = 1.45-8.053, P = 0.005). CONCLUSION Assessment of TB using H&E and CK may be feasible in rectal cancer biopsy and post-neoadjuvant therapy-treated resection specimens and is associated with LNM and worse survival outcomes. Future management strategies for rectal cancer might be tailored to incorporate these findings.
Collapse
Affiliation(s)
- Susan Aherne
- Centre for Colorectal Disease, St Vincent's University Hospital, Dublin, Ireland
- School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
- International Tumour Budding Consortium Funded by the Dutch Cancer Society, Amsterdam, The Netherlands
| | - Mark Donnelly
- Centre for Colorectal Disease, St Vincent's University Hospital, Dublin, Ireland
- School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| | - Éanna J Ryan
- Centre for Colorectal Disease, St Vincent's University Hospital, Dublin, Ireland
- School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| | - Matthew G Davey
- Centre for Colorectal Disease, St Vincent's University Hospital, Dublin, Ireland
| | - Ben Creavin
- Centre for Colorectal Disease, St Vincent's University Hospital, Dublin, Ireland
- School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| | - Erinn McGrath
- Centre for Colorectal Disease, St Vincent's University Hospital, Dublin, Ireland
- School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| | - Aoife McCarthy
- Centre for Colorectal Disease, St Vincent's University Hospital, Dublin, Ireland
| | - Robert Geraghty
- Centre for Colorectal Disease, St Vincent's University Hospital, Dublin, Ireland
| | - David Gibbons
- Centre for Colorectal Disease, St Vincent's University Hospital, Dublin, Ireland
- School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
- International Tumour Budding Consortium Funded by the Dutch Cancer Society, Amsterdam, The Netherlands
| | - Iris Nagtegaal
- International Tumour Budding Consortium Funded by the Dutch Cancer Society, Amsterdam, The Netherlands
| | - Alessandro Lugli
- International Tumour Budding Consortium Funded by the Dutch Cancer Society, Amsterdam, The Netherlands
| | - Richard Kirsch
- International Tumour Budding Consortium Funded by the Dutch Cancer Society, Amsterdam, The Netherlands
| | - Sean T Martin
- Centre for Colorectal Disease, St Vincent's University Hospital, Dublin, Ireland
- School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| | - Desmond C Winter
- Centre for Colorectal Disease, St Vincent's University Hospital, Dublin, Ireland
- School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| | - Kieran Sheahan
- Centre for Colorectal Disease, St Vincent's University Hospital, Dublin, Ireland
- School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
- International Tumour Budding Consortium Funded by the Dutch Cancer Society, Amsterdam, The Netherlands
| |
Collapse
|
24
|
Li Y, Zhang P, Tang G, Zhong J, Wang Z, Zhu B. Lowering expression of Epsin-3 inhibits migration and invasion of lung adenocarcinoma cells by inhibiting the epithelial-mesenchymal transition. Sci Rep 2024; 14:17069. [PMID: 39048677 PMCID: PMC11269644 DOI: 10.1038/s41598-024-68193-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 07/22/2024] [Indexed: 07/27/2024] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a genetic reprogramming that tumor cells utilize for metastasis. Epsin-3 (EPN3) is an endocytic adapter protein involved in clathrin-mediated endocytosis and had been previously linked to EMT in breast cancer and glioma metastasis. In this study, identified the role of epsin-3 in lung adenocarcinoma and metastasis and epsin-3 levels identified using an expression profile analysis of patient data indicated the protein was abnormally overexpressed in lung adenocarcinoma patients and this was directly linked to disease severity. Gene knockdowns of EPN3 in human adenocarcinoma cell line A549 and the non-small cell lung carcinoma cell line H1299 decreased the levels of mesenchymal markers, including vimentin (VIM), N-cadherin (NCAD) and embryonic transcription factors like zinc finger E-box binding homeobox 1(ZEB1), snail, and the key molecules of Wnt pathway such as β-catenin and resulted in increased expression of the epithelial marker E-cadherin (ECAD). Our data links EPN3 to the EMT process in lung cancer and inhibition of its expression reduced the metastatic and invasive ability of lung adenocarcinoma cells by inhibiting the EMT process.
Collapse
Affiliation(s)
- Yunhe Li
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Pei Zhang
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guoxu Tang
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiahui Zhong
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhenghong Wang
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bing Zhu
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
25
|
Mustafa M, Abbas K, Alam M, Habib S, Zulfareen, Hasan GM, Islam S, Shamsi A, Hassan I. Investigating underlying molecular mechanisms, signaling pathways, emerging therapeutic approaches in pancreatic cancer. Front Oncol 2024; 14:1427802. [PMID: 39087024 PMCID: PMC11288929 DOI: 10.3389/fonc.2024.1427802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Pancreatic adenocarcinoma, a clinically challenging malignancy constitutes a significant contributor to cancer-related mortality, characterized by an inherently poor prognosis. This review aims to provide a comprehensive understanding of pancreatic adenocarcinoma by examining its multifaceted etiologies, including genetic mutations and environmental factors. The review explains the complex molecular mechanisms underlying its pathogenesis and summarizes current therapeutic strategies, including surgery, chemotherapy, and emerging modalities such as immunotherapy. Critical molecular pathways driving pancreatic cancer development, including KRAS, Notch, and Hedgehog, are discussed. Current therapeutic strategies, including surgery, chemotherapy, and radiation, are discussed, with an emphasis on their limitations, particularly in terms of postoperative relapse. Promising research areas, including liquid biopsies, personalized medicine, and gene editing, are explored, demonstrating the significant potential for enhancing diagnosis and treatment. While immunotherapy presents promising prospects, it faces challenges related to immune evasion mechanisms. Emerging research directions, encompassing liquid biopsies, personalized medicine, CRISPR/Cas9 genome editing, and computational intelligence applications, hold promise for refining diagnostic approaches and therapeutic interventions. By integrating insights from genetic, molecular, and clinical research, innovative strategies that improve patient outcomes can be developed. Ongoing research in these emerging fields holds significant promise for advancing the diagnosis and treatment of this formidable malignancy.
Collapse
Affiliation(s)
- Mohd Mustafa
- Department of Biochemistry, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Kashif Abbas
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Mudassir Alam
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Safia Habib
- Department of Biochemistry, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Zulfareen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Gulam Mustafa Hasan
- Department of Basic Medical Science, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Sidra Islam
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Anas Shamsi
- Center of Medical and Bio-Allied Health Sciences Research (CMBHSR), Ajman University, Ajman, United Arab Emirates
| | - Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
26
|
Wang J, Gu Q, Liu Y, Huang X, Zhang J, Liu B, Li R, Linghu H. Low PDE4A expression promoted the progression of ovarian cancer by inducing Snail nuclear translocation. Exp Cell Res 2024; 439:114100. [PMID: 38797258 DOI: 10.1016/j.yexcr.2024.114100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/04/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Widespread metastasis is the primary reason for the high mortality associated with ovarian cancer (OC), and effective targeted therapy for tumor aggressiveness is still insufficient in clinical practice. Therefore, it is urgent to find new targets to improve prognosis of patients. PDE4A is a cyclic nucleotide phosphodiesterase that plays a crucial role in the occurrence and development in various malignancies. Our study firstly reported the function of PDE4A in OC. Expression of PDE4A was validated through bioinformatics analysis, RT-qPCR, Western blot, and immunohistochemistry. Additionally, its impact on cell growth and motility was assessed via in vitro and in vivo experiments. PDE4A was downregulated in OC tissues compared with normal tissues and low PDE4A expression was correlated with poor clinical outcomes in OC patients. The knockdown of PDE4A significantly promoted the proliferation, migration and invasion of OC cells while overexpression of PDE4A resulted in the opposite effect. Furthermore, smaller and fewer tumor metastatic foci were observed in mice bearing PDE4A-overexpressing OVCAR3 cells. Mechanistically, downregulation of PDE4A expression can induce epithelial-mesenchymal transition (EMT) and nuclear translocation of Snail, which suggests that PDE4A plays a pivotal role in suppressing OC progression. Notably, Rolipram, the PDE4 inhibitor, mirrored the effects observed with PDE4A deletion. In summary, the downregulation of PDE4A appears to facilitate OC progression by modulating the Snail/EMT pathway, underscoring the potential of PDE4A as a therapeutic target against ovarian cancer metastasis.
Collapse
Affiliation(s)
- Jinlong Wang
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Qiuying Gu
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yuexi Liu
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiaolan Huang
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jiajing Zhang
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Bin Liu
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Molecular Medicine Diagnostic and Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Ruonan Li
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Hua Linghu
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
27
|
Kielbik M, Szulc-Kielbik I, Klink M. Snail transcription factors - Characteristics, regulation and molecular targets relevant in vital cellular activities of ovarian cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119705. [PMID: 38513918 DOI: 10.1016/j.bbamcr.2024.119705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/29/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024]
Abstract
Snail transcription factors play essential roles in embryonic development and participate in many physiological processes. However, these genes have been implicated in the development and progression of various types of cancer. In epithelial ovarian cancer, high expression of these transcription factors is usually associated with the acquisition of a more aggressive phenotype and thus, considered to be a poor prognostic factor. Numerous molecular signals create a complex network of signaling pathways regulating the expression and stability of Snails, which in turn control genes involved in vital cellular functions of ovarian cancer cells, such as invasion, survival, proliferation and chemoresistance.
Collapse
Affiliation(s)
- Michal Kielbik
- Institute of Medical Biology Polish Academy of Sciences, Lodz, Poland.
| | | | - Magdalena Klink
- Institute of Medical Biology Polish Academy of Sciences, Lodz, Poland
| |
Collapse
|
28
|
Khan AQ, Hasan A, Mir SS, Rashid K, Uddin S, Steinhoff M. Exploiting transcription factors to target EMT and cancer stem cells for tumor modulation and therapy. Semin Cancer Biol 2024; 100:1-16. [PMID: 38503384 DOI: 10.1016/j.semcancer.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
Transcription factors (TFs) are essential in controlling gene regulatory networks that determine cellular fate during embryogenesis and tumor development. TFs are the major players in promoting cancer stemness by regulating the function of cancer stem cells (CSCs). Understanding how TFs interact with their downstream targets for determining cell fate during embryogenesis and tumor development is a critical area of research. CSCs are increasingly recognized for their significance in tumorigenesis and patient prognosis, as they play a significant role in cancer initiation, progression, metastasis, and treatment resistance. However, traditional therapies have limited effectiveness in eliminating this subset of cells, allowing CSCs to persist and potentially form secondary tumors. Recent studies have revealed that cancer cells and tumors with CSC-like features also exhibit genes related to the epithelial-to-mesenchymal transition (EMT). EMT-associated transcription factors (EMT-TFs) like TWIST and Snail/Slug can upregulate EMT-related genes and reprogram cancer cells into a stem-like phenotype. Importantly, the regulation of EMT-TFs, particularly through post-translational modifications (PTMs), plays a significant role in cancer metastasis and the acquisition of stem cell-like features. PTMs, including phosphorylation, ubiquitination, and SUMOylation, can alter the stability, localization, and activity of EMT-TFs, thereby modulating their ability to drive EMT and stemness properties in cancer cells. Although targeting EMT-TFs holds potential in tackling CSCs, current pharmacological approaches to do so directly are unavailable. Therefore, this review aims to explore the role of EMT- and CSC-TFs, their connection and impact in cellular development and cancer, emphasizing the potential of TF networks as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| | - Adria Hasan
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Kursi Road, Lucknow 226026, India; Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, Lucknow 226026, India
| | - Snober S Mir
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Kursi Road, Lucknow 226026, India; Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India
| | - Khalid Rashid
- Department of Urology,Feinberg School of Medicine, Northwestern University, 303 E Superior Street, Chicago, IL 60611, USA
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India; Laboratory Animal Research Center, Qatar University, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Department of Medicine, Weill Cornell Medicine Qatar, Qatar Foundation-Education City, Doha 24144, Qatar; Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; College of Medicine, Qatar University, Doha 2713, Qatar
| |
Collapse
|
29
|
Rea M, Kimmerer G, Mittendorf S, Xiong X, Green M, Chandler D, Saintilnord W, Blackburn J, Gao T, Fondufe-Mittendorf YN. A dynamic model of inorganic arsenic-induced carcinogenesis reveals an epigenetic mechanism for epithelial-mesenchymal plasticity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123586. [PMID: 38467368 PMCID: PMC11005477 DOI: 10.1016/j.envpol.2024.123586] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/13/2024]
Abstract
Inorganic arsenic (iAs) causes cancer by initiating dynamic transitions between epithelial and mesenchymal cell phenotypes. These transitions transform normal cells into cancerous cells, and cancerous cells into metastatic cells. Most in vitro models assume that transitions between states are binary and complete, and do not consider the possibility that intermediate, stable cellular states might exist. In this paper, we describe a new, two-hit in vitro model of iAs-induced carcinogenesis that extends to 28 weeks of iAs exposure. Through week 17, the model faithfully recapitulates known and expected phenotypic, genetic, and epigenetic characteristics of iAs-induced carcinogenesis. By 28 weeks, however, exposed cells exhibit stable, intermediate phenotypes and epigenetic properties, and key transcription factor promoters (SNAI1, ZEB1) enter an epigenetically poised or bivalent state. These data suggest that key epigenetic transitions and cellular states exist during iAs-induced epithelial-to-mesenchymal transition (EMT), and that it is important for our in vitro models to encapsulate all aspects of EMT and the mesenchymal-to-epithelial transition (MET). In so doing, and by understanding the epigenetic systems controlling these transitions, we might find new, unexpected opportunities for developing targeted, cell state-specific therapeutics.
Collapse
Affiliation(s)
- Matthew Rea
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49502, USA
| | - Greg Kimmerer
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA
| | - Shania Mittendorf
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA
| | - Xiaopeng Xiong
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Meghan Green
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Darrell Chandler
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49502, USA
| | - Wesley Saintilnord
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49502, USA; Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Jessica Blackburn
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Tianyan Gao
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | | |
Collapse
|
30
|
Xiang K, Wang E, Mantyh J, Rupprecht G, Negrete M, Sanati G, Hsu C, Randon P, Dohlman A, Kretzschmar K, Bose S, Giroux N, Ding S, Wang L, Balcazar JP, Huang Q, Sundaramoorthy P, Xi R, McCall SJ, Wang Z, Jiang C, Kang Y, Kopetz S, Crawford GE, Lipkin SM, Wang XF, Clevers H, Hsu D, Shen X. Chromatin Remodeling in Patient-Derived Colorectal Cancer Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303379. [PMID: 38380561 DOI: 10.1002/advs.202303379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/22/2023] [Indexed: 02/22/2024]
Abstract
Patient-Derived Organoids (PDO) and Xenografts (PDX) are the current gold standards for patient-derived models of cancer (PDMC). Nevertheless, how patient tumor cells evolve in these models and the impact on drug response remains unclear. Herein, the transcriptomic and chromatin accessibility landscapes of matched colorectal cancer (CRC) PDO, PDX, PDO-derived PDX (PDOX), and original patient tumors (PT) are compared. Two major remodeling axes are discovered. The first axis delineates PDMC from PT, and the second axis distinguishes PDX and PDO. PDOX are more similar to PDX than PDO, indicating the growth environment is a driving force for chromatin adaptation. Transcription factors (TF) that differentially bind to open chromatins between matched PDO and PDOX are identified. Among them, KLF14 and EGR2 footprints are enriched in PDOX relative to matched PDO, and silencing of KLF14 or EGR2 promoted tumor growth. Furthermore, EPHA4, a shared downstream target gene of KLF14 and EGR2, altered tumor sensitivity to MEK inhibitor treatment. Altogether, patient-derived CRC cells undergo both common and distinct chromatin remodeling in PDO and PDX/PDOX, driven largely by their respective microenvironments, which results in differences in growth and drug sensitivity and needs to be taken into consideration when interpreting their ability to predict clinical outcome.
Collapse
Affiliation(s)
- Kun Xiang
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Ergang Wang
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - John Mantyh
- Department of Medicine, School of Medicine, Duke University, Durham, NC, 27710, USA
| | - Gabrielle Rupprecht
- Department of Medicine, School of Medicine, Duke University, Durham, NC, 27710, USA
| | - Marcos Negrete
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Golshid Sanati
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Carolyn Hsu
- Department of Medicine, School of Medicine, Duke University, Durham, NC, 27710, USA
| | - Peggy Randon
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA
| | - Anders Dohlman
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Kai Kretzschmar
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center (UMC) Utrecht, Uppsalalaan 8, Utrecht, CT, 3584, The Netherlands
- Mildred Scheel Early Career Centre (MSNZ) for Cancer Research Würzburg, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Shree Bose
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Nicholas Giroux
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Shengli Ding
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Lihua Wang
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Jorge Prado Balcazar
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Qiang Huang
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
- Terasaki Institute, Los Angeles, CA, 90024, USA
| | | | - Rui Xi
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Shannon Jones McCall
- Department of Pathology, School of Medicine, Duke University, Durham, NC, 27710, USA
| | - Zhaohui Wang
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | | | - Yubin Kang
- Department of Medicine, School of Medicine, Duke University, Durham, NC, 27710, USA
| | - Scott Kopetz
- Department of Gastrointestinal (GI) Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Gregory E Crawford
- Department of Pediatrics, Division of Medical Genetics, School of Medicine, Duke University, Durham, NC, 27710, USA
| | - Steven M Lipkin
- Department of Medicine and Program in Mendelian Genetics, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Xiao-Fan Wang
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Hans Clevers
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center (UMC) Utrecht, Uppsalalaan 8, Utrecht, CT, 3584, The Netherlands
| | - David Hsu
- Department of Medicine, School of Medicine, Duke University, Durham, NC, 27710, USA
| | - Xiling Shen
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
- Terasaki Institute, Los Angeles, CA, 90024, USA
| |
Collapse
|
31
|
Schelch K, Eder S, Zitta B, Phimmachanh M, Johnson TG, Emminger D, Wenninger‐Weinzierl A, Sturtzel C, Poplimont H, Ries A, Hoetzenecker K, Hoda MA, Berger W, Distel M, Dome B, Reid G, Grusch M. YB-1 regulates mesothelioma cell migration via snail but not EGFR, MMP1, EPHA5 or PARK2. Mol Oncol 2024; 18:815-831. [PMID: 36550787 PMCID: PMC10994239 DOI: 10.1002/1878-0261.13367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 11/11/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
Pleural mesothelioma (PM) is characterized by rapid growth, local invasion, and limited therapeutic options. The multifunctional oncoprotein Y-box-binding protein-1 (YB-1) is frequently overexpressed in cancer and its inhibition reduces aggressive behavior in multiple tumor types. Here, we investigated the effects of YB-1 on target gene regulation and PM cell behavior. Whereas siRNA-mediated YB-1 knockdown reduced cell motility, YB-1 overexpression resulted in scattering, increased migration, and intravasation in vitro. Furthermore, YB-1 stimulated PM cell spreading in zebrafish. Combined knockdown and inducible overexpression of YB-1 allowed bidirectional control and rescue of cell migration, the pattern of which was closely followed by the mRNA and protein levels of EGFR and the protein level of snail, whereas the mRNA levels of MMP1, EPHA5, and PARK2 showed partial regulation by YB-1. Finally, we identified snail as a critical regulator of YB-1-mediated cell motility in PM. This study provides insights into the mechanism underlying the aggressive nature of PM and highlights the important role of YB-1 in this cancer. In this context, we found that YB-1 closely regulates EGFR and snail, and, moreover, that YB-1-induced cell migration depends on snail.
Collapse
Affiliation(s)
- Karin Schelch
- Center for Cancer Research and Comprehensive Cancer CenterMedical University of ViennaAustria
- Department of Thoracic SurgeryMedical University of ViennaAustria
| | - Sebastian Eder
- Center for Cancer Research and Comprehensive Cancer CenterMedical University of ViennaAustria
| | - Benjamin Zitta
- Center for Cancer Research and Comprehensive Cancer CenterMedical University of ViennaAustria
| | - Monica Phimmachanh
- Center for Cancer Research and Comprehensive Cancer CenterMedical University of ViennaAustria
- University of Technology SydneyNSWAustralia
| | - Thomas G. Johnson
- Center for Cancer Research and Comprehensive Cancer CenterMedical University of ViennaAustria
- The University of SydneyNSWAustralia
| | - Dominik Emminger
- Center for Cancer Research and Comprehensive Cancer CenterMedical University of ViennaAustria
| | | | - Caterina Sturtzel
- St. Anna Children's Cancer Research Institute, Innovative Cancer ModelsViennaAustria
| | - Hugo Poplimont
- St. Anna Children's Cancer Research Institute, Innovative Cancer ModelsViennaAustria
| | - Alexander Ries
- Center for Cancer Research and Comprehensive Cancer CenterMedical University of ViennaAustria
| | | | - Mir A. Hoda
- Department of Thoracic SurgeryMedical University of ViennaAustria
| | - Walter Berger
- Center for Cancer Research and Comprehensive Cancer CenterMedical University of ViennaAustria
| | - Martin Distel
- St. Anna Children's Cancer Research Institute, Innovative Cancer ModelsViennaAustria
| | - Balazs Dome
- Department of Thoracic SurgeryMedical University of ViennaAustria
- National Koranyi Institute of PulmonologyBudapestHungary
- Department of Thoracic SurgerySemmelweis University and National Institute of OncologyBudapestHungary
| | - Glen Reid
- Department of PathologyDunedin School of MedicineNew Zealand
- The Maurice Wilkins CentreUniversity of OtagoDunedinNew Zealand
| | - Michael Grusch
- Center for Cancer Research and Comprehensive Cancer CenterMedical University of ViennaAustria
| |
Collapse
|
32
|
Ito K, Harada I, Martinez C, Sato K, Lee E, Port E, Byerly JH, Nayak A, Tripathi E, Zhu J, Irie HY. MARCH2, a Novel Oncogene-regulated SNAIL E3 Ligase, Suppresses Triple-negative Breast Cancer Metastases. CANCER RESEARCH COMMUNICATIONS 2024; 4:946-957. [PMID: 38457262 PMCID: PMC10977041 DOI: 10.1158/2767-9764.crc-23-0090] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 01/02/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Epithelial-mesenchymal transition (EMT) in cancer promotes metastasis and chemotherapy resistance. A subset of triple-negative breast cancer (TNBC) exhibits a mesenchymal gene signature that is associated with poor patient outcomes. We previously identified PTK6 tyrosine kinase as an oncogenic driver of EMT in a subset of TNBC. PTK6 induces EMT by stabilizing SNAIL, a key EMT-initiating transcriptional factor. Inhibition of PTK6 activity reverses mesenchymal features of TNBC cells and suppresses their metastases by promoting SNAIL degradation via a novel mechanism. In the current study, we identify membrane-associated RING-CH2 (MARCH2) as a novel PTK6-regulated E3 ligase that promotes the ubiquitination and degradation of SNAIL protein. The MARCH2 RING domain is critical for SNAIL ubiquitination and subsequent degradation. PTK6 inhibition promotes the interaction of MARCH2 with SNAIL. Overexpression of MARCH2 exhibits tumor suppressive properties and phenocopies the effects of SNAIL downregulation and PTK6 inhibition in TNBC cells, such as inhibition of migration, anoikis resistance, and metastasis. Consistent with this, higher levels of MARCH2 expression in breast and other cancers are associated with better prognosis. We have identified MARCH2 as a novel SNAIL E3 ligase that regulates EMT and metastases of mesenchymal TNBC. SIGNIFICANCE EMT is a process directly linked to drug resistance and metastasis of cancer cells. We identified MARCH2 as a novel regulator of SNAIL, a key EMT driver, that promotes SNAIL ubiquitination and degradation in TNBC cells. MARCH2 is oncogene regulated and inhibits growth and metastasis of TNBC. These insights could contribute to novel strategies to therapeutically target TNBC.
Collapse
Affiliation(s)
- Koichi Ito
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ibuki Harada
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Criseyda Martinez
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Katsutoshi Sato
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Elisa Port
- Department of Surgery, Mount Sinai Hospital, New York, New York
| | - Jessica H. Byerly
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Anupma Nayak
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ekta Tripathi
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jun Zhu
- Sema4, Stamford, Connecticut
| | - Hanna Y. Irie
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
33
|
Thiery JP, Sheng G, Shu X, Runyan R. How studies in developmental epithelial-mesenchymal transition and mesenchymal-epithelial transition inspired new research paradigms in biomedicine. Development 2024; 151:dev200128. [PMID: 38300897 DOI: 10.1242/dev.200128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Epithelial-mesenchymal transition (EMT) and its reverse mechanism, mesenchymal-epithelial transition (MET), are evolutionarily conserved mechanisms initially identified in studies of early metazoan development. EMT may even have been established in choanoflagellates, the closest unicellular relative of Metazoa. These crucial morphological transitions operate during body plan formation and subsequently in organogenesis. These findings have prompted an increasing number of investigators in biomedicine to assess the importance of such mechanisms that drive epithelial cell plasticity in multiple diseases associated with congenital disabilities and fibrosis, and, most importantly, in the progression of carcinoma. EMT and MET also play crucial roles in regenerative medicine, notably by contributing epigenetic changes in somatic cells to initiate reprogramming into stem cells and their subsequent differentiation into distinct lineages.
Collapse
Affiliation(s)
| | - Guojun Sheng
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Xiaodong Shu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Raymond Runyan
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
34
|
Gao J, Huo Z, Song X, Shao Q, Ren W, Huang X, Zhou S, Tang X. EGFR mediates epithelial‑mesenchymal transition through the Akt/GSK-3β/Snail signaling pathway to promote liver cancer proliferation and migration. Oncol Lett 2024; 27:59. [PMID: 38192662 PMCID: PMC10773224 DOI: 10.3892/ol.2023.14192] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/09/2023] [Indexed: 01/10/2024] Open
Abstract
Epidermal growth factor receptor (EGFR) is expressed in various types of cancer and is associated with the malignant biological behavior of cancer cells. In the present study, the expression of EGFR in hepatocellular carcinoma (HCC) tissues and liver cancer cells was detected by immunohistochemical staining, western blotting and immunofluorescence. Furthermore, a lentivirus was transduced into HepG2 liver cancer cells to knock down EGFR expression. Cell proliferation and migration, and the expression levels of epithelial-mesenchymal transition (EMT) markers were assessed by EdU staining, Cell Counting Kit-8, colony formation, wound healing and Transwell assays, and western blotting. The results revealed that EGF/EGFR can mediate EMT through the Akt/glycogen synthase kinase-3β (GSK-3β)/Snail signaling pathway to promote HepG2 cell proliferation and migration. Inhibition of the activation of the EGFR signaling pathway can help to partially reverse the EMT phenotype, and inhibit the proliferation and migration of HepG2 cells. In conclusion, the EGFR/Akt/GSK-3β/Snail signaling pathway serves an important role in HCC progression, and inhibition of the activation of the EGFR signaling pathway may be a valuable strategy in liver cancer treatment.
Collapse
Affiliation(s)
- Jiafeng Gao
- Medical School, Anhui University of Science & Technology, Huainan, Anhui 232001, P.R. China
| | - Zhen Huo
- Medical School, Anhui University of Science & Technology, Huainan, Anhui 232001, P.R. China
| | - Xueyi Song
- Medical School, Anhui University of Science & Technology, Huainan, Anhui 232001, P.R. China
| | - Qianqian Shao
- Medical School, Anhui University of Science & Technology, Huainan, Anhui 232001, P.R. China
| | - Weiwei Ren
- Department of Gastroenterology and Hepatology, Huainan First People's Hospital and First Affiliated Hospital of Anhui University of Science & Technology, Huainan, Anhui 232001, P.R. China
| | - Xiaolong Huang
- Department of Gastroenterology and Hepatology, Huainan First People's Hospital and First Affiliated Hospital of Anhui University of Science & Technology, Huainan, Anhui 232001, P.R. China
| | - Shuping Zhou
- Department of Gastroenterology and Hepatology, Huainan First People's Hospital and First Affiliated Hospital of Anhui University of Science & Technology, Huainan, Anhui 232001, P.R. China
| | - Xiaolong Tang
- Medical School, Anhui University of Science & Technology, Huainan, Anhui 232001, P.R. China
- Department of Gastroenterology and Hepatology, Huainan First People's Hospital and First Affiliated Hospital of Anhui University of Science & Technology, Huainan, Anhui 232001, P.R. China
| |
Collapse
|
35
|
Guzman-Espinoza M, Kim M, Ow C, Hutchins EJ. "Beyond transcription: How post-transcriptional mechanisms drive neural crest EMT". Genesis 2024; 62:e23553. [PMID: 37735882 PMCID: PMC10954587 DOI: 10.1002/dvg.23553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/02/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023]
Abstract
The neural crest is a stem cell population that originates from the ectoderm during the initial steps of nervous system development. Neural crest cells delaminate from the neuroepithelium by undergoing a spatiotemporally regulated epithelial-mesenchymal transition (EMT) that proceeds in a coordinated wave head-to-tail to exit from the neural tube. While much is known about the transcriptional programs and membrane changes that promote EMT, there are additional levels of gene expression control that neural crest cells exert at the level of RNA to control EMT and migration. Yet, the role of post-transcriptional regulation, and how it drives and contributes to neural crest EMT, is not well understood. In this mini-review, we explore recent advances in our understanding of the role of post-transcriptional regulation during neural crest EMT.
Collapse
Affiliation(s)
- Mariann Guzman-Espinoza
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Minyoung Kim
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Oral and Craniofacial Sciences Graduate Program, School of Dentistry, University of California San Francisco, San Francisco, CA, USA
| | - Cindy Ow
- Developmental and Stem Cell Biology Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Erica J. Hutchins
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Oral and Craniofacial Sciences Graduate Program, School of Dentistry, University of California San Francisco, San Francisco, CA, USA
- Developmental and Stem Cell Biology Graduate Program, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
36
|
Li L, Xia S, Zhao Z, Deng L, Wang H, Yang D, Hu Y, Ji J, Huang D, Xin T. EMP3 as a prognostic biomarker correlates with EMT in GBM. BMC Cancer 2024; 24:89. [PMID: 38229014 DOI: 10.1186/s12885-023-11796-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/25/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most aggressive malignant central nervous system tumor with a poor prognosis.The malignant transformation of glioma cells via epithelial-mesenchymal transition (EMT) has been observed as a main obstacle for glioblastoma treatment. Epithelial membrane protein 3 (EMP3) is significantly associated with the malignancy of GBM and the prognosis of patients. Therefore, exploring the possible mechanisms by which EMP3 promotes the growth of GBM has important implications for the treatment of GBM. METHODS We performed enrichment and correlation analysis in 5 single-cell RNA sequencing datasets. Differential expression of EMP3 in gliomas, Kaplan-Meier survival curves, diagnostic accuracy and prognostic prediction were analyzed by bioinformatics in the China Glioma Genome Atlas (CGGA) database and The Cancer Genome Atlas (TCGA) database. EMP3-silenced U87 and U251 cell lines were obtained by transient transfection with siRNA. The effect of EMP3 on glioblastoma proliferation was examined using the CCK-8 assay. Transwell migration assay and wound healing assay were used to assess the effect of EMP3 on glioblastoma migration. Finally, quantitative real-time polymerase chain reaction (qRT-PCR) and western blot were used to detect the mRNA and protein expression levels of EMT-related transcription factors and mesenchymal markers. RESULTS EMP3 is a EMT associated gene in multiple types of malignant cancer and in high-grade glioblastoma. EMP3 is enriched in high-grade gliomas and isocitrate dehydrogenase (IDH) wild-type gliomas.EMP3 can be used as a specific biomarker for diagnosing glioma patients. It is also an independent prognostic factor for glioma patients' overall survival (OS). In addition, silencing EMP3 reduces the proliferation and migration of glioblastoma cells. Mechanistically, EMP3 enhances the malignant potential of tumor cells by promoting EMT. CONCLUSION EMP3 promotes the proliferation and migration of GBM cells, and the mechanism may be related to EMP3 promoting the EMT process in GBM; EMP3 may be an independent prognostic factor in GBM.
Collapse
Affiliation(s)
- Li Li
- Department of Oncology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Siyu Xia
- Department of Oncology, The Beidahuang Group General Hospital, Harbin, 150006, China
| | - Zitong Zhao
- Department of Anesthesiology and Pain Rehabilitation, School of Medicine, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University, Shanghai, 201619, China
| | - Lili Deng
- Department of Oncology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Hanbing Wang
- Department of Neurosurgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Dongbo Yang
- Department of Neurosurgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Yizhou Hu
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jingjing Ji
- Department of Pathology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Dayong Huang
- Department of Oncology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China.
| | - Tao Xin
- Department of Oncology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
37
|
Rostami SP, Dehkordi NM, Asgari Y, Bolouri MR, Shayanfar N, Falak R, Kardar GA. Competitive Effect of Overexpressed C-terminal of Snail-1 (CSnail) in Control of the Growth and Metastasis of Melanoma Cells. Recent Pat Anticancer Drug Discov 2024; 19:342-353. [PMID: 37005514 DOI: 10.2174/1574892818666230330105016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/09/2023] [Accepted: 02/21/2023] [Indexed: 04/04/2023]
Abstract
BACKGROUND Epithelial-to-mesenchymal transition (EMT) plays a role in the invasion and metastasis of cancer cells. During this phenomenon, Snail can promote tumor progression by upregulating mesenchymal factors and downregulating the expression of pro-apoptotic proteins. OBJECTIVE Therefore, interventions on the expression rate of Snails may show beneficial therapeutic applications. METHODS In this study, the C-terminal region of Snail1, capable of binding to E-box genomic sequences, was subcloned into the pAAV-IRES-EGFP backbone to make complete AAV-CSnail viral particles. B16F10 as a metastatic melanoma cell line, with a null expression of wild type TP53 was transduced by AAV-CSnail. Moreover, the transduced cells were analyzed for in vitro expression of apoptosis, migration, and EMT-related genes, and in vivo inhibition of metastasis. RESULTS In more than 80% of the AAV-CSnail transduced cells, the CSnail gene expression competitively reduced the wild-type Snail functionality and consequently lowered the mRNA expression level of EMT-related genes. Furthermore, the transcription level of cell cycle inhibitory factor p21 and pro-apoptotic factors were promoted. The scratch test showed a decrease in the migration ability of AAV-CSnail transduced group compared to control. Finally, metastasis of cancer cells to lung tissue in the AAV-CSnail-treated B16F10 melanoma mouse model was significantly reduced, pointing out to prevention of EMT by the competitive inhibitory effect of CSnail on Snail1 and increased apoptosis of B16F10 cells. CONCLUSION The capability of this successful competition in reducing the growth, invasion, and metastasis of melanoma cells indicates that gene therapy is a promising strategy for the control of the growth and metastasis of cancer cells.
Collapse
Affiliation(s)
- Sadegh Paydari Rostami
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Immunology Asthma & Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Negar Moghare Dehkordi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Immunology Asthma & Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Yazdan Asgari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Bolouri
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nasrin Shayanfar
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Gholam Ali Kardar
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Immunology Asthma & Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Yang W, Wang S, Tong S, Zhang WD, Qin JJ. Expanding the ubiquitin code in pancreatic cancer. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166884. [PMID: 37704111 DOI: 10.1016/j.bbadis.2023.166884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/23/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
The ubiquitin-proteasome system (UPS) is a fundamental regulatory mechanism in cells, vital for maintaining cellular homeostasis, compiling signaling transduction, and determining cell fates. These biological processes require the coordinated signal cascades of UPS members, including ubiquitin ligases, ubiquitin-conjugating enzymes, deubiquitinases, and proteasomes, to ubiquitination and de-ubiquitination on substrates. Recent studies indicate that ubiquitination code rewriting is particularly prominent in pancreatic cancer. High frequency mutation or aberrant hyperexpression of UPS members dysregulates ferroptosis, tumor microenvironment, and metabolic rewiring processes and contribute to tumor growth, metastasis, immune evasion, and acquired drug resistance. We conduct an in-depth overview of ubiquitination process in pancreatic cancer, highlighting the role of ubiquitin code in tumor-promoting and tumor-suppressor pathways. Furthermore, we review current UPS modulators and analyze the potential of UPS modulators as cancer therapy.
Collapse
Affiliation(s)
- Wenyan Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou 313200, China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Shiqun Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Shengqiang Tong
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou 313200, China
| | - Wei-Dong Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jiang-Jiang Qin
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China.
| |
Collapse
|
39
|
Yoshii H, Kajiya M, Yoshino M, Morimoto S, Horikoshi S, Tari M, Motoike S, Iwata T, Ouhara K, Ando T, Yoshimoto T, Shintani T, Mizuno N. Mechanosignaling YAP/TAZ-TEAD Axis Regulates the Immunomodulatory Properties of Mesenchymal Stem Cells. Stem Cell Rev Rep 2024; 20:347-361. [PMID: 37917410 DOI: 10.1007/s12015-023-10646-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 11/04/2023]
Abstract
Mesenchymal stem cells (MSCs) have gained significant attention in cell therapies due to their multipotency and immunomodulatory capacities. The transcriptional co-activators YAP/TAZ, central to the mechanotransduction system in MSCs, dominantly direct MSCs lineage commitment. However, their role in immunomodulation remains elusive. Accordingly, this present study aimed to investigate the role of mechanotransducer YAP/TAZ and their binding target transcriptional factor, TEAD, in the immunomodulatory capacities of human bone marrow-derived MSCs. Reducing YAP/TAZ activity by altering the matrix stiffness, disrupting the F-actin integrity with chemical inhibitors, or using siRNAs increased the expression of immunomodulatory genes, such as TSG-6 and IDO, upon TNF-α stimulation. Similarly, transfection of TEAD siRNA also increased the immunomodulatory capacities in MSCs. RNA-seq analysis and inhibition assays demonstrated that the immunomodulatory capacities caused by YAP/TAZ-TEAD axis disruption were due to the NF-κB signaling pathway activation. Then, we also evaluated the in vivo anti-inflammatory efficacy of MSCs in a dextran sulfate sodium (DSS)-induced mice colitis model. The administration of human MSCs transfected with TEAD siRNA, which exhibited enhanced immunomodulatory properties in vitro, significantly ameliorated inflammatory bowel disease symptoms, such as body weight loss and acute colon inflammation, in the DSS-induced mice colitis model. Our findings underscore the mechanosignaling YAP/TAZ-TEAD axis as a regulator of MSCs immunomodulation. Targeting these signaling pathways could herald promising MSCs-based therapies for immune disorders.
Collapse
Affiliation(s)
- Hiroki Yoshii
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Mikihito Kajiya
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan.
- Department of Innovation and Precision Dentistry, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan.
| | - Mai Yoshino
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Shin Morimoto
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Susumu Horikoshi
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Misako Tari
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Souta Motoike
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Tomoyuki Iwata
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Kazuhisa Ouhara
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Toshinori Ando
- Department of Innovation and Precision Dentistry, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Tetsuya Yoshimoto
- Department of Innovation and Precision Dentistry, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Tomoaki Shintani
- Department of Innovation and Precision Dentistry, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| | - Noriyoshi Mizuno
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-Ku, Hiroshima, 734-8553, Japan
| |
Collapse
|
40
|
Ocak M, Usta DD, Arik Erol GN, Kaplanoglu GT, Konac E, Yar Saglam AS. Determination of In Vitro and In Vivo Effects of Taxifolin and Epirubicin on Epithelial-Mesenchymal Transition in Mouse Breast Cancer Cells. Technol Cancer Res Treat 2024; 23:15330338241241245. [PMID: 38515396 PMCID: PMC10958820 DOI: 10.1177/15330338241241245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/23/2024] [Accepted: 03/06/2024] [Indexed: 03/23/2024] Open
Abstract
Background: One of the most significant characteristics of cancer is epithelial-mesenchymal transition and research on the relationship between phenolic compounds and anticancer medications and epithelial-mesenchymal transition is widespread. Methods: In order to investigate the potential effects of Taxifolin on enhancing the effectiveness of Epirubicin in treating breast cancer, specifically in 4T1 cells and an allograft BALB/c model, the effects of Taxifolin and Epirubicin, both individually and in combination, were examined. Cell viability assays and cytotoxicity assays in 4T1 cells were performed. In addition, 4T1 cells were implanted into female BALB/c mice to conduct in vivo studies and evaluate the therapeutic efficacy of Taxifolin and Epirubicin alone or in combination. Tumor volumes and histological analysis were also assessed in mice. To further understand the mechanisms involved, we examined the messenger RNA and protein levels of epithelial-mesenchymal transition-related genes, as well as active Caspase-3/7 levels, using quantitative real-time polymerase chain reaction, western blot, and enzyme-linked immunosorbent assays, respectively. Results: In vitro results demonstrated that the coadministration of Taxifolin and Epirubicin reduced cell viability and cytotoxicity in 4T1 cell lines. In vivo, coadministration of Taxifolin and Epirubicin suppressed tumor growth in BALB/c mice with 4T1 breast cancer cells. Additionally, this combination treatment significantly increased the levels of active caspase-3/7 and downregulated the messenger RNA and protein levels of N-cadherin, β-catenin, vimentin, snail, and slug, but upregulated the E-cadherin gene. It significantly decreased the messenger RNA levels of the Zeb1 and Zeb2 genes. Conclusion: The in vitro and in vivo results of our study indicate that the concurrent use of Epirubicin with Taxifolin has supportive effects on breast cancer treatment.
Collapse
Affiliation(s)
- Muhammet Ocak
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Duygu Deniz Usta
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Gokce Nur Arik Erol
- Department of Histology and Embryology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Gulnur Take Kaplanoglu
- Department of Histology and Embryology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Ece Konac
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Atiye Seda Yar Saglam
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
41
|
Motizuki M, Yokoyama T, Saitoh M, Miyazawa K. The Snail signaling branch downstream of the TGF-β/Smad3 pathway mediates Rho activation and subsequent stress fiber formation. J Biol Chem 2024; 300:105580. [PMID: 38141763 PMCID: PMC10821601 DOI: 10.1016/j.jbc.2023.105580] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/21/2023] [Accepted: 11/30/2023] [Indexed: 12/25/2023] Open
Abstract
Cancer cells acquire malignant phenotypes through an epithelial-mesenchymal transition, which is induced by environmental factors or extracellular signaling molecules, including transforming growth factor-β (TGF-β). Among epithelial-mesenchymal transition-associated cell responses, cell morphological changes and cell motility are closely associated with remodeling of the actin stress fibers. Here, we examined the TGF-β signaling pathways leading to these cell responses. Through knockdown experiments in A549 lung adenocarcinoma cells, we found that Smad3-mediated induction of Snail, but not that of Slug, is indispensable for morphological changes, stress fiber formation, and enhanced motility in cells stimulated with TGF-β. Ectopic expression of Snail in SMAD3-knockout cells rescued the defect in morphological changes and stress fiber formation by TGF-β, indicating that the role of Smad3 in these responses is to upregulate Snail expression. Mechanistically, Snail is required for TGF-β-induced upregulation of Wnt5b, which in turn activates RhoA and subsequent stress fiber formation in cooperation with phosphoinositide 3-kinase. However, ectopic expression of Snail in SMAD3-knockout cells failed to rescue the defect in cell motility enhancement by TGF-β, indicating that activation of the Smad3/Snail/Wnt5b axis is indispensable but not sufficient for enhancing cell motility; a Smad3-dependent but Snail-independent pathway to activate Rac1 is additionally required. Therefore, the Smad3-dependent pathway leading to enhanced cell motility has two branches: a Snail-dependent branch to activate RhoA and a Snail-independent branch to activate Rac1. Coordinated activation of these branches, together with activation of non-Smad signaling pathways, mediates enhanced cell motility induced by TGF-β.
Collapse
Affiliation(s)
- Mitsuyoshi Motizuki
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Takashi Yokoyama
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Masao Saitoh
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan; Center for Medical Education and Sciences, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Keiji Miyazawa
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan.
| |
Collapse
|
42
|
Saitoh M. Transcriptional regulation of EMT transcription factors in cancer. Semin Cancer Biol 2023; 97:21-29. [PMID: 37802266 DOI: 10.1016/j.semcancer.2023.10.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/01/2022] [Accepted: 10/02/2023] [Indexed: 10/08/2023]
Abstract
The epithelial-mesenchymal transition (EMT) is one of the processes by which epithelial cells transdifferentiate into mesenchymal cells in the developmental stage, known as "complete EMT." In epithelial cancer, EMT, also termed "partial EMT," is associated with invasion, metastasis, and resistance to therapy, and is elicited by several transcription factors, frequently referred to as EMT transcription factors. Among these transcription factors that regulate EMT, ZEB1/2 (ZEB1 and ZEB2), SNAIL, and TWIST play a prominent role in driving the EMT process (hereafter referred to as "EMT-TFs"). Among these, ZEB1/2 show positive correlation with both expression of mesenchymal marker proteins and the aggressiveness of various carcinomas. On the other hand, TWIST and SNAIL are also correlated with the aggressiveness of carcinomas, but are not highly correlated with mesenchymal marker protein expression. Interestingly, these EMT-TFs are not detected simultaneously in any studied cases of aggressive cancers, except for sarcoma. Thus, only one or some of the EMT-TFs are expressed at high levels in cells of aggressive carcinomas. Expression of EMT-TFs is regulated by transforming growth factor-β (TGF-β), a well-established inducer of EMT, in cooperation with other signaling molecules, such as active RAS signals. The focus of this review is the molecular mechanisms by which EMT-TFs are transcriptionally sustained at sufficiently high levels in cells of aggressive carcinomas and upregulated by TGF-β during cancer progression.
Collapse
Affiliation(s)
- Masao Saitoh
- Center for Medical Education and Sciences, Graduate School of Medicine, University of Yamanashi, Chuo-city, Yamanashi, Japan.
| |
Collapse
|
43
|
Yang J, Liu J, Liang J, Li F, Wang W, Chen H, Xie X. Epithelial-mesenchymal transition in age-associated thymic involution: Mechanisms and therapeutic implications. Ageing Res Rev 2023; 92:102115. [PMID: 37922996 DOI: 10.1016/j.arr.2023.102115] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/17/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
The thymus is a critical immune organ with endocrine and immune functions that plays important roles in the physiological and pathological processes of the body. However, with aging, the thymus undergoes degenerative changes leading to decreased production and output of naive T cells and the secretion of thymic hormones and related cytokines, thereby promoting the occurrence and development of various age-associated diseases. Therefore, identifying essential processes that regulate age-associated thymic involution is crucial for long-term control of thymic involution and age-associated disease progression. Epithelial-mesenchymal transition (EMT) is a well-established process involved in organ aging and functional impairment through tissue fibrosis in several organs, such as the heart and kidney. In the thymus, EMT promotes fibrosis and potentially adipogenesis, leading to thymic involution. This review focuses on the factors involved in thymic involution, including oxidative stress, inflammation, and hormones, from the perspective of EMT. Furthermore, current interventions for reversing age-associated thymic involution by targeting EMT-associated processes are summarized. Understanding the key mechanisms of thymic involution through EMT as an entry point may promote the development of new therapies and clinical agents to reverse thymic involution and age-associated disease.
Collapse
Affiliation(s)
- Jiali Yang
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Juan Liu
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Jiayu Liang
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Fan Li
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Wenwen Wang
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Huan Chen
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China.
| | - Xiang Xie
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China.
| |
Collapse
|
44
|
Du Z, Wei P, Jiang N, Wu L, Ding C, Yu G. SHED-derived exosomes ameliorate hyposalivation caused by Sjögren's syndrome via Akt/GSK-3β/Slug-mediated ZO-1 expression. Chin Med J (Engl) 2023; 136:2596-2608. [PMID: 37052137 PMCID: PMC10617935 DOI: 10.1097/cm9.0000000000002610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Sjögren's syndrome (SS) is an autoimmune disorder characterized by sicca syndrome and/or systemic manifestations. The treatment is still challenging. This study aimed to explore the therapeutic role and mechanism of exosomes obtained from the supernatant of stem cells derived from human exfoliated deciduous teeth (SHED-exos) in sialadenitis caused by SS. METHODS SHED-exos were administered to the submandibular glands (SMGs) of 14-week-old non-obese diabetic (NOD) mice, an animal model of the clinical phase of SS, by local injection or intraductal infusion. The saliva flow rate was measured after pilocarpine intraperitoneal injection in 21-week-old NOD mice. Protein expression was examined by western blot analysis. Exosomal microRNA (miRNAs) were identified by microarray analysis. Paracellular permeability was evaluated by transepithelial electrical resistance measurement. RESULTS SHED-exos were injected into the SMG of NOD mice and increased saliva secretion. The injected SHED-exos were taken up by glandular epithelial cells, and further increased paracellular permeability mediated by zonula occluden-1 (ZO-1). A total of 180 exosomal miRNAs were identified from SHED-exos, and Kyoto Encyclopedia of Genes and Genomes analysis suggested that the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt) pathway might play an important role. SHED-exos treatment down-regulated phospho-Akt (p-Akt)/Akt, phospho-glycogen synthase kinase 3β (p-GSK-3β)/GSK-3β, and Slug expressions and up-regulated ZO-1 expression in SMGs and SMG-C6 cells. Both the increased ZO-1 expression and paracellular permeability induced by SHED-exos were abolished by insulin-like growth factor 1, a PI3K agonist. Slug bound to the ZO-1 promoter and suppressed its expression. For safer and more effective clinical application, SHED-exos were intraductally infused into the SMGs of NOD mice, and saliva secretion was increased and accompanied by decreased levels of p-Akt/Akt, p-GSK-3β/GSK-3β, and Slug and increased ZO-1 expression. CONCLUSION Local application of SHED-exos in SMGs can ameliorate Sjögren syndrome-induced hyposalivation by increasing the paracellular permeability of glandular epithelial cells through Akt/GSK-3β/Slug pathway-mediated ZO-1 expression.
Collapse
Affiliation(s)
- Zhihao Du
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Pan Wei
- Department of Oral Medicine, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Nan Jiang
- Center Laboratory, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Liling Wu
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Chong Ding
- Center Laboratory, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Guangyan Yu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| |
Collapse
|
45
|
Hong JW, Yu Y, Wang LS, Li Z, Zhang R, Wang Q, Ding Z, Zhang JP, Zhang MR, Xu LC. BMP4 Regulates EMT to be Involved in non-Syndromic Cleft lip With or Without Palate. Cleft Palate Craniofac J 2023; 60:1462-1473. [PMID: 35702016 DOI: 10.1177/10556656221105762] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE In the previous study, we identified bone morphogenetic protein 4 (BMP4) responsible for non-syndromic cleft lip with or without cleft palate (NSCL/P). We aimed to elucidate the effects and mechanisms of BMP4 on epithelial-mesenchymal transition (EMT) through Smad1 signaling pathway to be involved in NSCL/P. METHODS The human oral epidermoid carcinoma cells (KBs) were transfected with plasmids or small interfering RNA (siRNA) to build the models. The migration of the cells was evaluated by transwell assay. Western blotting and quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) were used to detect the expressions of BMP4, E-cadherin, N-cadherin, EMT-related transcription factors snal1 and snal2, matrix metalloproteinase 2 (MMP2), MMP9, Smad1, and phosphorylated Smad1. RESULTS In the overexpression group, the migration number of cells was increased significantly. The protein expression of E-cadherin was decreased significantly, while the protein expression level of the N-cadherin was increased significantly. The protein and mRNA expressions of MMP2, MMP9, snal1, and snal2 were significantly higher. The expression level of Smad1 was not significantly changed, while the phosphorylation of Smad1 was significantly increased. In the BMP4-siRNA group, the migrating number cells was significantly decreased. The protein expression of E-cadherin was increased significantly, while the expression of N-cadherin was significantly decreased. The protein and mRNA expressions of MMP2, MMP9, snal1, and snal2 were significantly lower than that of the control group. The expressions of Smad1 and phosphorylation of Smad1 were not significantly changed. CONCLUSIONS BMP4 enhances cell migration and promotes cell EMT through Smad1 signaling pathway. Abnormal BMP4 mediates migration and EMT through other relevant signaling pathways resulting in NSCL/P. The study provides new insight into the mechanisms of NSCL/P associated with BMP4.n.
Collapse
Affiliation(s)
- Jia-Wei Hong
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Jiangsu, China
| | - Yue Yu
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Jiangsu, China
| | - Lu-Shan Wang
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Jiangsu, China
| | - Zheng Li
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Jiangsu, China
| | - Rui Zhang
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Jiangsu, China
| | - Qi Wang
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Jiangsu, China
| | - Zhen Ding
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Jiangsu, China
| | - Jin-Peng Zhang
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Jiangsu, China
| | - Mei-Rong Zhang
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Jiangsu, China
| | - Li-Chun Xu
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Jiangsu, China
| |
Collapse
|
46
|
Li L, Zheng J, Oltean S. Regulation of Epithelial-Mesenchymal Transitions by Alternative Splicing: Potential New Area for Cancer Therapeutics. Genes (Basel) 2023; 14:2001. [PMID: 38002944 PMCID: PMC10671305 DOI: 10.3390/genes14112001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a complicated biological process in which cells with epithelial phenotype are transformed into mesenchymal cells with loss of cell polarity and cell-cell adhesion and gain of the ability to migrate. EMT and the reverse mesenchymal-epithelial transitions (METs) are present during cancer progression and metastasis. Using the dynamic switch between EMT and MET, tumour cells can migrate to neighbouring organs or metastasize in the distance and develop resistance to traditional chemotherapy and targeted drug treatments. Growing evidence shows that reversing or inhibiting EMT may be an advantageous approach for suppressing the migration of tumour cells or distant metastasis. Among different levels of modulation of EMT, alternative splicing (AS) plays an important role. An in-depth understanding of the role of AS and EMT in cancer is not only helpful to better understand the occurrence and regulation of EMT in cancer progression, but also may provide new therapeutic strategies. This review will present and discuss various splice variants and splicing factors that have been shown to play a crucial role in EMT.
Collapse
Affiliation(s)
| | | | - Sebastian Oltean
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter Medical School, Exeter EX1 2LU, UK; (L.L.)
| |
Collapse
|
47
|
Huang J, Xu ZF, Liu F, Song AN, Su H, Zhang C. Minichromosome maintenance 6 protects against renal fibrogenesis by regulating DUSP6-mediated ERK/GSK-3β/Snail1 signaling. iScience 2023; 26:107940. [PMID: 37810227 PMCID: PMC10558752 DOI: 10.1016/j.isci.2023.107940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/02/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
Minichromosome maintenance 6 (MCM6) has been implicated in the progression of various malignant tumors; however, its exact physiological function in kidney diseases remains unclear. Here, we demonstrated that MCM6 levels showed a significant increase in the proximal tubular cells during progressive renal fibrosis in two unrelated in vivo fibrotic models, including unilateral ureteral obstruction (UUO) and unilateral ischemia-reperfusion injury (UIRI). Depletion of MCM6 aggravated partial epithelial-mesenchymal transition, extracellular matrix accumulation, and myofibroblast activation in the kidneys of UUO or UIRI mice. Conversely, overexpression of MCM6 promoted the recovery of E-cadherin and retarded UUO- or UIRI-induced renal fibrosis. In addition, DUSP6 expression substantially decreased in fibrotic kidneys, and it might be involved in MCM6-induced renal fibrosis by regulating the activation of ERK/GSK-3β/Snail1 signaling. In conclusion, our results highlight the significance of MCM6 in renal fibrosis, providing a potential therapeutic target for patients with chronic kidney disease.
Collapse
Affiliation(s)
- Jing Huang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhi-Feng Xu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Feng Liu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - An-Ni Song
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hua Su
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
48
|
Wądzyńska J, Simiczyjew A, Pietraszek-Gremplewicz K, Kot M, Ziętek M, Matkowski R, Nowak D. The impact of cellular elements of TME on melanoma biology and its sensitivity to EGFR and MET targeted therapy. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119549. [PMID: 37506884 DOI: 10.1016/j.bbamcr.2023.119549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023]
Abstract
Microenvironment of the melanoma consists of cellular elements like fibroblasts, adipocytes, and keratinocytes as well as extracellular matrix and physicochemical conditions. In our previous research, we have established that melanoma influences strongly above mentioned cells present in the tumor niche and recruits them to support cancer progression. In this work, we evaluated the impact of cancer-associated cells, namely fibroblasts (CAFs), adipocytes (CAAs), and keratinocytes (CAKs) on melanoma proliferation, signaling pathways activation, metabolism as well as the effectiveness of used anti-cancer therapy. Obtained results indicated elevated phosphorylation of STAT3, upregulated GLUT1 and GLUT3 as well as downregulated of MCT-1 expression level in melanoma cells under the influence of all examined cells present in the tumor niche. The proliferation of melanoma cells was increased after co-culture with CAFs and CAKs, while epithelial-mesenchymal transition markers' expression level was raised in the presence of CAFs and CAAs. The level of perilipin 2 and lipid content was elevated in melanoma cells under the influence of CAAs. Moreover, increased expression of CYP1A1, gene encoding drug metabolizing protein, in melanoma cells co-cultured with CAFs and CAKs prompted us to verify the effectiveness of the previously proposed by us anti-melanoma therapy based on combination of EGFR and MET inhibitors. Obtained results indicate that the designed therapy is still efficient, even if the fibroblasts, adipocytes, and keratinocytes, are present in the melanoma vicinity.
Collapse
Affiliation(s)
- Justyna Wądzyńska
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Aleksandra Simiczyjew
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | | | - Magdalena Kot
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Marcin Ziętek
- Department of Oncology and Division of Surgical Oncology, Wroclaw Medical University, Plac Hirszfelda 12, 53-413 Wroclaw, Poland; Lower Silesian Oncology, Pulmonology, and Hematology Center, Plac Hirszfelda 12, 53-413 Wroclaw, Poland
| | - Rafał Matkowski
- Department of Oncology and Division of Surgical Oncology, Wroclaw Medical University, Plac Hirszfelda 12, 53-413 Wroclaw, Poland; Lower Silesian Oncology, Pulmonology, and Hematology Center, Plac Hirszfelda 12, 53-413 Wroclaw, Poland
| | - Dorota Nowak
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| |
Collapse
|
49
|
Luo Y, Zhu Q, Xiang S, Wang Q, Li J, Chen X, Yan W, Feng J, Zu X. Downregulated circPOKE promotes breast cancer metastasis through activation of the USP10-Snail axis. Oncogene 2023; 42:3236-3251. [PMID: 37717099 DOI: 10.1038/s41388-023-02823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/18/2023]
Abstract
Breast cancer (BC) is the most commonly diagnosed cancer and the leading cause of cancer-related death among females. Metastasis accounts for the majority of BC related deaths. One feasible strategy to solve this challenging problem is to disrupt the capabilities required for tumor metastasis. Herein, we verified a novel metastasis suppressive circRNA, circPOKE in BC. circPOKE was downregulated in primary and metastatic BC tissues and overexpression of circPOKE inhibited the metastatic potential but not the proliferative ability of BC cells in vitro and in vivo. Mechanistically, circPOKE competitively binds to USP10, and reduces its binding to Snail, a key transcriptional regulator of EMT, thereby inhibiting Snail stability via the protein-ubiquitination degradation pathway. In addition, we found that circPOKE could be secreted into the extracellular space via exosomes and that exosome-carried circPOKE significantly inhibited the invasive capabilities of BC cells in vitro and in vivo. Furthermore, the levels of circPOKE, USP10 and Snail are clinically relevant in BC, suggesting that circPOKE may be used as a potential therapeutic target for patients with BC metastasis.
Collapse
Affiliation(s)
- Yan Luo
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Qingyun Zhu
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Shasha Xiang
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Qi Wang
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Jun Li
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Xiguang Chen
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Wen Yan
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Jianbo Feng
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.
| | - Xuyu Zu
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.
| |
Collapse
|
50
|
Liu Y, Fang X, Wang Q, Xiao D, Zhou T, Kang K, Peng Z, Ren F, Zhou J. SMC1A facilitates gastric cancer cell proliferation, migration, and invasion via promoting SNAIL activated EMT. BMC Gastroenterol 2023; 23:268. [PMID: 37537540 PMCID: PMC10401881 DOI: 10.1186/s12876-023-02850-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 06/08/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Structural maintenance of chromosomes protein 1 A (SMC1A) is a crucial subunit of the cohesion protein complex and plays a vital role in cell cycle regulation, genomic stability maintenance, chromosome dynamics. Recent studies demonstrated that SMC1A participates in tumorigenesis. This reseach aims to explore the role and the underlying mechanisms of SMC1A in gastric cancer (GC). MATERIALS AND METHODS RT-qPCR and western blot were used to examine the expression levels of SMC1A in GC tissues and cell lines. The role of SMC1A on GC cell proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) were analyzed. Furthermore,the mechanism of SMC1A action was investigated. RESULTS SMC1A was highly expressed in GC tissues and cell lines. The high expression of SMC1A indicated the poor overall survival of GC patients from Kaplan-Meier Plotter. Enhancing the expression of SMC1A in AGS cells remarkably promoted cell proliferation in vitro and in vivo, migration and invasion, Conversely, knockdown of SMC1A in HGC27 cells inhibited cell proliferation, migration and invasion. Moreover, it's observed that SMC1A promoted EMT and malignant cell behaviors via regulating SNAIL. CONCLUSION Our study revealed that SMC1A promotes EMT process by upregulating SNAIL, which contributes to gastric cancer cell proliferation, migration and invasion. Therefore, targeting SMC1A may be a potential strategy to improve GC therapy.
Collapse
Affiliation(s)
- Yaling Liu
- Department of Geriatrics Surgery, The Second Xiangya Hospital, Central South University, No. 139 Renmin Road, Furong District, Changsha City, 410011, Hunan Province, China
| | - Xianrui Fang
- Department of General Surgery, Yantai Qishan Hospital, Yantai, 264000, Shandong, China
| | - Qianqian Wang
- Department of Oncology, The Affiliated ZhuZhou Hospital of XiangYa Medical College, Central South University, ZhuZhou, 412007, Hunan, China
| | - Da Xiao
- Department of General Surgery, Shekou People's Hospital, Shenzhen, 518000, Guangdong, China
| | - Ting Zhou
- Department of Geriatrics Surgery, The Second Xiangya Hospital, Central South University, No. 139 Renmin Road, Furong District, Changsha City, 410011, Hunan Province, China
| | - Kuo Kang
- Department of Geriatrics Surgery, The Second Xiangya Hospital, Central South University, No. 139 Renmin Road, Furong District, Changsha City, 410011, Hunan Province, China
| | - Zhenyu Peng
- Department of Geriatrics Surgery, The Second Xiangya Hospital, Central South University, No. 139 Renmin Road, Furong District, Changsha City, 410011, Hunan Province, China
| | - Feng Ren
- Department of Geriatrics Surgery, The Second Xiangya Hospital, Central South University, No. 139 Renmin Road, Furong District, Changsha City, 410011, Hunan Province, China.
| | - Jingyu Zhou
- Department of Geriatrics Surgery, The Second Xiangya Hospital, Central South University, No. 139 Renmin Road, Furong District, Changsha City, 410011, Hunan Province, China.
| |
Collapse
|