1
|
Saarenheimo J, Willför H, Wahid N, Jekunen A, Andersén H. Impact of Upfront DPYD Genotyping on Fluoropyrimidine Adjuvant Therapy in Colorectal Cancer: A Real-World Data. Clin Colorectal Cancer 2025; 24:264-271. [PMID: 40000255 DOI: 10.1016/j.clcc.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/01/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND The application of fluoropyrimidine-based chemotherapy in colorectal cancer treatment is known to pose significant toxicity risks, which can be mitigated by tailoring treatment according to DPYD gene variants. This study evaluates the impact of DPYD genotype-guided dosing on treatment-related toxicities and patient outcomes. METHODS A retrospective analysis was conducted on CRC patients treated with fluoropyrimidines in adjuvant setting at The Wellbeing Services County of Ostrobothnia. Patients were divided into two cohorts based on the implementation of routine DPYD genotyping: pregenotyping (2016-2018) (n = 80) and postgenotyping (2020-2022) (n = 69). The incidence of side effects, treatment discontinuation, hospitalization, and 90-day mortality were compared between groups. RESULTS The study revealed a reduction in 90-day mortality rates among patients who underwent DPYD genotyping before treatment. Patients with pathogenic DPYD variants received ≥50% reduced doses initially, leading to no severe toxicities (grade ≥3). Class 3 variants showed similar side effect profiles and hospitalization rates as untested patients but had a lower rate of treatment discontinuation. CONCLUSIONS Upfront DPYD genotyping appears to improve patient safety in CRC patients treated with adjuvant fluoropyrimidines, leading to personalized dosing that reduces severe toxicities and early mortality. These findings underscore the importance of integrating pharmacogenetic testing in clinical oncology to optimize treatment regimens and enhance patient care.
Collapse
Affiliation(s)
- Jatta Saarenheimo
- Department of Oncology, The Wellbeing Services County of Ostrobothnia, Vaasa Central Hospital, Vaasa, Finland; Fimlab Laboratoriot Oy, Patologia, Vaasa, Finland.
| | - Hugo Willför
- Department of Oncology, The Wellbeing Services County of Ostrobothnia, Vaasa Central Hospital, Vaasa, Finland; Umeå University, Umeå, Sweden
| | - Nesna Wahid
- Department of Oncology, The Wellbeing Services County of Ostrobothnia, Vaasa Central Hospital, Vaasa, Finland
| | - Antti Jekunen
- Department of Oncology, The Wellbeing Services County of Ostrobothnia, Vaasa Central Hospital, Vaasa, Finland; Department of Oncology and Radiotherapy, University of Turku, Turku, Finland
| | - Heidi Andersén
- Department of Oncology, The Wellbeing Services County of Ostrobothnia, Vaasa Central Hospital, Vaasa, Finland
| |
Collapse
|
2
|
Alshabeeb MA, Alwadaani D, Shilbayeh SAR, Alherz FA, Alghubayshi A. Unveiling the heritability of selected unexplored pharmacogenetic markers in the Saudi population. Front Pharmacol 2025; 16:1559399. [PMID: 40376268 PMCID: PMC12078325 DOI: 10.3389/fphar.2025.1559399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/31/2025] [Indexed: 05/18/2025] Open
Abstract
Background Pharmacogenomic (PGx) variants can significantly impact drug response, but limited data exists on their prevalence in Middle Eastern populations. This study aimed to investigate the inheritance of certain markers in candidate pharmacogenes among healthy Saudis. Methods DNA samples from 95 unrelated healthy Saudi participants were genotyped using the Affymetrix Axiom Precision Medicine Diversity Array. Thirty-eight variants in 15 pharmacogenes were analyzed based on their clinical relevance and lack of previous reporting in Saudi populations. Results Twenty-six of the 37 tested markers were undetected in the cohort. The selected variants in six genes [DPYD (rs1801268), CACNA1S (rs772226819), EGFR (rs121434568), RYR1 (rs193922816), CYP2B6 (rs3826711), and MT-RNR1 (rs267606617, rs267606618, rs267606619)] were found to be non-existing among Saudis. In contrast, 11 variants and alleles in nine pharmacogenes were detected at varying frequencies. Notable findings included high frequencies of variants in ATIC [rs4673993, minor allele frequency (MAF) = 0.71)] and SLC19A1 (rs1051266, MAF = 0.48) affecting methotrexate efficacy. Three alleles were identified in CYP3A4, including a common (CYP3A4 rs2242480) and two rare alleles (*3 and *22). Another three markers [rs16969968 in CHRNA5, rs11881222 in IFNL3 (IL28B), and SLCO1B1*14] were found to be highly distributed among the participants (MAF = 0.35, 0.30, and 0.14, respectively). Conversely, three rare markers: CYP2A6*2, NAT2*14, and rs115545701 in CFTR, were identified at low-frequency levels (MAF = 0.021, 0.011, 0.005, respectively). Statistically significant differences in allele frequencies were observed for eight variants between Saudi and African populations, five variants compared to East Asians, and two variants compared to Europeans. Conclusion This study provides novel insights into the distribution of clinically relevant PGx variants in the Saudi population. The findings have implications for personalizing treatments for various conditions, including rheumatoid arthritis, cystic fibrosis, and hepatitis C. These data contribute to the development of population-specific PGx testing panels and treatment guidelines.
Collapse
Affiliation(s)
- Mohammad A. Alshabeeb
- Pharmaceutical Analysis Department, King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Deemah Alwadaani
- King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia
- Medical Genomics Research Department, KAIMRC, Riyadh, Saudi Arabia
| | - Sireen A. R. Shilbayeh
- Department of Pharmacy Practice, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Fatemah A. Alherz
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ali Alghubayshi
- Clinical Pharmacy Department, University of Hail, Hail, Saudi Arabia
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
3
|
Ho TT, Smith DM, Aquilante CL, Cicali EJ, El Rouby N, Hertz DL, Imanirad I, Patel JN, Scott SA, Swain SM, Tuteja S, Hicks JK, the Pharmacogenomics Global Research Network Publication Committee. A Guide for Implementing DPYD Genotyping for Systemic Fluoropyrimidines into Clinical Practice. Clin Pharmacol Ther 2025; 117:1194-1208. [PMID: 39887719 PMCID: PMC11993294 DOI: 10.1002/cpt.3567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/17/2024] [Indexed: 02/01/2025]
Abstract
The safety of systemic fluoropyrimidines (e.g., 5-fluorouracil, capecitabine) is impacted by germline genetic variants in DPYD, which encodes the dihydropyrimidine dehydrogenase (DPD) enzyme that functions as the rate-limiting step in the catabolism of this drug class. Genetic testing to identify those with DPD deficiency can help mitigate the risk of severe and life-threatening fluoropyrimidine-induced toxicities. Globally, the integration of DPYD genetic testing into patient care has varied greatly, ranging from being required as the standard of care in some countries to limited clinical use in others. Thus, implementation strategies have evolved differently across health systems and countries. The primary objective of this tutorial is to provide practical considerations and best practice recommendations for the implementation of DPYD-guided systemic fluoropyrimidine dosing. We adapted the Exploration, Preparation, Implementation, and Sustainment (EPIS) framework to cover topics including the clinical evidence supporting DPYD genotyping to guide fluoropyrimidine therapy, regulatory guidance for DPYD genotyping, key stakeholder engagement, logistics for DPYD genotyping, development of point-of-care clinical decision support tools, and considerations for the creation of sustainable and scalable DPYD genotype-integrated workflows. This guide also describes approaches to counseling patients about DPYD testing and result disclosure, along with examples of patient and provider educational resources. Together, DPYD testing and clinical practice integration aim to promote safe prescribing of fluoropyrimidine therapy and decrease the risk of severe and life-threatening fluoropyrimidine toxicities.
Collapse
Affiliation(s)
- Teresa T. Ho
- Department of PathologyH. Lee Moffitt Cancer Center and Research InstituteTampaFloridaUSA
| | - D. Max Smith
- Department of OncologyGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
- MedStar HealthColumbiaMarylandUSA
| | - Christina L. Aquilante
- Department of Pharmaceutical SciencesUniversity of Colorado Skaggs School of Pharmacy and Pharmaceutical SciencesAuroraColoradoUSA
- Colorado Center for Personalized MedicineUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Emily J. Cicali
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, College of PharmacyUniversity of FloridaGainesvilleFloridaUSA
| | - Nihal El Rouby
- Department of Pharmacy Practice and Administrative Sciences, James L Winkle College of PharmacyUniversity of CincinnatiCincinnatiOhioUSA
- St Elizabeth Health CareEdgewoodKentuckyUSA
| | - Daniel L. Hertz
- Department of Clinical PharmacyUniversity of Michigan College of PharmacyAnn ArborMichiganUSA
| | - Iman Imanirad
- Department of Gastrointestinal OncologyH. Lee Moffitt Cancer Center and Research InstituteTampaFloridaUSA
| | - Jai N. Patel
- Division of Cancer Pharmacology & PharmacogenomicsAtrium Health Levine Cancer InstituteCharlotteNorth CarolinaUSA
- Atrium Health Wake Forest Baptist Comprehensive Cancer CenterWinston‐SalemNorth CarolinaUSA
| | - Stuart A. Scott
- Department of PathologyStanford UniversityStanfordCaliforniaUSA
| | - Sandra M. Swain
- MedStar HealthColumbiaMarylandUSA
- Georgetown Lombardi Comprehensive Cancer CenterWashingtonDistrict of ColumbiaUSA
| | - Sony Tuteja
- Division of Translational Medicine and Human Genetics, Department of MedicinePerelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - J. Kevin Hicks
- Department of PathologyH. Lee Moffitt Cancer Center and Research InstituteTampaFloridaUSA
| | | |
Collapse
|
4
|
White C, Paul C, Liet E, Kalpage D, Mossman D, Ziolkowski A, Ackland S, Scott RJ. Implementing DPYD genotyping to predict chemotherapy toxicity in Australia: a feasibility study. Intern Med J 2025; 55:741-748. [PMID: 40214188 DOI: 10.1111/imj.16576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/24/2024] [Indexed: 05/15/2025]
Abstract
BACKGROUND Implementing pharmacogenomic-guided management in cancer patients equitably and effectively in a large population presents challenges. DPYD genotyping determines clinically significant variants of patients at increased risk of developing grade3-5 fluoropyrimidine (FP) toxicity. FP chemotherapies are prescribed for ~16,000 Australians with a 10%-40% grade3-4 toxicity incidence and 1% mortality. Variant carriers can have FP dosing adjusted to improve treatment tolerance without compromising anticancer effect. This strategy has not been formally adopted within Australia, despite widespread international standardisation. AIM This pilot study determined genotyping turnaround-times (TAT) for 4 DPYD variants (c.1905+1G>A, c.1679T>G, c.2846A>T and c.1236G>A/Haplotype B3) in Australian patients. Secondary objectives were identification of FP toxicities of DPYD variant carriers, and analysis of healthcare stakeholder perspectives, including enablers/barriers to implementation. METHODS Genotyping was determined by Real-Time Polymerase Chain Reaction. Qualitative data were determined through semi-structured questionnaire. RESULTS 104 patients recruited over 24 months had a mean TAT of 7.2 days, 5.2 business days (range 1-30). Grade3-4 toxicity occurred in 9/16 DPYD variant carriers, including 2 ICU admissions and 1 death. Themes from 30 questionnaire respondents suggest that clinical environment and resources were fundamental barriers, and motivation to improve patient care was the predominant enabler of change. CONCLUSION DPYD genotyping is feasible for improving precision-oncology for patients requiring FP chemotherapies. A TAT of 7 days is acceptable by both stakeholder respondents and national oncology clinician groups. This pilot study, although small, informs a large national project evaluating prospective DPYD genotyping and its impact on FP tolerability, patient safety and cost-effectiveness in Australia.
Collapse
Affiliation(s)
- Cassandra White
- College of Health, Medicine and Wellbeing, School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Christine Paul
- College of Health, Medicine and Wellbeing, School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Esther Liet
- Department of Molecular Genetics, Pathology North John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Dilshan Kalpage
- Department of Molecular Genetics, Pathology North John Hunter Hospital, Newcastle, New South Wales, Australia
| | - David Mossman
- Department of Molecular Genetics, Pathology North John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Andrew Ziolkowski
- Department of Molecular Genetics, Pathology North John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Stephen Ackland
- College of Health, Medicine and Wellbeing, School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Rodney J Scott
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- Department of Molecular Genetics, Pathology North John Hunter Hospital, Newcastle, New South Wales, Australia
- College of Health, Medicine and Wellbeing, School of Biomedical Science and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
| |
Collapse
|
5
|
Shaunak N, Keen J, Kim A, Pirmohamed M, Newman WG, Ross PJ. Implementation of mass pharmacogenetic testing: Dihydropyrimidine dehydrogenase testing prior to fluoropyrimidine treatment for patients. Br J Clin Pharmacol 2025. [PMID: 40289265 DOI: 10.1002/bcp.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/23/2025] [Accepted: 02/28/2025] [Indexed: 04/30/2025] Open
Abstract
AIMS Pharmacogenomics enables personalization of drug therapy improving effectiveness and/or safety. Dihydropyrimidine dehydrogenase [DPYD] testing prior to fluoropyrimidine chemotherapy was commissioned by NHS England in response to an update from the Medicines and Healthcare products Regulatory Agency. METHODS A questionnaire developed and approved by the National DPYD Working Group investigated processes of testing, receiving and responding to results. The survey was distributed to Genomics Medicine Service Alliance (GMSA) Clinical Directors and Pharmacy Senior Responsible Officers for dissemination in their geography. Data were collected June-September 2021. All hospitals delivering fluoropyrimidines across the UK were invited to participate. RESULTS 131/138 (94.9%) organizations reported testing all patients receiving fluoropyrimidines. In England 76.7% of hospitals sent samples to centrally commissioned genomics laboratories. In the devolved nations, 73.9% sent samples to regional genomics laboratories. Multidisciplinary staff including oncologists, independent non-medical prescribers, clinical nurse specialists, screening pharmacists and chemotherapy nurses requested the test, checked and actioned the result. Self-reported turnaround times varied from <2 days where a regional laboratory was colocated with a chemotherapy centre to >10 days. CONCLUSION Through multiprofessional, national collaboration, this is the first report studying the large-scale rollout of a nationally commissioned pharmacogenetic test. Whilst DPYD testing has been successfully implemented, there is a need to standardize and improve end-to-end turnaround times. This has led to the development of a best practice pathway. Critically, GMSAs must build on this implementation to deliver its priorities, in supporting equitable access to future pharmacogenomic testing across a wider cohort of therapies.
Collapse
Affiliation(s)
- Nisha Shaunak
- Guy's & St Thomas NHS Foundation Trust, London, UK
- NHS South East Genomic Medicine Service Alliance, UK
| | - Jessica Keen
- NHS North West Genomic Medicine Service Alliance, UK
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, UK
| | - Anna Kim
- Guy's & St Thomas NHS Foundation Trust, London, UK
| | - Munir Pirmohamed
- Wolfson Centre for Personalised Medicine, Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
| | - William G Newman
- NHS North West Genomic Medicine Service Alliance, UK
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Manchester, UK
- Division of Evolution, Infection and Genomics, University of Manchester, Manchester, UK
| | - Paul J Ross
- Guy's & St Thomas NHS Foundation Trust, London, UK
- NHS South East Genomic Medicine Service Alliance, UK
| |
Collapse
|
6
|
Brokaar E, Knikman J, Visser L, van den Bos F, Henricks L, Lunenburg C, de Man F, Gelderblom H, Schellens J, Mathijssen R, Guchelaar H, Portielje J, Cats A, Postmus W, de Glas N. Severe fluoropyrimidine toxicity in older adults with cancer with DPYD wild type. Fundam Clin Pharmacol 2025; 39:e70000. [PMID: 39969252 PMCID: PMC11837876 DOI: 10.1111/fcp.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 12/06/2024] [Accepted: 01/23/2025] [Indexed: 02/20/2025]
Abstract
BACKGROUND Despite the implementation of DPYD genotype-guided dosing, approximately 1 in 3 patients receiving fluoropyrimidine-containing chemotherapy continues to experience severe toxicity. While clinical studies have demonstrated a favorable tolerance among highly selected fit older adults, real-world studies have shown an increased risk of toxicity. OBJECTIVE To identify predictors of severe toxicity or treatment deintensification in older DPYD wild-type adults receiving fluoropyrimidine-containing chemotherapy. METHOD Patients wild type for four tested DPYD variants, aged ≥65 years, who participated in a prospective clinical trial investigating genotype-guided individualized fluoropyrimidine dosing, were eligible for the study. The association between tumor-, treatment-, and patient-related characteristics and the occurrence of severe toxicity (grade ≥3, CTCAE v5.0) was analyzed in univariate and multivariate logistic regression analyses. The same analyses were performed for a composite endpoint of severe toxicity or treatment deintensification (including dose reduction, cycle delay, or discontinuation). RESULTS A total of 311 patients were included. Median age was 71.2 years and 58.8% were male. Grade ≥3 toxicity occurred in 23.2% of patients. In multivariate analysis, none of the characteristics studied were significantly associated with the occurrence of grade ≥3 toxicity. The composite endpoint occurred in 41.2% of patients and was associated with the use of full dose monotherapy in multivariate analysis. CONCLUSION Despite DPYD genotype-based dosing, grade ≥3 toxicity and treatment deintensification frequently occur in older patients treated with fluoropyrimidine chemotherapy. No patient-related variables were found to be associated with grade ≥3 toxicity, but treatment with dose-reduced monotherapy resulted in fewer treatment deintensification or severe toxicity events.
Collapse
Affiliation(s)
- Edwin Brokaar
- Department of PharmacyHaga Teaching HospitalThe HagueLNthe Netherlands
- Department of Internal Medicine – Medical OncologyUniversity Medical Center LeidenRCLeidenthe Netherlands
| | - Jonathan Knikman
- Division of PharmacologyThe Netherlands Cancer InstituteAmsterdamthe Netherlands
- Department of Pharmacy & PharmacologyThe Netherlands Cancer InstituteAmsterdamthe Netherlands
| | - Loes Visser
- Department of PharmacyHaga Teaching HospitalThe HagueLNthe Netherlands
- Department of Hospital PharmacyErasmus University Medical CenterRotterdamCAthe Netherlands
- Department of EpidemiologyErasmus University Medical CenterRotterdamCAthe Netherlands
| | - Frederiek van den Bos
- Department of Gerontology & GeriatricsUniversity Medical Center LeidenRCLeidenthe Netherlands
| | - Linda Henricks
- Department of Clinical ChemistryIsala HospitalZwolleGKthe Netherlands
| | - Carin Lunenburg
- Department of Medical OncologyLeiden University Medical CenterRCLeidenthe Netherlands
| | - Femke de Man
- Department of Medical OncologyErasmus MC Cancer Institute, Erasmus University Medical CenterRotterdamCAthe Netherlands
| | - Hans Gelderblom
- Department of Medical OncologyLeiden University Medical CenterRCLeidenthe Netherlands
| | - Jan Schellens
- Science Faculty, Department of Pharmaceutical SciencesUniversity UtrechtUtrechtthe Netherlands
| | - Ron Mathijssen
- Department of Medical OncologyErasmus MC Cancer Institute, Erasmus University Medical CenterRotterdamCAthe Netherlands
| | - Henk‐Jan Guchelaar
- Department of Clinical Pharmacy & ToxicologyLeiden University Medical CenterRCLeidenthe Netherlands
| | - Johanneke Portielje
- Department of Internal Medicine – Medical OncologyUniversity Medical Center LeidenRCLeidenthe Netherlands
| | - Annemieke Cats
- Department of Gastrointestinal Oncology, Division of Medical OncologyThe Netherlands Cancer InstituteAmsterdamthe Netherlands
| | - Wout Postmus
- Department of PharmacyHaga Teaching HospitalThe HagueLNthe Netherlands
| | - Nienke de Glas
- Department of Internal Medicine – Medical OncologyUniversity Medical Center LeidenRCLeidenthe Netherlands
| |
Collapse
|
7
|
Abushanab D, Mohamed S, Abdel-Latif R, Moustafa DA, Marridi W, Elazzazy S, Badji R, Al-Muftah W, Ismail SI, Bujassoum S, Al-Thani A, Al-Badriyeh D, Al Hail M. Dihydropyrimidine Dehydrogenase Deficiency (DPYD) Genotyping-Guided Fluoropyrimidine-Based Adjuvant Chemotherapy for Breast Cancer. A Cost-Effectiveness Analysis. Clin Drug Investig 2025; 45:151-163. [PMID: 39885055 PMCID: PMC11876264 DOI: 10.1007/s40261-024-01413-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 02/01/2025]
Abstract
BACKGROUND AND OBJECTIVE While standard doses of adjuvant fluoropyrimidine-based chemotherapies are generally safe for most patients, the risk of severe adverse drug reactions (ADRs) is increased for those with dihydropyrimidine dehydrogenase deficiency (DPYD), a genetic variation that affects drug metabolism. The objective of this study was to examine the cost effectiveness of offering DPYD pharmacogenetic-guided care, where genetic testing informs personalized dosing versus the current standard of care (SoC), which involves administering fluoropyrimidine-based therapies without prior genetic screening, for local or metastatic breast cancer patients in Qatar. METHODS We developed a two-stage decision analysis, with an analytic tree model over a 6-month period, followed by a life-table Markov model over a lifetime horizon. We compared the current SoC with the alternate strategy of DPYD genetic screening in patients living in Qatar with local or metastatic breast cancer who were eligible for adjuvant fluoropyrimidine therapy. Clinical outcomes and utilities were obtained from published studies, while healthcare costs were estimated from Hamad Medical Corporation, Qatar. The short-term outcome included the incremental cost-effectiveness ratio (ICER), defined as cost per success (survival without grade III/IV ADRs) at 6 months. The long-term outcome was the ICER, defined as cost per quality-adjusted life year (QALY) gained, with a 3% annual discount rate. The study adopted a public healthcare perspective in Qatar. Sensitivity analyses were conducted to explore the impact of key input parameters on the robustness of the model. RESULTS In the short-term model, at its base case, DPYD genomic screening was dominant over SoC with a mean cost-saving of QAR84,585 (95% confidence interval [CI], 45,270-151,657). This cost saving reflects the overall economic benefits associated with the implementation of DPYD genomic screening. In the long-term model, compared to the current SoC, DPYD genetic screening would result in an ICER of QAR21,107 (95% CI -59,382-145,664) per QALY gained. CONCLUSION Based on our model, implementing DPYD genetic screening to detect DPYD mutations in breast cancer patients before therapy initiation seems to be a cost-saving and cost-effective strategy in Qatar.
Collapse
Affiliation(s)
- Dina Abushanab
- Pharmacy Department, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Shaban Mohamed
- Pharmacy Department, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Rania Abdel-Latif
- Qatar Genome Program, Qatar Precision Health Institute, Qatar Foundation, Doha, 34173, Qatar
| | | | - Wafa Marridi
- College of Medicine, QU Health, Qatar University, Doha, 2713, Qatar
| | - Shereen Elazzazy
- College of Pharmacy, QU Health, Qatar University, Doha, 2713, Qatar
- Pharmacy Department, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Radja Badji
- Qatar Genome Program, Qatar Precision Health Institute, Qatar Foundation, Doha, 34173, Qatar
| | - Wadha Al-Muftah
- Qatar Genome Program, Qatar Precision Health Institute, Qatar Foundation, Doha, 34173, Qatar
| | - Said I Ismail
- Qatar Genome Program, Qatar Precision Health Institute, Qatar Foundation, Doha, 34173, Qatar
| | - Salha Bujassoum
- Medical Oncology, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Asma Al-Thani
- Biomedical Research Center, QU Health, Qatar University, Doha, 2713, Qatar
| | - Daoud Al-Badriyeh
- College of Pharmacy, QU Health, Qatar University, Doha, 2713, Qatar.
| | - Moza Al Hail
- Pharmacy Department, Hamad Medical Corporation, Doha, 3050, Qatar
| |
Collapse
|
8
|
Thompson JT, Wood DM, Dargan PI. Review of the fluoropyrimidine antidote uridine triacetate. Br J Clin Pharmacol 2025; 91:615-627. [PMID: 39468799 DOI: 10.1111/bcp.16319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/30/2024] Open
Abstract
In 2015, the United States Food and Drug Administration (FDA) approved uridine triacetate to treat overdose and severe toxicity of the fluoropyrimidine chemotherapy agents 5-fluorouracil (5-FU) and its oral prodrug capecitabine. Uridine triacetate is as an oral prodrug of uridine that competes with cytotoxic fluoropyrimidine metabolites for incorporation into nucleotides. Two million people worldwide start fluoropyrimidine chemotherapy each year, with 20-30% developing severe or life-threatening adverse effects, often attributable to a genetic predisposition such as dihydropyrimidine dehydrogenase deficiency. Whilst genetic prescreening is recommended prior to starting fluoropyrimidine agents, this only prevents 20-30% of early-onset life-threatening toxicity and so does not obviate the need for an antidote. Initial in-human studies established that uridine triacetate more than doubles the maximum tolerated weekly 5-FU bolus dose. A lack of clinical equipoise meant a placebo-controlled phase III trial was not ethical and so the phase III trials used historical controls. These found that uridine triacetate improved survival in those with fluoropyrimidine overdose and severe toxicity from 16% to 94%, with 34% able to resume chemotherapy within 30 days. Five case reports of delayed fluoropyrimidine toxicity demonstrate improvement following uridine triacetate treatment 120-504 h after last fluoropyrimidine administration, suggesting efficacy beyond the FDA licencing indications. Mechanistically uridine triacetate would be expected to be effective for overdose and severe toxicity of tegafur (a 5-FU prodrug), but there are no published case reports describing this. Uridine triacetate is available internationally through an expanded access scheme and has been available in the UK since 2019 on a named patient basis.
Collapse
Affiliation(s)
- Jack T Thompson
- Clinical Toxicology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - David M Wood
- Clinical Toxicology, Guy's and St Thomas' NHS Foundation Trust, London, UK
- Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Paul I Dargan
- Clinical Toxicology, Guy's and St Thomas' NHS Foundation Trust, London, UK
- Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
9
|
Saunders D, Hellwig LD, Pagani A, De Castro M, Haigney M, Poon L, Ehat N, Heroy A, Libbus J, Fox K, Kalra S, Arnold TB, Turner C, Black JL, Scherer SE, Moyer AM. Comparing the clinical utility of pharmacogenomic genotyping and next generation sequencing in a military health system adult medicine clinic. Pharmacogenomics 2025; 25:637-645. [PMID: 39981562 PMCID: PMC11901368 DOI: 10.1080/14622416.2025.2466413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/10/2025] [Indexed: 02/22/2025] Open
Abstract
INTRODUCTION Pharmacogenetic (PGx) screening is intended to optimize drug efficacy and reduce adverse drug reactions. Current screening options include genotyping assays for preselected PGx variants and broader next-generation sequencing panels (NGS). Few studies have directly compared preemptive PGx screening methods. MATERIALS AND METHODS The two PGx methods were compared in a cross-sectional study of adult Military Health System (MHS) clinic beneficiaries. Participants had initial targeted CYP2C19/CYP2D6 genotyping at a Military Health System Laboratory. Genotyping was followed by multi-gene NGS testing. Current prescriptions were recorded and potential drug-drug interactions screened to evaluate prescribing risk. RESULTS All participants (100%) had at least one clinically actionable NGS panel result compared to 81% with targeted CYP2C19/CYP2D6 genotyping. Participants (n = 162) had an average of 6.6 (range 0-22) prescriptions and 2.7 (range 0-24) drug-drug interactions. Among those with at least one clinically actionable NGS result, 42% were currently taking medication with actionable CPIC guidelines (Level A/B), compared with 24% with CYP2C19/CYP2D6 genotyping. Sixteen participants (10%) had uncertain NGS panel results, with none for CYP2C19/CYP2D6 genotyping. CONCLUSIONS Preemptive multi-gene NGS detected more clinically actionable PGx results than targeted CYP2C19/CYP2D6 genotyping. Effective PGx screening in the MHS may decrease preventable adverse effects and improve military readiness.
Collapse
Affiliation(s)
- David Saunders
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Lydia D. Hellwig
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
- Center for Military Precision Health, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Austin Pagani
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
- Center for Military Precision Health, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Mauricio De Castro
- Defense Health Agency Genetics Reference Laboratory, Keesler AFB, MS, USA
- Division of Genetics and Metabolism, University of Mississippi Medical Center, Jackson, MS, USA
| | - Mark Haigney
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Center for Military Precision Health, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Military Cardiovascular Outcomes Research program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Lucas Poon
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Nate Ehat
- Military Cardiovascular Outcomes Research program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Walter Reed National Military Medical Center, Bethesda, MD, USA
- Metis Foundation, San Antonio, TX, USA
| | - Andrew Heroy
- Military Cardiovascular Outcomes Research program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Metis Foundation, San Antonio, TX, USA
| | - Joya Libbus
- Military Cardiovascular Outcomes Research program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Metis Foundation, San Antonio, TX, USA
| | - Keiko Fox
- Military Cardiovascular Outcomes Research program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Metis Foundation, San Antonio, TX, USA
| | - Sachi Kalra
- Military Cardiovascular Outcomes Research program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Metis Foundation, San Antonio, TX, USA
| | - Thomas B. Arnold
- Military Cardiovascular Outcomes Research program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Metis Foundation, San Antonio, TX, USA
| | | | - John Logan Black
- Division of Laboratory Genetics and Genomics, Mayo Clinic, Rochester, MN, USA
| | | | - Ann M. Moyer
- Division of Laboratory Genetics and Genomics, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
10
|
Hanrath MA, Banken E, van den Wildenberg SAH, van de Kerkhof D, Moes DJAR, Boisdron-Celle M, van den Bosch BJC, Bax R, Bet PM, Maring JG, Creemers GJM, van Hellemond IEG, Deenen MJ. Thymine as potential biomarker to predict 5-FU systemic exposure in patients with gastro-intestinal cancer: a prospective pharmacokinetic study (FUUT-trial). Cancer Chemother Pharmacol 2025; 95:34. [PMID: 39955449 PMCID: PMC11829899 DOI: 10.1007/s00280-025-04759-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/26/2025] [Indexed: 02/17/2025]
Abstract
PURPOSE In 20-30% of the patients, fluoropyrimidines (5-FU) based chemotherapy leads to severe toxicity, which is associated with dihydropyridine dehydrogenase (DPD) deficiency. Therefore, DPYD genotyping became standard practice before treatment with fluoropyrimidines. Nevertheless, only 17% of the patients with severe toxicity have a DPYD variant. Therefore, an urgent need persists to investigate other strategies contributing to prediction and prevention of toxicity. Endogenous DPD substrates are considered as potential biomarkers to predict toxicity, yet contradictional data exist on demonstrating uracil as a reliable biomarker. Thymine as biomarker for toxicity has been investigated less. The aim of this study was to determine the association between the concentrations of uracil, thymine dihydrouracil (DHU) and dihydrothymine (DHT), with the systemic drug exposure of 5-FU and DPD enzyme activity in patients treated with 5-FU. METHODS We included 36 patients with gastrointestinal malignancy who received 5-FU infusion. DPYD genotyping was conducted before start of treatment. Blood samples for determining 5-FU, uracil and thymine concentrations during infusion and DPD enzyme activity were taken. RESULTS We found a significant correlation between the 5-FU systematic exposure and baseline thymine concentrations (R2 = 0.1468; p = 0.0402). DPD enzyme activity was significantly correlated with baseline thymine concentrations but no correlation was found between DPD enzyme activity and 5-FU systemic drug exposure. CONCLUSION 5-FU dose individualization based on thymine concentrations could be a promising addition to DPYD genotyping to predict 5-FU-induced toxicity. Larger prospective trials are needed to examine thymine as predictor for toxicity in daily practice. TRIAL REGISTRATION Trial NL7539 at 'Overview of Medical Research in the Netherlands' (ID NL-OMON21471). Date of registration 19-02-2019.
Collapse
Affiliation(s)
- Maarten A Hanrath
- Department of Clinical Pharmacy, Catharina Hospital, Eindhoven, the Netherlands
| | - Evi Banken
- Department of Medical Oncology, Catharina Hospital, Eindhoven, the Netherlands
- GROW Research Institute for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Sebastian A H van den Wildenberg
- Department of Clinical Chemistry, Catharina Hospital, Eindhoven, the Netherlands
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Daan van de Kerkhof
- Department of Clinical Chemistry, Catharina Hospital, Eindhoven, the Netherlands
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Dirk Jan A R Moes
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, the Netherlands
| | - Michele Boisdron-Celle
- Department of Oncopharmacology-Pharmacogenetics INSERM U892, Western Cancer Institute Paul Papin, Angers, France
| | - Bianca J C van den Bosch
- Department of Clinical Genetics, Clinical Genomics, Maastricht University Medical Center (MUMC+), Maastricht, the Netherlands
| | - Ramon Bax
- Department of Medical Oncology, Catharina Hospital, Eindhoven, the Netherlands
| | - Pierre M Bet
- Department of Clinical Pharmacology and Pharmacy, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | | | | | | | - Maarten J Deenen
- Department of Clinical Pharmacy, Catharina Hospital, Eindhoven, the Netherlands.
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
11
|
Li M, Wang R, Yan T, Tao X, Gao S, Wang Z, Chai Y, Qiu S, Chen W. Dual effects of DLG5 (disks large homolog 5 gene) modulation on chemotherapy-induced thrombocytopenia and nausea/vomiting via the hippo signalling pathway. Br J Pharmacol 2025; 182:1090-1106. [PMID: 39529470 DOI: 10.1111/bph.17391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/23/2024] [Accepted: 10/02/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND AND PURPOSE The CAPEOX (combination of oxaliplatin and capecitabine) chemotherapy protocol is widely used for colorectal cancer treatment, but it can lead to chemotherapy-induced adverse effects (CRAEs). EXPERIMENTAL APPROACH To uncover the mechanisms and potential biomarkers for CRAE susceptibility, we performed whole-genome sequencing on normal colorectal tissue (CRT) before adjuvant chemotherapy. This is followed by in vivo and in vitro verifications for selected gene and CRAE pair. KEY RESULTS Our analysis revealed specific germline mutations linked to Grade 2 (or higher) chemotherapy-induced thrombocytopenia (CIT) and nausea/vomiting (CINV). Notably, both CRAEs were associated with mutations in the DLG5 gene. We found that DLG5 mutations related to CIT were associated with increased gene expression, while those associated with CINV were linked to suppressed gene expression, as indicated by the Genotype-Tissue Expression (GTEX) database. In megakaryocytes, overexpression of human DLG5 suppressed the hippo signalling pathway and induced YAP expression. In zebrafish, overexpression of human DLG5 not only reduced platelet production but also inhibited thrombus formation. Subsequent qPCR analysis revealed that DLG5 overexpression affected genes involved in cytoskeleton formation and alpha-granule formation, which could impact the normal generation of proplatelets. CONCLUSION AND IMPLICATIONS We identified a series of germline mutations associated with susceptibility to CIT and CINV. Of particular interest, we demonstrated that induced and suppressed DLG5 expression is respectively related to CIT and CINV. These findings shed light on the involvement of the hippo signalling pathway and DLG5 in the development of CRAEs, providing valuable insights into potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Mingming Li
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Rong Wang
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Yan
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xia Tao
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Shouhong Gao
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Zhipeng Wang
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yunsheng Chai
- Department of General Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Shi Qiu
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wansheng Chen
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
12
|
Peruzzi E, Roncato R, De Mattia E, Bignucolo A, Swen JJ, Guchelaar H, Toffoli G, Cecchin E. Implementation of pre-emptive testing of a pharmacogenomic panel in clinical practice: Where do we stand? Br J Clin Pharmacol 2025; 91:270-282. [PMID: 37926674 PMCID: PMC11773130 DOI: 10.1111/bcp.15956] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/07/2023] Open
Abstract
Adverse drug reactions (ADRs) account for a large proportion of hospitalizations among adults and are more common in multimorbid patients, worsening clinical outcomes and burdening healthcare resources. Over the past decade, pharmacogenomics has been developed as a practical tool for optimizing treatment outcomes by mitigating the risk of ADRs. Some single-gene reactive tests are already used in clinical practice, including the DPYD test for fluoropyrimidines, which demonstrates how integrating pharmacogenomic data into routine care can improve patient safety in a cost-effective manner. The evolution from reactive single-gene testing to comprehensive pre-emptive genotyping panels holds great potential for refining drug prescribing practices. Several implementation projects have been conducted to test the feasibility of applying different genetic panels in clinical practice. Recently, the results of a large prospective randomized trial in Europe (the PREPARE study by Ubiquitous Pharmacogenomics consortium) have provided the first evidence that prospective application of a pre-emptive pharmacogenomic test panel in clinical practice, in seven European healthcare systems, is feasible and yielded a 30% reduction in the risk of developing clinically relevant toxicities. Nevertheless, some important questions remain unanswered and will hopefully be addressed by future dedicated studies. These issues include the cost-effectiveness of applying a pre-emptive genotyping panel, the role of multiple co-medications, the transferability of currently tested pharmacogenetic guidelines among patients of non-European origin and the impact of rare pharmacogenetic variants that are not detected by currently used genotyping approaches.
Collapse
Affiliation(s)
- Elena Peruzzi
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano, Istituti di Ricovero e Cura a Carattere ScientificoAvianoItaly
| | - Rossana Roncato
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano, Istituti di Ricovero e Cura a Carattere ScientificoAvianoItaly
- Department of MedicineUniversity of UdineUdineItaly
| | - Elena De Mattia
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano, Istituti di Ricovero e Cura a Carattere ScientificoAvianoItaly
| | - Alessia Bignucolo
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano, Istituti di Ricovero e Cura a Carattere ScientificoAvianoItaly
| | - Jesse J. Swen
- Department of Clinical Pharmacy and ToxicologyLeiden University Medical CenterLeidenThe Netherlands
| | - Henk‐Jan Guchelaar
- Department of Clinical Pharmacy and ToxicologyLeiden University Medical CenterLeidenThe Netherlands
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano, Istituti di Ricovero e Cura a Carattere ScientificoAvianoItaly
| | - Erika Cecchin
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano, Istituti di Ricovero e Cura a Carattere ScientificoAvianoItaly
| |
Collapse
|
13
|
D'Amato M, Iengo G, Massa N, Carlomagno C. Dihydropyrimidine dehydrogenase polymorphisms in patients with gastrointestinal malignancies and their impact on fluoropyrimidine tolerability: Experience from a single Italian institution. World J Gastrointest Oncol 2025; 17:96822. [PMID: 39817118 PMCID: PMC11664602 DOI: 10.4251/wjgo.v17.i1.96822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/14/2024] [Accepted: 08/28/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Fluoropyrimidines are metabolized in the liver by the enzyme dihydropyrimidine dehydrogenase (DPD), encoded by the DPYD gene. About 7% of the European population is a carrier of DPYD gene polymorphisms associated with reduced DPD enzyme activity. AIM To assess the prevalence of DPYD polymorphisms and their impact on fluoropyrimidine tolerability in Italian patients with gastrointestinal malignancies. METHODS A total of 300 consecutive patients with a diagnosis of gastrointestinal malignancy and treated with a fluoropyrimidine-based regimen were included in the analysis and divided into two cohorts: (1) 149 patients who started fluoropyrimidines after DPYD testing; and (2) 151 patients treated without DPYD testing. Among the patients in cohort A, 15% tested only the DPYD2A polymorphism, 19% tested four polymorphisms (DPYD2A, HapB3, c.2846A>T, and DPYD13), and 66% tested five polymorphisms including DPYD6. RESULTS Overall, 14.8% of patients were found to be carriers of a DPYD variant, the most common being DPYD6 (12.1%). Patients in cohort A reported ≥ G3 toxicities (P = 0.00098), particularly fewer nonhematological toxicities (P = 0.0028) compared with cohort B, whereas there was no statistically significant difference between the two cohorts in hematological toxicities (P = 0.6944). Significantly fewer chemotherapy dose reductions (P = 0.00002) were observed in cohort A compared to cohort B, whereas there was no statistically significant differences in chemotherapy delay. CONCLUSION Although this study had a limited sample size, it provides additional information on the prevalence of DPYD polymorphisms in the Italian population and highlights the role of pharmacogenetic testing to prevent severe toxicity.
Collapse
Affiliation(s)
- Mariarosaria D'Amato
- Department of Oncology, Ospedale San Rocco ASL Caserta, Sessa Aurunca 81037, Campania, Italy
| | - Gennaro Iengo
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples 80131, Campania, Italy
| | - Nicola Massa
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples 80131, Campania, Italy
| | - Chiara Carlomagno
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples 80131, Campania, Italy
| |
Collapse
|
14
|
Cung M, Loftus J, Marzinke MA, Stevenson JM. Reinterpretation of pharmacogenomic phenotypes after combinatorial psychiatric testing. Pharmacogenomics 2025; 26:1-7. [PMID: 40109143 PMCID: PMC11988216 DOI: 10.1080/14622416.2025.2479409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/11/2025] [Indexed: 03/22/2025] Open
Abstract
AIM Providers can use combinatorial pharmacogenomic panels to aid psychiatric medication prescribing. Results are typically documented in static documents which list the genotype and predicted phenotype (interpretation). However, genotype-to-phenotype translations can differ between laboratories and change as scientific consensuses evolves. Here, we describe the implications of reinterpreting phenotype after combinatorial psychiatric pharmacogenomic testing in a real-world setting. PATIENTS AND METHODS 143 patients underwent testing from 2014 to 2021. Reported genotypes and phenotypes were compared to 2024 Clinical Pharmacogenetics Implementation Consortium definitions. Chi-square tests and logistic regression were used to examine the differences in phenotype frequencies before and after reinterpretation and examine the association with time since testing. RESULTS Eighty-one patients (57%) required at least one updated interpretation. CYP2C19 interpretations changed for 44/143 patients (31%), followed by CYP2D6 (29%), CYP2B6 (3%), and CYP2C9 (1%). Reinterpretation reduced the number of CYP2D6 ultrarapid and poor metabolizers (p = 0.005), which has implications for antidepressant prescribing. Likelihood of a patient having a reinterpreted phenotype was not associated with time since reporting (p = 0.71). CONCLUSIONS Reported phenotypes from combinatorial PGx testing often do not align with current standardized definitions, even from tests performed recently. Health systems should establish procedures to standardize and periodically update pharmacogenomic interpretations.
Collapse
Affiliation(s)
- Michele Cung
- Department of Pharmacy, Johns Hopkins Hospital, Baltimore, MD, USA
| | - John Loftus
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mark A. Marzinke
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Division of Clinical Pharmacology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James M. Stevenson
- Division of Clinical Pharmacology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology & Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
15
|
Mosch R, van der Lee M, Guchelaar HJ, Swen JJ. Pharmacogenetic Panel Testing: A Review of Current Practice and Potential for Clinical Implementation. Annu Rev Pharmacol Toxicol 2025; 65:91-109. [PMID: 39348848 DOI: 10.1146/annurev-pharmtox-061724-080935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Pharmacogenetics (PGx) aims to optimize drug treatment outcomes by using a patient's genetic profile for individualized drug and dose selection. Currently, reactive and pretherapeutic single-gene PGx tests are increasingly applied in clinical practice in several countries and institutions. With over 95% of the population carrying at least one actionable PGx variant, and with drugs impacted by these genetic variants being in common use, pretherapeutic or preemptive PGx panel testing appears to be an attractive option for better-informed drug prescribing. Here, we discuss the current state of PGx panel testing and explore the potential for clinical implementation. We conclude that available evidence supports the implementation of pretherapeutic PGx panel testing for drugs covered in the PGx guidelines, yet identification of specific patient populations that benefit most and cost-effectiveness data are necessary to support large-scale implementation.
Collapse
Affiliation(s)
- R Mosch
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands;
| | - M van der Lee
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands;
| | - H J Guchelaar
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands;
| | - J J Swen
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands;
| |
Collapse
|
16
|
Hernández-Guío A, Ángel Calleja-Hernández M, Corno-Caparrós A, Zayas-Soriano M, Bernabéu-Martínez MÁ, Gutiérrez-Nicolás F. Clinical impact of DPYD genotyping and dose adjustment in candidates for fluoropyrimidine treatment. Heliyon 2024; 10:e40808. [PMID: 39719989 PMCID: PMC11666974 DOI: 10.1016/j.heliyon.2024.e40808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/02/2024] [Accepted: 11/27/2024] [Indexed: 12/26/2024] Open
Abstract
Image 1.
Collapse
Affiliation(s)
- Ana Hernández-Guío
- Department of Pharmacy, San Juan de Alicante University Hospital, N-332, s/n, 03550, Sant Joan d'Alacant, Alicante, Spain
| | | | - Andrés Corno-Caparrós
- Miguel Hernández University, Elche, Avinguda de la Universitat d'Elx, s/n, 03202, Elche, Alicante, Spain
| | - Marta Zayas-Soriano
- Department of Pharmacy, San Juan de Alicante University Hospital, N-332, s/n, 03550, Sant Joan d'Alacant, Alicante, Spain
| | - Mª Ángeles Bernabéu-Martínez
- Department of Pharmacy, San Juan de Alicante University Hospital, N-332, s/n, 03550, Sant Joan d'Alacant, Alicante, Spain
| | - Fernando Gutiérrez-Nicolás
- Instituto de Investigación Sanitaria de Canarias, Carretera Gral. La Cuesta-Taco, n.s/n Pabellón de Gobierno del HUC Planta -1ª, 38320, San Cristobal de La Laguna, Santa Cruz de, Tenerife, Spain
| |
Collapse
|
17
|
Roncato R, Bignucolo A, Peruzzi E, Montico M, De Mattia E, Foltran L, Guardascione M, D’Andrea M, Favaretto A, Puglisi F, Swen JJ, Guchelaar HJ, Toffoli G, Cecchin E. Clinical Benefits and Utility of Pretherapeutic DPYD and UGT1A1 Testing in Gastrointestinal Cancer: A Secondary Analysis of the PREPARE Randomized Clinical Trial. JAMA Netw Open 2024; 7:e2449441. [PMID: 39641926 PMCID: PMC11624585 DOI: 10.1001/jamanetworkopen.2024.49441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/14/2024] [Indexed: 12/07/2024] Open
Abstract
Importance To date, the clinical benefit and utility of implementing a DPYD/UGT1A1 pharmacogenetic-informed therapy with fluoropyrimidines and/or irinotecan have not been prospectively investigated. Objective To examine clinically relevant toxic effects, hospitalizations, and related costs while preserving treatment intensity and efficacy outcomes in patients with gastrointestinal cancer. Design, Setting, and Participants This nonprespecified secondary analysis stems from Pre-Emptive Pharmacogenomic Testing for Preventing Adverse Drug Reactions (PREPARE), a multicenter, controlled, open, block-randomized, crossover implementation trial conducted from March 7, 2017, to June 30, 2020, and includes data from Italy according to a sequential study design. The study population included 563 patients (intervention, 252; control [standard of care], 311) with gastrointestinal cancer (age ≥18 years) who were eligible for fluoropyrimidine and/or irinotecan treatment. Data analysis for the present study was performed from May 27 to October 10, 2024. Interventions Participants with actionable variants (DPYD*2A, DPYD*13, .DPYD c.2846A>T, and DPYD c.1236G>A for fluoropyrimidines, and UGT1A1*28, UGT1A1*6, and UGT1A1*27 for irinotecan) received drug or dose adjustments based on Dutch Pharmacogenetics Working Group recommendations. Main Outcomes and Measures The primary outcome was clinically relevant toxic effects (National Cancer Institute Common Terminology Criteria for Adverse Events grade ≥4 hematologic, grade ≥3 nonhematologic, or causing hospitalization, fluoropyrimidines and/or irinotecan causally related). Secondary outcomes included hospitalization rates, toxic effect management costs, intensity of treatment, quality-adjusted life-years, and 3-year overall survival. Results Overall, 1232 patients were enrolled in Italy, with 563 included in this analysis (317 [56.3%] men; median age, 68.0 [IQR, 60.0-75.0] years). In the intervention arm, carriers of any actionable genotype exhibited a 90% lower risk of clinically relevant toxic effects compared with the control arm (odds ratio, 0.1; 95% CI, 0.0-0.8; P = .04). They also presented higher toxic effect management costs per patient ($4159; 95% CI, $1510-$6810) compared with patients in the intervention arm ($26; 95% CI, 0-$312) (P = .004) and a higher rate of hospitalization (34.8% vs 11.8%; P = .12). The differences were not significant among all patients. Three-year overall survival did not differ significantly between arms, while quality-adjusted life-years significantly improved in the intervention arm. The pharmacogenetics-informed approach did not manifest a detrimental effect on treatment intensity in actionable genotype carriers. Conclusions and Relevance In this secondary analysis of PREPARE, pretreatment application of DPYD- and UGT1A1-guided treatment appeared to increase safety and reduce hospitalizations and related costs in patients with gastrointestinal cancer. Clinical benefit did not appear to be affected. Trial Registration ClinicalTrials.gov Identifier: NCT03093818.
Collapse
Affiliation(s)
- Rossana Roncato
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
- Department of Medicine, University of Udine, Udine, Italy
| | - Alessia Bignucolo
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Elena Peruzzi
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Marcella Montico
- Clinical Trial Office, Scientific Direction, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Elena De Mattia
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Luisa Foltran
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Michela Guardascione
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Mario D’Andrea
- Department of Medical Oncology, Ospedale San Paolo / Ospedale Padre Pio, Civitavecchia, Rome, Italy
| | - Adolfo Favaretto
- Department of Medical Oncology, Azienda ULSS 2 Marca Trevigiana Distretto di Treviso, Treviso, Italy
| | - Fabio Puglisi
- Department of Medicine, University of Udine, Udine, Italy
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Jesse Joachim Swen
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, the Netherlands
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, the Netherlands
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Erika Cecchin
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| |
Collapse
|
18
|
Glewis S, Lingaratnam S, Lee B, Campbell I, IJzerman M, Fagery M, Harris S, Georgiou C, Underhill C, Warren M, Campbell R, Jayawardana M, Silva SSM, Martin JH, Tie J, Alexander M, Michael M. Pharmacogenetic-guided dosing for fluoropyrimidine (DPYD) and irinotecan (UGT1A1*28) chemotherapies for patients with cancer (PACIFIC-PGx): A multicenter clinical trial. Clin Transl Sci 2024; 17:e70083. [PMID: 39614408 PMCID: PMC11606843 DOI: 10.1111/cts.70083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/26/2024] [Accepted: 11/04/2024] [Indexed: 12/01/2024] Open
Abstract
PACIFIC-PGx evaluated the feasibility of implementing pharmacogenetics (PGx) screening in Australia and the impact of DPYD/UGT1A1 genotype-guided dosing on severe fluoropyrimidine (FP) and irinotecan-related toxicities and hospitalizations, compared to historical controls. This prospective single arm trial enrolled patients starting FP/irinotecan for any cancer between 7 January 2021 and 25 February 2022 from four Australian hospitals (one metropolitan, three regional). During the accrual period, 462/487 (95%) consecutive patients screened for eligibility for DPYD and 50/109 (46%) for UGT1A1 were enrolled and genotyped (feasibility analysis), with 276/462 (60%) for DPYD and 30/50 (60%) for UGT1A1 received FP/irinotecan (safety analysis). DPYD genotyping identified 96% (n = 443/462) Wild-Type, 4% (n = 19/462) Intermediate Metabolizers (50% dose reduction), and 0% Poor Metabolizers. UGT1A1 genotyping identified 52% (n = 26/50) Wild-Type, 40% (n = 20/50) heterozygous, and 8% (n = 4/50) homozygous (30% dose reduction). Key demographics for the FP/irinotecan safety cohorts included: age range 23-89/34-74 years, male 56%/73%, Caucasian 83%/73%, lower gastrointestinal cancer 50%/57%. Genotype results were reported prior to cycle-1 (96%), average 5-7 days from sample collection. PGx-dosing for DPYD variant allele carriers reduced high-grade toxicities compared to historic controls (7% vs. 39%; OR = 0.11, 95% CI 0.01-0.97, p = 0.024). High-grade toxicities among Wild-Type were similar (14% vs. 14%; OR = 0.99, 95% CI 0.64-1.54, p = 0.490). PGx-dosing reduced FP-related hospitalizations (-22%) and deaths (-3.7%) compared to controls. There were no high-grade toxicities or hospitalizations for UGT1A1*28 homozygotes. PGx screening and prescribing were feasible in routine oncology care and improved patient outcomes. Findings may inform expanded PGx programs within cancer and other disease settings.
Collapse
Affiliation(s)
- Sarah Glewis
- Department of PharmacyPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
- Sir Peter MacCallum Department of OncologyUniversity of MelbourneParkvilleVictoriaAustralia
| | - Senthil Lingaratnam
- Department of PharmacyPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
| | - Benjamin Lee
- Department of PharmacyPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
| | - Ian Campbell
- Sir Peter MacCallum Department of OncologyUniversity of MelbourneParkvilleVictoriaAustralia
- Cancer Genetics LaboratoryPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
| | - Maarten IJzerman
- Sir Peter MacCallum Department of OncologyUniversity of MelbourneParkvilleVictoriaAustralia
- Cancer Health Services Research Unit, Centre for Cancer Research, Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleVictoriaAustralia
- Cancer Health Services Research Unit, Centre for Health Policy, Melbourne School of Population and Global Health, Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleVictoriaAustralia
- Erasmus School of Health Policy and ManagementErasmus University RotterdamRotterdamThe Netherlands
| | - Mussab Fagery
- Cancer Health Services Research Unit, Centre for Cancer Research, Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleVictoriaAustralia
- Cancer Health Services Research Unit, Centre for Health Policy, Melbourne School of Population and Global Health, Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleVictoriaAustralia
| | - Sam Harris
- Department of Medical OncologyBendigo HealthBendigoVictoriaAustralia
| | - Chloe Georgiou
- Department of Medical OncologyBendigo HealthBendigoVictoriaAustralia
| | - Craig Underhill
- VCCC AllianceParkvilleVictoriaAustralia
- Border Medical Oncology Research UnitAlbury Wodonga Regional Cancer CentreEast AlburyNew South WalesAustralia
- UNSW Rural Medical School, Albury CampusNew South WalesEast AlburyAustralia
| | - Mark Warren
- Department of Medical OncologyBendigo HealthBendigoVictoriaAustralia
| | - Robert Campbell
- Department of Medical OncologyBendigo HealthBendigoVictoriaAustralia
| | - Madawa Jayawardana
- Sir Peter MacCallum Department of OncologyUniversity of MelbourneParkvilleVictoriaAustralia
- Office of Cancer ResearchPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
| | - S. Sandun M. Silva
- Centre for Health Systems and Safety Research, Australian Institute of Health InnovationMacquarie UniversityMacquarie ParkNew South WalesAustralia
| | - Jennifer H. Martin
- School of Medicine and Public HealthUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Jeanne Tie
- Sir Peter MacCallum Department of OncologyUniversity of MelbourneParkvilleVictoriaAustralia
- Department of Medical OncologyPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
- Personalised Oncology DivisionWalter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
| | - Marliese Alexander
- Department of PharmacyPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
- Sir Peter MacCallum Department of OncologyUniversity of MelbourneParkvilleVictoriaAustralia
| | - Michael Michael
- Sir Peter MacCallum Department of OncologyUniversity of MelbourneParkvilleVictoriaAustralia
- Department of Medical OncologyPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
| |
Collapse
|
19
|
Sarhangi N, Rouhollah F, Niknam N, Sharifi F, Nikfar S, Larijani B, Patrinos GP, Hasanzad M. Pharmacogenetic DPYD allele variant frequencies: A comprehensive analysis across an ancestrally diverse Iranian population. Daru 2024; 32:715-727. [PMID: 39424756 PMCID: PMC11555172 DOI: 10.1007/s40199-024-00538-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/24/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Cancer treatment has improved over the past decades, but many cancer patients still experience adverse drug reactions (ADRs). Pharmacogenomics (PGx), known as personalized treatment, is a pillar of precision medicine that aims to optimize the efficacy and safety of medications by studying the germline variations. Germline variations in the DPYD lead to significant ADRs. The present cross-sectional study aims to evaluate the allele frequency of the DPYD gene variations in the Iranian population to provide insights into personalized treatment decisions in the Iranian population. METHODS The allele frequency of 51 pharmacogenetic variations in the clinically relevant DPYD was assessed in a representative sample set of 1142 unrelated Iranian individuals and subpopulations of different ethnic groups who were genotyped using the Infinium Global Screening Array-24 BeadChip. RESULTS The genotyping assay revealed eight pharmacogenetic variants including DPYD rs1801265 (c.85T > C; DPYD*9A), rs2297595 (c.496A > G), rs1801158 (c.1601G > A; DPYD*4), rs1801159 (c.1627A > G; DPYD*5), rs1801160 (c.2194G > A; DPYD*6), rs17376848 (c.1896T > C), rs56038477 (c.1236G > A; HapB3), and rs75017182 (c.1129-5923C > G; HapB3) with minor allele frequency (MAF) ≥ 1%. CONCLUSION The results of the study reveal significant genetic variations among Iranian population that could significantly influence clinical decision-making. These variants, with their potential to explain the substantial variability in drug response phenotypes among different populations, shed light on a crucial aspect of pharmacogenomics. These findings not only provide valuable insights but also inspire the design and implementation of future pharmacogenomic clinical trials, motivating further research in this crucial area.
Collapse
Affiliation(s)
- Negar Sarhangi
- Medical Genomics Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, 1916893813, Iran
| | - Fatemeh Rouhollah
- Medical Genomics Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, 1916893813, Iran
| | - Negar Niknam
- Department of Pharmacoeconomics and Pharmaceutical Administration, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
- LifeandMe, Inc., Tehran, 1497719825, Iran
| | - Farshad Sharifi
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713119, Iran
| | - Shekoufeh Nikfar
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713119, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713119, Iran
| | - George P Patrinos
- School of Health Sciences, Department of Pharmacy, University of Patras, Patras, Greece
- College of Medicine and Health Sciences, Department of Genetics and Genomics, United Arab Emirates University, Al-Ain, Abu Dhabi, UAE
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain, Abu Dhabi, UAE
| | - Mandana Hasanzad
- Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 1411713119, Iran.
| |
Collapse
|
20
|
Walko CM. DPYD and fluoropyrimidines: Using the data as our guide. Pharmacotherapy 2024; 44:896-897. [PMID: 39737555 DOI: 10.1002/phar.4634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/21/2024] [Accepted: 10/27/2024] [Indexed: 01/01/2025]
|
21
|
White C, Kendall G, Millington T, Corcoran B, Paul C, Scott RJ, Ackland S. Evaluation of early fluoropyrimidine toxicity in solid organ cancer patients: a retrospective observational study in Australia. Intern Med J 2024; 54:1506-1514. [PMID: 38963005 DOI: 10.1111/imj.16463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/01/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Despite common global usage, fluoropyrimidine (FP; 5-flurouracil and capecitabine)-related chemotherapy toxicity is poorly reported in the literature, with serious toxicity ranging from 10% to 40% and early toxicity (within 60 days of exposure) quoted at 14%. Data reflecting the incidence of Grades 3-5 FP-related toxicity in Australian cancer patients is scant, despite the significant impact of toxicity on patients (hospitalisations, intensive care unit (ICU) admissions and even death). AIMS This retrospective audit evaluated Grades 3-5 toxicities in a contemporaneous cohort of 500 patients receiving FP chemotherapies within the Hunter-New England Local Health District from June 2020 to June 2022. Data were extracted from public hospital records and oncology-specific e-records to determine rates of toxicity and associated hospitalisations, intensive care admissions and deaths that occurred within 60 days of first exposure to FP chemotherapy-containing regimens. RESULTS One hundred and fifty incidents of Grades 3-4 toxicity in the first 60 days led to 87 patients presenting to hospital (87/500, 17.4%). The most common serious toxicities were diarrhoea (39.3%), nausea and vomiting (22.7%) and febrile neutropaenia (10%). Four patients were admitted to the ICU, and four patients died of toxicity. Within the first 60 days, 22.2% of patients required treatment delays, 21.4% required dose reductions, and 7.8% of patients ceased treatment because of toxicities. DISCUSSION AND CONCLUSION Our experience reflects international reports and is likely generalisable to the Australian population. These data are a basis to understand the potential benefits of precision medicine strategies such as pharmacogenomic screening to improve patient tolerability and the cost-effectiveness of FP chemotherapy prescribing.
Collapse
Affiliation(s)
- Cassandra White
- University of Newcastle, College of Health, Medicine and Wellbeing, School of Medicine and Public Health, Newcastle, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- Medical Oncology, Maitland Hospital, Maitland, New South Wales, Australia
| | - Guy Kendall
- Medical Oncology, Maitland Hospital, Maitland, New South Wales, Australia
| | - Tegan Millington
- Information and Computer Technology Services, Hunter New England Health, Newcastle, New South Wales, Australia
- District Cancer Services, Hunter New England Health, Newcastle, New South Wales, Australia
| | - Bern Corcoran
- District Cancer Services, Hunter New England Health, Newcastle, New South Wales, Australia
| | - Christine Paul
- University of Newcastle, College of Health, Medicine and Wellbeing, School of Medicine and Public Health, Newcastle, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Rodney J Scott
- University of Newcastle, College of Health, Medicine and Wellbeing, School of Medicine and Public Health, Newcastle, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- Department of Molecular Genetics, Pathology North John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Stephen Ackland
- University of Newcastle, College of Health, Medicine and Wellbeing, School of Medicine and Public Health, Newcastle, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- Medical Oncology, Lake Macquarie Private Hospital, Newcastle, New South Wales, Australia
| |
Collapse
|
22
|
Hertz DL, Bousman CA, McLeod HL, Monte AA, Voora D, Orlando LA, Crutchley RD, Brown B, Teeple W, Rogers S, Patel JN. Recommendations for pharmacogenetic testing in clinical practice guidelines in the US. Am J Health Syst Pharm 2024; 81:672-683. [PMID: 38652504 PMCID: PMC12097901 DOI: 10.1093/ajhp/zxae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Indexed: 04/25/2024] Open
Abstract
PURPOSE Pharmacogenetic testing can identify patients who may benefit from personalized drug treatment. However, clinical uptake of pharmacogenetic testing has been limited. Clinical practice guidelines recommend biomarker tests that the guideline authors deem to have demonstrated clinical utility, meaning that testing improves treatment outcomes. The objective of this narrative review is to describe the current status of pharmacogenetic testing recommendations within clinical practice guidelines in the US. SUMMARY Guidelines were reviewed for pharmacogenetic testing recommendations for 21 gene-drug pairs that have well-established drug response associations and all of which are categorized as clinically actionable by the Clinical Pharmacogenetics Implementation Consortium. The degree of consistency within and between organizations in pharmacogenetic testing recommendations was assessed. Relatively few clinical practice guidelines that provide a pharmacogenetic testing recommendation were identified. Testing recommendations for HLA-B*57:01 before initiation of abacavir and G6PD before initiation of rasburicase, both of which are included in drug labeling, were mostly consistent across guidelines. Gene-drug pairs with at least one clinical practice guideline recommending testing or stating that testing could be considered included CYP2C19-clopidogrel, CYP2D6-codeine, CYP2D6-tramadol, CYP2B6-efavirenz, TPMT-thiopurines, and NUDT15-thiopurines. Testing recommendations for the same gene-drug pair were often inconsistent between organizations and sometimes inconsistent between different guidelines from the same organization. CONCLUSION A standardized approach to evaluating the evidence of clinical utility for pharmacogenetic testing may increase the inclusion and consistency of pharmacogenetic testing recommendations in clinical practice guidelines, which could benefit patients and society by increasing clinical use of pharmacogenetic testing.
Collapse
Affiliation(s)
- Daniel L Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI, USA
| | - Chad A Bousman
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada
| | - Howard L McLeod
- Center for Precision Medicine and Functional Genomics, Utah Tech University, St. George, UT, USA
| | - Andrew A Monte
- Section of Pharmacology & Medical Toxicology, Department of Emergency Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Deepak Voora
- Duke Precision Medicine Program, Department of Medicine, Duke University, Durham, NC, USA
| | - Lori A Orlando
- Department of Medicine, Duke University, Durham, NC, USA
| | - Rustin D Crutchley
- Department of Pharmaceutical Sciences, College of Pharmacy, Manchester University, Fort Wayne, IN, USA
| | | | | | - Sara Rogers
- American Society of Pharmacovigilance, Houston, TX, and Texas A&M Health Science Center, Bryan, TX, USA
| | - Jai N Patel
- Department of Cancer Pharmacology and Pharmacogenomics, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA and Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
| |
Collapse
|
23
|
Tamraz B, Venook AP. DPYD Pharmacogenetics: To Opt-in or to Opt-out. JCO Oncol Pract 2024; 20:1009-1011. [PMID: 38743915 DOI: 10.1200/op.24.00255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 05/16/2024] Open
Affiliation(s)
- Bani Tamraz
- Department of Clinical Pharmacy, University of California, San Francisco, San Francisco, CA
| | - Alan P Venook
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
24
|
Chan TH, Zhang JE, Pirmohamed M. DPYD genetic polymorphisms in non-European patients with severe fluoropyrimidine-related toxicity: a systematic review. Br J Cancer 2024; 131:498-514. [PMID: 38886557 PMCID: PMC11300675 DOI: 10.1038/s41416-024-02754-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Pre-treatment DPYD screening is mandated in the UK and EU to reduce the risk of severe and potentially fatal fluoropyrimidine-related toxicity. Four DPYD gene variants which are more prominently found in Europeans are tested. METHODS Our systematic review in patients of non-European ancestry followed PRISMA guidelines to identify relevant articles up to April 2023. Published in silico functional predictions and in vitro functional data were also extracted. We also undertook in silico prediction for all DPYD variants identified. RESULTS In 32 studies, published between 1998 and 2022, 53 DPYD variants were evaluated in patients from 12 countries encompassing 5 ethnic groups: African American, East Asian, Latin American, Middle Eastern, and South Asian. One of the 4 common European DPYD variants, c.1905+1G>A, is also present in South Asian, East Asian and Middle Eastern patients with severe fluoropyrimidine-related toxicity. There seems to be relatively strong evidence for the c.557A>G variant, which is found in individuals of African ancestry, but is not currently included in the UK genotyping panel. CONCLUSION Extending UK pre-treatment DPYD screening to include variants that are present in some non-European ancestry groups will improve patient safety and reduce race and health inequalities in ethnically diverse societies.
Collapse
Affiliation(s)
- Tsun Ho Chan
- Wolfson Centre for Personalised Medicine, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, 1-5 Brownlow Street, Liverpool, L69 3GL, UK
| | - J Eunice Zhang
- Wolfson Centre for Personalised Medicine, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, 1-5 Brownlow Street, Liverpool, L69 3GL, UK
| | - Munir Pirmohamed
- Wolfson Centre for Personalised Medicine, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, 1-5 Brownlow Street, Liverpool, L69 3GL, UK.
| |
Collapse
|
25
|
Díaz-Villamarín X, Martínez-Pérez M, Nieto-Sánchez MT, Ruiz-Tueros G, Fernández-Varón E, Torres-García A, González Astorga B, Blancas I, Iáñez AJ, Cabeza-Barrera J, Morón R. Novel Genetic Variants Explaining Severe Adverse Drug Events after Clinical Implementation of DPYD Genotype-Guided Therapy with Fluoropyrimidines: An Observational Study. Pharmaceutics 2024; 16:956. [PMID: 39065653 PMCID: PMC11280107 DOI: 10.3390/pharmaceutics16070956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Fluoropyrimidines (FPs) are commonly prescribed in many cancer streams. The EMA and FDA-approved drug labels for FPs recommend genotyping the DPYD*2A (rs3918290), *13 (rs55886062), *HapB3 (rs56038477), alleles, and DPYD rs67376798 before treatment starts. We implemented the DPYD genotyping in our daily clinical routine, but we still found patients showing severe adverse drug events (ADEs) to FPs. We studied among these patients the DPYD rs1801265, rs17376848, rs1801159, rs1801160, rs1801158, and rs2297595 as explanatory candidates of the interindividual differences for FP-related toxicities, examining the association with the response to FPs . We also studied the impact of DPYD testing for FP dose tailoring in our clinical practice and characterized the DPYD gene in our population. We found a total acceptance among physicians of therapeutic recommendations translated from the DPYD test, and this dose tailoring does not affect the treatment efficacy. We also found that the DPYD*4 (defined by rs1801158) allele is associated with a higher risk of ADEs (severity grade ≥ 3) in both the univariate (O.R. = 5.66; 95% C.I. = 1.35-23.67; p = 0.014) and multivariate analyses (O.R. = 5.73; 95% C.I. = 1.41-28.77; p = 0.019) among FP-treated patients based on the DPYD genotype. This makes it a candidate variant for implementation in clinical practice.
Collapse
Affiliation(s)
- Xando Díaz-Villamarín
- Instituto de Investigación Biosanitaria de Granada (Ibs.Granada), 18012 Granada, Spain
| | | | | | - Gabriela Ruiz-Tueros
- Instituto de Investigación Biosanitaria de Granada (Ibs.Granada), 18012 Granada, Spain
| | - Emilio Fernández-Varón
- Instituto de Investigación Biosanitaria de Granada (Ibs.Granada), 18012 Granada, Spain
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain
| | - Alicia Torres-García
- Instituto de Investigación Biosanitaria de Granada (Ibs.Granada), 18012 Granada, Spain
| | - Beatriz González Astorga
- Instituto de Investigación Biosanitaria de Granada (Ibs.Granada), 18012 Granada, Spain
- Medical Oncology, Hospital Universitario San Cecilio, 18016 Granada, Spain
| | - Isabel Blancas
- Instituto de Investigación Biosanitaria de Granada (Ibs.Granada), 18012 Granada, Spain
- Medical Oncology, Hospital Universitario San Cecilio, 18016 Granada, Spain
| | - Antonio J. Iáñez
- Hospital Pharmacy, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - José Cabeza-Barrera
- Instituto de Investigación Biosanitaria de Granada (Ibs.Granada), 18012 Granada, Spain
- Hospital Pharmacy, Hospital Universitario San Cecilio, 18016 Granada, Spain
| | - Rocío Morón
- Instituto de Investigación Biosanitaria de Granada (Ibs.Granada), 18012 Granada, Spain
- Hospital Pharmacy, Hospital Universitario San Cecilio, 18016 Granada, Spain
| |
Collapse
|
26
|
Lian J, Liang Y, Wang Y, Chen Y, Li X, Xia L. Rapid detection of the irinotecan-related UGT1A1 & 5-fluorouracil related DPYD polymorphism by asymmetric polymerase chain reaction melting curve analysis. Clin Chim Acta 2024; 561:119761. [PMID: 38848897 DOI: 10.1016/j.cca.2024.119761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND Determination of DPYD and UGT1A1 polymorphisms prior to 5-fluorouracil and irinotecan therapy is crucial for avoiding severe adverse drug effects. Hence, there is a pressing need for accurate and reliable genotyping methods for the most common DPYD and UGT1A1 polymorphisms. In this study, we introduce a novel polymerase chain reaction (PCR) melting curve analysis method for discriminating DPYD c.1236G > A, c.1679 T > G, c.2846A > T, IVS14 + 1G > A and UGT1A1*1, *28, *6 (G71R) genotypes. METHODS Following protocol optimization, this technique was employed to genotype 28 patients, recruited between March 2023 and October 2023, at the First Affiliated Hospital of Xiamen University. These patients included 20 with UGT1A1 *1/*1, 8 with UGT1A1 *1/*28, 4 with UGT1A1 *28/*28, 22 with UGT1A1*6 G/G, 6 with UGT1A1*6 G/A, 4 with UGT1A1*6 A/A, 27 with DPYD(c.1236) G/G, 3 with DPYD(c.1236) G/A, 2 with DPYD(c.1236) A/A, 27 with DPYD(c.1679) T/T, 2 with DPYD(c.1679) T/G, 3 with DPYD(c.1679) G/G, 28 with DPYD(c.2846A/T) A/A, 2 with DPYD(c.2846A/T) A/T, 2 with DPYD(c.2846A/T) T/T, 28 with DPYD(c.IVS14 + 1) G/G, 2 with DPYD(c.IVS14 + 1) G/G, and 2 with DPYD(c.IVS14 + 1) G/G, as well as 3 plasmid standards. Method accuracy was assessed by comparing results with those from Sanger sequencing or Multiplex quantitative PCR(qPCR). Intra- and inter-run precision of melting temperatures (Tms) were calculated to evaluate reliability, and sensitivity was assessed through limit of detection examination. RESULTS The new method accurately identified all genotypes and exhibited higher accuracy than Multiplex qPCR. Intra- and inter-run coefficients of variation for Tms were both ≤1.97 %, with standard deviations ≤0.95 °C. The limit of detection was 0.09 ng/μL of input genomic DNA. CONCLUSION Our developed PCR melting curve analysis offers accurate, reliable, rapid, simple, and cost-effective detection of DPYD and UGT1A1 polymorphisms. Its application can be easily extended to clinical laboratories equipped with a fluorescent PCR platform.
Collapse
Affiliation(s)
- Jiabian Lian
- Center for Precision Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China; Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China; Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Yaoji Liang
- Biochee Biotech Co.,Ltd., Xiamen, 361102, China; Amogene Biotech Co.,Ltd., Xiamen, 361102, China
| | | | - Ying Chen
- Amogene Biotech Co.,Ltd., Xiamen, 361102, China
| | - Xun Li
- Center for Precision Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China; Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China.
| | - Lu Xia
- Center for Precision Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China; Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China; Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China.
| |
Collapse
|
27
|
Tracksdorf T, Smith DM, Pearse S, Cicali EJ, Aquilante CL, Scott SA, Ho TT, Patel JN, Hicks JK, Hertz DL. Strategies for DPYD testing prior to fluoropyrimidine chemotherapy in the US. Support Care Cancer 2024; 32:497. [PMID: 38980476 DOI: 10.1007/s00520-024-08674-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/20/2024] [Indexed: 07/10/2024]
Abstract
PURPOSE Patients with dihydropyrimidine dehydrogenase (DPD) deficiency are at high risk for severe and fatal toxicity from fluoropyrimidine (FP) chemotherapy. Pre-treatment DPYD testing is standard of care in many countries, but not the United States (US). This survey assessed pre-treatment DPYD testing approaches in the US to identify best practices for broader adoption. METHODS From August to October 2023, a 22-item QualtricsXM survey was sent to institutions and clinicians known to conduct pre-treatment DPYD testing and broadly distributed through relevant organizations and social networks. Responses were analyzed using descriptive analysis. RESULTS Responses from 24 unique US sites that have implemented pre-treatment DPYD testing or have a detailed implementation plan in place were analyzed. Only 33% of sites ordered DPYD testing for all FP-treated patients; at the remaining sites, patients were tested depending on disease characteristics or clinician preference. Almost 50% of sites depend on individual clinicians to remember to order testing without the assistance of electronic alerts or workflow reminders. DPYD testing was most often conducted by commercial laboratories that tested for at least the four or five DPYD variants considered clinically actionable. Approximately 90% of sites reported receiving results within 10 days of ordering. CONCLUSION Implementing DPYD testing into routine clinical practice is feasible and requires a coordinated effort among the healthcare team. These results will be used to develop best practices for the clinical adoption of DPYD testing to prevent severe and fatal toxicity in cancer patients receiving FP chemotherapy.
Collapse
Affiliation(s)
- Tabea Tracksdorf
- Deparment of Clinical Pharmacy, University of Michigan College of Pharmacy, 428 Church St, Room 2560C, Ann Arbor, MI, 48109-1065, USA
| | - D Max Smith
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
- MedStar Health, Columbia, MD, USA
| | - Skyler Pearse
- Health Behavior and Health Education, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Emily J Cicali
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, FL, USA
| | - Christina L Aquilante
- Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, USA
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Stuart A Scott
- Department of Pathology, Stanford University, Stanford, CA, USA
- Clinical Genomics Laboratory, Stanford Medicine, Palo Alto, CA, USA
| | - Teresa T Ho
- Department of Pathology, Moffitt Cancer Center, Tampa, FL, USA
| | - Jai N Patel
- Department of Cancer Pharmacology and Pharmacogenomics, Atrium Health Levine Cancer Institute, Charlotte, NC, USA
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
| | - J Kevin Hicks
- Department of Pathology, Moffitt Cancer Center, Tampa, FL, USA
| | - Daniel L Hertz
- Deparment of Clinical Pharmacy, University of Michigan College of Pharmacy, 428 Church St, Room 2560C, Ann Arbor, MI, 48109-1065, USA.
| |
Collapse
|
28
|
Nguyen DG, Morris SA, Hamilton A, Kwange SO, Steuerwald N, Symanowski J, Moore DC, Hanson S, Mroz K, Lopes KE, Larck C, Musselwhite L, Kadakia KC, Koya B, Chai S, Osei-Boateng K, Kalapurakal S, Swift K, Hwang J, Patel JN. Real-World Impact of an In-House Dihydropyrimidine Dehydrogenase ( DPYD) Genotype Test on Fluoropyrimidine Dosing, Toxicities, and Hospitalizations at a Multisite Cancer Center. JCO Precis Oncol 2024; 8:e2300623. [PMID: 38935897 PMCID: PMC11371106 DOI: 10.1200/po.23.00623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/07/2024] [Accepted: 04/12/2024] [Indexed: 06/29/2024] Open
Abstract
PURPOSE Fluoropyrimidine-related toxicity and mortality risk increases significantly in patients carrying certain DPYD genetic variants with standard dosing. We implemented DPYD genotyping at a multisite cancer center and evaluated its impact on dosing, toxicity, and hospitalization. METHODS In this prospective observational study, patients receiving (reactive) or planning to receive (pretreatment) fluoropyrimidine-based chemotherapy were genotyped for five DPYD variants as standard practice per provider discretion. The primary end point was the proportion of variant carriers receiving fluoropyrimidine modifications. Secondary end points included mean relative dose intensity, fluoropyrimidine-related grade 3+ toxicities, and hospitalizations. Fisher's exact test compared toxicity and hospitalization rates between pretreatment carriers, reactive carriers, and wild-type patients. Univariable and multivariable logistic regression identified factors associated with toxicity and hospitalization risk. Kaplan-Meier methods estimated time to event of first grade 3+ toxicity and hospitalization. RESULTS Of the 757 patients who received DPYD genotyping (median age 63, 54% male, 74% White, 19% Black, 88% GI malignancy), 45 (5.9%) were heterozygous carriers. Fluoropyrimidine was modified in 93% of carriers who started treatment. In 442 patients with 3-month follow-up, 64%, 31%, and 30% of reactive carriers, pretreatment carriers, and wild-type patients had grade 3+ toxicity, respectively (P = .085); 64%, 25%, and 13% were hospitalized (P < .001). Reactive carriers had 10-fold higher odds of hospitalization compared with wild-type patients (P = .001), whereas no significant difference was noted between pretreatment carriers and wild-type patients. Time-to-event of toxicity and hospitalization were significantly different between genotype groups (P < .001), with reactive carriers having the earliest onset and highest incidence. CONCLUSION DPYD genotyping prompted fluoropyrimidine modifications in most carriers. Pretreatment testing reduced toxicities and hospitalizations compared with reactive testing, thus normalizing the risk to that of wild-type patients, and should be considered standard practice.
Collapse
Affiliation(s)
- D. Grace Nguyen
- Department of Cancer Pharmacology & Pharmacogenomics, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Sarah A. Morris
- Department of Cancer Pharmacology & Pharmacogenomics, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Alicia Hamilton
- Molecular Biology and Genomics Core Facility, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Simeon O. Kwange
- Department of Cancer Pharmacology & Pharmacogenomics, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Nury Steuerwald
- Molecular Biology and Genomics Core Facility, Atrium Health Levine Cancer Institute, Charlotte, NC
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC
| | - James Symanowski
- Department of Biostatistics and Data Sciences, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Donald C. Moore
- Department of Pharmacy, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Sarah Hanson
- Department of Pharmacy, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Kaitlyn Mroz
- Department of Cancer Pharmacology & Pharmacogenomics, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Karine E. Lopes
- Department of Cancer Pharmacology & Pharmacogenomics, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Chris Larck
- Department of Pharmacy, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Laura Musselwhite
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC
- Department of Solid Tumor Oncology, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Kunal C. Kadakia
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC
- Department of Solid Tumor Oncology, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Brinda Koya
- Department of Solid Tumor Oncology, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Seungjean Chai
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC
- Department of Solid Tumor Oncology, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Kwabena Osei-Boateng
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC
- Department of Solid Tumor Oncology, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Sini Kalapurakal
- Department of Solid Tumor Oncology, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Kristen Swift
- Department of Solid Tumor Oncology, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Jimmy Hwang
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC
- Department of Solid Tumor Oncology, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Jai N. Patel
- Department of Cancer Pharmacology & Pharmacogenomics, Atrium Health Levine Cancer Institute, Charlotte, NC
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC
| |
Collapse
|
29
|
Marok FZ, Wojtyniak JG, Selzer D, Dallmann R, Swen JJ, Guchelaar HJ, Schwab M, Lehr T. Personalized Chronomodulated 5-Fluorouracil Treatment: A Physiologically-Based Pharmacokinetic Precision Dosing Approach for Optimizing Cancer Therapy. Clin Pharmacol Ther 2024; 115:1282-1292. [PMID: 38264789 DOI: 10.1002/cpt.3181] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/03/2024] [Indexed: 01/25/2024]
Abstract
The discovery of circadian clock genes greatly amplified the study of diurnal variations impacting cancer therapy, transforming it into a rapidly growing field of research. Especially, use of chronomodulated treatment with 5-fluorouracil (5-FU) has gained significance. Studies indicate high interindividual variability (IIV) in diurnal variations in dihydropyrimidine dehydrogenase (DPD) activity - a key enzyme for 5-FU metabolism. However, the influence of individual DPD chronotypes on chronomodulated therapy remains unclear and warrants further investigation. To optimize precision dosing of chronomodulated 5-FU, this study aims to: (i) build physiologically-based pharmacokinetic (PBPK) models for 5-FU, uracil, and their metabolites, (ii) assess the impact of diurnal variation on DPD activity, (iii) estimate individual DPD chronotypes, and (iv) personalize chronomodulated 5-FU infusion rates based on a patient's DPD chronotype. Whole-body PBPK models were developed with PK-Sim(R) and MoBi(R). Sinusoidal functions were used to incorporate variations in enzyme activity and chronomodulated infusion rates as well as to estimate individual DPD chronotypes from DPYD mRNA expression or DPD enzymatic activity. Four whole-body PBPK models for 5-FU, uracil, and their metabolites were established utilizing data from 41 5-FU and 10 publicly available uracil studies. IIV in DPD chronotypes was assessed and personalized chronomodulated administrations were developed to achieve (i) comparable 5-FU peak plasma concentrations, (ii) comparable 5-FU exposure, and (iii) constant 5-FU plasma levels via "noise cancellation" chronomodulated infusion. The developed PBPK models capture the extent of diurnal variations in DPD activity and can help investigate individualized chronomodulated 5-FU therapy through testing alternative personalized dosing strategies.
Collapse
Affiliation(s)
| | - Jan-Georg Wojtyniak
- Clinical Pharmacy, Saarland University, Saarbruecken, Germany
- Dr. Margarete Fischer-Bosch-Institut of Clinical Pharmacology, Stuttgart, Germany
| | - Dominik Selzer
- Clinical Pharmacy, Saarland University, Saarbruecken, Germany
| | - Robert Dallmann
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Jesse J Swen
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, RC Leiden, The Netherlands
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, RC Leiden, The Netherlands
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch-Institut of Clinical Pharmacology, Stuttgart, Germany
- Departments of Clinical Pharmacology, and of Biochemistry and Pharmacy, University Tuebingen, Tuebingen, Germany
- Cluster of excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University Tuebingen, Tuebingen, Germany
| | - Thorsten Lehr
- Clinical Pharmacy, Saarland University, Saarbruecken, Germany
| |
Collapse
|
30
|
Liang Y, Gersch CL, Lehman J, Henry NL, Smith KL, Rae JM, Stearns V, Hertz DL. Attempted replication of pharmacogenetic association of variants in PPP1R14C and CCDC148 with aromatase inhibitor-induced musculoskeletal symptoms. Pharmacogenet Genomics 2024; 34:126-129. [PMID: 38359166 DOI: 10.1097/fpc.0000000000000522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Third-generation aromatase inhibitors (AI) are the standard treatment for patients with hormone receptor positive (HR+) breast cancer. While effective, AI can lead to severe adverse events, including AI-induced musculoskeletal syndrome (AIMSS). Genetic predictors of AIMSS have the potential to personalize AI treatment and improve outcomes. We attempted to replicate results from a previous genome-wide association study that found a lower risk of AIMSS in patients carrying PPP1R14C rs912571 and a higher risk in patients carrying CCDC148 rs79048288. AIMSS data were collected prospectively from patients with HR+ breast cancer prior to starting and after 3 and 6 months of adjuvant AI via the Patient-Reported Outcome Measurement Information System and Functional Assessment of Cancer Therapy-Endocrine Symptom. Germline genotypes for PPP1R14C rs912571 and CCDC148 rs79048288 were tested for a similar association with AIMSS as previously reported via $2 tests. Of the 143 patients with AIMSS and genetics data were included in the analysis. There was no association identified between PPP1R14C rs912571 and AIMSS risk ( P > 0.05). Patients carrying CCDC148 rs79048288 variant alleles had lower AIMSS incidence in a secondary analysis ( P = 0.04); however, this was in the opposite direction of the previous finding. The study did not replicate previously reported associations with AIMSS risk for genetic variants in PPP1R14C and CCDC148 and AIMSS risk. Further research is needed to discover and validate genetic predictors of AIMSS that can be used to personalize treatment in patients with HR+ breast cancer.
Collapse
Affiliation(s)
- Yuqing Liang
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy
| | - Christina L Gersch
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jennifer Lehman
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - N Lynn Henry
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Karen Lisa Smith
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - James M Rae
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Vered Stearns
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Daniel L Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy
| |
Collapse
|
31
|
White C, Paul C, Scott RJ, Ackland S. Commentary: The pharmacogenomic landscape of an Indigenous Australian population. Front Pharmacol 2024; 15:1373056. [PMID: 38813104 PMCID: PMC11133678 DOI: 10.3389/fphar.2024.1373056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/03/2024] [Indexed: 05/31/2024] Open
Affiliation(s)
- Cassandra White
- Hunter Medical Research Institute, The University of Newcastle, New Lambton, NSW, Australia
- The University of Newcastle, Callaghan, NSW, Australia
- Maitland Hospital, Metford, NSW, Australia
| | - Christine Paul
- Hunter Medical Research Institute, New Lambton, NSW, Australia
- The University of Newcastle, Callaghan, NSW, Australia
| | - Rodney J Scott
- Hunter Medical Research Institute, New Lambton, NSW, Australia
- The University of Newcastle, Callaghan, NSW, Australia
| | - Stephen Ackland
- Hunter Medical Research Institute, New Lambton, NSW, Australia
- The University of Newcastle, Callaghan, NSW, Australia
- Lake Macquarie Private Hospital, Gateshead, NSW, Australia
| |
Collapse
|
32
|
van Kuilenburg ABP, Pleunis-van Empel MCH, Brouwer RB, Sijben AEJ, Knapen DG, Oude Munnink TH, van Zanden JJ, Janssens-Puister J, Dobritzsch D, Meinsma R, Meijer-Jansen J, van Dooren SJM, Vijzelaar R, Pop A, Salomons GS, Maring JG, Niezen-Koning KE. Lethal Capecitabine Toxicity in Patients With Complete Dihydropyrimidine Dehydrogenase Deficiency Due to Ultra-Rare DPYD Variants. JCO Precis Oncol 2024; 8:e2300599. [PMID: 38709992 DOI: 10.1200/po.23.00599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/14/2023] [Accepted: 03/19/2024] [Indexed: 05/08/2024] Open
Abstract
A DPD deficiency should be considered in case of severe toxicity even in the absence of common risk variants in DPYD.
Collapse
Affiliation(s)
- André B P van Kuilenburg
- Amsterdam University Medical Center, University of Amsterdam, Cancer Center Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Laboratory Genetic Metabolic Diseases, Amsterdam, the Netherlands
| | | | - Rick B Brouwer
- Department of Clinical Chemistry and Laboratory Medicine, Medisch Spectrum Twente, Medlon BV, Enschede, the Netherlands
| | | | - Daan G Knapen
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Thijs H Oude Munnink
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Jelmer J van Zanden
- Martini Hospital Groningen, Certe Department of Clinical Chemistry, the Netherlands
| | - Jenny Janssens-Puister
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Doreen Dobritzsch
- Department of Chemistry, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - Rutger Meinsma
- Amsterdam University Medical Center, University of Amsterdam, Cancer Center Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Laboratory Genetic Metabolic Diseases, Amsterdam, the Netherlands
| | - Judith Meijer-Jansen
- Amsterdam University Medical Center, University of Amsterdam, Cancer Center Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Laboratory Genetic Metabolic Diseases, Amsterdam, the Netherlands
| | - Silvy J M van Dooren
- Amsterdam University Medical Center, University of Amsterdam, Cancer Center Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Laboratory Genetic Metabolic Diseases, Amsterdam, the Netherlands
| | | | - Ana Pop
- Amsterdam University Medical Center, University of Amsterdam, Cancer Center Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Laboratory Genetic Metabolic Diseases, Amsterdam, the Netherlands
| | - Gajja S Salomons
- Amsterdam University Medical Center, University of Amsterdam, Cancer Center Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Laboratory Genetic Metabolic Diseases, Amsterdam, the Netherlands
| | - Jan Gerard Maring
- Departments of Clinical Pharmacy and Medical Oncology, Isala, Zwolle, the Netherlands
| | - Klary E Niezen-Koning
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
33
|
Lingaratnam S, Shah M, Nicolazzo J, Michael M, Seymour JF, James P, Lazarakis S, Loi S, Kirkpatrick CMJ. A systematic review and meta-analysis of the impacts of germline pharmacogenomics on severe toxicity and symptom burden in adult patients with cancer. Clin Transl Sci 2024; 17:e13781. [PMID: 38700261 PMCID: PMC11067509 DOI: 10.1111/cts.13781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/12/2024] [Accepted: 03/14/2024] [Indexed: 05/05/2024] Open
Abstract
The clinical application of Pharmacogenomics (PGx) has improved patient safety. However, comprehensive PGx testing has not been widely adopted in clinical practice, and significant opportunities exist to further optimize PGx in cancer care. This systematic review and meta-analysis aim to evaluate the safety outcomes of reported PGx-guided strategies (Analysis 1) and identify well-studied emerging pharmacogenomic variants that predict severe toxicity and symptom burden (Analysis 2) in patients with cancer. We searched MEDLINE, EMBASE, CENTRAL, clinicaltrials.gov, and International Clinical Trials Registry Platform from inception to January 2023 for clinical trials or comparative studies evaluating PGx strategies or unconfirmed pharmacogenomic variants. The primary outcomes were severe adverse events (SAE; ≥ grade 3) or symptom burden with pain and vomiting as defined by trial protocols and assessed by trial investigators. We calculated pooled overall relative risk (RR) and 95% confidence interval (95%CI) using random effects models. PROSPERO, registration number CRD42023421277. Of 6811 records screened, six studies were included for Analysis 1, 55 studies for Analysis 2. Meta-analysis 1 (five trials, 1892 participants) showed a lower absolute incidence of SAEs with PGx-guided strategies compared to usual therapy, 16.1% versus 34.0% (RR = 0.72, 95%CI 0.57-0.91, p = 0.006, I2 = 34%). Meta-analyses 2 identified nine medicine(class)-variant pairs of interest across the TYMS, ABCB1, UGT1A1, HLA-DRB1, and OPRM1 genes. Application of PGx significantly reduced rates of SAEs in patients with cancer. Emergent medicine-variant pairs herald further research into the expansion and optimization of PGx to improve systemic anti-cancer and supportive care medicine safety and efficacy.
Collapse
Affiliation(s)
- Senthil Lingaratnam
- Pharmacy DepartmentPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
- Sir Peter MacCallum Department of OncologyUniversity of MelbourneMelbourneVictoriaAustralia
- Monash Institute of Pharmaceutical Sciences, Monash UniversityMelbourneVictoriaAustralia
| | - Mahek Shah
- Faculty of Pharmacy and Pharmaceutical SciencesMonash UniversityMelbourneVictoriaAustralia
| | - Joseph Nicolazzo
- Monash Institute of Pharmaceutical Sciences, Monash UniversityMelbourneVictoriaAustralia
| | - Michael Michael
- Sir Peter MacCallum Department of OncologyUniversity of MelbourneMelbourneVictoriaAustralia
- Department of Medical OncologyPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
| | - John F. Seymour
- Sir Peter MacCallum Department of OncologyUniversity of MelbourneMelbourneVictoriaAustralia
- Department of Clinical HaematologyPeter MacCallum Cancer Centre and Royal Melbourne HospitalMelbourneVictoriaAustralia
| | - Paul James
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and Royal Melbourne HospitalMelbourneVictoriaAustralia
| | - Smaro Lazarakis
- Health Sciences LibraryRoyal Melbourne HospitalMelbourneVictoriaAustralia
| | - Sherene Loi
- Sir Peter MacCallum Department of OncologyUniversity of MelbourneMelbourneVictoriaAustralia
- Division of Cancer ResearchPeter MacCallum Cancer CentreMelbourneVictoriaAustralia
| | - Carl M. J. Kirkpatrick
- Monash Institute of Pharmaceutical Sciences, Monash UniversityMelbourneVictoriaAustralia
| |
Collapse
|
34
|
Perera J, Süsstrunk J, Thurneysen C, Steinemann D. Capecitabine-induced severe adverse events-therapeutic drug monitoring and DPYD-gene analysis are recommended. BMJ Case Rep 2024; 17:e256980. [PMID: 38684357 PMCID: PMC11146389 DOI: 10.1136/bcr-2023-256980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 05/02/2024] Open
Abstract
In this report, two cases of patients with severe adverse events after an adjuvant treatment with capecitabine are described in detail. The first patient suffered from a severe ileocolitis, where ultimately intensive care treatment, total colectomy and ileum resection was necessary. The second patient experienced a toxic enteritis, which could be managed conservatively. Post-therapeutic DPYD genotyping was negative in the former and positive in the latter case. Patients can be categorised in normal, moderate and poor DPYD metabolisers to predict the risk of adverse events of capecitabine treatment. Guidelines in various European countries recommend pretherapeutic DPYD genotyping, whereas it is not recommended by the National Comprehensive Cancer Network in the USA. Irrespective of DPYD genotyping, strict therapeutic drug monitoring is highly recommended to reduce the incidence and severity of adverse events.
Collapse
Affiliation(s)
- Johan Perera
- Faculty of Medicine, University of Basel, Basel-Stadt, Switzerland
| | - Julian Süsstrunk
- Department of Visceral Surgery, Clarunis University Digestive Health Care Center Basel, Basel, Switzerland
| | - Claudio Thurneysen
- Department of Oncology, Saint Clara Hospital Cancer Centre, Basel, Switzerland
| | - Daniel Steinemann
- Department of Visceral Surgery, Clarunis University Digestive Health Care Center Basel, Basel, Switzerland
| |
Collapse
|
35
|
Martin JH, Galettis P, Flynn A, Schneider J. Phenotype versus genotype to optimize cancer dosing in the clinical setting-focus on 5-fluorouracil and tyrosine kinase inhibitors. Pharmacol Res Perspect 2024; 12:e1182. [PMID: 38429945 PMCID: PMC10907881 DOI: 10.1002/prp2.1182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 03/03/2024] Open
Abstract
Cancer medicines often have narrow therapeutic windows; toxicity can be severe and sometimes fatal, but inadequate dose intensity reduces efficacy and survival. Determining the optimal dose for each patient is difficult, with body-surface area used most commonly for chemotherapy and flat dosing for tyrosine kinase inhibitors, despite accumulating evidence of a wide range of exposures in individual patients with many receiving a suboptimal dose with these strategies. Therapeutic drug monitoring (measuring the drug concentration in a biological fluid, usually plasma) (TDM) is an accepted and well validated method to guide dose adjustments for individual patients to improve this. However, implementing TDM in routine care has been difficult outside a research context. The development of genotyping of various proteins involved in drug elimination and activity has gained prominence, with several but not all Guideline groups recommending dose reductions for particular variant genotypes. However, there is increasing concern that dosing recommendations are based on limited data sets and may lead to unnecessary underdosing and increased cancer mortality. This Review discusses the evidence surrounding genotyping and TDM to guide decisions around best practice.
Collapse
Affiliation(s)
- Jennifer H. Martin
- Drug Repurposing and Medicines Research ProgramHunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
| | - Peter Galettis
- Drug Repurposing and Medicines Research ProgramHunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
| | - Alex Flynn
- Drug Repurposing and Medicines Research ProgramHunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
| | - Jennifer Schneider
- Drug Repurposing and Medicines Research ProgramHunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
| |
Collapse
|
36
|
Chenchula S, Atal S, Uppugunduri CRS. A review of real-world evidence on preemptive pharmacogenomic testing for preventing adverse drug reactions: a reality for future health care. THE PHARMACOGENOMICS JOURNAL 2024; 24:9. [PMID: 38490995 PMCID: PMC10942860 DOI: 10.1038/s41397-024-00326-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 03/18/2024]
Abstract
Adverse drug reactions (ADRs) are a significant public health concern and a leading cause of hospitalization; they are estimated to be the fourth leading cause of death and increasing healthcare costs worldwide. Carrying a genetic variant could alter the efficacy and increase the risk of ADRs associated with a drug in a target population for commonly prescribed drugs. The use of pre-emptive pharmacogenetic/omic (PGx) testing can improve drug therapeutic efficacy, safety, and compliance by guiding the selection of drugs and/or dosages. In the present narrative review, we examined the current evidence of pre-emptive PGx testing-based treatment for the prevention of ADRs incidence and hospitalization or emergency department visits due to serious ADRs, thus improving patient safety. We then shared our perspective on the importance of preemptive PGx testing in clinical practice for the safe use of medicines and decreasing healthcare costs.
Collapse
Affiliation(s)
- Santenna Chenchula
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), Bhopal, India
| | - Shubham Atal
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), Bhopal, India
| | - Chakradhara Rao S Uppugunduri
- CANSEARCH Research Platform in Pediatric Oncology and Hematology, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
37
|
Le Teuff G, Cozic N, Boyer JC, Boige V, Diasio RB, Taieb J, Meulendijks D, Palles C, Schwab M, Deenen M, Largiadèr CR, Marinaki A, Jennings BA, Wettergren Y, Di Paolo A, Gross E, Budai B, Ackland SP, van Kuilenburg ABP, McLeod HL, Milano G, Thomas F, Loriot MA, Kerr D, Schellens JHM, Laurent-Puig P, Shi Q, Pignon JP, Etienne-Grimaldi MC. Dihydropyrimidine dehydrogenase gene variants for predicting grade 4-5 fluoropyrimidine-induced toxicity: FUSAFE individual patient data meta-analysis. Br J Cancer 2024; 130:808-818. [PMID: 38225422 PMCID: PMC10912560 DOI: 10.1038/s41416-023-02517-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/30/2023] [Accepted: 11/23/2023] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Dihydropyrimidine dehydrogenase (DPD) deficiency is the main known cause of life-threatening fluoropyrimidine (FP)-induced toxicities. We conducted a meta-analysis on individual patient data to assess the contribution of deleterious DPYD variants *2A/D949V/*13/HapB3 (recommended by EMA) and clinical factors, for predicting G4-5 toxicity. METHODS Study eligibility criteria included recruitment of Caucasian patients without DPD-based FP-dose adjustment. Main endpoint was 12-week haematological or digestive G4-5 toxicity. The value of DPYD variants *2A/p.D949V/*13 merged, HapB3, and MIR27A rs895819 was evaluated using multivariable logistic models (AUC). RESULTS Among 25 eligible studies, complete clinical variables and primary endpoint were available in 15 studies (8733 patients). Twelve-week G4-5 toxicity prevalence was 7.3% (641 events). The clinical model included age, sex, body mass index, schedule of FP-administration, concomitant anticancer drugs. Adding *2A/p.D949V/*13 variants (at least one allele, prevalence 2.2%, OR 9.5 [95%CI 6.7-13.5]) significantly improved the model (p < 0.0001). The addition of HapB3 (prevalence 4.0%, 98.6% heterozygous), in spite of significant association with toxicity (OR 1.8 [95%CI 1.2-2.7]), did not improve the model. MIR27A rs895819 was not associated with toxicity, irrespective of DPYD variants. CONCLUSIONS FUSAFE meta-analysis highlights the major relevance of DPYD *2A/p.D949V/*13 combined with clinical variables to identify patients at risk of very severe FP-related toxicity.
Collapse
Affiliation(s)
- Gwénaël Le Teuff
- Service de Biostatistique et d'Epidémiologie, Gustave Roussy, Oncostat U1018 INSERM, labeled Ligue Contre le Cancer, Université Paris-Saclay, Villejuif, France.
| | - Nathalie Cozic
- Service de Biostatistique et d'Epidémiologie, Gustave Roussy, Oncostat U1018 INSERM, labeled Ligue Contre le Cancer, Université Paris-Saclay, Villejuif, France
| | | | - Valérie Boige
- Department of cancer medicine, Gustave-Roussy Cancer Campus, Paris-Saclay and Paris-Sud Universities, Villejuif, France
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Equipe Labellisée Ligue Nationale Contre le Cancer, CNRS SNC, 5096, Paris, France
| | - Robert B Diasio
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Cancer Center, Rochester, MN, USA
| | - Julien Taieb
- Université Paris-Cité, SIRIC CARPEM, Department of Gastroenterology and Digestive Oncology, Georges Pompidou European Hospital, AP-HP, Paris, France
| | - Didier Meulendijks
- Department of Clinical Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Claire Palles
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- Departments of Clinical Pharmacology, and of Biochemistry and Pharmacy, University of Tuebingen, Tuebingen, Germany
- Cluster of Excellence IFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, 72074, Tübingen, Germany
| | - Maarten Deenen
- Department of Clinical Pharmacy, Catharina Hospital, Eindhoven, the Netherlands
| | - Carlo R Largiadèr
- Department of Clinical Chemistry, Bern University Hospital, University of Bern, Inselspital, Bern, Switzerland
| | | | | | | | - Antonello Di Paolo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Eva Gross
- LMU Munich, University Hospital, Campus Grosshadern, Munich, Germany
| | - Barna Budai
- National Institute of Oncology, Budapest, Hungary
| | - Stephen P Ackland
- College of Heath, Medicine and Wellbeing, University of Newcastle, Newcastle, NSW, Australia
| | - André B P van Kuilenburg
- Amsterdam UMC, location University of Amsterdam, Laboratory Genetic Metabolic Diseases, Meibergdreef 9, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Imaging and biomarkers, Amsterdam, The Netherlands
| | - Howard L McLeod
- Intermountain Precision Genomics, Intermountain Healthcare, St George, UT, USA
| | - Gérard Milano
- Oncopharmacology Laboratory, Centre Antoine Lacassagne, Nice, France
| | - Fabienne Thomas
- Institut Claudius Regaud, IUCT-Oncopôle and CRCT, University of Toulouse, Inserm, Toulouse, France
| | - Marie-Anne Loriot
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Equipe Labellisée Ligue Nationale Contre le Cancer, CNRS SNC, 5096, Paris, France
- Hôpital Européen Georges Pompidou, Hôpitaux Universitaires Paris Ouest, Paris, France
| | - David Kerr
- Nuffield Division of Clinical and Laboratory Sciences and University of Oxford, Oxford, UK
| | - Jan H M Schellens
- Department of Clinical Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Pierre Laurent-Puig
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Equipe Labellisée Ligue Nationale Contre le Cancer, CNRS SNC, 5096, Paris, France
- Hôpital Européen Georges Pompidou, Hôpitaux Universitaires Paris Ouest, Paris, France
| | - Qian Shi
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Jean-Pierre Pignon
- Service de Biostatistique et d'Epidémiologie, Gustave Roussy, Oncostat U1018 INSERM, labeled Ligue Contre le Cancer, Université Paris-Saclay, Villejuif, France
| | | |
Collapse
|
38
|
Knikman JE, Lopez-Yurda M, Meulendijks D, Deenen MJ, Schellens JHM, Beijnen J, Cats A, Guchelaar HJ. A Nomogram to Predict Severe Toxicity in DPYD Wild-Type Patients Treated With Capecitabine-Based Anticancer Regimens. Clin Pharmacol Ther 2024; 115:269-277. [PMID: 37957132 DOI: 10.1002/cpt.3100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023]
Abstract
DPYD-guided dosing has improved the safety of fluoropyrimidine-based chemotherapy in recent years. However, severe toxicity remains in ~ 23% of patients not carrying DPYD variant alleles treated with capecitabine. Therefore, we developed a predictive model based on patient-related and treatment-related factors aimed at estimating the risk of developing severe capecitabine-related toxicity. The nomogram was developed using data from two large clinical trials (NCT00838370 and NCT02324452). Patients with cancer carrying a DPYD variant allele (DPYD*2A, c.1236G>A, c.2846A>T, and c.1679T>G) were excluded. Univariable and multivariable logistic regression using predetermined predictors based on previous findings, including age, sex, body surface area, type of treatment regimen, and creatinine levels were used to develop the nomogram. The developed model was internally validated using bootstrap resampling and cross-validation. This model was not externally or clinically validated. A total of 2,147 DPYD wild-type patients with cancer treated with capecitabine-based chemotherapy regimens were included of which complete data of 1,745 patients were available and used for the development of the nomogram. Univariable and multivariable logistic regression showed that age, sex, and type of treatment regimen were strong predictors of severe capecitabine-related toxicity in DPYD wild-type patients. Internal validation demonstrated a concordance index of 0.68 which indicates a good discriminative ability for prediction of severe capecitabine-related toxicity. The developed nomogram includes readily available parameters and may be a helpful tool for clinicians to assess the risk of developing severe capecitabine-related toxicity in patients without known risk DPYD variant alleles treated with capecitabine-based anticancer regimens.
Collapse
Affiliation(s)
- Jonathan E Knikman
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marta Lopez-Yurda
- Biometrics Department, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Didier Meulendijks
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of Medical Oncology, Department of Clinical Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Late Development Oncology, AstraZeneca, Cambridge, UK
| | - Maarten J Deenen
- Department of Clinical Pharmacy, Catharina Hospital, Eindhoven, The Netherlands
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Jan H M Schellens
- Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jos Beijnen
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of Pharmacoepidemiology and Clinical Pharmacology, Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Annemieke Cats
- Division of Medical Oncology, Department of Gastrointestinal Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
39
|
Barrett D, Sibalija J, Kim RB. Patients' Experiences of a Precision Medicine Clinic. J Patient Exp 2024; 11:23743735241229384. [PMID: 38313864 PMCID: PMC10836129 DOI: 10.1177/23743735241229384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024] Open
Abstract
The purpose of this study is to provide an overview of patients' experiences using a precision medicine (PM) clinic that conducts pharmacogenomics-based (PGx) testing for adverse drug reactions. The study aimed to identify the features of the clinic valued most by patients and areas for improvement. A paper survey was used to collect data. Survey questions focused on patients' perceptions of the PM testing and the overall clinic experience. Sixty-seven patients completed the survey. Quantitative data were analyzed using SPSS and frequencies were reported. Open-ended responses were coded and organized thematically. Patients reported that the clinic services increased confidence in their medication usage. Feeling respected by staff, receiving education, and quick appointments were highly valued by patients. Suggested areas for improvement included better communication from the clinic to patients, expansion of clinic services, and education for other healthcare providers. The findings demonstrate that patient experience goes beyond the clinical care provided. Current and potential future providers of PM should invest the time and energy to configure their care delivery system to enhance the patient experience.
Collapse
Affiliation(s)
- David Barrett
- Ivey Business School, Western University, London, Canada
| | - Jovana Sibalija
- Faculty of Health Sciences, Western University, London, Canada
| | - Richard B Kim
- Schulich School of Medicine & Dentistry, Western University, London, Canada
| |
Collapse
|
40
|
Larrue R, Fellah S, Hennart B, Sabaouni N, Boukrout N, Van der Hauwaert C, Delage C, Cheok M, Perrais M, Cauffiez C, Allorge D, Pottier N. Integrating rare genetic variants into DPYD pharmacogenetic testing may help preventing fluoropyrimidine-induced toxicity. THE PHARMACOGENOMICS JOURNAL 2024; 24:1. [PMID: 38216550 PMCID: PMC10786722 DOI: 10.1038/s41397-023-00322-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/23/2023] [Accepted: 12/05/2023] [Indexed: 01/14/2024]
Abstract
Variability in genes involved in drug pharmacokinetics or drug response can be responsible for suboptimal treatment efficacy or predispose to adverse drug reactions. In addition to common genetic variations, large-scale sequencing studies have uncovered multiple rare genetic variants predicted to cause functional alterations in genes encoding proteins implicated in drug metabolism, transport and response. To understand the functional importance of rare genetic variants in DPYD, a pharmacogene whose alterations can cause severe toxicity in patients exposed to fluoropyrimidine-based regimens, massively parallel sequencing of the exonic regions and flanking splice junctions of the DPYD gene was performed in a series of nearly 3000 patients categorized according to pre-emptive DPD enzyme activity using the dihydrouracil/uracil ([UH2]/[U]) plasma ratio as a surrogate marker of DPD activity. Our results underscore the importance of integrating next-generation sequencing-based pharmacogenomic interpretation into clinical decision making to minimize fluoropyrimidine-based chemotherapy toxicity without altering treatment efficacy.
Collapse
Affiliation(s)
- Romain Larrue
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France.
- Service de Toxicologie et Génopathies, CHU Lille, F-59000, Lille, France.
| | - Sandy Fellah
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Benjamin Hennart
- Service de Toxicologie et Génopathies, CHU Lille, F-59000, Lille, France
| | - Naoual Sabaouni
- Service de Toxicologie et Génopathies, CHU Lille, F-59000, Lille, France
| | - Nihad Boukrout
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Cynthia Van der Hauwaert
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Clément Delage
- Service de Toxicologie et Génopathies, CHU Lille, F-59000, Lille, France
| | - Meyling Cheok
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Michaël Perrais
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Christelle Cauffiez
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Delphine Allorge
- Service de Toxicologie et Génopathies, CHU Lille, F-59000, Lille, France
| | - Nicolas Pottier
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000, Lille, France
- Service de Toxicologie et Génopathies, CHU Lille, F-59000, Lille, France
| |
Collapse
|
41
|
Glewis S, Lingaratnam S, Krishnasamy M, H Martin J, Tie J, Alexander M, Michael M. Pharmacogenetics testing (DPYD and UGT1A1) for fluoropyrimidine and irinotecan in routine clinical care: Perspectives of medical oncologists and oncology pharmacists. J Oncol Pharm Pract 2024; 30:30-37. [PMID: 37021580 DOI: 10.1177/10781552231167554] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
BACKGROUND Despite robust evidence and international guidelines, to support routine pharmacogenetic (PGx) testing, integration in practice has been limited. This study explored clinicians' views and experiences of pre-treatment DPYD and UGT1A1 gene testing and barriers to and enablers of routine clinical implementation. METHODS A study-specific 17-question survey was emailed (01 February-12 April 2022) to clinicians from the Medical Oncology Group of Australia (MOGA), the Clinical Oncology Society of Australia (COSA) and International Society of Oncology Pharmacy Practitioners (ISOPP). Data were analysed and reported using descriptive statistics. RESULTS Responses were collected from 156 clinicians (78% medical oncologists, 22% pharmacists). Median response rate of 8% (ranged from 6% to 24%) across all organisations. Only 21% routinely test for DPYD and 1% for UGT1A1. For patients undergoing curative/palliative intent treatments, clinicians reported intent to implement genotype-guided dosing by reducing FP dose for DPYD intermediate metabolisers (79%/94%), avoiding FP for DPYD poor metabolisers (68%/90%), and reducing irinotecan dose for UGT1A1 poor metabolisers (84%, palliative setting only). Barriers to implementation included: lack of financial reimbursements (82%) and perceived lengthy test turnaround time (76%). Most Clinicians identified a dedicated program coordinator, i.e., PGx pharmacist (74%) and availability of resources for education/training (74%) as enablers to implementation. CONCLUSION PGx testing is not routinely practised despite robust evidence for its impact on clinical decision making in curative and palliative settings. Research data, education and implementation studies may overcome clinicians' hesitancy to follow guidelines, especially for curative intent treatments, and may overcome other identified barriers to routine clinical implementation.
Collapse
Affiliation(s)
- Sarah Glewis
- Department of Pharmacy, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | | | - Mei Krishnasamy
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Academic Nursing Unit, Peter MacCallum Cancer Centre, Melbourne, Australia
- VCCC Alliance, Parkville, Australia
| | - Jennifer H Martin
- School of Medicine and Public Health, University of Newcastle, New South Wales, Australia
| | - Jeanne Tie
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
- Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Marliese Alexander
- Department of Pharmacy, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Michael Michael
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| |
Collapse
|
42
|
Mushiroda T. [Pharmacogenetic testing for prevention of severe cutaneous adverse drug reactions]. Nihon Yakurigaku Zasshi 2024; 159:90-95. [PMID: 38432925 DOI: 10.1254/fpj.23092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Pharmacogenetic testing benefits patients by predicting drug efficacy and risk of adverse drug reactions (ADRs). Pharmacogenetic biomarkers useful in clinical practice include drug-metabolizing enzyme and drug transporter genes and human leukocyte antigen (HLA) genes. HLA genes, which are important molecules involved in human immunity, have long been analyzed for associations with ADRs, such as skin rash, drug-induced liver injury, and agranulocytosis. HLA is composed of many genes, each of which has dozens of different types (alleles), and many HLA alleles associated with ADRs have been reported. The odds ratios in the association of HLA alleles range from approximately 5 to several thousand, indicating a very large impact on the risk of ADRs. Thus, HLA genetic testing prior to initiation of drug therapy is expected to make a significant contribution to avoiding ADRs, but to demonstrate the clinical utility, it is necessary to prospectively show the effects of medical interventions based on the test results. We conducted the GENCAT study, a prospective, multicenter, single-arm clinical trial to investigate the impact of a therapeutic intervention based on the HLA-A*31:01 test on the incidence of carbamazepine-induced skin rash. HLA-A*31:01-positive patients were treated with an alternative drug such as valproic acid, and the study showed an approximately 60% reduction in the incidence of carbamazepine-induced skin rash. It is expected that the genetic test, which has demonstrated clinical utility, will lead to the establishment of safer and more appropriate stratified medicine by reflecting the information in clinical practice guidelines.
Collapse
|
43
|
Knikman JE, Wilting TA, Lopez-Yurda M, Henricks LM, Lunenburg CATC, de Man FM, Meulendijks D, Nieboer P, Droogendijk HJ, Creemers GJ, Mandigers CMPW, Imholz ALT, Mathijssen RHJ, Portielje JEA, Valkenburg-van Iersel L, Vulink A, van der Poel MHW, Baars A, Swen JJ, Gelderblom H, Schellens JHM, Beijnen JH, Guchelaar HJ, Cats A. Survival of Patients With Cancer With DPYD Variant Alleles and Dose-Individualized Fluoropyrimidine Therapy-A Matched-Pair Analysis. J Clin Oncol 2023; 41:5411-5421. [PMID: 37639651 DOI: 10.1200/jco.22.02780] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/24/2023] [Accepted: 07/11/2023] [Indexed: 08/31/2023] Open
Abstract
PURPOSE DPYD-guided fluoropyrimidine dosing improves patient safety in carriers of DPYD variant alleles. However, the impact on treatment outcome in these patients is largely unknown. Therefore, progression-free survival (PFS) and overall survival (OS) were compared between DPYD variant carriers treated with a reduced dose and DPYD wild-type controls receiving a full fluoropyrimidine dose in a retrospective matched-pair survival analysis. METHODS Data from a prospective multicenter study (ClinicalTrials.gov identifier: NCT02324452) in which DPYD variant carriers received a 25% (c.1236G>A and c.2846A>T) or 50% (DPYD*2A and c.1679T>G) reduced dose and data from DPYD variant carriers treated with a similarly reduced dose of fluoropyrimidines identified during routine clinical care were obtained. Each DPYD variant carrier was matched to three DPYD wild-type controls treated with a standard dose. Survival analyses were performed using Kaplan-Meier estimates and Cox regression. RESULTS In total, 156 DPYD variant carriers and 775 DPYD wild-type controls were available for analysis. Sixty-one c.1236G>A, 25 DPYD*2A, 13 c.2846A>T, and-when pooled-93 DPYD variant carriers could each be matched to three unique DPYD wild-type controls. For pooled DPYD variant carriers, PFS (hazard ratio [HR], 1.23; 95% CI, 1.00 to 1.51; P = .053) and OS (HR, 0.95; 95% CI, 0.75 to 1.51; P = .698) were not negatively affected by DPYD-guided dose individualization. In the subgroup analyses, a shorter PFS (HR, 1.43; 95% CI, 1.10 to 1.86; P = .007) was found in c.1236G>A variant carriers, whereas no differences were found for DPYD*2A and c.2846A>T carriers. CONCLUSION In this exploratory analysis, DPYD-guided fluoropyrimidine dosing does not negatively affect PFS and OS in pooled DPYD variant carriers. Close monitoring with early dose modifications based on toxicity is recommended, especially for c.1236G>A carriers receiving a reduced starting dose.
Collapse
Affiliation(s)
- Jonathan E Knikman
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Tycho A Wilting
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Marta Lopez-Yurda
- Biometrics Department, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Linda M Henricks
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Carin A T C Lunenburg
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Femke M de Man
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Didier Meulendijks
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Clinical Pharmacology, Division of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Late Development Oncology, AstraZeneca, Cambridge, UK
| | - Peter Nieboer
- Department of Internal Medicine, Wilhelmina Hospital Assen, Assen, the Netherlands
| | - Helga J Droogendijk
- Department of Internal Medicine, Bravis Hospital, Roosendaal, the Netherlands
| | - Geert-Jan Creemers
- Department of Medical Oncology, Catharina Hospital, Eindhoven, the Netherlands
| | | | | | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Johanneke E A Portielje
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Medical Oncology, Haga Hospital, The Hague, the Netherlands
| | | | - Annelie Vulink
- Department of Medical Oncology, Reinier de Graaf Gasthuis, Delft, the Netherlands
| | | | - Arnold Baars
- Department of Internal Medicine, Hospital Gelderse Vallei, Ede, the Netherlands
| | - Jesse J Swen
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, the Netherlands
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jan H M Schellens
- Department of Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Jos H Beijnen
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Division of Pharmacoepidemiology and Clinical Pharmacology, Department of Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, the Netherlands
| | - Annemieke Cats
- Department of Gastrointestinal Oncology, Division of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|
44
|
Fragoulakis V, Roncato R, Bignucolo A, Patrinos GP, Toffoli G, Cecchin E, Mitropoulou C. Cost-utility analysis and cross-country comparison of pharmacogenomics-guided treatment in colorectal cancer patients participating in the U-PGx PREPARE study. Pharmacol Res 2023; 197:106949. [PMID: 37802427 DOI: 10.1016/j.phrs.2023.106949] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/10/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
OBJECTIVES A cost-utility analysis was conducted to evaluate pharmacogenomic (PGx)-guided treatment compared to the standard-of-care intervention among patients diagnosed with colorectal cancer (CRC) in Italy. METHODS Data derived from a prospective, open-label, block randomized clinical trial, as a part of the largest PGx study worldwide (355 patients in both arms) were used. Mortality was used as the primary health outcome to estimate life years (LYs) gained in treatment arms within a survival analysis context. PGx-guided treatment was based on established drug-gene interactions between capecitabine, 5-fluorouracil and irinotecan with DPYD and/or UGT1A1 genomic variants. Utility values for the calculation of Quality Adjusted Life Year (QALY) was based on Visual Analog Scale (VAS) score. Missing data were imputed via the Multiple Imputation method and linear interpolation, when possible, while censored cost data were corrected via the Replace-From-The-Right algorithm. The Incremental Cost-Effectiveness Ratio (ICER) was calculated for QALYs. Raw data were bootstrapped 5000 times in order to produce 95% Confidence Intervals based on non-parametric percentile method and to construct a cost-effectiveness acceptability curve. Cost differences for study groups were investigated via a generalized linear regression model analysis. Total therapy cost per patient reflected all resources expended in the management of any adverse events, including medications, diagnostics tests, devices, surgeries, the utilization of intensive care units, and wards. RESULTS The total cost of the study arm was estimated at €380 (∼ US$416; 95%CI: 195-596) compared to €565 (∼ US$655; 95%CI: 340-724) of control arm while the mean survival in study arm was estimated at 1.58 (+0.25) LYs vs 1.50 (+0.26) (Log Rank test, X2 = 4.219, df=1, p-value=0.04). No statistically significant difference was found in QALYs. ICER was estimated at €13418 (∼ US$14695) per QALY, while the acceptability curve indicated that when the willingness-to-pay was under €5000 (∼ US$5476), the probability of PGx being cost-effective overcame 70%. The most frequent adverse drug event in both groups was neutropenia of severity grade 3 and 4, accounting for 82.6% of total events in the study arm and 65.0% in the control arm. Apart from study arm, smoking status, Body-Mass-Index and Cumulative Actionability were also significant predictors of total cost. Subgroup analysis conducted in actionable patients (7.9% of total patients) indicated that PGx-guided treatment was a dominant option over its comparator with a probability greater than 92%. In addition, a critical literature review was conducted, and these findings are in line with those reported in other European countries. CONCLUSION PGx-guided treatment strategy may represent a cost-saving option compared to the existing conventional therapeutic approach for colorectal cancer patient management in the National Health Service of Italy.
Collapse
Affiliation(s)
| | | | | | - George P Patrinos
- Laboratory of Pharmacogenomics and Individualized Therapy, Department of Pharmacy, University of Patras School of Health Sciences, Patras, Greece; Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al‑Ain, Abu Dhabi, United Arab Emirates; Zayed Center for Health Sciences, United Arab Emirates University, Al‑Ain, Abu Dhabi, United Arab Emirates
| | | | - Erika Cecchin
- Centro di Riferimento Oncologico (CRO), Aviano, Italy
| | - Christina Mitropoulou
- The Golden Helix Foundation, London, UK; Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al‑Ain, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
45
|
Hertz DL, Smith DM, Scott SA, Patel JN, Hicks JK. Response to the FDA Decision Regarding DPYD Testing Prior to Fluoropyrimidine Chemotherapy. Clin Pharmacol Ther 2023; 114:768-779. [PMID: 37350752 DOI: 10.1002/cpt.2978] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/31/2023] [Indexed: 06/24/2023]
Abstract
Fluoropyrimidine (FP) chemotherapy is associated with severe, life-threatening toxicities, particularly among patients who carry deleterious germline variants in the DPYD gene. Pretreatment DPYD testing is standard of care throughout most of Europe; however, it has not been recommended in clinical practice guidelines in the United States. Due to increased risk of severe toxicity, a Citizen's Petition asked the US Food and Drug Administration (FDA) to update language in FP drug labels to recommend DPYD testing as part of a boxed warning and recommend FP dose reduction in patients carrying deleterious germline variants. In response, the FDA updated the capecitabine package insert to inform patients about the toxicity risk and test availability and consider DPYD testing. However, the FDA did not include a testing recommendation or requirement, or a boxed warning. Additionally, the FDA did not recommend FP dose adjustment in DPYD variant carriers. This review provides a critical assessment of the DPYD-FP pharmacogenetic association using the FDA's previously published Pharmacogenetic Pyramid, demonstrating that the evidence is compelling for recommending DPYD testing prior to FP treatment. Additionally, the FDA's stated concerns about recommending DPYD testing and DPYD-guided FP dose adjustment are addressed and discussed in the context of the FDA's other genetic testing and dose adjustment recommendations. We call on the FDA to follow our European counterparts in recommending DPYD testing and genotype-based dose adjustment to ensure patients with cancer receive safe and effective FP chemotherapy.
Collapse
Affiliation(s)
- Daniel L Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan, USA
| | - D Max Smith
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
- MedStar Health, Columbia, Maryland, USA
| | - Stuart A Scott
- Department of Pathology, Stanford University, Stanford, California, USA
- Clinical Genomics Laboratory, Stanford Medicine, Palo Alto, California, USA
| | - Jai N Patel
- Department of Cancer Pharmacology and Pharmacogenomics, Levine Cancer Institute, Atrium Health, Charlotte, North Carolina, USA
| | - J Kevin Hicks
- Department of Individualized Cancer Management, Moffitt Cancer Center, Tampa, Florida, USA
| |
Collapse
|
46
|
Pinheiro M, Peixoto A, Rocha P, Santos C, Escudeiro C, Veiga I, Porto M, Guerra J, Barbosa A, Pinto C, Arinto P, Resende A, Teixeira MR. Implementation of upfront DPYD genotyping with a low-cost and high-throughput assay to guide fluoropyrimidine treatment in cancer patients. Pharmacogenet Genomics 2023; 33:165-171. [PMID: 37611150 DOI: 10.1097/fpc.0000000000000505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
OBJECTIVES Genetic variants in the dihydropyrimidine dehydrogenase (DPYD ) gene are associated with reduced dihydropyrimidine dehydrogenase enzyme activity and can cause severe fluoropyrimidine-related toxicity. We assessed the frequency of the four most common and well-established DPYD variants associated with fluoropyrimidine toxicity and implemented a relatively low-cost and high-throughput genotyping assay for their detection. METHODS This study includes 457 patients that were genotyped for the DPYD c.1129-5923C>G, c.1679T>G, c.1905 + 1G>A and c.2846A>T variants, either by Sanger sequencing or kompetitive allele specific PCR (KASP) technology. Of these, 172 patients presented toxicity during treatment with fluoropyrimidines (post-treatment group), and 285 were tested before treatment (pretreatment group). RESULTS Heterozygous DPYD variants were identified in 7.4% of the entire series of 457 patients, being the c.2846A>T the most frequent variant. In the post-treatment group, 15.7% of the patients presented DPYD variants, whereas only 2.5% of the patients in the pretreatment group presented a variant. The KASP assays designed in this study presented 100% genotype concordance with the results obtained by Sanger sequencing. CONCLUSIONS The combined assessment of the four DPYD variants in our population increases the identification of patients at high risk for developing fluoropyrimidine toxicity, supporting the upfront routine implementation of DPYD variant genotyping. Furthermore, the KASP genotyping assay described in this study presents a rapid turnaround time and relatively low cost, making upfront DPYD screening feasible in clinical practice.
Collapse
Affiliation(s)
- Manuela Pinheiro
- Cancer Genetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center
| | - Ana Peixoto
- Cancer Genetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center
- Department of Laboratory Genetics, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
| | - Patrícia Rocha
- Cancer Genetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center
- Department of Laboratory Genetics, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
| | - Catarina Santos
- Cancer Genetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center
- Department of Laboratory Genetics, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
| | - Carla Escudeiro
- Cancer Genetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center
- Department of Laboratory Genetics, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
| | - Isabel Veiga
- Cancer Genetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center
- Department of Laboratory Genetics, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
| | - Miguel Porto
- Cancer Genetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center
| | - Joana Guerra
- Cancer Genetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center
| | - Ana Barbosa
- Cancer Genetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center
- Department of Laboratory Genetics, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
| | - Carla Pinto
- Cancer Genetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center
- Department of Laboratory Genetics, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
| | - Patrícia Arinto
- Cancer Genetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center
| | - Adriana Resende
- Cancer Genetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center
| | - Manuel R Teixeira
- Cancer Genetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center
- Department of Laboratory Genetics, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
47
|
Morris SA, Moore DC, Musselwhite LW, Lopes KE, Hamilton A, Steuerwald N, Hanson SL, Larck C, Swift K, Smith M, Kadakia KC, Chai S, Hwang JJ, Patel JN. Addressing barriers to increased adoption of DPYD genotyping at a large multisite cancer center. Am J Health Syst Pharm 2023; 80:1342-1349. [PMID: 37235983 DOI: 10.1093/ajhp/zxad117] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Indexed: 05/28/2023] Open
Abstract
PURPOSE To describe the implementation of an in-house genotyping program to detect genetic variants linked to impaired dihydropyrimidine dehydrogenase (DPD) metabolism at a large multisite cancer center, including barriers to implementation and mechanisms to overcome barriers to facilitate test adoption. SUMMARY Fluoropyrimidines, including fluorouracil and capecitabine, are commonly used chemotherapy agents in the treatment of solid tumors, such as gastrointestinal cancers. DPD is encoded by the DPYD gene, and individuals classified as DPYD intermediate and poor metabolizers due to certain genetic variations in DPYD can experience reduced fluoropyrimidine clearance and an increased risk of fluoropyrimidine-related adverse events. Although pharmacogenomic guidelines provide evidence-based recommendations for DPYD genotype-guided dosing, testing has not been widely adopted in the United States for numerous reasons, including limited education/awareness of clinical utility, lack of testing recommendations by oncology professional organizations, testing cost, lack of accessibility to a comprehensive in-house test and service, and prolonged test turnaround time. Based on stakeholder feedback regarding barriers to testing, we developed an in-house DPYD test and workflow to facilitate testing in multiple clinic locations at Levine Cancer Institute. Across 2 gastrointestinal oncology clinics from March 2020 through June 2022, 137 patients were genotyped, and 13 (9.5%) of those patients were heterozygous for a variant and identified as DPYD intermediate metabolizers. CONCLUSION Implementation of DPYD genotyping at a multisite cancer center was feasible due to operationalization of workflows to overcome traditional barriers to testing and engagement from all stakeholders, including physicians, pharmacists, nurses, and laboratory personnel. Future directions to scale and sustain testing in all patients receiving a fluoropyrimidine across all Levine Cancer Institute locations include electronic medical record integration (eg, interruptive alerts), establishment of a billing infrastructure, and further refinement of workflows to improve the rate of pretreatment testing.
Collapse
Affiliation(s)
- Sarah A Morris
- Department of Cancer Pharmacology & Pharmacogenomics, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Donald C Moore
- Department of Pharmacy, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Laura W Musselwhite
- Department of Solid Tumor Oncology, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Karine Eboli Lopes
- Department of Cancer Pharmacology & Pharmacogenomics, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Alicia Hamilton
- Molecular Biology and Genomics Core Facility, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Nury Steuerwald
- Molecular Biology and Genomics Core Facility, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Sarah L Hanson
- Department of Pharmacy, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Chris Larck
- Department of Pharmacy, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Kristen Swift
- Department of Solid Tumor Oncology, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Mathew Smith
- Molecular Biology and Genomics Core Facility, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Kunal C Kadakia
- Department of Solid Tumor Oncology, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Seungjean Chai
- Department of Solid Tumor Oncology, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Jimmy J Hwang
- Department of Solid Tumor Oncology, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Jai N Patel
- Department of Cancer Pharmacology & Pharmacogenomics, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| |
Collapse
|
48
|
Wu A, Anderson H, Hughesman C, Young S, Lohrisch C, Ross CJD, Carleton BC. Implementation of pharmacogenetic testing in oncology: DPYD-guided dosing to prevent fluoropyrimidine toxicity in British Columbia. Front Pharmacol 2023; 14:1257745. [PMID: 37745065 PMCID: PMC10515725 DOI: 10.3389/fphar.2023.1257745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023] Open
Abstract
Background: Fluoropyrimidine toxicity is often due to variations in the gene (DPYD) encoding dihydropyrimidine dehydrogenase (DPD). DPYD genotyping can be used to adjust doses to reduce the likelihood of fluoropyrimidine toxicity while maintaining therapeutically effective drug levels. Methods: A multiplex QPCR assay was locally developed to allow genotyping for six DPYD variants. The test was offered prospectively for all patients starting on fluoropyrimidines at the BC Cancer Centre in Vancouver and then across B.C., Canada as well as retrospectively for patients suspected to have had an adverse reaction to therapy. Dose adjustments were made for variant carriers. The incidence of toxicity in the first three cycles was compared between DPYD variant allele carriers and non-variant carriers. Subsequent to an initial implementation phase, this test was made available province-wide. Results: In 9 months, 186 patients were tested and 14 were found to be heterozygous variant carriers. Fluoropyrimidine-related toxicity was higher in DPYD variant carriers. Of 127 non-variant carriers who have completed chemotherapy, 18 (14%) experienced severe (grade ≥3, Common Terminology Criteria for Adverse Events version 5.0). Of note, 22% (3 patients) of the variant carriers experienced severe toxicity even after DPYD-guided dose reductions. For one of these carriers who experienced severe thrombocytopenia within the first week, DPYD testing likely prevented lethal toxicity. In DPYD variant carriers who tolerate reduced doses, a later 25% increase led to chemotherapy discontinuation. As a result, a recommendation was made to clinicians based on available literature and expert opinion specifying that variant carriers who tolerated two cycles without toxicity can have a dose escalation of only 10%. Conclusion: DPYD-guided dose reductions were a feasible and acceptable method of preventing severe toxicity in DPYD variant carriers. Even with dose reductions, there were variant carriers who still experienced severe fluoropyrimidine toxicity, highlighting the importance of adhering to guideline-recommended dose reductions. Following the completion of the pilot phase of this study, DPYD genotyping was made available province-wide in British Columbia.
Collapse
Affiliation(s)
- Angela Wu
- Department of Experimental Medicine, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Helen Anderson
- Medical Oncology, BC Cancer, Provincial Health Services Authority, Vancouver, BC, Canada
| | - Curtis Hughesman
- Cancer Genetics and Genomics Laboratory, BC Cancer, Provincial Health Services Authority, Vancouver, BC, Canada
| | - Sean Young
- Cancer Genetics and Genomics Laboratory, BC Cancer, Provincial Health Services Authority, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Caroline Lohrisch
- Medical Oncology, BC Cancer, Provincial Health Services Authority, Vancouver, BC, Canada
| | - Colin J. D. Ross
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Bruce C. Carleton
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Division of Translational Therapeutics, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Therapeutic Evaluation Unit, Provincial Health Services Authority, Vancouver, BC, Canada
| |
Collapse
|
49
|
Fariman SA, Jahangard Rafsanjani Z, Hasanzad M, Niksalehi K, Nikfar S. Upfront DPYD Genotype-Guided Treatment for Fluoropyrimidine-Based Chemotherapy in Advanced and Metastatic Colorectal Cancer: A Cost-Effectiveness Analysis. Value Health Reg Issues 2023; 37:71-80. [PMID: 37329861 DOI: 10.1016/j.vhri.2023.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/26/2023] [Accepted: 04/29/2023] [Indexed: 06/19/2023]
Abstract
OBJECTIVES Fluoropyrimidines are the most widely used chemotherapy drugs for advanced and metastatic colorectal cancer (CRC). Individuals with certain DPYD gene variants are exposed to an increased risk of severe fluoropyrimidine-related toxicities. This study aimed to evaluate the cost-effectiveness of preemptive DPYD genotyping to guide fluoropyrimidine therapy in patients with advanced or metastatic CRC. METHODS Overall survival of DPYD wild-type patients who received a standard dose and variant carriers treated with a reduced dose were analyzed by parametric survival models. A decision tree and a partitioned survival analysis model with a lifetime horizon were designed, taking the Iranian healthcare perspective. Input parameters were extracted from the literature or expert opinion. To address parameter uncertainty, scenario and sensitivity analyses were also performed. RESULTS Compared with no screening, the genotype-guided treatment strategy was cost-saving ($41.7). Nevertheless, due to a possible reduction in the survival of patients receiving reduced-dose regimens, it was associated with fewer quality-adjusted life-years (9.45 vs 9.28). In sensitivity analyses, the prevalence of DPYD variants had the most significant impact on the incremental cost-effectiveness ratio. The genotyping strategy would remain cost-saving, as long as the genotyping cost is < $49 per test. In a scenario in which we assumed equal efficacy for the 2 strategies, genotyping was the dominant strategy, associated with less costs (∼$1) and more quality-adjusted life-years (0.1292). CONCLUSIONS DPYD genotyping to guide fluoropyrimidine treatment in patients with advanced or metastatic CRC is cost-saving from the perspective of the Iranian health system.
Collapse
Affiliation(s)
- Soroush Ahmadi Fariman
- Department of Pharmacoeconomics and Pharmaceutical administration, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mandana Hasanzad
- Medical Genomics Research Center, Tehran University of Medical Sciences, Tehran, Iran; Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Kimia Niksalehi
- Department of Pharmacoeconomics and Pharmaceutical administration, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shekoufeh Nikfar
- Department of Pharmacoeconomics and Pharmaceutical administration, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
50
|
Koleva-Kolarova R, Vellekoop H, Huygens S, Versteegh M, Mölken MRV, Szilberhorn L, Zelei T, Nagy B, Wordsworth S, Tsiachristas A. Budget impact and transferability of cost-effectiveness of DPYD testing in metastatic breast cancer in three health systems. Per Med 2023; 20:357-374. [PMID: 37577962 DOI: 10.2217/pme-2022-0133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The cost-effectiveness and budget impact of introducing extended DPYD testing prior to fluoropyrimidine-based chemotherapy in metastatic breast cancer patients in the UK, The Netherlands and Hungary were examined. DPYD testing with ToxNav© was cost-effective in all three countries. In the UK and The Netherlands, the ToxNav strategy led to more quality-adjusted life years and fewer costs to the health systems compared with no genetic testing and standard dosing of capecitabine/5-fluorouracil. In Hungary, the ToxNav strategy produced more quality-adjusted life years at a higher cost compared with no testing and standard dose. The ToxNav strategy was found to offer budget savings in the UK and in The Netherlands, while in Hungary it resulted in additional budget costs.
Collapse
Affiliation(s)
| | - Heleen Vellekoop
- Institute for Medical Technology Assessment, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Simone Huygens
- Institute for Medical Technology Assessment, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Matthijs Versteegh
- Institute for Medical Technology Assessment, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Maureen Rutten-van Mölken
- Institute for Medical Technology Assessment, Erasmus University Rotterdam, Rotterdam, The Netherlands
- Erasmus School of Health Policy & Management, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - László Szilberhorn
- Syreon Research Institute, Budapest, Hungary
- Eötvös Loránd University, Budapest, Hungary
| | - Tamás Zelei
- Syreon Research Institute, Budapest, Hungary
| | - Balázs Nagy
- Syreon Research Institute, Budapest, Hungary
| | - Sarah Wordsworth
- Health Economics Research Centre, University of Oxford, Oxford, UK
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford, UK
| | - Apostolos Tsiachristas
- Health Economics Research Centre, University of Oxford, Oxford, UK
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|