1
|
Wang Y, Wang Y, Zhang Z, Xu K, Fang Q, Wu X, Ma S. Molecular networking: An efficient tool for discovering and identifying natural products. J Pharm Biomed Anal 2025; 259:116741. [PMID: 40014895 DOI: 10.1016/j.jpba.2025.116741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 03/01/2025]
Abstract
Natural products (NPs), play a crucial role in drug development. However, the discovery of NPs is accidental, and conventional identification methods lack accuracy. To overcome these challenges, an increasing number of researchers are directing their attention to Molecular networking (MN). MN based on secondary mass spectrometry has become an important tool for the separation, purification and structural identification of NPs. However, most new tools are not well known. This review started with the most basic MN tool and explains it from the principle, workflow, and application. Then introduce the principles and workflows of the remaining eight new types of MN tools. The reliability of various MNs is mainly verified based on the application of phytochemistry and metabolomics. Subsequently, the principles and applications of 12 structural annotation tools are introduced. For the first time, the scope of 9 kinds of MN tools is compared horizontally, and 12 kinds of structured annotation tools are classified from the type of compound structure suitable for identification. The advantages and disadvantages of various tools are summarized, and make suggestions for future application directions and the development of computing tools in this review. MN tools are expected to enhance the efficiency of the discovery and identification in NPs.
Collapse
Affiliation(s)
- Yongjian Wang
- National Institutes for Food and Drug Control, Beijing 102629, China; Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Yadan Wang
- National Institutes for Food and Drug Control, Beijing 102629, China; State Key Laboratory of Drug Regulatory Science, Beijing 100050, China
| | - Zhongmou Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Kailing Xu
- National Institutes for Food and Drug Control, Beijing 102629, China
| | - Qiufang Fang
- Shenyang Pharmaceutical University, Shenyang 110179, China
| | - Xianfu Wu
- National Institutes for Food and Drug Control, Beijing 102629, China.
| | - Shuangcheng Ma
- State Key Laboratory of Drug Regulatory Science, Beijing 100050, China; Chinese Pharmacopoeia Commission, Beijing 100061, China.
| |
Collapse
|
2
|
Dong X, Shao J, Wu X, Dong J, Tang P. Lipidomic profiling reveals the protective mechanism of nitrogen-controlled atmosphere on brown rice quality during storage. Food Chem 2025; 473:143081. [PMID: 39884227 DOI: 10.1016/j.foodchem.2025.143081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/15/2025] [Accepted: 01/23/2025] [Indexed: 02/01/2025]
Abstract
Rice, a globally important staple, requires effective preservation methods to maintain its quality during extended storage. This study explored the efficacy of nitrogen-controlled atmosphere (NCA) storage in preserving the quality of brown rice during a one-year period using UHPLC-MS/MS based lipidomic profiling. A total of 1013 lipids were identified and categorized into five main groups. Specific lipids including triglycerides (TG), diglycerides (DG), phosphatidylethanolamines (PE), cardiolipins (CL), and ceramides (Cer), were highlighted as potential biomarkers for assessing rice rancidity. NCA storage significantly suppressed lipase and lipoxygenase activities, reducing lipid hydrolysis and oxidation to effectively delayed rice quality deterioration. Furthermore, NCA regulated glycerolipid and glycerophospholipid metabolisms, promoting lipid remodeling while reducing the degradation of TGs and phospholipids. This regulation preserved cellular membrane integrity, limited fatty acid release, and mitigate rancidity and quality loss during storage. These findings elucidate the mechanism by which NCA storage delays deterioration and extends the stored rice shelf-life.
Collapse
Affiliation(s)
- Xue Dong
- College of Food Science and Engineering, Nanjing University of Finance and Economics/ Collaborative Innovation Center for Modern Grain Circulation and Safety, NO.3 Wenyuan Road, Xixia District, Nanjing 210023, Jiangsu, China
| | - Jin Shao
- College of Food Science and Engineering, Nanjing University of Finance and Economics/ Collaborative Innovation Center for Modern Grain Circulation and Safety, NO.3 Wenyuan Road, Xixia District, Nanjing 210023, Jiangsu, China
| | - Xueyou Wu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/ Collaborative Innovation Center for Modern Grain Circulation and Safety, NO.3 Wenyuan Road, Xixia District, Nanjing 210023, Jiangsu, China
| | - Jialin Dong
- College of Food Science and Engineering, Nanjing University of Finance and Economics/ Collaborative Innovation Center for Modern Grain Circulation and Safety, NO.3 Wenyuan Road, Xixia District, Nanjing 210023, Jiangsu, China
| | - Peian Tang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/ Collaborative Innovation Center for Modern Grain Circulation and Safety, NO.3 Wenyuan Road, Xixia District, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
3
|
Brockbals L, Ueland M, Fu S, Padula MP. Development and thorough evaluation of a multi-omics sample preparation workflow for comprehensive LC-MS/MS-based metabolomics, lipidomics and proteomics datasets. Talanta 2025; 286:127442. [PMID: 39740651 DOI: 10.1016/j.talanta.2024.127442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/27/2024] [Accepted: 12/19/2024] [Indexed: 01/02/2025]
Abstract
The importance of sample preparation selection if often overlooked particularly for untargeted multi-omics approaches that gained popularity in recent years. To minimize issues with sample heterogeneity and additional freeze-thaw cycles during sample splitting, multiple -omics datasets (e.g. metabolomics, lipidomics and proteomics) should ideally be generated from the same set of samples. For sample extraction, commonly biphasic organic solvent systems are used that require extensive multi-step protocols. Individual studies have recently also started to investigate monophasic (all-in-one) extraction procedures. The aim of the current study was to develop and systematically compare ten different mono- and biphasic extraction solvent mixtures for their potential to aid in the most comprehensive metabolomics, lipidomics and proteomics datasets. As the focus was on human postmortem tissue samples (muscle and liver tissue), four tissue homogenization parameters were also evaluated. Untargeted liquid chromatography mass spectrometry-based metabolomics, lipidomic and proteomics methods were utilized along with 1D sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and bicinchoninic acid (BCA) assay results. Optimal homogenization was found to be achieved by bead-homogenizing 20 mg of muscle or liver tissue with 200 μL (1:10 ratio) Water:Methanol (1:2) using 3 × 30 s pulses. The supernatant of the homogenate was further extracted. Comprehensive ranking, taking nine different processing parameters into account, showed that the monophasic extraction solvents, overall, showed better scores compared to the biphasic solvent systems, despite their recommendation for one or all of the -omics extractions. The optimal extraction solvent was found to be Methanol:Acetone (9:1), resulting in the most comprehensive metabolomics, lipidomics and proteomics datasets, showing the potential to be automated, hence, allowing for high-throughput analysis of samples and opening the door for comprehensive multi-omics results from routine clinical cases in the future.
Collapse
Affiliation(s)
- Lana Brockbals
- Centre for Forensic Science, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, PO Box 123, Broadway, 2007 NSW, Australia; Department of Forensic Pharmacology and Toxicology, Institute of Forensic Medicine, University of Zurich, Winterthurerstrasse 190/52, 8057 Zurich, Switzerland.
| | - Maiken Ueland
- Centre for Forensic Science, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, PO Box 123, Broadway, 2007 NSW, Australia; Hyphenated Mass Spectrometry Laboratory, Faculty of Science, University of Technology Sydney, PO Box 123, Broadway, 2007 NSW, Australia
| | - Shanlin Fu
- Centre for Forensic Science, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, PO Box 123, Broadway, 2007 NSW, Australia
| | - Matthew P Padula
- Hyphenated Mass Spectrometry Laboratory, Faculty of Science, University of Technology Sydney, PO Box 123, Broadway, 2007 NSW, Australia; School of Life Sciences, Faculty of Science, University of Technology Sydney, PO Box 123, Broadway, 2007 NSW, Australia
| |
Collapse
|
4
|
Patt A, Pang I, Lee F, Gohel C, Fahy E, Stevens V, Ruggieri D, Moore SC, Mathé EA. metLinkR: Facilitating Metaanalysis of Human Metabolomics Data through Automated Linking of Metabolite Identifiers. J Proteome Res 2025. [PMID: 40184266 DOI: 10.1021/acs.jproteome.4c01051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2025]
Abstract
Metabolites are referenced in spectral, structural and pathway databases with a diverse array of schemas, including various internal database identifiers and large tables of common name synonyms. Cross-linking metabolite identifiers is a required step for meta-analysis of metabolomic results across studies but made difficult due to the lack of a consensus identifier system. We have implemented metLinkR, an R package that leverages RefMet and RaMP-DB to automate and simplify cross-linking metabolite identifiers across studies and generating common names. MetLinkR accepts as input metabolite common names and identifiers from five different databases (HMDB, KEGG, ChEBI, LIPIDMAPS and PubChem) to exhaustively search for possible overlap in supplied metabolites from input data sets. In an example of 13 metabolomic data sets totaling 10,400 metabolites, metLinkR identified and provided common names for 1377 metabolites in common between at least 2 data sets in less than 18 min and produced standardized names for 74.4% of the input metabolites. In another example comprising five data sets with 3512 metabolites, metLinkR identified 715 metabolites in common between at least two data sets in under 12 min and produced standardized names for 82.3% of the input metabolites. Outputs of MetLInR include output tables and metrics allowing users to readily double check the mappings and to get an overview of chemical classes represented. Overall, MetLinkR provides a streamlined solution for a common task in metabolomic epidemiology and other fields that meta-analyze metabolomic data. The R package, vignette and source code are freely downloadable at https://github.com/ncats/metLinkR.
Collapse
Affiliation(s)
- Andrew Patt
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, Maryland 20892, United States
| | - Iris Pang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, Maryland 20892, United States
| | - Fred Lee
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, Maryland 20892, United States
| | - Chiraag Gohel
- Department of Biostatistics and Bioinformatics, George Washington University, Washington, District of Columbia 20052, United States
| | - Eoin Fahy
- Department of Bioengineering, University of California San Diego, La Jolla, California 92092, United States
| | - Vicki Stevens
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, Maryland 20892, United States
| | - David Ruggieri
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Steven C Moore
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Ewy A Mathé
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Rockville, Maryland 20892, United States
| |
Collapse
|
5
|
Fredriksen TR, Holbrook JH, Rosas L, Angeles-Lopez QD, Mora AL, Rojas M, Hummon AB. Light-Reactive Norharmane Derivatization of Lipid Isomers by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Anal Chem 2025; 97:6001-6008. [PMID: 40088151 DOI: 10.1021/acs.analchem.4c05629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
The lipidome, encompassing the comprehensive lipid fingerprint of a biological system, includes thousands of unique isomeric and isobaric lipid species. Mass spectrometry (MS) is an effective technique for characterizing the lipidome, although the resolution of isomeric lipid species through MS typically requires specialized or modified equipment. In this study, we introduce a novel matrix derivatization technique that leverages the unique photoreactive properties of unsaturated lipids to reveal the double-bond location in conventional matrix-assisted laser desorption-ionization mass spectrometry (MALDI-MS) experiments. The principle mechanistic framework of this technique is type II photosensitization, where the MALDI matrix norharmane acts as an organic photosensitizer to generate singlet oxygen upon light exposure. The singlet oxygen then reacts with unsaturated lipid species, forming hydroperoxide derivatives at acyl group carbon double bonds, facilitating their identification. The labile nature of these hydroperoxide-functionalized lipids allows for further decomposition under normal MALDI laser exposure, enhancing the analytical resolution of isomeric lipids without additional experiments. With this approach, we were able to distinguish the 18:1 (Δ6-cis) and 18:1 (Δ9-cis) PC lipid isomers. We also demonstrated that the approach works in an imaging context, mapping lipid species in both mouse tissue and 3D cell cultures.
Collapse
Affiliation(s)
- Thomas R Fredriksen
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Joseph H Holbrook
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, United States
| | - Lorena Rosas
- Dorothy M. Davis Heart and Lung Research Institute, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Quetzalli D Angeles-Lopez
- Dorothy M. Davis Heart and Lung Research Institute, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Ana L Mora
- Dorothy M. Davis Heart and Lung Research Institute, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Mauricio Rojas
- Dorothy M. Davis Heart and Lung Research Institute, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| | - Amanda B Hummon
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
6
|
Chasák J, Janicki I, Brulíková L. The Liebeskind-Srogl cross-coupling reaction towards the synthesis of biologically active compounds. Eur J Med Chem 2025; 290:117526. [PMID: 40184777 DOI: 10.1016/j.ejmech.2025.117526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 04/07/2025]
Abstract
In this review, we emphasize the significance of the Liebeskind-Srogl cross-coupling reaction, a palladium-catalyzed process involving the reaction between a thioester and a boronic acid. This reaction has emerged as a fundamental technique in synthetic methodologies aimed at the development of biologically active compounds. The Liebeskind-Srogl cross-coupling method has become an essential approach in chemistry, facilitating the diversification of complex structures that would be significantly more challenging to synthesize through alternative approaches. In this review, we aim to outline the numerous possibilities for preparing a wide range of derivatives, each with notable biological potential.
Collapse
Affiliation(s)
- Jan Chasák
- Department of Organic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77146, Olomouc, Czech Republic
| | - Ignacy Janicki
- Department of Organic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77146, Olomouc, Czech Republic
| | - Lucie Brulíková
- Department of Organic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77146, Olomouc, Czech Republic.
| |
Collapse
|
7
|
Wang J, Ren H, Zhu J, Li Y, Liu J, Li H, Liu C, Fan Y, Zhang H. Integrated analysis of lipid metabolism and differentially expressed genes reveal seed oil accumulation in field muskmelon. Genomics 2025; 117:111031. [PMID: 40118294 DOI: 10.1016/j.ygeno.2025.111031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 03/23/2025]
Abstract
Field muskmelon (Cucumis melo L. var. agrestis Naud.), a novel oil crop, contains a high amount of lipids in seeds. However, the high-resolution profiles and dynamic regulation of its lipids remain largely unknown. This study identified the lipids and analyzed their dynamic changes using UHPLC-MS/MS. We identified 2533 lipid molecules in the seeds, including 7 categories and 47 sub-classes, with the higher proportions of glycerolipids (41.02 %) and glycerophospholipids (28.11 %). Moreover, the content of glycerolipids was the highest, particularly for triacylglycerol lipid molecules. Additionally, the expression patterns of differentially expressed genes (DEGs) showed a close correlation with lipid accumulation, especially within the plant hormone signaling pathway. Notably, the sufficient supply of 18:1-CoA, coupled with a high expression level of CmFAD2, contributed significantly to the high linoleic acid (68.56 %) content in field muskmelon seeds. Our findings offer insights that could enhance the comprehensive understanding of lipids in field muskmelon, and facilitate the breeding of field muskmelon.
Collapse
Affiliation(s)
- Jiyuan Wang
- Huaibei Normal University, Huaibei, Anhui 235000, China; Anhui Province Watermelon and Melon Biological Breeding Engineering Research, Anhui 235000, China.
| | - Hengyi Ren
- Huaibei Normal University, Huaibei, Anhui 235000, China; Anhui Province Watermelon and Melon Biological Breeding Engineering Research, Anhui 235000, China
| | - Jie Zhu
- Huaibei Normal University, Huaibei, Anhui 235000, China.
| | - Yahui Li
- Huaibei Normal University, Huaibei, Anhui 235000, China; Anhui Province Watermelon and Melon Biological Breeding Engineering Research, Anhui 235000, China
| | - Jie Liu
- Huaibei Normal University, Huaibei, Anhui 235000, China; Anhui Province Watermelon and Melon Biological Breeding Engineering Research, Anhui 235000, China
| | - Hu Li
- Huaibei Normal University, Huaibei, Anhui 235000, China; Anhui Province Watermelon and Melon Biological Breeding Engineering Research, Anhui 235000, China
| | - Chun Liu
- Huaibei Normal University, Huaibei, Anhui 235000, China; Anhui Province Watermelon and Melon Biological Breeding Engineering Research, Anhui 235000, China.
| | - Yupeng Fan
- Huaibei Normal University, Huaibei, Anhui 235000, China; Anhui Province Watermelon and Melon Biological Breeding Engineering Research, Anhui 235000, China
| | - Huijun Zhang
- Huaibei Normal University, Huaibei, Anhui 235000, China; Anhui Province Watermelon and Melon Biological Breeding Engineering Research, Anhui 235000, China.
| |
Collapse
|
8
|
Yan Y, Zhang Y, Liu M, Li L, Zheng Y. Neuroprotection vs. Neurotoxicity: The Dual Impact of Brain Lipids in Depression. Int J Mol Sci 2025; 26:2722. [PMID: 40141364 PMCID: PMC11943007 DOI: 10.3390/ijms26062722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/03/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Growing neurochemical evidence highlights cerebral lipid dysregulation as a key factor in the pathophysiology of major depressive disorder (MDD). This review systematically explores the dual roles of lipid species in both normal behavioral regulation and MDD development. By critically examining the recent literature, we classify these lipid species into two functional categories based on their functional neuroactivity: (1) neuroprotective lipids (sphingomyelin, cholesterol, cardiolipin, sphingosine, phosphatidic acid, and phosphatidylserine), which exert neuroprotective effects by modulating membrane fluidity and supporting synaptic vesicle trafficking; and (2) neurotoxic lipids (ceramides, phosphatidylinositol, phosphocholine, and phosphatidylethanolamine), which promote apoptotic signaling cascades and disrupt mitochondrial bioenergetics. An unresolved but critical question pertains to the maintenance of homeostatic equilibrium between these opposing lipid classes. This balance is essential, given their significant impact on membrane protein localization and function, monoaminergic neurotransmitter metabolism, energy homeostasis, and redox balance in neural circuits involved in mood regulation. This emerging framework positions cerebral lipidomics as a promising avenue for identifying novel therapeutic targets and developing biomarker-based diagnostic approaches for MDD treatment.
Collapse
Affiliation(s)
| | | | | | | | - Yanrong Zheng
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
9
|
Navalho S, Ferrer-Ledo N, Barbosa MJ, Varela J. Nannochloropsis Lipids and Polyunsaturated Fatty Acids: Potential Applications and Strain Improvement. Mar Drugs 2025; 23:128. [PMID: 40137314 PMCID: PMC11943726 DOI: 10.3390/md23030128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 03/27/2025] Open
Abstract
The genus Nannochloropsis comprises a group of oleaginous microalgae that accumulate polyunsaturated fatty acids (PUFAs), especially eicosapentaenoic acid (EPA). These molecules are essential for the correct development and health of humans and animals. Thanks to their attractive lipid profile, Nannochloropsis is mainly marketed as a feed ingredient in aquaculture. In microalgae of this genus, contents and cellular location of PUFAs are affected by the growth conditions and gene expression. Strain improvement through non-recombinant approaches can generate more productive strains and efficient bioprocesses for PUFA production. Nevertheless, the lack of specific markers, detection methods, and selective pressure for isolating such mutants remains a bottleneck in classical mutagenesis approaches or lipid quality assessment during cultivation. This review encompasses the importance of PUFAs and lipid classes from Nannochloropsis species and their potential applications. Additionally, a revision of the different ways to increase PUFA content in Nannochloropsis sp. by using classical mutagenesis and adaptive laboratory evolution is also presented, as well as various methods to label and quantify lipids and PUFAs from Nannochloropsis microalgae.
Collapse
Affiliation(s)
- Sofia Navalho
- GreenCoLab—Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
- Bioprocess Engineering, AlgaePARC, Wageningen University and Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands; (N.F.-L.); (M.J.B.)
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Narcis Ferrer-Ledo
- Bioprocess Engineering, AlgaePARC, Wageningen University and Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands; (N.F.-L.); (M.J.B.)
| | - Maria J. Barbosa
- Bioprocess Engineering, AlgaePARC, Wageningen University and Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands; (N.F.-L.); (M.J.B.)
| | - João Varela
- GreenCoLab—Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
10
|
Neff RJ, Radka CD. Exploring Oxylipins in Host-Microbe Interactions and Their Impact on Infection and Immunity. Curr Issues Mol Biol 2025; 47:190. [PMID: 40136444 PMCID: PMC11941309 DOI: 10.3390/cimb47030190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 03/27/2025] Open
Abstract
Plasma lipids are essential components of biological systems, transported through interactions with proteins to maintain cellular functions. These lipids exist in various forms, such as fatty acids, glycerolipids, glycerophospholipids, sphingolipids, sterols, and prenol lipids, derived from dietary intake, adipose tissue, and biosynthesis. While the association between certain fatty acids and cardiovascular diseases has been widely recognized, polyunsaturated fatty acids (PUFAs) exhibit cardioprotective effects, reducing risks of arrhythmias and heart-related mortality. This is due to their role in the production of eicosanoids, which modulate inflammation. Chronic inflammation, particularly in obesity, is significantly influenced by fatty acids, with saturated fatty acids promoting inflammation and PUFAs mitigating it. Oxylipins, bioactive molecules derived from the oxidation of PUFAs, play crucial roles in immune regulation across various organisms, including plants, fungi, and bacteria. These molecules, such as prostaglandins, leukotrienes, and resolvins, regulate immune responses during infection and inflammation. The production of oxylipins extends beyond mammals, with fungi and bacteria synthesizing these molecules to modulate immune responses, promoting both defense and pathogenesis. This review delves into the multifaceted effects of oxylipins, exploring their impact on host and microbial interactions, with a focus on their potential for therapeutic applications in modulating infection and immune response.
Collapse
Affiliation(s)
| | - Christopher D. Radka
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536, USA;
| |
Collapse
|
11
|
Yang L, Wang Y, Bai Y, Yang J, Gao Y, Hou C, Gao M, Gu X, Liu W. Lipid metabolism improves salt tolerance of Salicornia europaea. ANNALS OF BOTANY 2025; 135:789-802. [PMID: 39468731 PMCID: PMC11904900 DOI: 10.1093/aob/mcae189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/25/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND AND AIMS Salicornia europaea L., a succulent euhalophyte plant, has been found to exhibit optimal reproductive capabilities under appropriate salinity concentrations. However, the underlying metabolic changes are not yet fully understood. METHODS In this study, we conducted a comprehensive analysis combining transcriptomic and lipidomic techniques to investigate the molecular mechanisms of lipid metabolism in response to different NaCl concentrations (0 and 200 mM). RESULTS Transcriptomic data demonstrated that salt treatment mainly affected processes including lipid biosynthesis, phosphatidylinositol signalling and glycerophospholipid metabolism. The expression levels of several key genes involved in salt tolerance, namely SeSOS1, SeNHX1, SeVHA-A, SeVP1 and SePSS, were found to be upregulated upon NaCl treatment. A total of 485 lipid compounds were identified, of which 27 changed in abundance during salt treatment, including the enrichment of phospholipids and sphingolipids. Moreover, the increase in the double-bond index was mainly attributable to phospholipids and sphingolipids. Comparing the acyl chain length showed that the acyl chain length coefficient of sphingosine-1-phosphate decreased significantly in the presence of 200 mM NaCl. CONCLUSIONS This study suggests that S. europaea adapts to saline environments by altering phospholipids and sphingolipids to improve salt tolerance. The salinity response of S. europaea can provide important insights into the action of lipids and their salt adaptation mechanisms.
Collapse
Affiliation(s)
- Lei Yang
- School of Life Sciences, Shanxi Normal University, Taiyuan, Shanxi 030031, China
| | - Yanzhi Wang
- School of Life Sciences, Shanxi Normal University, Taiyuan, Shanxi 030031, China
| | - Yang Bai
- School of Life Sciences, Shanxi Normal University, Taiyuan, Shanxi 030031, China
| | - Jiahui Yang
- School of Life Sciences, Shanxi Normal University, Taiyuan, Shanxi 030031, China
| | - Yunyan Gao
- School of Life Sciences, Shanxi Normal University, Taiyuan, Shanxi 030031, China
| | - Chenxue Hou
- School of Life Sciences, Shanxi Normal University, Taiyuan, Shanxi 030031, China
| | - Mengya Gao
- School of Life Sciences, Shanxi Normal University, Taiyuan, Shanxi 030031, China
| | - Xinlu Gu
- School of Life Sciences, Shanxi Normal University, Taiyuan, Shanxi 030031, China
| | - Weizhong Liu
- School of Life Sciences, Shanxi Normal University, Taiyuan, Shanxi 030031, China
| |
Collapse
|
12
|
Odenkirk MT, Jostes HC, Francis KR, Baker ES. Lipidomics reveals cell specific changes during pluripotent differentiation to neural and mesodermal lineages. Mol Omics 2025. [PMID: 40078081 PMCID: PMC11904469 DOI: 10.1039/d4mo00261j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
Due to their self-renewal and differentiation capabilities, pluripotent stem cells hold immense potential for advancing our understanding of human disease and developing cell-based or pharmacological interventions. Realizing this potential, however, requires a thorough understanding of the basal cellular mechanisms which occur during differentiation. Lipids are critical molecules that define the morphological, biochemical, and functional role of cells. This, combined with emerging evidence linking lipids to neurodegeneration, cardiovascular health, and other diseases, makes lipids a critical class of analytes to assess normal and abnormal cellular processes. While previous work has examined the lipid composition of stem cells, uncertainties remain about which changes are conserved and which are unique across distinct cell types. In this study, we investigated lipid alterations of induced pluripotent stem cells (iPSCs) at critical stages of differentiation toward neural or mesodermal fates. Lipidomic analyses of distinct differentiation stages were completed using a platform coupling liquid chromatography, ion mobility spectrometry, and mass spectrometry (LC-IMS-MS) separations. Results illustrated a shared triacylglyceride and free fatty acid accumulation in early iPSCs that were utilized at different stages of differentiation. Unique fluctuations through differentiation were also observed for certain phospholipid classes, sphingomyelins, and ceramides. These insights into lipid fluctuations across iPSC differentiation enhance our fundamental understanding of lipid metabolism within pluripotent stem cells and during differentiation, while also paving the way for a more precise and effective application of pluripotent stem cells in human disease interventions.
Collapse
Affiliation(s)
- Melanie T Odenkirk
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Haley C Jostes
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Kevin R Francis
- Cellular Therapies and Stem Cell Biology Group, Sanford Research, Sioux Falls, SD, USA.
- Department of Pediatrics, University of South Dakota Sanford School of Medicine, Sioux Falls, SD, USA
| | - Erin S Baker
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
13
|
Wu D, Liu C, Ding L. Follicular metabolic dysfunction, oocyte aneuploidy and ovarian aging: a review. J Ovarian Res 2025; 18:53. [PMID: 40075456 PMCID: PMC11900476 DOI: 10.1186/s13048-025-01633-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
With the development of modern society and prolonged education, more women choose to delay their childbearing age, which greatly increases the number of women aged older than 35 years with childbearing needs. However, with increasing age, the quantity and quality of oocytes continue to fall, especially with increasing aneuploidy, which leads to a low in vitro fertilization (IVF) success rate, high abortion rate and high teratogenesis rate in assisted reproduction in women with advanced maternal age. In addition to genetics and epigenetics, follicular metabolism homeostasis is closely related to ovarian aging and oocyte aneuploidy. Glucose, lipid, and amino acid metabolism not only provide energy for follicle genesis but also regulate oocyte development and maturation. This review focuses on the relationships among follicular metabolism, oocyte aneuploidy, and ovarian aging and discusses potential therapeutic metabolites for ovarian aging.
Collapse
Affiliation(s)
- Die Wu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, 210008, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, China
| | - Chuanming Liu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, 210008, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, China
| | - Lijun Ding
- Center for Reproductive Medicine and Obstetrics and Gynecology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, 210008, China.
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, China.
- State Key Laboratory of Analytic Chemistry for Life Science, Nanjing University, Nanjing, 210093, China.
- Clinical Center for Stem Cell Research, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
14
|
Chen Y, Yang J, Wang X, Zhang Y, Shao Y, Li H, Dong X, Jiang F, Hu C, Xu G. Structural Annotation Method for Locating sn- and C═C Positions of Lipids Using Liquid Chromatography-Electron Impact Excitation of Ions from Organics (EIEIO)-Mass Spectrometry. Anal Chem 2025; 97:4998-5007. [PMID: 40008860 DOI: 10.1021/acs.analchem.4c05560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Definitive structural elucidation of lipids is pivotal for unraveling the functions of lipids in biological systems. Despite advancements in mass spectrometry (MS) for lipid analysis, challenges in annotation scope and efficiency remain, especially in resolving isomers. Herein, we introduce an optimized method using liquid chromatography coupled with electron impact excitation of ions from organic tandem mass spectrometry (LC-EIEIO-MS/MS) for comprehensive analysis and structural annotation of lipids. This approach integrates a six-step analytical protocol for precise lipid annotation, including (1) extracting MS information, (2) classifying lipids, (3) aligning sum composition, (4) determining sn-positions, (5) locating C═C positions, and (6) ascertaining annotation levels. In analyzing 34 lipid standards spiked into serum, our method achieved 100% and 82.4% annotation accuracy at the sn- and C═C isomer levels, respectively, compared to 26.5% and 0% in the CID mode using MS-DIAL. A total of 1312 sn-positions and 1033 C═C locations of lipids were annotated in quality control plasma pooled from healthy individuals and patients with Alzheimer's disease. The isomers of lipids revealed more pronounced differences between the healthy and diseased groups compared to the sum compositions of the lipids. Overall, the LC-EIEIO-MS/MS approach provides a comprehensive profiling and efficient annotation method for lipidomics, promising to shed new light on lipid-related biological pathways and disease mechanisms.
Collapse
Affiliation(s)
- Yao Chen
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Jun Yang
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Xinxin Wang
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Yuqing Zhang
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Yaping Shao
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian 116021, China
| | - Hang Li
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaoyan Dong
- Dalian Seventh People's Hospital, Dalian 116023, China
- Department of Psychiatry, the First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Fei Jiang
- Dalian Seventh People's Hospital, Dalian 116023, China
- Department of Psychiatry, the First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Chunxiu Hu
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Guowang Xu
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| |
Collapse
|
15
|
Omri S, Argyriou C, Pryce RS, Di Pietro E, Chaurand P, Braverman N. Spatial characterization of RPE structure and lipids in the PEX1-p.Gly844Asp mouse model for Zellweger spectrum disorder. J Lipid Res 2025; 66:100771. [PMID: 40058592 DOI: 10.1016/j.jlr.2025.100771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 04/05/2025] Open
Abstract
Zellweger Spectrum Disorder (ZSD) is caused by defects in PEX genes, whose proteins are required for peroxisome assembly and function. Peroxisome dysfunction in ZSD causes multisystem effects, with progressive retinal degeneration (RD) among the most frequent clinical findings. However, much remains unknown about how peroxisome deficiency causes RD. To study RD pathophysiology in ZSD, we used the PEX1-p.Gly844Asp (G844D) mouse model, which represents the common human PEX1-p.Gly843Asp (G843D) variant. We previously reported diminished retinal function, diminished functional vision, and neural retina structural defects in this model. Here, we investigate the retinal pigment epithelium (RPE) phenotype, examining morphological, inflammatory, and lipid changes at 1, 3, and 6 months of age. We report that RPE cells exhibit evident degeneration by 3 months that worsens with time, starts in the dorsal pole, and is accompanied by subretinal inflammatory cell infiltration. We match these events with imaging mass spectrometry for regional analysis of lipids in the RPE. We identified 47 lipid alterations preceding structural changes, 9 of which localize to the dorsal pole. 29 of these persist to 3 months, with remodeling of the dorsal pole lipid signature. 13 new alterations occur concurrent with histological changes. Abnormalities in peroxisome-dependent lipids detected by LC/MS/MS are exacerbated over time. This study represents the first characterization of RPE in a ZSD model, and the first in situ lipid analysis in peroxisome-deficient tissue. Our findings uncover potential lipid drivers of RD progression in ZSD, and identify candidate biomarkers for retinopathy progression and response to therapy.
Collapse
Affiliation(s)
- Samy Omri
- Child Health and Human Development Axis, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
| | - Catherine Argyriou
- Child Health and Human Development Axis, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada; Department of Human Genetics, McGill University, Montréal, Québec, Canada
| | - Rachel S Pryce
- Department of Chemistry, Université de Montréal, Montréal, Québec, Canada
| | - Erminia Di Pietro
- Child Health and Human Development Axis, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Pierre Chaurand
- Department of Chemistry, Université de Montréal, Montréal, Québec, Canada
| | - Nancy Braverman
- Child Health and Human Development Axis, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada; Department of Human Genetics, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
16
|
Panda P, Ferreira CR, Cooper BR, Schaser AJ, Aryal UK. Multiplatform Lipid Analysis of the Brain of Aging Mice by Mass Spectrometry. J Proteome Res 2025; 24:1077-1091. [PMID: 39921647 DOI: 10.1021/acs.jproteome.4c00688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2025]
Abstract
Lipids are critical to brain structure and function, accounting for approximately 50% of its dry weight. However, the impact of aging on brain lipids remains poorly characterized. To address this, here we applied three complementary mass spectrometry techniques: multiple reaction monitoring (MRM) profiling, untargeted liquid chromatography tandem mass spectrometry (LC-MS/MS), and desorption electrospray ionization-MS imaging (DESI-MSI). We used brains from mice of three age groups: adult (3-4 months), middle-aged (10 months), and old (19-21 months). Phospholipids such as phosphatidylcholine, phosphatidylethanolamine, and phosphatidylglycerol were more abundant, while phosphatidylinositol and phosphatidylserine were reduced in old mice compared to adults or middle-aged mice. Key lipids such as polyunsaturated fatty acids, including DHA, AA, HexCer, SHexCer, and SM, were among the most abundant lipids in aged brains. DESI-MSI revealed spatial lipid distribution patterns consistent with findings from MRM profiling and LC-MS/MS. Integration of lipidomic data with the recently published proteomics data from the same tissues highlighted changes in proteins and phosphorylation levels of several proteins associated with Cer, HexCer, FA, PI, SM, and SHexCer metabolism, aligning with the multiplatform lipid surveillance. These findings shed insight into age-dependent brain lipid changes and their potential contribution to age-related cognitive decline.
Collapse
Affiliation(s)
- Punyatoya Panda
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Christina R Ferreira
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Bruce R Cooper
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Allison J Schaser
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - Uma K Aryal
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana 47907, United States
- Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
17
|
Putka AF, Mohanty V, Cologna SM, McLoughlin HS. Cerebellar lipid dysregulation in SCA3: A comparative study in patients and mice. Neurobiol Dis 2025; 206:106827. [PMID: 39900303 DOI: 10.1016/j.nbd.2025.106827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/18/2025] [Accepted: 01/30/2025] [Indexed: 02/05/2025] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3) is the most common dominantly inherited ataxia and belongs to the family of nine diseases caused by a polyglutamine expansion in the disease-causing protein. In SCA3, a polyglutamine expansion in ATXN3 causes neuron loss in disease-vulnerable brain regions, resulting in progressive loss of coordination and ultimately death. There are no disease-modifying or preventative treatments for this uniformly fatal disorder. Recent studies demonstrate prominent white matter atrophy and microstructural alterations in disease-vulnerable brain regions of SCA3 patients and mouse models. However, the major constituent of white matter - lipids - remains understudied in SCA3. In this study, we conducted the first unbiased investigation of brain lipids in SCA3, focusing on the disease-vulnerable cerebellum of SCA3 postmortem patients and mouse models. Liquid chromatography-mass spectrometry uncovered widespread lipid reductions in patients with SCA3. Lipid downregulation was recapitulated in early- to mid-stage mouse models of SCA3, including transgenic YACQ84 and Knock-in Q300 mice. End-stage Knock-in Q300 mice displayed a progressive reduction in lipid content, highlighting targets that could benefit from early therapeutic intervention. In contrast, Atxn3-Knock-out mice showed mild lipid upregulation, emphasizing a toxic gain-of-function mechanism underlying lipid downregulation in SCA3. We conclude that lipids are significantly altered in SCA3 and establish a platform for continued exploration of lipids in disease through interactive data visualization websites. Pronounced reductions in myelin-enriched lipids suggest that lipid dysregulation could underlie white matter atrophy in SCA3. This study establishes the basis for future work elucidating the mechanistic, biomarker, and therapeutic potential of lipids in SCA3.
Collapse
Affiliation(s)
- Alexandra F Putka
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Varshasnata Mohanty
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA; Laboratory of Integrated Neuroscience, University of Illinois Chicago, Chicago, IL 60607, USA.
| | - Hayley S McLoughlin
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
18
|
Chen PHB, Li XL, Baskin JM. Synthetic Lipid Biology. Chem Rev 2025; 125:2502-2560. [PMID: 39805091 PMCID: PMC11969270 DOI: 10.1021/acs.chemrev.4c00761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Cells contain thousands of different lipids. Their rapid and redundant metabolism, dynamic movement, and many interactions with other biomolecules have justly earned lipids a reputation as a vexing class of molecules to understand. Further, as the cell's hydrophobic metabolites, lipids assemble into supramolecular structures─most commonly bilayers, or membranes─from which they carry out myriad biological functions. Motivated by this daunting complexity, researchers across disciplines are bringing order to the seeming chaos of biological lipids and membranes. Here, we formalize these efforts as "synthetic lipid biology". Inspired by the idea, central to synthetic biology, that our abilities to understand and build biological systems are intimately connected, we organize studies and approaches across numerous fields to create, manipulate, and analyze lipids and biomembranes. These include construction of lipids and membranes from scratch using chemical and chemoenzymatic synthesis, editing of pre-existing membranes using optogenetics and protein engineering, detection of lipid metabolism and transport using bioorthogonal chemistry, and probing of lipid-protein interactions and membrane biophysical properties. What emerges is a portrait of an incipient field where chemists, biologists, physicists, and engineers work together in proximity─like lipids themselves─to build a clearer description of the properties, behaviors, and functions of lipids and membranes.
Collapse
Affiliation(s)
- Po-Hsun Brian Chen
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Xiang-Ling Li
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jeremy M Baskin
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
19
|
Ghith A, Maleki R, Grzeskowiak LE, Amir LH, Ingman WV. Challenges and Opportunities in Quantifying Bioactive Compounds in Human Breastmilk. Biomolecules 2025; 15:325. [PMID: 40149861 PMCID: PMC11940641 DOI: 10.3390/biom15030325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/29/2025] Open
Abstract
Breastmilk is a complex biological fluid containing over a thousand bioactive proteins, lipids, cells and small molecules that provide nutrition and immunological protection for infants and children. The composition of breastmilk is unique to each individual and can also vary within individuals according to breastfeeding duration, maternal health, time of day, and other factors. As such, the composition of breastmilk can be considered a "fingerprint" that could be interrogated to identify biomarkers of breast health and disease. However, accurate quantification of bioactive components in breastmilk remains a significant challenge. Approaches such as immunoassays and mass spectrometry have been largely applied to study blood or other biological fluids and require validation and optimisation before these techniques can be used to accurately quantify bioactive compounds in breastmilk. Development of protocols specific to breastmilk should be carried out with high precision, confidence, and sensitivity. This review explores the challenges and opportunities associated with different techniques for quantification of breastmilk bioactive components.
Collapse
Affiliation(s)
- Amna Ghith
- Discipline of Surgical Specialties, Adelaide Medical School, University of Adelaide, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia; (A.G.); (R.M.)
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5006, Australia
| | - Reza Maleki
- Discipline of Surgical Specialties, Adelaide Medical School, University of Adelaide, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia; (A.G.); (R.M.)
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5006, Australia
| | - Luke E. Grzeskowiak
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia;
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia
| | - Lisa H. Amir
- Judith Lumley Centre, School of Nursing and Midwifery, La Trobe University, Bundoora, VIC 3086, Australia;
- Breastfeeding Service, The Royal Women’s Hospital, Parkville, VIC 3050, Australia
| | - Wendy V. Ingman
- Discipline of Surgical Specialties, Adelaide Medical School, University of Adelaide, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia; (A.G.); (R.M.)
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5006, Australia
| |
Collapse
|
20
|
Witting M, Salzer L, Meyer SW, Barsch A. Phosphorylated glycosphingolipids are commonly detected in Caenorhabditis elegans lipidomes. Metabolomics 2025; 21:29. [PMID: 39979652 PMCID: PMC11842410 DOI: 10.1007/s11306-024-02216-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/31/2024] [Indexed: 02/22/2025]
Abstract
INTRODUCTION The identification of lipids is a cornerstone of lipidomics, and due to the specific characteristics of lipids, it requires dedicated analysis workflows. Identifying novel lipids and lipid species for which no reference spectra are available is tedious and often involves a lot of manual work. Integrating high-resolution mass spectrometry with enhancements from chromatographic and ion mobility separation enables the in-depth investigation of intact lipids. OBJECTIVES We investigated phosphorylated glycosphingolipids from the nematode Caenorhabditis elegans, a biomedical model organism, and aimed to identify different species from this class of lipids, which have been described in one particular publication only. We checked if these lipids can be detected in lipid extracts of C. elegans. METHODS We used UHPLC-UHR-TOF-MS and UHPLC-TIMS-TOF-MS in combination with dedicated data analysis to check for the presence of phosphorylated glycosphingolipids. Specifically, candidate features were identified in two datasets using Mass Spec Query Language (MassQL) to search fragmentation data. The additional use of retention time (RT) and collisional cross section (CCS) information allowed to filter false positive annotations. RESULTS As a result, we detected all previously described phosphorylated glycosphingolipids and novel species as well as their biosynthetic precursors in two different lipidomics datasets. MassQL significantly speeds up the process by saving time that would otherwise be spent on manual data investigations. In total over 20 sphingolipids could be described. CONCLUSION MassQL allowed us to search for phosphorylated glycosphingolipids and their potential biosynthetic precursors systematically. Using orthogonal information such as RT and CCS helped filter false positive results. With the detection in two different datasets, we demonstrate that these sphingolipids are a general part of the C. elegans lipidome.
Collapse
Affiliation(s)
- Michael Witting
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
- Chair of Analytical Food Chemistry, TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof-Forum 2, 85354, Freising, Germany.
| | - Liesa Salzer
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Sven W Meyer
- Bruker Daltonics GmbH & Co. KG, Fahrenheitstraße 4, 28359, Bremen, Germany
| | - Aiko Barsch
- Bruker Daltonics GmbH & Co. KG, Fahrenheitstraße 4, 28359, Bremen, Germany
| |
Collapse
|
21
|
Jayaprakash J, Gowda SGB, Gowda D, Ikeda A, Bamai YA, Ketema RM, Kishi R, Chen Y, Chiba H, Hui SP. Plasma Lipidomics of Preadolescent Children: A Hokkaido Study. J Lipids 2025; 2025:3106145. [PMID: 40084067 PMCID: PMC11898111 DOI: 10.1155/jl/3106145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/05/2024] [Indexed: 03/16/2025] Open
Abstract
Lipids are the most abundant biomolecules of human plasma, and their balance plays a significant role in health and disease management. Despite the importance of lipids, the studies focused on the comprehensive determination of the plasma lipidome in children are limited. In this study, we investigated the sex, age, and weight-specific changes in the plasma lipidome of nonfasting preadolescent children aged 9-12 years (n = 342) using a nontargeted liquid chromatography-mass spectrometry technique. A total of 219 lipid species were characterized in the plasma samples. Multivariate analysis revealed that boys and girls have similar lipid profiles, but relatively higher levels of capric acid-composed triacylglycerols (TGs) were observed in plasma samples of boys. Saturated fatty acids are the most abundant fatty acyls followed by mono- and polyunsaturated fatty acids in the plasma of both boys and girls. Sphingolipids such as ceramides, hexosylceramides, sphingomyelin, and a phospholipid (phosphatidylinositol) were relatively higher in the plasma of a 10-year-old group than other age groups. Plasma levels of TG and phosphatidylserine were increased within age from 9 to 12 years. Furthermore, most of the TG molecular species were increased in the plasma of overweight children compared to the normal range groups. The receiver operating characteristic analysis results show that TG (10:0/10:0/18:1) could be a specific marker for childhood obesity (area under the curve (AUC) = 0.72). Overall, this study highlights the altered plasma lipidome in preadolescent children for sex, age, and percentage of overweight. Early detection of lipid markers for obesity would be a promising target for developing therapeutic strategies.
Collapse
Affiliation(s)
- Jayashankar Jayaprakash
- Graduate School of Global Food Resources, Hokkaido University, Kita-9, Nishi-9, Kita-Ku, Sapporo, Japan
| | - Siddabasave Gowda B. Gowda
- Graduate School of Global Food Resources, Hokkaido University, Kita-9, Nishi-9, Kita-Ku, Sapporo, Japan
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, Japan
| | - Divyavani Gowda
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, Japan
| | - Atsuko Ikeda
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, Japan
- Center for Environmental and Health Sciences, Hokkaido University, Kita-12, Nishi-7, Kita-ku, Sapporo, Japan
| | - Yu Ait Bamai
- Center for Environmental and Health Sciences, Hokkaido University, Kita-12, Nishi-7, Kita-ku, Sapporo, Japan
| | - Rahel Mesfin Ketema
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, Japan
- Center for Environmental and Health Sciences, Hokkaido University, Kita-12, Nishi-7, Kita-ku, Sapporo, Japan
| | - Reiko Kishi
- Center for Environmental and Health Sciences, Hokkaido University, Kita-12, Nishi-7, Kita-ku, Sapporo, Japan
| | - Yifan Chen
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, Japan
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Nakanuma Nishi-4-2-1-15, Higashi-ku, Sapporo, Japan
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, Japan
| |
Collapse
|
22
|
Huang X, Liu B, Shen S. Lipid Metabolism in Breast Cancer: From Basic Research to Clinical Application. Cancers (Basel) 2025; 17:650. [PMID: 40002245 PMCID: PMC11852908 DOI: 10.3390/cancers17040650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Breast cancer remains the most prevalent cancer among women globally, with significant links to obesity and lipid metabolism abnormalities. This review examines the role of lipid metabolism in breast cancer progression, highlighting its multifaceted contributions to tumor biology. We discuss key metabolic processes, including fatty acid metabolism, triglyceride metabolism, phospholipid metabolism, and cholesterol metabolism, detailing the reprogramming that occurs in these pathways within breast cancer cells. Alterations in lipid metabolism are emphasized for their roles in supporting energy production, membrane biogenesis, and tumor aggressiveness. Furthermore, we examine how lipid metabolism influences immune responses in the tumor microenvironment, affecting immune cell function and therapeutic efficacy. The potential of lipid metabolism as a target for novel therapeutic strategies is also addressed, with a focus on inhibitors of key metabolic enzymes. By integrating lipid metabolism with breast cancer research, this review underscores the importance of lipid metabolism in understanding breast cancer biology and developing treatment approaches aimed at improving patient outcomes.
Collapse
Affiliation(s)
- Xiangyu Huang
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100032, China; (X.H.); (B.L.)
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bowen Liu
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100032, China; (X.H.); (B.L.)
| | - Songjie Shen
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100032, China; (X.H.); (B.L.)
- Ambulatory Medical Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100032, China
| |
Collapse
|
23
|
Grossert JS, Ramaley L. Unified Fragmentation Pathways of Lithiated, Longer-Chain Acylglycerols Can Be Identified from Tandem Mass Spectrometry and Density Functional Computations. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2025; 36:368-378. [PMID: 39834095 DOI: 10.1021/jasms.4c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
We extend our previous work on the energetics and mechanisms of fragmentation in the mass spectrometry of triacylglycerols (TAGs). Previously, we proposed viable mechanisms for the collision-induced fragmentation of lithiated tripropionylglycerol using triple-quadrupole mass spectrometry. In this work, we used a QqLIT mass spectrometer to study both double- and triple-stage spectra from a range of TAGs having acid chains of types AAA (identical acid chains), AAB, ABA, and ABC, with chain lengths of 6-18 carbon atoms; we also studied some TAGs having a single double bond in the Δ-9 position. Detailed computations on fragmentation pathways were carried out on lithiated trihexanoylglycerol and on a limited number of longer chain ions. Second-stage fragmentations led to the formation of a lithiated ion after the loss of a neutral acid. With a further input of energy, this ion could rearrange into two other ions, one being formed more easily than the other. In a triple-stage fragmentation, these three ions give a defined series of product ions, some of which are characteristic of the substitution pattern on the glycerol core of the TAG. Computed reaction energies for product ion formation showed comparable trends to the relative intensities of the observed product ion spectra. These results have enabled us to propose unified mechanisms for the double- and triple-stage fragmentation of lithiated TAGs. The mechanisms have reasonable energetics, and all ions, as well as saddle points, have viable geometries. In addition, the fragmentation mechanisms are in accord with all the published experimental mass spectra.
Collapse
Affiliation(s)
- J Stuart Grossert
- Department of Chemistry, Dalhousie University, 1459 Oxford Street, P.O. Box 15000, Halifax, NS B3H 4R2, Canada
| | - Louis Ramaley
- Department of Chemistry, Dalhousie University, 1459 Oxford Street, P.O. Box 15000, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
24
|
Kim E, Cha D, Jang SJ, Cho J, Moh SH, Lee S. Redox control of NRF2 signaling in oocytes harnessing Porphyra derivatives as a toggle. Free Radic Biol Med 2025; 227:680-693. [PMID: 39674422 DOI: 10.1016/j.freeradbiomed.2024.12.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
This study investigated the potential of Porphyra derivatives (PD), including Porphyra334, to activate the nuclear factor erythroid 2-related factor 2 (NRF2) pathway in porcine oocytes to enhance oocyte competency and intracellular networks. Conventional methods for manipulating mitochondrial functions and antioxidant pathways often rely upon genetic modifications that are impractical for direct application in humans. We hypothesized that PD serves as a natural regulator of the NRF2 pathway without requiring genetic intervention. To test this hypothesis, brusatol (Bru), a direct NRF2 inhibitor, was used to evaluate the specific role of PD in NRF2-mediated processes. The results demonstrated that PD significantly improved oocyte maturation, blastocyst formation, and mitochondrial function, including subsequent lipid metabolism. PD activates NRF2 and its downstream antioxidant response elements (AREs), whereas Bru inhibits these effects. Co-treatment with PD and Bru resulted in the partial recovery of NRF2 activity. These findings suggest that PD functions as a toggle for NRF2 activation, potentially offering a non-genetic strategy for enhancing oocyte quality and embryo development by modulating antioxidant mechanisms and mitochondrial functions. This study provides new avenues for investigating natural compounds in the context of reproductive biology and assisted reproductive technologies (ARTs).
Collapse
Affiliation(s)
- Euihyun Kim
- Plant Cell Research Institute of BIO-FD&C Co. Ltd., Incheon, 21990, Republic of Korea
| | - Dabin Cha
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Sung Joo Jang
- Plant Cell Research Institute of BIO-FD&C Co. Ltd., Incheon, 21990, Republic of Korea
| | - Jongki Cho
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sang Hyun Moh
- Plant Cell Research Institute of BIO-FD&C Co. Ltd., Incheon, 21990, Republic of Korea
| | - Sanghoon Lee
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
25
|
Matsubara M, Bolton EE, Aoki-Kinoshita KF, Yamada I. Toward integration of glycan chemical databases: an algorithm and software tool for extracting sugars from chemical structures. Anal Bioanal Chem 2025; 417:945-956. [PMID: 39212696 PMCID: PMC11782307 DOI: 10.1007/s00216-024-05508-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
Integration of glycan-related databases between different research fields is essential in glycoscience. It requires knowledge across the breadth of science because most glycans exist as glycoconjugates. On the other hand, especially between chemistry and biology, glycan data has not been easy to integrate due to the huge variety of glycan structure representations. We have developed WURCS (Web 3.0 Unique Representation of Carbohydrate Structures) as a notation for representing all glycan structures uniquely for the purpose of integrating data across scientific data resources. While the integration of glycan data in the field of biology has been greatly advanced, in the field of chemistry, progress has been hampered due to the lack of appropriate rules to extract sugars from chemical structures. Thus, we developed a unique algorithm to determine the range of structures allowed to be considered as sugars from the structural formulae of compounds, and we developed software to extract sugars in WURCS format according to this algorithm. In this manuscript, we show that our algorithm can extract sugars from glycoconjugate molecules represented at the molecular level and can distinguish them from other biomolecules, such as amino acids, nucleic acids, and lipids. Available as software, MolWURCS is freely available and downloadable ( https://gitlab.com/glycoinfo/molwurcs ).
Collapse
Affiliation(s)
| | - Evan E Bolton
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Kiyoko F Aoki-Kinoshita
- Glycan and Life Systems Integration Center, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo, 192-8577, Japan
| | - Issaku Yamada
- The Noguchi Institute, Itabashi, Tokyo, 173-0003, Japan.
| |
Collapse
|
26
|
Kelso C, Maccarone AT, de Kroon AIPM, Mitchell TW, Renne MF. Temperature adaptation of yeast phospholipid molecular species at the acyl chain positional level. FEBS Lett 2025; 599:530-544. [PMID: 39673166 PMCID: PMC11848023 DOI: 10.1002/1873-3468.15060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/02/2024] [Accepted: 10/22/2024] [Indexed: 12/16/2024]
Abstract
Yeast is a poikilothermic organism and adapts its lipid composition to the environmental temperature to maintain membrane physical properties. Studies addressing temperature-dependent adaptation of the lipidome have described changes in the phospholipid composition at the level of sum composition (e.g. PC 32:1) and molecular composition (e.g. PC 16:0_16:1). However, there is little information at the level of positional isomers (e.g. PC 16:0/16:1 versus PC 16:1/16:0). Here, we used collision- and ozone-induced dissociation (CID/OzID) mass spectrometry to investigate homeoviscous adaptation of PC, PE and PS to determine the phospholipid acyl chains at the sn-1 and sn-2 position. Our data establish the sn-molecular species composition of PC, PE and PS in the lipidome of yeast cultured at different temperatures.
Collapse
Affiliation(s)
- Celine Kelso
- School of Chemistry and Molecular BioscienceUniversity of WollongongAustralia
- Molecular Horizons InstituteUniversity of WollongongAustralia
| | - Alan T. Maccarone
- School of Chemistry and Molecular BioscienceUniversity of WollongongAustralia
- Molecular Horizons InstituteUniversity of WollongongAustralia
| | - Anton I. P. M. de Kroon
- Membrane Biochemistry & Biophysics, Department of ChemistryUtrecht UniversityThe Netherlands
| | - Todd W. Mitchell
- Molecular Horizons InstituteUniversity of WollongongAustralia
- School of Medical, Indigenous and Health SciencesUniversity of WollongongAustralia
| | - Mike F. Renne
- Membrane Biochemistry & Biophysics, Department of ChemistryUtrecht UniversityThe Netherlands
- Medical Biochemistry and Molecular Biology, Medical FacultySaarland UniversityHomburgGermany
- Preclinical Center for Molecular Signalling (PZMS), Medical FacultySaarland UniversityHomburgGermany
| |
Collapse
|
27
|
Hallan SS, Ferrara F, Cortesi R, Sguizzato M. Potential of the Nano-Encapsulation of Antioxidant Molecules in Wound Healing Applications: An Innovative Strategy to Enhance the Bio-Profile. Molecules 2025; 30:641. [PMID: 39942745 PMCID: PMC11820390 DOI: 10.3390/molecules30030641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/21/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
Naturally available antioxidants offer remarkable medicinal applications in wound healing. However, the encapsulation of these phytoactive moieties into suitable nano-scale drug delivery systems has always been challenging due to their inherent characteristics, such as low molecular weight, poor aqueous solubility, and inadequate skin permeability. Here, we provide a systematic review focusing on the major obstacles hindering the development of various lipid and polymer-based drug transporters to carry these cargos to the targeted site. Additionally, this review covers the possibility of combining the effects of a polymer and a lipid within one system, which could increase the skin permeability threshold. Moreover, the lack of suitable physical characterization techniques and the challenges associated with scaling up the progression of these nano-carriers limit their utility in biomedical applications. In this context, consistent progressive approaches for addressing these shortcomings are introduced, and their prospects are discussed in detail.
Collapse
Affiliation(s)
- Supandeep Singh Hallan
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151401, India
| | - Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (F.F.); (M.S.)
| | - Rita Cortesi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (F.F.); (M.S.)
- Biotechnology Interuniversity Consortium (C.I.B.), Ferrara Section, University of Ferrara, I-44121 Ferrara, Italy
| | - Maddalena Sguizzato
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy; (F.F.); (M.S.)
| |
Collapse
|
28
|
Tiozon RN, Pasion-Uy E, Alseekh S, Sartagoda KJD, Gempesaw S, Tolentino JHG, Fernie AR, Sreenivasulu N. Lipidomics-based association study reveals genomic signatures of anti-cancer qualities of pigmented rice sprouts. FRONTIERS IN PLANT SCIENCE 2025; 16:1533442. [PMID: 39935946 PMCID: PMC11810972 DOI: 10.3389/fpls.2025.1533442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 01/02/2025] [Indexed: 02/13/2025]
Abstract
Introduction The genetic wealth present in pigmented rice varieties offer abundant variation in different sources of antioxidants to meet nutritional security targets among rice-consuming communities. There is limited knowledge of the dynamic changes in the lipidome of rice during germination and the corresponding genes associated with the antioxidant and anti-cancerous properties of lipophilic fractions of pigmented rice sprouts (PRS). Methods In this study, we profiled the lipidome of diverse pigmented rice collections of germinated sprouts. Further, we employed Genome-wide association studies (GWAS), gene-set analysis, and targeted association analysis to identify the candidate genes linked to these lipids. Results The genetic analyses revealed 72 candidate genes involved in the regulation of these accumulating lipids in PRS. Marker trait associations (MTA) analysis shown that the combination GGTAAC/ACAAGCTGGGCCC was associated with increased levels of unsaturated lipids and carotenoids, which likely underlie these beneficial effects. This superior MTA combination exhibited potent inhibitory activity against HCT116 and A549 cell lines, with average 1/IC50 values of 0.03 and 0.02 (mL/μg), respectively, compared to the inferior MTAs. Discussion Collectively, our findings demonstrate that MTAs linked to selected GDSL esterase/lipase (GELP) genes, OsACP1, and lecithin-cholesterol acyltransferase significantly enhance antioxidant and anti-cancer properties, potentially through the mobilization of unsaturated lipids and carotenoids during germination. This study offers valuable insights into the health-promoting potential of germinated rice sprouts as a rich dietary source of antioxidants beneficial to human health.
Collapse
Affiliation(s)
- Rhowell Navarro Tiozon
- Consumer-driven Grain Quality and Nutrition Center, Strategic Innovation Platform, International Rice Research Institute, Los Baños, Philippines
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Erstelle Pasion-Uy
- Consumer-driven Grain Quality and Nutrition Center, Strategic Innovation Platform, International Rice Research Institute, Los Baños, Philippines
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Kristel June D. Sartagoda
- Consumer-driven Grain Quality and Nutrition Center, Strategic Innovation Platform, International Rice Research Institute, Los Baños, Philippines
| | - Shem Gempesaw
- Department of Food Science and Chemistry, College of Science and Mathematics, University of the Philippines Mindanao, Davao City, Philippines
| | - Joel H. G. Tolentino
- Department of Food Science and Chemistry, College of Science and Mathematics, University of the Philippines Mindanao, Davao City, Philippines
| | - Alisdair R. Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Nese Sreenivasulu
- Consumer-driven Grain Quality and Nutrition Center, Strategic Innovation Platform, International Rice Research Institute, Los Baños, Philippines
| |
Collapse
|
29
|
He S, Xu Z, Han X. Lipidome disruption in Alzheimer's disease brain: detection, pathological mechanisms, and therapeutic implications. Mol Neurodegener 2025; 20:11. [PMID: 39871348 PMCID: PMC11773937 DOI: 10.1186/s13024-025-00803-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/15/2025] [Indexed: 01/29/2025] Open
Abstract
Alzheimer's disease (AD) is among the most devastating neurodegenerative disorders with limited treatment options. Emerging evidence points to the involvement of lipid dysregulation in the development of AD. Nevertheless, the precise lipidomic landscape and the mechanistic roles of lipids in disease pathology remain poorly understood. This review aims to highlight the significance of lipidomics and lipid-targeting approaches in the diagnosis and treatment of AD. We summarized the connection between lipid dysregulation in the human brain and AD at both genetic and lipid species levels. We briefly introduced lipidomics technologies and discussed potential challenges and areas of future advancements in the lipidomics field for AD research. To elucidate the central role of lipids in converging multiple pathological aspects of AD, we reviewed the current knowledge on the interplay between lipids and major AD features, including amyloid beta, tau, and neuroinflammation. Finally, we assessed the progresses and obstacles in lipid-based therapeutics and proposed potential strategies for leveraging lipidomics in the treatment of AD.
Collapse
Affiliation(s)
- Sijia He
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78299, USA
| | - Ziying Xu
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Xianlin Han
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78299, USA.
| |
Collapse
|
30
|
Zhang R, Wang J, Wu C, Wang L, Liu P, Li P. Lipidomics-based natural products for chronic kidney disease treatment. Heliyon 2025; 11:e41620. [PMID: 39866478 PMCID: PMC11758422 DOI: 10.1016/j.heliyon.2024.e41620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/17/2024] [Accepted: 12/31/2024] [Indexed: 01/28/2025] Open
Abstract
Chronic kidney disease (CKD) is by far the most prevalent disease in the world and is now a major global public health problem because of the increase in diabetes, hypertension and obesity. Traditional biomarkers of kidney function lack sensitivity and specificity for early detection and monitoring of CKD progression, necessitating more sensitive biomarkers for early diagnostic intervention. Dyslipidemia is a hallmark of CKD. Advancements in mass spectrometry (MS)-based lipidomics platforms have facilitated comprehensive analysis of lipids in biological samples and have revealed changes in the lipidome that are associated with metabolic disorders, which can be used as new biomarkers for kidney diseases. It is also critical for the discovery of new therapeutic targets and drugs. In this article, we focus on lipids in CKD, lipidomics methodologies and their applications in CKD. Additionally, we introduce novel biomarkers identified through lipidomics approaches and natural products derived from lipidomics for the treatment of CKD. We believe that our study makes a significant contribution to literature by demonstrating that natural products can improve CKD from a lipidomic perspective.
Collapse
Affiliation(s)
- Rui Zhang
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Jingjing Wang
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Chenguang Wu
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Lifan Wang
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Peng Liu
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
31
|
Wu L, Zhu SC, He Y, Zhu YX, Ou-Yang XL, Zhang D, Li CM. Current perspectives for metabolomics and lipidomics in dyslipidemia of acne vulgaris: a mini review. Front Med (Lausanne) 2025; 11:1538373. [PMID: 39882523 PMCID: PMC11774704 DOI: 10.3389/fmed.2024.1538373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 12/27/2024] [Indexed: 01/31/2025] Open
Abstract
Acne vulgaris (AV) is a common inflammatory disorder involving the pilosebaceous unit. Many studies have reported that people with AV have higher levels of total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-c) compared to healthy controls. Hence, they concluded that an unhealthy lipid profile is an independent risk factor for AV. Recent research in metabolomics and lipidomics has been propelled by rapid advancements in technologies including computational methods and mass spectrometry. Using metabolomics and lipidomics approach, a broad range of structurally diverse lipid species were detected and important lipid biomarkers were identified that are vital to the pathogenesis of AV. In this review, we will describe the recent progress in dyslipidemia of AV using metabolomics and lipidomics advances. We will begin with a literature overview of dyslipidemia of AV, followed by a short introduction of metabolomics and lipidomics. Finally, we will focus on applying metabolomics and lipidomics in dyslipidemia of AV.
Collapse
Affiliation(s)
- Liang Wu
- Department of Dermatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Sheng-Cai Zhu
- Department of Dermatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yang He
- Department of Dermatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yun-Xia Zhu
- Department of Dermatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiao-Liang Ou-Yang
- Department of Plastic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Deng Zhang
- Department of Dermatology, The Fifth People's Hospital Affiliated to Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chun-Ming Li
- Department of Dermatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
32
|
Revol-Cavalier J, Quaranta A, Newman JW, Brash AR, Hamberg M, Wheelock CE. The Octadecanoids: Synthesis and Bioactivity of 18-Carbon Oxygenated Fatty Acids in Mammals, Bacteria, and Fungi. Chem Rev 2025; 125:1-90. [PMID: 39680864 PMCID: PMC11719350 DOI: 10.1021/acs.chemrev.3c00520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024]
Abstract
The octadecanoids are a broad class of lipids consisting of the oxygenated products of 18-carbon fatty acids. Originally referring to production of the phytohormone jasmonic acid, the octadecanoid pathway has been expanded to include products of all 18-carbon fatty acids. Octadecanoids are formed biosynthetically in mammals via cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP) activity, as well as nonenzymatically by photo- and autoxidation mechanisms. While octadecanoids are well-known mediators in plants, their role in the regulation of mammalian biological processes has been generally neglected. However, there have been significant advancements in recognizing the importance of these compounds in mammals and their involvement in the mediation of inflammation, nociception, and cell proliferation, as well as in immuno- and tissue modulation, coagulation processes, hormone regulation, and skin barrier formation. More recently, the gut microbiome has been shown to be a significant source of octadecanoid biosynthesis, providing additional biosynthetic routes including hydratase activity (e.g., CLA-HY, FA-HY1, FA-HY2). In this review, we summarize the current field of octadecanoids, propose standardized nomenclature, provide details of octadecanoid preparation and measurement, summarize the phase-I metabolic pathway of octadecanoid formation in mammals, bacteria, and fungi, and describe their biological activity in relation to mammalian pathophysiology as well as their potential use as biomarkers of health and disease.
Collapse
Affiliation(s)
- Johanna Revol-Cavalier
- Unit
of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 77, Sweden
- Larodan
Research Laboratory, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Alessandro Quaranta
- Unit
of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - John W. Newman
- Western
Human Nutrition Research Center, Agricultural
Research Service, USDA, Davis, California 95616, United States
- Department
of Nutrition, University of California, Davis, Davis, California 95616, United States
- West
Coast Metabolomics Center, Genome Center, University of California, Davis, Davis, California 95616, United States
| | - Alan R. Brash
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Mats Hamberg
- Unit
of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 77, Sweden
- Larodan
Research Laboratory, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Craig E. Wheelock
- Unit
of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 77, Sweden
- Department
of Respiratory Medicine and Allergy, Karolinska
University Hospital, Stockholm SE-141-86, Sweden
| |
Collapse
|
33
|
Yilmaz A, Akyol S, Ashrafi N, Saiyed N, Turkoglu O, Graham SF. Lipidomics of Huntington's Disease: A Comprehensive Review of Current Status and Future Directions. Metabolites 2025; 15:10. [PMID: 39852353 PMCID: PMC11766911 DOI: 10.3390/metabo15010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND Huntington's disease (HD) is a multifaceted neurological disorder characterized by the progressive deterioration of motor, cognitive, and psychiatric functions. Despite a limited understanding of its pathogenesis, research has implicated abnormal trinucleotide cytosine-adenine-guanine CAG repeat expansion in the huntingtin gene (HTT) as a critical factor. The development of innovative strategies is imperative for the early detection of predictive biomarkers, enabling timely intervention and mitigating irreversible cellular damage. Lipidomics, a comprehensive analytical approach, has emerged as an indispensable tool for systematically characterizing lipid profiles and elucidating their role in disease pathology. METHOD A MedLine search was performed to identify studies that use lipidomics for the characterization of HD. Search terms included "Huntington disease"; "lipidomics"; "biomarker discovery"; "NMR"; and "Mass spectrometry". RESULTS This review highlights the significance of lipidomics in HD diagnosis and treatment, exploring changes in brain lipids and their functions. Recent breakthroughs in analytical techniques, particularly mass spectrometry and NMR spectroscopy, have revolutionized brain lipidomics research, enabling researchers to gain deeper insights into the complex lipidome of the brain. CONCLUSIONS A comprehensive understanding of the broad spectrum of lipidomics alterations in HD is vital for precise diagnostic evaluation and effective disease management. The integration of lipidomics with artificial intelligence and interdisciplinary collaboration holds promise for addressing the clinical variability of HD.
Collapse
Affiliation(s)
- Ali Yilmaz
- Department of Obstetrics and Gynecology, Oakland University-William Beaumont School of Medicine, Rochester, MI 48309, USA; (A.Y.); (N.A.); (O.T.)
- Metabolomics Division, Beaumont Research Institute, 3811 W. 13 Mile Road, Royal Oak, MI 48073, USA;
| | - Sumeyya Akyol
- NX Prenatal Inc., 4350 Brownsboro Rd, Louisville, KY 40207, USA;
| | - Nadia Ashrafi
- Department of Obstetrics and Gynecology, Oakland University-William Beaumont School of Medicine, Rochester, MI 48309, USA; (A.Y.); (N.A.); (O.T.)
| | - Nazia Saiyed
- Metabolomics Division, Beaumont Research Institute, 3811 W. 13 Mile Road, Royal Oak, MI 48073, USA;
| | - Onur Turkoglu
- Department of Obstetrics and Gynecology, Oakland University-William Beaumont School of Medicine, Rochester, MI 48309, USA; (A.Y.); (N.A.); (O.T.)
| | - Stewart F. Graham
- Department of Obstetrics and Gynecology, Oakland University-William Beaumont School of Medicine, Rochester, MI 48309, USA; (A.Y.); (N.A.); (O.T.)
- Metabolomics Division, Beaumont Research Institute, 3811 W. 13 Mile Road, Royal Oak, MI 48073, USA;
| |
Collapse
|
34
|
Chen L, Zhang S, Feng Y, Jiang Y, Yuan H, Shan X, Zhang Q, Niu L, Wang S, Zhou Q, Li J. Seasonal variation in non-volatile flavor substances of fresh tea leaves (Camellia sinensis) by integrated lipidomics and metabolomics using UHPLC-Q-Exactive mass spectrometry. Food Chem 2025; 462:140986. [PMID: 39208737 DOI: 10.1016/j.foodchem.2024.140986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/24/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Harvest season exerts great influence on tea quality. Herein, the variations in non-volatile flavor substances in spring and summer fresh tea leaves of four varieties were comprehensively investigated by integrating UHPLC-Q-Exactive based lipidomics and metabolomics. A total of 327 lipids and 99 metabolites were detected, among which, 221 and 58 molecules were significantly differential. The molecular species of phospholipids, glycolipids and acylglycerolipids showed most prominent and structure-dependent seasonal changes, relating to polar head, unsaturation and total acyl length. Particularly, spring tea contained higher amount in aroma precursors of highly unsaturated glycolipids and phosphatidic acids. The contents of umami-enhancing amino acids and phenolic acids, e.g., theanine, theogallin and gallotannins, were increased in spring. Besides, catechins, theaflavins, theasinensins and flavone/flavonol glycosides showed diverse changes. These phytochemical differences covered key aroma precursors, tastants and colorants, and may confer superior flavor of black tea processed using spring leaves, which was verified by sensory evaluation.
Collapse
Affiliation(s)
- Le Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Shan Zhang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; School of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
| | - Yuning Feng
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yongwen Jiang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Haibo Yuan
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Xujiang Shan
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Qianting Zhang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; School of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224, China
| | - Linchi Niu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Shengnan Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qinghua Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Jia Li
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| |
Collapse
|
35
|
Odenkirk MT, Jostes HC, Francis K, Baker ES. Lipidomics Reveals Cell Specific Changes During Pluripotent Differentiation to Neural and Mesodermal Lineages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.31.630916. [PMID: 39803501 PMCID: PMC11722439 DOI: 10.1101/2024.12.31.630916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Due to their self-renewal and differentiation capabilities, pluripotent stem cells hold immense potential for advancing our understanding of human disease and developing cell-based or pharmacological interventions. Realizing this potential, however, requires a thorough understanding of the basal cellular mechanisms which occur during differentiation. Lipids are critical molecules that define the morphological, biochemical, and functional role of cells. This, combined with emerging evidence linking lipids to neurodegeneration, cardiovascular health, and other diseases, makes lipids a critical class of analytes to assess normal and abnormal cellular processes. While previous work has examined the lipid composition of stem cells, uncertainties remain about which changes are conserved and which are unique across distinct cell types. In this study, we investigated lipid alterations of induced pluripotent stem cells (iPSCs) at critical stages of differentiation toward neural or mesodermal fates. Lipdiomic analyses of distinct differentiation stages were completed using a platform coupling liquid chromatography, ion mobility spectrometry, and mass spectrometry (LC-IMS-MS) separations. Results illustrated a shared triacylglyceride and free fatty acid accumulation in early iPSCs that were utilized at different stages of differentiation. Unique fluctuations through differentiation were also observed for certain phospholipid classes, sphingomyelins and ceramides. These insights into lipid fluctuations across iPSC differentiation enhance our fundamental understanding of lipid metabolism within pluripotent stem cells and during differentiation, while also paving the way for a more precise and effective application of pluripotent stem cells in human disease interventions.
Collapse
Affiliation(s)
| | - Haley C. Jostes
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Kevin Francis
- Cellular Therapies and Stem Cell Biology Group, Sanford Research, Sioux Falls, SD
- Department of Pediatrics, University of South Dakota Sanford School of Medicine, Sioux Falls, SD
| | - Erin S. Baker
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
36
|
Montuori E, Ambrosino A, Della Sala G, Ragozzino C, Franci G, Zannella C, De Filippis A, de Pascale D, Galdiero M, Lauritano C. Antiviral Activity of the Marine Haptophyta Diacronema lutheri. Mar Drugs 2024; 23:12. [PMID: 39852513 PMCID: PMC11766726 DOI: 10.3390/md23010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/26/2025] Open
Abstract
There are still several viral infections affecting a considerable number of the world's population, causing thousands of deaths each year. There are no drugs available for most viral infections and for many not even a vaccine. The marine kingdom is characterized by a huge chemical diversity; however, there is currently on the market only one drug derived from the sea with antiviral properties, called Ara-A. In the current study, we used a solid phase extraction method (SPE) to obtain pre-purified fractions from Diacronema lutheri raw extracts. We tested both raw extracts and fractions against enveloped and non-enveloped viruses. Results showed an antiviral activity of fraction C of D. lutheri against the herpes simplex virus type 1 (HSV-1 strain SC16). Liquid chromatography coupled with untargeted high-resolution tandem mass spectrometry (LC-HRMS2) were employed to chart the metabolite distribution in all SPE fractions and pinpoint molecular families unique (or almost unique) to the bioactive fraction. Sulfoquinovosyl di- and monoacylglycerols (SQDGs and SQMGs) and di- and monogalactosyl monoacylglycerols (DGMGs and MGMGs) represent the largest groups of compounds in fraction C and they are likely responsible for the antiviral properties of this fraction.
Collapse
Affiliation(s)
- Eleonora Montuori
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (E.M.); (C.R.)
- Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Napoli, Italy; (G.D.S.); (D.d.P.)
| | - Annalisa Ambrosino
- Department of Experimental Medicine, University of Campania “L.Vanvitelli”, Via De Crecchio, 7, 80138 Naples, Italy; (A.A.); (C.Z.); (A.D.F.); (M.G.)
| | - Gerardo Della Sala
- Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Napoli, Italy; (G.D.S.); (D.d.P.)
| | - Costanza Ragozzino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (E.M.); (C.R.)
- Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Napoli, Italy; (G.D.S.); (D.d.P.)
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Salerno, Italy;
| | - Carla Zannella
- Department of Experimental Medicine, University of Campania “L.Vanvitelli”, Via De Crecchio, 7, 80138 Naples, Italy; (A.A.); (C.Z.); (A.D.F.); (M.G.)
| | - Anna De Filippis
- Department of Experimental Medicine, University of Campania “L.Vanvitelli”, Via De Crecchio, 7, 80138 Naples, Italy; (A.A.); (C.Z.); (A.D.F.); (M.G.)
| | - Donatella de Pascale
- Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Napoli, Italy; (G.D.S.); (D.d.P.)
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania “L.Vanvitelli”, Via De Crecchio, 7, 80138 Naples, Italy; (A.A.); (C.Z.); (A.D.F.); (M.G.)
| | - Chiara Lauritano
- Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Napoli, Italy; (G.D.S.); (D.d.P.)
| |
Collapse
|
37
|
Senko D, Efimova O, Osetrova M, Anikanov N, Boyko M, Sharaev M, Morozova A, Zorkina Y, Kislov M, Kostyuk G, Stekolshchikova E, Khaitovich P. White matter lipidome alterations in the schizophrenia brain. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:123. [PMID: 39725684 DOI: 10.1038/s41537-024-00542-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024]
Abstract
Numerous brain imaging studies have reported white matter alterations in schizophrenia, but the lipidome analysis of the corresponding tissue remains incomplete. In this study, we investigated the lipidome composition of six subcortical white matter regions corresponding to major axonal tracks in both control subjects and schizophrenia patients. All six regions exhibited a consistent pattern of quantitative lipidome alterations in schizophrenia, involving myelin-forming and mitochondria associated lipid classes. While alteration levels of myelin-forming lipids, particularly sphingolipids, aligned with the extent of the myelin changes reported in structural brain imaging studies, a significant decrease of mitochondria in the white matter, indicated by the lipidome alterations, was not previously investigated. To verify this effect, we performed lipidome analysis in a larger set of individuals and in the mitochondria-enriched membrane fraction, as well as directly quantified mitochondrial content. Our results suggest a substantial reduction of the mitochondrial quotient accompanied by the imbalance in myelin lipids in schizophrenia white matter.
Collapse
Affiliation(s)
- Dmitry Senko
- Skolkovo Institute of Science and Technology, Moscow, Russia.
| | - Olga Efimova
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Maria Osetrova
- Skolkovo Institute of Science and Technology, Moscow, Russia
- Mental Health Clinic No.1 Named After N. A. Alexeev of Moscow Healthcare Department, Moscow, Russia
| | | | - Maria Boyko
- Skolkovo Institute of Science and Technology, Moscow, Russia
- BIMAI-lab, Sharjah, UAE
| | - Maksim Sharaev
- Skolkovo Institute of Science and Technology, Moscow, Russia
- Mental Health Clinic No.1 Named After N. A. Alexeev of Moscow Healthcare Department, Moscow, Russia
- BIMAI-lab, Sharjah, UAE
| | - Anna Morozova
- Mental Health Clinic No.1 Named After N. A. Alexeev of Moscow Healthcare Department, Moscow, Russia
- Serbsky National Medical Research Centre of Psychiatry and Narcology, Moscow, Russia
| | - Yana Zorkina
- Mental Health Clinic No.1 Named After N. A. Alexeev of Moscow Healthcare Department, Moscow, Russia
- Serbsky National Medical Research Centre of Psychiatry and Narcology, Moscow, Russia
| | - Maksim Kislov
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Georgiy Kostyuk
- Mental Health Clinic No.1 Named After N. A. Alexeev of Moscow Healthcare Department, Moscow, Russia
- Lomonosov Moscow State University, Moscow, Russia
| | | | | |
Collapse
|
38
|
Sullivan JP, Jones MK. The Multifaceted Impact of Bioactive Lipids on Gut Health and Disease. Int J Mol Sci 2024; 25:13638. [PMID: 39769399 PMCID: PMC11728145 DOI: 10.3390/ijms252413638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Bioactive lipids have a multifaceted role in health and disease and are recognized to play an important part in gut immunity and disease conditions such as inflammatory bowel disease and colon cancer. Advancements in lipidomics, enabled by mass spectrometry and chromatographic techniques, have enhanced our understanding of lipid diversity and functionality. Bioactive lipids, including short-chain fatty acids, saturated fatty acids, omega-3 fatty acids, and sphingolipids, exhibit diverse effects on inflammation and immune regulation. Short-chain fatty acids like butyrate demonstrate anti-inflammatory properties, enhancing regulatory T cell function, gut barrier integrity, and epigenetic regulation, making them promising therapeutic targets for inflammatory bowel disease and colon cancer. Conversely, saturated fatty acids promote inflammation by disrupting gut homeostasis, triggering oxidative stress, and impairing immune regulation. Omega-3 lipids counteract these effects, reducing inflammation and supporting immune balance. Sphingolipids exhibit complex roles, modulating immune cell trafficking and inflammation. They can exert protective effects or exacerbate colitis depending on their source and context. Additionally, eicosanoids can also prevent pathology through prostaglandin defense against damage to epithelial barriers. This review underscores the importance of dietary lipids in shaping gut health and immunity and also highlights the potential use of lipids as therapeutic strategies for managing inflammatory conditions and cancer.
Collapse
Affiliation(s)
| | - Melissa K. Jones
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA;
| |
Collapse
|
39
|
Yan Y, Wang J, Wang Y, Wu W, Chen W. Research on Lipidomic Profiling and Biomarker Identification for Osteonecrosis of the Femoral Head. Biomedicines 2024; 12:2827. [PMID: 39767733 PMCID: PMC11673004 DOI: 10.3390/biomedicines12122827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Objectives: Abnormal lipid metabolism is increasingly recognized as a contributing factor to the development of osteonecrosis of the femoral head (ONFH). This study aimed to explore the lipidomic profiles of ONFH patients, focusing on distinguishing between traumatic ONFH (TONFH) and non-traumatic ONFH (NONFH) subtypes and identifying potential biomarkers for diagnosis and understanding pathogenesis. Methods: Plasma samples were collected from 92 ONFH patients (divided into TONFH and NONFH subtypes) and 33 healthy normal control (NC) participants. Lipidomic profiling was performed using ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Data analysis incorporated a machine learning-based feature selection method, least absolute shrinkage and selection operator (LASSO) regression, to identify significant lipid biomarkers. Results: Distinct lipidomic signatures were observed in both TONFH and NONFH groups compared to the NC group. LASSO regression identified 11 common lipid biomarkers that signify shared metabolic disruptions in both ONFH subtypes, several of which exhibited strong diagnostic performance with areas under the curve (AUCs) > 0.7. Additionally, subtype-specific lipid markers unique to TONFH and NONFH were identified, providing insights into the differential pathophysiological mechanisms underlying these subtypes. Conclusions: This study highlights the importance of lipidomic profiling in understanding ONFH-associated metabolic disorders and demonstrates the utility of machine learning approaches, such as LASSO regression, in high-dimensional data analysis. These findings not only improve disease characterization but also facilitate the discovery of diagnostic and mechanistic biomarkers, paving the way for more personalized therapeutic strategies in ONFH.
Collapse
Affiliation(s)
- Yuzhu Yan
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
- Clinical Laboratory of Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Jihan Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yangyang Wang
- School of Electronics and Information, Northwestern Polytechnical University, Xi’an 710129, China
| | - Wenjing Wu
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Wei Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| |
Collapse
|
40
|
Prakash P, Manchanda P, Paouri E, Bisht K, Sharma K, Rajpoot J, Wendt V, Hossain A, Wijewardhane PR, Randolph CE, Chen Y, Stanko S, Gasmi N, Gjojdeshi A, Card S, Fine J, Jethava KP, Clark MG, Dong B, Ma S, Crockett A, Thayer EA, Nicolas M, Davis R, Hardikar D, Allende D, Prayson RA, Zhang C, Davalos D, Chopra G. Amyloid β Induces Lipid Droplet-Mediated Microglial Dysfunction in Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.04.543525. [PMID: 37333071 PMCID: PMC10274698 DOI: 10.1101/2023.06.04.543525] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Several microglia-expressed genes have emerged as top risk variants for Alzheimer's disease (AD). Impaired microglial phagocytosis is one of the main proposed outcomes by which these AD-risk genes may contribute to neurodegeneration, but the mechanisms translating genetic association to cellular dysfunction remain unknown. Here we show that microglia form lipid droplets (LDs) upon exposure to amyloid-beta (Aβ), and that their LD load increases with proximity to amyloid plaques in brains from human patients and the AD mouse model 5xFAD. LD formation is dependent on age and disease progression and is prominent in the hippocampus in mice and humans. Despite differences in microglial LD load between brain regions and sexes in mice, LD-laden microglia exhibited a deficit in Aβ phagocytosis. Unbiased lipidomic analysis identified a decrease in free fatty acids (FFAs) and a parallel increase in triacylglycerols (TGs) as the key metabolic transition underlying LD formation. DGAT2, a key enzyme for converting FFAs to TGs, promotes microglial LD formation and is increased in 5xFAD and human AD brains. Inhibition or degradation of DGAT2 improved microglial uptake of Aβ and drastically reduced plaque load in 5xFAD mice, respectively. These findings identify a new lipid-mediated mechanism underlying microglial dysfunction that could become a novel therapeutic target for AD.
Collapse
Affiliation(s)
- Priya Prakash
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Palak Manchanda
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Evi Paouri
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Kanchan Bisht
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Kaushik Sharma
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Jitika Rajpoot
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Victoria Wendt
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Ahad Hossain
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | | | | | - Yihao Chen
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Sarah Stanko
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Nadia Gasmi
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Anxhela Gjojdeshi
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Sophie Card
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Jonathan Fine
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Krupal P. Jethava
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Matthew G. Clark
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Bin Dong
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Seohee Ma
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Alexis Crockett
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | | | - Marlo Nicolas
- Department of Anatomic Pathology, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Ryann Davis
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Dhruv Hardikar
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Daniela Allende
- Department of Anatomic Pathology, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Richard A. Prayson
- Department of Anatomic Pathology, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Chi Zhang
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Dimitrios Davalos
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case, Western Reserve University, Cleveland, OH 44106, USA
| | - Gaurav Chopra
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
41
|
Dubbelman AC, van Wieringen B, Roman Arias L, van Vliet M, Vermeulen R, Harms AC, Hankemeier T. Strategies for Using Postcolumn Infusion of Standards to Correct for Matrix Effect in LC-MS-Based Quantitative Metabolomics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:3286-3295. [PMID: 39546343 PMCID: PMC11622366 DOI: 10.1021/jasms.4c00408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
The matrix effect limits the accuracy of quantitation of the otherwise popular metabolomics technique liquid chromatography coupled to mass spectrometry (LC-MS). The gold standard to correct for this phenomenon, whereby compounds coeluting with the analyte of interest cause ionization enhancement or suppression, is to quantify an analyte based on the peak area ratio with an isotopologue added to the sample as an internal standard. However, these stable isotopes are expensive and sometimes unavailable. Here, we describe an alternative approach: matrix effect correction and quantifying analytes using a signal ratio with a postcolumn infused standard (PCIS). Using an LC-MS/MS method for eight endocannabinoids and related metabolites in plasma, we provide strategies to select, optimize, and evaluate PCIS candidates. Based on seven characteristics, the structural endocannabinoid analogue arachidonoyl-2'-fluoroethylamide was selected as a PCIS. Three methods to evaluate the PCIS correction vs no correction showed that PCIS correction improved values for the matrix effect, precision, and dilutional linearity of at least six of the analytes to within acceptable ranges. PCIS correction also resulted in parallelization of calibration curves in plasma and neat solution, for six of eight analytes even with higher accuracy than peak area ratio correction with their stable isotope labeled internal standard, i.e., the gold standard. This enables quantification based on neat solutions, which is a significant step toward absolute quantification. We conclude that PCIS has great, but so far underappreciated, potential in accurate LC-MS quantification.
Collapse
Affiliation(s)
| | - Bo van Wieringen
- Metabolomics
and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Lesley Roman Arias
- Metabolomics
and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Michael van Vliet
- Metabolomics
and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Roel Vermeulen
- Institute
for Risk Assessment Sciences, Utrecht University, 3508 TC Utrecht, The Netherlands
| | - Amy C. Harms
- Metabolomics
and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Thomas Hankemeier
- Metabolomics
and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| |
Collapse
|
42
|
Liu P, Liu Z, Zhou H, Zhu J, Sun Z, Zhang G, Liu Y. Lipidomics in forensic science: a comprehensive review of applications in drugs, alcohol, latent fingermarks, fire debris, and seafood authentication. Mol Omics 2024; 20:618-629. [PMID: 39400253 DOI: 10.1039/d4mo00124a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Forensic science, an interdisciplinary field encompassing the collection, examination, and presentation of evidence in legal proceedings, has recently embraced lipidomics as a valuable tool. Lipidomics, a subfield of metabolomics, specializes in the analysis of lipid structures and functions, offering insights into biological processes that can aid forensic investigations. While not a substitute for DNA analysis in personal identification, lipidomics complements this technique by focusing on small biological molecules, with distinct sample requirements. This review comprehensively explores the current applications of lipidomics in forensic science. The review commences with an introduction to the concept and historical background of lipidomics, subsequently delving into its utilization in diverse areas such as drug analysis, ethyl alcohol and substitute assessment, latent fingermark detection, fire debris analysis, and seafood authentication. By showcasing the various biological materials and methods employed, this review underscores the potential of lipidomics as a powerful adjunct in forensic investigations.
Collapse
Affiliation(s)
- Pingyang Liu
- School of Investigation, People's Public Security University of China, Beijing 100038, China
| | - Zhanfang Liu
- Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China.
| | - Hong Zhou
- Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China.
| | - Jun Zhu
- Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China.
| | - Zhenwen Sun
- Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China.
| | - Guannan Zhang
- Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China.
| | - Yao Liu
- School of Investigation, People's Public Security University of China, Beijing 100038, China
- Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China.
| |
Collapse
|
43
|
Zhang Z, Bao C, Li Z, He C, Jin W, Li C, Chen Y. Integrated omics analysis reveals the alteration of gut microbiota and fecal metabolites in Cervus elaphus kansuensis. Appl Microbiol Biotechnol 2024; 108:125. [PMID: 38229330 DOI: 10.1007/s00253-023-12841-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/05/2023] [Accepted: 10/17/2023] [Indexed: 01/18/2024]
Abstract
The gut microbiota is the largest and most complex microecosystem in animals. It is influenced by the host's dietary habits and living environment, and its composition and diversity play irreplaceable roles in animal nutrient metabolism, immunity, and adaptation to the environment. Although the gut microbiota of red deer has been studied, the composition and function of the gut microbiota in Gansu red deer (Cervus elaphus kansuensis), an endemic subspecies of red deer in China, has not been reported. In this study, the composition and diversity of the gut microbiome and fecal metabolomics of C. elaphus kansuensis were identified and compared for the first time by using 16S rDNA sequencing, metagenomic sequencing, and LC-MS/MS. There were significant differences in gut microbiota structure and diversity between wild and farmed C. elaphus kansuensis. The 16S rDNA sequencing results showed that the genus UCRD-005 was dominant in both captive red deer (CRD) and wild red deer (WRD). Metagenomic sequencing showed similar results to those of 16S rDNA sequencing for gut microbiota in CRD and WRD at the phylum and genus levels. 16S rDNA and metagenomics sequencing data suggested that Bacteroides and Bacillus might serve as marker genera for CRD and WRD, respectively. Fecal metabolomics results showed that 520 metabolites with significant differences were detected between CRD and WRD and most differential metabolites were involved in lipid metabolism. The results suggested that large differences in gut microbiota composition and fecal metabolites between CRD and WRD, indicating that different dietary habits and living environments over time have led to the development of stable gut microbiome characteristics for CRD and WRD to meet their respective survival and reproduction needs. KEY POINTS: • Environment and food affected the gut microbiota and fecal metabolites in red deer • Genera Bacteroides and Bacillus may play important roles in CRD and WRD, respectively • Flavonoids and ascorbic acid in fecal metabolites may influence health of red deer.
Collapse
Affiliation(s)
- Zhenxiang Zhang
- College of Eco-Environmental Engineering, Qinghai University, No. 251 Ningda Road, Xining, 810016, China
- Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Changhong Bao
- College of Eco-Environmental Engineering, Qinghai University, No. 251 Ningda Road, Xining, 810016, China
| | - Zhaonan Li
- College of Eco-Environmental Engineering, Qinghai University, No. 251 Ningda Road, Xining, 810016, China
| | - Caixia He
- College of Eco-Environmental Engineering, Qinghai University, No. 251 Ningda Road, Xining, 810016, China
| | - Wenjie Jin
- College of Eco-Environmental Engineering, Qinghai University, No. 251 Ningda Road, Xining, 810016, China
| | - Changzhong Li
- College of Eco-Environmental Engineering, Qinghai University, No. 251 Ningda Road, Xining, 810016, China.
| | - Yanxia Chen
- College of Eco-Environmental Engineering, Qinghai University, No. 251 Ningda Road, Xining, 810016, China.
| |
Collapse
|
44
|
Yan K, Zhang W, Song H, Xu X. Sphingolipid metabolism and regulated cell death in malignant melanoma. Apoptosis 2024; 29:1860-1878. [PMID: 39068623 DOI: 10.1007/s10495-024-02002-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2024] [Indexed: 07/30/2024]
Abstract
Malignant melanoma (MM) is a highly invasive and therapeutically resistant skin malignancy, posing a significant clinical challenge in its treatment. Programmed cell death plays a crucial role in the occurrence and progression of MM. Sphingolipids (SP), as a class of bioactive lipids, may be associated with many kinds of diseases. SPs regulate various forms of programmed cell death in tumors, including apoptosis, necroptosis, ferroptosis, and more. This review will delve into the mechanisms by which different types of SPs modulate various forms of programmed cell death in MM, such as their regulation of cell membrane permeability and signaling pathways, and how they influence the survival and death fate of MM cells. An in-depth exploration of the role of SPs in programmed cell death in MM aids in unraveling the molecular mechanisms of melanoma development and holds significant importance in developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Kexin Yan
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China
| | - Wei Zhang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China
| | - Hao Song
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China.
| | - Xiulian Xu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China.
| |
Collapse
|
45
|
Hayes CN, Nakahara H, Ono A, Tsuge M, Oka S. From Omics to Multi-Omics: A Review of Advantages and Tradeoffs. Genes (Basel) 2024; 15:1551. [PMID: 39766818 PMCID: PMC11675490 DOI: 10.3390/genes15121551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
Bioinformatics is a rapidly evolving field charged with cataloging, disseminating, and analyzing biological data. Bioinformatics started with genomics, but while genomics focuses more narrowly on the genes comprising a genome, bioinformatics now encompasses a much broader range of omics technologies. Overcoming barriers of scale and effort that plagued earlier sequencing methods, bioinformatics adopted an ambitious strategy involving high-throughput and highly automated assays. However, as the list of omics technologies continues to grow, the field of bioinformatics has changed in two fundamental ways. Despite enormous success in expanding our understanding of the biological world, the failure of bulk methods to account for biologically important variability among cells of the same or different type has led to a major shift toward single-cell and spatially resolved omics methods, which attempt to disentangle the conflicting signals contained in heterogeneous samples by examining individual cells or cell clusters. The second major shift has been the attempt to integrate two or more different classes of omics data in a single multimodal analysis to identify patterns that bridge biological layers. For example, unraveling the cause of disease may reveal a metabolite deficiency caused by the failure of an enzyme to be phosphorylated because a gene is not expressed due to aberrant methylation as a result of a rare germline variant. Conclusions: There is a fine line between superficial understanding and analysis paralysis, but like a detective novel, multi-omics increasingly provides the clues we need, if only we are able to see them.
Collapse
Affiliation(s)
- C. Nelson Hayes
- Department of Gastroenterology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (A.O.); (M.T.); (S.O.)
| | - Hikaru Nakahara
- Department of Clinical and Molecular Genetics, Hiroshima University, Hiroshima 734-8551, Japan;
| | - Atsushi Ono
- Department of Gastroenterology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (A.O.); (M.T.); (S.O.)
| | - Masataka Tsuge
- Department of Gastroenterology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (A.O.); (M.T.); (S.O.)
- Liver Center, Hiroshima University, Hiroshima 734-8551, Japan
| | - Shiro Oka
- Department of Gastroenterology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (A.O.); (M.T.); (S.O.)
| |
Collapse
|
46
|
Wen B, Huang Y, Deng G, Yan Q, Jia L. Gut microbiota analysis and LC-MS-based metabolomics to investigate AMPK/NF-κB regulated by Clostridium butyricum in the treatment of acute pancreatitis. J Transl Med 2024; 22:1072. [PMID: 39604956 PMCID: PMC11600808 DOI: 10.1186/s12967-024-05764-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/14/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Acute pancreatitis (AP) is an inflammatory condition with potentially life-threatening complications. This study investigates the therapeutic potential of Clostridium butyricum for modulating the inflammatory cascade through the AMPK/NF-κB signaling pathway, focusing on inflammation induced by AP. LC-MS analysis of serum samples from AP patients highlighted the regulation of lipid metabolism and inflammation, and found that metabolites involved in the inhibition of NF-κB phosphorylation and the AMPK activation pathway were downregulated. We hypothesized that pre-administration of Clostridium butyricum and its culture supernatant could mitigate AP-induced damage by modulating the AMPK/NF-κB pathway. METHODS Lipopolysaccharide (LPS)-induced cell inflammation models. LPS combined with CAE induced acute pancreatitis in mice. We divided mice into four groups: Con, AP, AP + C.Buty (AP with Clostridium butyricum treatment), and AP + CFS (AP with culture supernatant treatment). Analyses were performed using WB, RT-qPCR, Elisa, flow cytometry, IHC, and HE, respectively. RESULTS Our study shows that CFS can reduce the apoptosis of LPS-induced cellular inflammation and reduce the release of LPS-induced cytoinflammatory factors through the AMPK/NF-κB pathway in vitro. In vivo, Clostridium butyricum and its supernatant significantly reduced inflammatory markers, and corrected histopathological alterations in AP mice. Gut microbiota analysis further supported these results, showing that Clostridium butyricum and its supernatant could restore the balance of intestinal flora disrupted by AP. CONCLUSIONS Mechanistically, our results indicated that the therapeutic effects of Clostridium butyricum are mediated through the activation of AMPK, leading to the inhibition of the NF-κB pathway, thereby reducing the production of pro-inflammatory cytokines. Clostridium butyricum and its culture supernatant exert a protective effect against AP-induced damage by modulating the AMPK/NF-κB signaling pathway. Future studies will further elucidate the molecular mechanisms underlying the beneficial effects of Clostridium butyricum in AP and explore its clinical applicability in human subjects.
Collapse
Affiliation(s)
- Biyan Wen
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510013, China
- Department of Gastroenterology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, 510180, China
| | - Yaoxing Huang
- Department of Gastroenterology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, 510180, China
| | - Guiqing Deng
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510013, China
| | - Qingqing Yan
- Department of Gastroenterology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, 510180, China
| | - Lin Jia
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510013, China.
- Department of Gastroenterology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, 510180, China.
| |
Collapse
|
47
|
Li Y, Peng C, Chi F, Huang Z, Yuan M, Zhou X, Jiang C. The iPhylo suite: an interactive platform for building and annotating biological and chemical taxonomic trees. Brief Bioinform 2024; 26:bbae679. [PMID: 39737565 DOI: 10.1093/bib/bbae679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/06/2024] [Accepted: 12/13/2024] [Indexed: 01/01/2025] Open
Abstract
Accurate and rapid taxonomic classifications are essential for systematically exploring organisms and metabolites in diverse environments. Many tools have been developed for biological taxonomic trees, but limitations apply, and a streamlined method for constructing chemical taxonomic trees is notably absent. We present the iPhylo suite (https://www.iphylo.net/), a comprehensive, automated, and interactive platform for biological and chemical taxonomic analysis. The iPhylo suite features web-based modules for the interactive construction and annotation of taxonomic trees and a stand-alone command-line interface (CLI) for local operation or deployment on high-performance computing (HPC) clusters. iPhylo supports National Center for Biotechnology Information (NCBI) taxonomy for biologicals and ChemOnt and NPClassifier for chemical classifications. The iPhylo visualization module, fully implemented in R, allows users to save progress locally and customize the underlying R code. Finally, the CLI module facilitates analysis across all hierarchical relational databases. We showcase the iPhylo suite's capabilities for visualizing environmental microbiomes, analyzing gut microbial metabolite synthesis preferences, and discovering novel correlations between microbiome and metabolome in humans and environment. Overall, the iPhylo suite is distinguished by its unified and interactive framework for in-depth taxonomic and integrative analyses of biological and chemical features and beyond.
Collapse
Affiliation(s)
- Yueer Li
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 866 Yuhangtang Road, Xihu District, Hangzhou, Zhejiang 310030, China
| | - Chen Peng
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 866 Yuhangtang Road, Xihu District, Hangzhou, Zhejiang 310030, China
| | - Fei Chi
- Innovation Center of Yangtze River Delta, Zhejiang University, 828 Zhongxing Road, Jiashan County, Jiaxing, Zhejiang 314103, China
| | - Zinuo Huang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 866 Yuhangtang Road, Xihu District, Hangzhou, Zhejiang 310030, China
| | - Mengyi Yuan
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 866 Yuhangtang Road, Xihu District, Hangzhou, Zhejiang 310030, China
| | - Xin Zhou
- Department of Genetics, Stanford University, Stanford, 291 Campus Drive, Santa Clara County, CA 94305, United States
| | - Chao Jiang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 866 Yuhangtang Road, Xihu District, Hangzhou, Zhejiang 310030, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang 310009, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, 8 Nanbin East Road, Shangyu District, Shaoxing, Zhejiang 321000, China
| |
Collapse
|
48
|
Ventura G, Bianco M, Calvano CD, Losito I, Cataldi TRI. Tandem Mass Spectrometry in Untargeted Lipidomics: A Case Study of Peripheral Blood Mononuclear Cells. Int J Mol Sci 2024; 25:12077. [PMID: 39596146 PMCID: PMC11593930 DOI: 10.3390/ijms252212077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Peripheral blood mononuclear cells (PBMCs), including lymphocytes, are important components of the human immune system. These cells contain a diverse array of lipids, primarily glycerophospholipids (GPs) and sphingolipids (SPs), which play essential roles in cellular structure, signaling, and programmed cell death. This study presents a detailed analysis of GP and SP profiles in human PBMC samples using tandem mass spectrometry (MS/MS). Hydrophilic interaction liquid chromatography (HILIC) and electrospray ionization (ESI) coupled with linear ion-trap MS/MS were employed to investigate the diagnostic fragmentation patterns that aided in determining regiochemistry in complex lipid extracts. Specifically, the study explored the fragmentation patterns of various lipid species, including phosphatidylcholines (PCs), phosphatidylethanolamines (PEs), their plasmalogen and lyso forms, phosphatidylserines (PSs), phosphatidylinositols (PIs), phosphatidylglycerols (PGs), sphingomyelins (SMs), and dihexosylceramides (Hex2Cer). Our comprehensive analysis led to the characterization of over 200 distinct lipid species, significantly expanding our understanding of PBMC lipidome complexity. A freely available spreadsheet tool for simulating MS/MS spectra of GPs is provided, enhancing the accessibility and reproducibility of this research. This study advances our knowledge of PBMC lipidomes and establishes a robust analytical framework for future investigations in lipidomics.
Collapse
Affiliation(s)
- Giovanni Ventura
- Department of Chemistry, and Interdepartmental Research Center SMART, University of Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy; (C.D.C.); (I.L.); (T.R.I.C.)
| | - Mariachiara Bianco
- Department of Chemistry, and Interdepartmental Research Center SMART, University of Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy; (C.D.C.); (I.L.); (T.R.I.C.)
| | | | | | | |
Collapse
|
49
|
Ajose DJ, Adekanmbi AO, Kamaruzzaman NF, Ateba CN, Saeed SI. Combating antibiotic resistance in a one health context: a plethora of frontiers. ONE HEALTH OUTLOOK 2024; 6:19. [PMID: 39487542 PMCID: PMC11531134 DOI: 10.1186/s42522-024-00115-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 08/20/2024] [Indexed: 11/04/2024]
Abstract
One of the most significant medical advancements of the 20th century was the discovery of antibiotics, which continue to play a vital tool in the treatment and prevention of diseases in humans and animals. However, the imprudent use of antibiotics in all fields of One-Health and concerns about antibiotic resistance among bacterial pathogens have raised interest in antibiotic use restrictions on a global scale. Despite the failure of conventional antimicrobial agents, only about 15 new antibiotics have been introduced clinically since year 2000 to date. Moreover, there has been reports of resistance to some of these new antibiotics. This has necessitated a need to search for alternative strategies to combat antimicrobial resistant pathogens. Thus, this review compiles and evaluates the approaches-natural compounds, phage treatment, and nanomaterials-that are being used and/or suggested as the potential substitutes for conventional antibiotics.
Collapse
Affiliation(s)
- Daniel Jesuwenu Ajose
- Antimicrobial Resistance and Phage Biocontrol Research Group (AREPHABREG), Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Private Mail Bag X2046, Mmabatho, 2735, South Africa.
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa.
| | - Abimbola Olumide Adekanmbi
- Environmental Microbiology and Biotechnology Laboratory, Department of Microbiology, University of Ibadan, Ibadan, Nigeria
| | - Nor Fadhilah Kamaruzzaman
- Nanotechnology Research Group Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Kota Bharu, Kelantan, 16100, Malaysia
| | - Collins Njie Ateba
- Antimicrobial Resistance and Phage Biocontrol Research Group (AREPHABREG), Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Private Mail Bag X2046, Mmabatho, 2735, South Africa
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Shamsaldeen Ibrahim Saeed
- College of Veterinary Medicine, University of Juba, P.O. Box 82, Juba, Central Equatoria, South Sudan.
- Department of microbiology, Faculty of Veterinary Science, University of Nyala, P.O. Box 155, Nyala, Sudan.
- Nanotechnology Research Group Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Kota Bharu, Kelantan, 16100, Malaysia.
| |
Collapse
|
50
|
Elshoura Y, Herz M, Gad MZ, Hanafi R. Nitro fatty acids: A comprehensive review on analytical methods and levels in health and disease. Anal Biochem 2024; 694:115624. [PMID: 39029643 DOI: 10.1016/j.ab.2024.115624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/07/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024]
Abstract
Nitro fatty acids (NO2-FAs) are biologically active compounds produced from the reaction of unsaturated fatty acids with reactive nitrogen species (RNS). Due to their electrophilic nature, these endogenously produced metabolites can react with nucleophilic targets, producing a spectrum of modulatory and protective effects. Determination of NO2-FAs in biological samples is challenging due to their low nanomolar to picomolar endogenous concentrations, indistinct metabolism, and distribution in many tissues and biofluids. Several attempts have been made to develop precise, standardized, and efficient methodologies for assessing physiological and pathophysiological processes to overcome the difficulties associated with their measurement. This review discusses those approaches utilizing liquid chromatography tandem mass spectrometry (LC‒MS/MS) and gas chromatography tandem mass spectrometry (GC‒MS/MS) for the quantification of NO2-FAs, in addition to a summary of their laboratory synthesis and extraction from biological samples. Clinical associations with different pathological conditions, including hyperlipidaemia, cardiac ischemia and herpes simplex type 2 viral infection (HSV-2), are also discussed.
Collapse
Affiliation(s)
- Yasmin Elshoura
- Department of Pharmaceutical Chemistry, German University in Cairo, Egypt
| | - Magy Herz
- Department of Pharmaceutical Chemistry, German University in Cairo, Egypt.
| | - Mohamed Z Gad
- Department of Biochemistry, German University in Cairo, Egypt
| | - Rasha Hanafi
- Department of Pharmaceutical Chemistry, German University in Cairo, Egypt
| |
Collapse
|