1
|
Kotsifa E, Saffioti F, Mavroeidis VK. Cholangiocarcinoma: The era of liquid biopsy. World J Gastroenterol 2025; 31:104170. [PMID: 40124277 PMCID: PMC11924015 DOI: 10.3748/wjg.v31.i11.104170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/28/2025] [Accepted: 02/14/2025] [Indexed: 03/13/2025] Open
Abstract
Cholangiocarcinoma (CCA) is a highly aggressive and heterogeneous malignancy arising from the epithelial cells of the biliary tract. The limitations of the current methods in the diagnosis of CCA highlight the urgent need for new, accurate tools for early cancer detection, better prognostication and patient monitoring. Liquid biopsy (LB) is a modern and non-invasive technique comprising a diverse group of methodologies aiming to detect tumour biomarkers from body fluids. These biomarkers include circulating tumour cells, cell-free DNA, circulating tumour DNA, RNA and extracellular vesicles. The aim of this review is to explore the current and potential future applications of LB in CCA management, with a focus on diagnosis, prognostication and monitoring. We examine both its significant potential and the inevitable limitations associated with this technology. We conclude that LB holds considerable promise, but further research is necessary to fully integrate it into precision oncology for CCA.
Collapse
Affiliation(s)
- Evgenia Kotsifa
- The Second Propaedeutic Department of Surgery, National and Kapodistrian University of Athens, General Hospital of Athens “Laiko”, Athens 11527, Greece
| | - Francesca Saffioti
- Department of Gastroenterology and Hepatology, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, United Kingdom
- University College London Institute for Liver and Digestive Health and Sheila Sherlock Liver Unit, Royal Free Hospital and University College London, London NW3 2QG, United Kingdom
- Division of Clinical and Molecular Hepatology, Department of Clinical and Experimental Medicine, University Hospital of Messina, Messina 98124, Italy
| | - Vasileios K Mavroeidis
- Department of Transplant Surgery, North Bristol NHS Trust, Southmead Hospital, Bristol BS10 5NB, United Kingdom
- Department of Gastrointestinal Surgery, North Bristol NHS Trust, Southmead Hospital, Bristol BS10 5NB, United Kingdom
- Department of HPB Surgery, Bristol Royal Infirmary, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol BS2 8HW, United Kingdom
| |
Collapse
|
2
|
Parisi FM, Lentini M, Chiesa-Estomba CM, Mayo-Yanez M, Leichen JR, White M, Giurdanella G, Cocuzza S, Bianco MR, Fakhry N, Maniaci A. Liquid Biopsy in HPV-Associated Head and Neck Cancer: A Comprehensive Review. Cancers (Basel) 2025; 17:977. [PMID: 40149311 PMCID: PMC11940600 DOI: 10.3390/cancers17060977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/25/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
Objectives: Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer globally, with HPV-positive cases emerging as a distinct subtype with unique clinical and molecular characteristics. Current diagnostic methods, including tissue biopsy and imaging, face limitations in terms of invasiveness, static disease assessment, and difficulty in distinguishing recurrence from treatment-related changes. This review aimed to assess the potential of liquid biopsy as a minimally invasive tool for the diagnosis, treatment monitoring, and surveillance of HPV-associated HNSCC. Methods: This systematic review analyzed literature from PubMed/MEDLINE, Embase, and Web of Science, focusing on original research and reviews related to liquid biopsy applications in HPV-positive HNSCC. Included studies were evaluated based on the robustness of the study design, clinical relevance, and analytical performance of liquid biopsy technologies. Biomarker types, detection methods, and implementation strategies were assessed to identify advancements and challenges in this field. Results: Liquid biopsy technologies, including circulating HPV DNA, ctDNA, and extracellular vesicles, demonstrated high sensitivity (90-95%) and specificity (>98%) in detecting HPV-positive HNSCC. These methods enabled real-time monitoring of tumor dynamics, early detection of recurrence, and insights into treatment resistance. Longitudinal analysis revealed that biomarker clearance during treatment correlates strongly with patient outcomes. Conclusions: Liquid biopsy is a transformative diagnostic and monitoring tool for HPV-associated HNSCC, offering minimally invasive, real-time insights into tumor biology. While challenges remain in standardization and clinical implementation, ongoing research and technological innovations hold promise for integrating liquid biopsy into personalized cancer care, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Federica Maria Parisi
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, ENT Section, University of Catania, 95125 Catania, Italy; (F.M.P.); (S.C.)
| | - Mario Lentini
- Department of Otolaryngology, ASP 7, Ragusa Hospital, 97100 Ragusa, Italy
| | - Carlos M. Chiesa-Estomba
- Department of Otorhinolaryngology-Head and Neck Surgery, Hospital Universitario Donostia, 20001 San Sebastian, Spain
| | - Miguel Mayo-Yanez
- Otorhinolaryngology-Head and Neck Surgery Department, Complexo Hospitalario Universitario A Coruña (CHUAC), 15006 La Coruña, Spain;
- Otorhinolaryngology-Head and Neck Surgery Department, Hospital San Rafael (HSR) de A Coruña, 15006 La Coruña, Spain
- Otorhinolaryngology-Head and Neck Surgery Research Group, Institute of Biomedical Research of A Coruña, (INIBIC), Complexo Hospitalario Universitario de A Corñna (CHUAC), Universidade da Corñna (UDC), 15494 La Coruña, Spain
| | - Jerome R. Leichen
- Department of Human Anatomy and Experimental Oncology, UMONS Research Institute for Health Sciences and Technology, University of Mons (UMons), 7011 Mons, Belgium;
| | - Matthew White
- Division of Otorhinolaryngology, Head and Neck Surgery, University of Cape Town, Cape Town 8001, South Africa;
| | - Giovanni Giurdanella
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy;
| | - Salvatore Cocuzza
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, ENT Section, University of Catania, 95125 Catania, Italy; (F.M.P.); (S.C.)
| | - Maria Rita Bianco
- Otolaryngology-Department of Health Science, University of Catanzaro, 88100 Catanzaro, Italy;
| | - Nicolas Fakhry
- Department of Oto-Rhino-Laryngology Head and Neck Surgery, La Conception University Hospital, AP-HM, Aix Marseille Université, 13006 Marseille, France;
| | - Antonino Maniaci
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy;
| |
Collapse
|
3
|
Sabit H, Attia MG, Mohamed N, Taha PS, Ahmed N, Osama S, Abdel-Ghany S. Beyond traditional biopsies: the emerging role of ctDNA and MRD on breast cancer diagnosis and treatment. Discov Oncol 2025; 16:271. [PMID: 40050490 PMCID: PMC11885725 DOI: 10.1007/s12672-025-01940-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 02/05/2025] [Indexed: 03/09/2025] Open
Abstract
Breast cancer management has traditionally relied on tissue biopsies and imaging, which offer limited insights into the disease. However, the discovery of circulating tumor DNA (ctDNA) and minimal residual disease (MRD) detection has revolutionized our approach to breast cancer. ctDNA, which is fragmented tumor DNA found in the bloodstream, provides a minimally invasive way to understand the tumor's genomic landscape, revealing heterogeneity and critical mutations that biopsies may miss. MRD, which indicates cancer cells that remain after treatment, can now be detected using ctDNA and other advanced methods, improving our ability to predict disease recurrence. This allows for personalized adjuvant therapies based on individual MRD levels, avoiding unnecessary treatments for patients with low MRD. This review discusses how ctDNA and MRD represent a paradigm shift towards personalized, genomically guided cancer care, which has the potential to significantly improve patient outcomes in breast cancer.
Collapse
Affiliation(s)
- Hussein Sabit
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, P. O. Box 77, Giza, Egypt.
| | - Manar G Attia
- Department of Pharmaceutical Biotechnology, College of Biotechnology, Misr University for Science and Technology, P. O. Box 77, Giza, Egypt
| | - Nouran Mohamed
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, P. O. Box 77, Giza, Egypt
| | - Pancé S Taha
- Department of Pharmaceutical Biotechnology, College of Biotechnology, Misr University for Science and Technology, P. O. Box 77, Giza, Egypt
| | - Nehal Ahmed
- Department of Agriculture Biotechnology, College of Biotechnology, Misr University for Science and Technology, P. O. Box 77, Giza, Egypt
| | - Salma Osama
- Department of Agriculture Biotechnology, College of Biotechnology, Misr University for Science and Technology, P. O. Box 77, Giza, Egypt
| | - Shaimaa Abdel-Ghany
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, P. O. Box 77, Giza, Egypt
| |
Collapse
|
4
|
Thomas J, Mazzara E, Guller M, Landsberger H, Tham T, Cooper D, Pereira L, Kamdar D, Frank D, Miles B, Mandal R. Methodology of cfHPV-DNA Detection in Head and Neck Cancer: A Systematic Review and Meta-analysis. Otolaryngol Head Neck Surg 2025; 172:798-810. [PMID: 39624913 DOI: 10.1002/ohn.1056] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/03/2024] [Accepted: 11/01/2024] [Indexed: 02/22/2025]
Abstract
OBJECTIVE We aim to compare the diagnostic accuracy of the different methodologies used in the detection of cell-free human papillomavirus (HPV) DNA in HPV-associated head and neck squamous cell carcinoma detection using bivariate analysis methods. DATA SOURCES Pubmed, Embase, and Scopus were queried using a broad search strategy to search for relevant studies. REVIEW METHODS Test characteristics were extracted from 33 studies following literature screening, and underwent analyses utilizing a bivariate approach. Summary statistics were identified for each type of methodology, and forest plots and summary receiver operating characteristic curves were constructed. Bias was estimated using Deek's Funnel Plot and the QUADAS-2 tool. RESULTS In terms of diagnostic accuracy, digital droplet polymerase chain reaction (ddPCR) based testing exhibited the highest diagnostics odds ratio at 138 (59.5, 318), followed closely by next-generation sequencing (NGS) at 120 (39.7, 362), then by polymerase chain reaction (PCR) at 31.4 (14.4, 68.6), and quantitative PCR at 8.74 (4.63, 16.5). CONCLUSION NGS and ddPCR are comparable in overall diagnostic accuracy, bringing into question their relative roles in diagnosis and screening. Cost-effective ddPCR assays may serve as useful diagnostic and screening tests in the clinic with their low false positive rates and high sensitivity. However, NGS assays also offer high sensitivity and companion metrics, suggesting they may have a more precise role in disease monitoring. Importantly, assay development and benchmarking need further standardization to improve comparison between assays. Finally, saliva-based testing needs to be further investigated using NGS and ddPCR to further understand its limitations in disease detection and monitoring.
Collapse
Affiliation(s)
- Jerin Thomas
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
- Department of Otolaryngology-Head and Neck Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Eden Mazzara
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
- Department of Otolaryngology-Head and Neck Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Meytal Guller
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
- Department of Otolaryngology-Head and Neck Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Hannah Landsberger
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
- Department of Otolaryngology-Head and Neck Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Tristan Tham
- Department of Otolaryngology-Head and Neck Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Dylan Cooper
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
- Department of Otolaryngology-Head and Neck Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Lucio Pereira
- Department of Otolaryngology-Head and Neck Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Dev Kamdar
- Department of Otolaryngology-Head and Neck Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Douglas Frank
- Department of Otolaryngology-Head and Neck Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Brett Miles
- Department of Otolaryngology-Head and Neck Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Rajarsi Mandal
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
- Department of Otolaryngology-Head and Neck Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| |
Collapse
|
5
|
Saini A, Dilbaghi N, Yadav N. CRISPR integrated biosensors: A new paradigm for cancer detection. Clin Chim Acta 2025; 569:120179. [PMID: 39894193 DOI: 10.1016/j.cca.2025.120179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/29/2025] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
Cancer remains one of the leading causes of morbidity and mortality globally, necessitating need for advancements of technologies for early therapeutics. Conventional detection methodologies often lag behind in terms of sensitivity, specificity, and cost-effectiveness, leading to delayed diagnosis and inadequate treatment. The need of advanced diagnostic techniques has considerably increased and led to the development of biosensors. Biosensing technologies offer several advantages over conventional methods hence, overcome limitations and improve diagnostic accuracy. Biosensors, particularly CRISPR-Cas based biosensors have emerged as a revolutionary technology for oncology diagnostics due to their high precision and adaptability. CRISPR-based biosensors provide remarkable precision, sensitivity, multiplexing capabilities, specificity, and rapidness for developing a cost-effective and portable point of care diagnostic device for cancer detection. In this review, we have discussed cancer pathogenicity, assessed the traditional detection techniques, and explored the advancements and advantages of biosensors, particularly CRISPR-based biosensors, in the detection of some major cancer types, namely lung, liver, colorectal, prostate, and cervical cancers. CRISPR-based biosensors represent a significant potential in cancer diagnostics, offering precise, cost-effective, and rapid detection of cancer biomarkers. The integration of CRISPR technology with biosensors holds substantial promise for enhancing early detection and improving patient outcomes in cancer diagnostics.
Collapse
Affiliation(s)
- Arzoo Saini
- Department of Biochemistry, School of Interdisciplinary & Applied Sciences, Central University of Haryana, Jant-Pali, Mahendergarh-123031, India
| | - Neeraj Dilbaghi
- Department of Biotechnology, Guru Jambheshwar University of Science & Technology, Hisar-125001, India
| | - Neelam Yadav
- Department of Biochemistry, School of Interdisciplinary & Applied Sciences, Central University of Haryana, Jant-Pali, Mahendergarh-123031, India.
| |
Collapse
|
6
|
Huang XY, Chen SX, Wang ZY, Lu YS, Liu CT, Chen SZ. PIWI-interacting RNA biomarkers in gastrointestinal disease. Clin Chim Acta 2025; 569:120182. [PMID: 39920958 DOI: 10.1016/j.cca.2025.120182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/31/2025] [Accepted: 02/02/2025] [Indexed: 02/10/2025]
Abstract
Detection and diagnosis of neoplastic and inflammatory gastrointestinal (GI) diseases are typically based on endoscopic and pathologic examination. In GI neoplastic diseases, diagnosis can be delayed due to the expense and invasive nature of this approach. Recently, PIWI-interacting RNAs (piRNAs), a group of small non-coding RNA molecules containing 24-31 nucleotides, have been thought to serve as biomarkers in many disease processes. For example, piRNAs are differentially expressed in GI cancer but their biologic role remains unclear. Using next-generation sequencing and microarray analyses, researchers have suggested that monitoring piRNAs could facilitate diagnosis and prognosis in GI disease. Herein, we reviewed the use of piRNAs in neoplastic, inflammatory, functional, and other diseases of the digestive system, which could shed new light on cancer screening, early detection, and personalized treatment.
Collapse
Affiliation(s)
- Xin-Yi Huang
- Department of Gastrointestinal Endoscopy, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China.
| | - Shu-Xian Chen
- Department of Gastrointestinal Endoscopy, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China.
| | - Zhen-Yu Wang
- Department of Gastrointestinal Endoscopy, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China.
| | - Yong-Sheng Lu
- Department of Gastrointestinal Endoscopy, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China.
| | - Can-Tong Liu
- Department of Clinical Laboratory Medicine, Esophageal Cancer Prevention and Control Research Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China.
| | - Su-Zuan Chen
- Department of Gastrointestinal Endoscopy, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China.
| |
Collapse
|
7
|
Lawal AO, Ogunniyi TJ, Oludele OI, Olorunfemi OA, Okesanya OJ, Ogaya JB, Manirambona E, Ahmed MM, Lucero-Prisno DE. Innovative laboratory techniques shaping cancer diagnosis and treatment in developing countries. Discov Oncol 2025; 16:137. [PMID: 39921787 PMCID: PMC11807038 DOI: 10.1007/s12672-025-01877-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 02/03/2025] [Indexed: 02/10/2025] Open
Abstract
Cancer is a major global health challenge, with approximately 19.3 million new cases and 10 million deaths estimated by 2020. Laboratory advancements in cancer detection have transformed diagnostic capabilities, particularly through the use of biomarkers that play crucial roles in risk assessment, therapy selection, and disease monitoring. Tumor histology, single-cell technology, flow cytometry, molecular imaging, liquid biopsy, immunoassays, and molecular diagnostics have emerged as pivotal tools for cancer detection. The integration of artificial intelligence, particularly deep learning and convolutional neural networks, has enhanced the diagnostic accuracy and data analysis capabilities. However, developing countries face significant challenges including financial constraints, inadequate healthcare infrastructure, and limited access to advanced diagnostic technologies. The impact of COVID-19 has further complicated cancer management in resource-limited settings. Future research should focus on precision medicine and early cancer diagnosis through sophisticated laboratory techniques to improve prognosis and health outcomes. This review examines the evolving landscape of cancer detection, focusing on laboratory research breakthroughs and limitations in developing countries, while providing recommendations for advancing tumor diagnostics in resource-constrained environments.
Collapse
Affiliation(s)
- Azeez Okikiola Lawal
- Department of Medical Laboratory Science, Kwara State University, Malete, Nigeria
| | | | | | | | - Olalekan John Okesanya
- Department of Public Health and Maritime Transport, University of Thessaly, Volos, Greece
| | - Jerico Bautista Ogaya
- Department of Medical Technology, Institute of Health Sciences and Nursing, Far Eastern University, Manila, Philippines
| | | | | | - Don Eliseo Lucero-Prisno
- Department of Global Health and Development, London School of Hygiene and Tropical Medicine, London, UK
- Research and Innovation Office, Southern Leyte State University, Leyte, Philippines
- Research and Development Office, Biliran Province State University, Biliran, Philippines
| |
Collapse
|
8
|
Metzenmacher M, Zaun G, Trajkovic‐Arsic M, Cheung P, Reissig TM, Schürmann H, von Neuhoff N, O'Kane G, Ramotar S, Dodd A, Gallinger S, Muckenhuber A, Knox JJ, Kunzmann V, Horn PA, Hoheisel JD, Siveke JT, Lueong SS. Minimally invasive determination of pancreatic ductal adenocarcinoma (PDAC) subtype by means of circulating cell-free RNA. Mol Oncol 2025; 19:357-376. [PMID: 39478658 PMCID: PMC11792997 DOI: 10.1002/1878-0261.13747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/13/2024] [Accepted: 09/26/2024] [Indexed: 02/05/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) comprises two clinically relevant molecular subtypes that are currently determined using tissue biopsies, which are spatially biased and highly invasive. We used whole transcriptome sequencing of 10 plasma samples with tumor-informed subtypes, complemented by proteomic analysis for minimally invasive identification of PDAC subtype markers. Data were validated in independent large cohorts and correlated with treatment response and patient outcome. Differential transcript abundance analyses revealed 32 subtype-specific, protein-coding cell-free RNA (cfRNA) transcripts. The subtype specificity of these transcripts was validated in two independent tissue cohorts comprising 195 and 250 cases, respectively. Three disease-relevant cfRNA-defined subtype markers (DEGS1, KDELC1, and RPL23AP7) that consistently associated with basal-like tumors across all cohorts were identified. In both tumor and liquid biopsies, the overexpression of these markers correlated with poor survival. Moreover, elevated levels of the identified markers were linked to a poor response to systemic therapy and early relapse in resected patients. Our data indicate clinical applicability of cfRNA markers in determining tumor subtypes and monitoring disease recurrence.
Collapse
Affiliation(s)
- Martin Metzenmacher
- Department of Medical Oncology, West German Cancer CenterUniversity Hospital EssenGermany
| | - Gregor Zaun
- Department of Medical Oncology, West German Cancer CenterUniversity Hospital EssenGermany
| | - Marija Trajkovic‐Arsic
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between German Cabcer Research Center (DKFZ) and University Hospital EssenGermany
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital EssenUniversity of Duisburg‐EssenEssenGermany
| | - Phyllis Cheung
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between German Cabcer Research Center (DKFZ) and University Hospital EssenGermany
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital EssenUniversity of Duisburg‐EssenEssenGermany
| | - Timm M. Reissig
- Department of Medical Oncology, West German Cancer CenterUniversity Hospital EssenGermany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between German Cabcer Research Center (DKFZ) and University Hospital EssenGermany
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital EssenUniversity of Duisburg‐EssenEssenGermany
| | - Hendrik Schürmann
- Department of Medical Oncology, West German Cancer CenterUniversity Hospital EssenGermany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between German Cabcer Research Center (DKFZ) and University Hospital EssenGermany
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital EssenUniversity of Duisburg‐EssenEssenGermany
| | - Nils von Neuhoff
- Department of Pediatric Hematology and Oncology, Department for Pediatrics IIIUniversity Hospital of EssenGermany
| | - Grainne O'Kane
- PanCuRx Translational Research InitiativeOntario Institute for Cancer ResearchTorontoCanada
- Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Cancer CentreUniversity Health NetworkTorontoCanada
| | - Stephanie Ramotar
- PanCuRx Translational Research InitiativeOntario Institute for Cancer ResearchTorontoCanada
- Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Cancer CentreUniversity Health NetworkTorontoCanada
| | - Anna Dodd
- PanCuRx Translational Research InitiativeOntario Institute for Cancer ResearchTorontoCanada
- Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Cancer CentreUniversity Health NetworkTorontoCanada
| | - Steven Gallinger
- PanCuRx Translational Research InitiativeOntario Institute for Cancer ResearchTorontoCanada
- Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Cancer CentreUniversity Health NetworkTorontoCanada
| | - Alexander Muckenhuber
- Institute of PathologyTechnical University of MunichGermany
- German Cancer Consortium (DKTK), Partner Site MunichGermany
| | - Jennifer J. Knox
- PanCuRx Translational Research InitiativeOntario Institute for Cancer ResearchTorontoCanada
- Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Cancer CentreUniversity Health NetworkTorontoCanada
| | - Volker Kunzmann
- Department of Internal Medicine II, Medical Oncology, Comprehensive Cancer Center Mainfranken WürzburgUniversity Hospital WürzburgGermany
| | - Peter A. Horn
- Institute for Transfusion MedicineUniversity Hospital of EssenGermany
| | - Jörg D. Hoheisel
- Division of Functional Genome AnalysisGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Jens T. Siveke
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between German Cabcer Research Center (DKFZ) and University Hospital EssenGermany
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital EssenUniversity of Duisburg‐EssenEssenGermany
| | - Smiths S. Lueong
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between German Cabcer Research Center (DKFZ) and University Hospital EssenGermany
- Bridge Institute of Experimental Tumor Therapy (BIT) and Division of Solid Tumor Translational Oncology (DKTK), West German Cancer Center, University Hospital EssenUniversity of Duisburg‐EssenEssenGermany
| |
Collapse
|
9
|
Yue C, Zhang Q, Sun F, Pan Q. Global, regional and national burden of neuroblastoma and other peripheral nervous system tumors, 1990 to 2021 and predictions to 2035: visualizing epidemiological characteristics based on GBD 2021. Neoplasia 2025; 60:101122. [PMID: 39855015 PMCID: PMC11795104 DOI: 10.1016/j.neo.2025.101122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/04/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND Neuroblastoma (NB) is the most common extracranial malignant solid tumor in children, accounting for >15 % of cancer-related deaths in children. We analyzed the epidemiological statistical indicators of neuroblastoma and other peripheral nervous system tumors patients from 1990 to 2021 in Global Burden of Disease (GBD) 2021 database, aiming to provide valuable insights for public health interventions and clinical practices. METHODS Based on the GBD 2021 database, this study analyzed the incidence, mortality, prevalence, and Disability-Adjusted Life-Years (DALYs) of neuroblastoma and other peripheral nervous system tumors from 1990 to 2021, stratified by sociodemographic development index (SDI) and geographic regions. Cross-country inequalities analysis was conducted to quantify the SDI-related inequality of disease burden across countries. In addition, the average annual percentage change (AAPC) and Age-Period-Cohort (APC) model were used to evaluate the trend of disease burden, while the global burden of disease to 2035 was predicted by Bayesian Age-Period-Cohort (BAPC) model. FINDINGS This study reported the disease burden of neuroblastoma and other peripheral nervous system tumors in GBD 2021 database for the first time. Globally, the incidence and mortality of neuroblastoma have increased year by year from 1990 to 2021, especially in regions with low SDI, such as South Asia and sub-Saharan Africa, where the burden of disease has increased significantly. Regions with high SDI, such as North America and Western Europe, have seen a reduction in disease burden due to higher levels of medical care and earlier diagnosis. The age distribution shows that children under 5 years of age are mainly affected, especially in low- and middle-income areas. In addition, the incidence is slightly higher in men than in women. The BAPC model predicts that the global incidence, mortality, and DALYs of neuroblastoma will continue to increase until 2035. INTERPRETATION Significant regional and population variation in neuroblastoma and other peripheral nervous system tumors worldwide, with a particularly high disease burden in low SDI areas with limited medical resources. This trend highlights the urgent need for global public health interventions and resource allocation, particularly in low-income countries. Future research should focus on improving early diagnosis, risk stratification and target therapy in order to reduce the global burden of disease and improve patients' prognosis. FUNDING This study was supported by National Natural Science Foundation of China (No. 82293662, No 82172357 and No 81930066), Key project of Shanghai "Science and Technology Innovation Action Plan (22JC1402304) and Research fund of Shanghai Municipal Health Bureau (No. 2019cxjq03).
Collapse
Affiliation(s)
- Chaoyan Yue
- Clinical Laboratory, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Qi Zhang
- Department of Clinical Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, PR China
| | - Fenyong Sun
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, School of Medicine, School of Chemical Science and Engineering, Tongji University, Shanghai, 200072, China.
| | - Qiuhui Pan
- Department of Clinical Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, PR China; Faculty of Medical Laboratory Science, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai 200127, PR China; Sanya Women and Children's Hospital Managed by Shanghai Children's Medical Center, Sanya 572000, PR China.
| |
Collapse
|
10
|
Zhang J, Li Y, Huang W, Sun G, Ren H, Tang M. An ultrasensitive DNA-enhanced amplification method for detecting cfDNA drug-resistant mutations in non-small cell lung cancer with selective FEN-assisted degradation of dominant somatic fragments. Clin Chem Lab Med 2025; 63:97-109. [PMID: 39089988 DOI: 10.1515/cclm-2024-0614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024]
Abstract
OBJECTIVES Blood cell-free DNA (cfDNA) can be a new reliable tool for detecting epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer (NSCLC) patients. However, the currently reported cfDNA assays have a limited role in detecting drug-resistant mutations due to their deficiencies in sensitivity, stability, or mutation detection rate. METHODS We developed an Archaeoglobus fulgidus-derived flap endonuclease (Afu FEN)-based DNA-enhanced amplification system of mutated cfDNA by designing a pair of hairpin probes to anneal with wild-type cfDNA to form two 5'-flaps, allowing for the specific cleavage of wild-type cfDNA by Afu FEN. When the dominant wild-type somatic cfDNA fragments were cleaved by structure-recognition-specific Afu FEN, the proportion of mutated cfDNA in the reaction system was greatly enriched. As the amount of mutated cfDNA in the system was further increased by PCR amplification, the mutation status could be easily detected through first-generation sequencing. RESULTS In a mixture of synthetic wild-type and T790M EGFR DNA fragments, our new assay still could detect T790M mutation at the fg level with remarkably high sensitivity. We also tested its performance in detecting low variant allele frequency (VAF) mutations in clinical samples from NSCLC patients. The plasma cfDNA samples with low VAF (0.1 and 0.5 %) could be easily detected by DNA-enhanced amplification. CONCLUSIONS This system with enhanced amplification of mutated cfDNA is an effective tool used for the early screening and individualized targeted therapy of NSCLC by providing a rapid, sensitive, and economical way for the detection of drug-resistant mutations in tumors.
Collapse
Affiliation(s)
- Junhua Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 117555 Beijing Hospital/National Center of Gerontology of National Health Commission , Beijing, P.R. China
| | - Yifei Li
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Wei Huang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 117555 Beijing Hospital/National Center of Gerontology of National Health Commission , Beijing, P.R. China
| | - Gaoyuan Sun
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Hongjun Ren
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, P.R. China
| | - Min Tang
- Department of Oncology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China
| |
Collapse
|
11
|
Deng Q, Li W, Huang Y, Wang H, Zhou X, Guan Z, Cheng B, Wang Y. Immunolipid magnetic bead-based circulating tumor cell sorting: a novel approach for pathological staging of colorectal cancer. Front Oncol 2025; 14:1531972. [PMID: 39927117 PMCID: PMC11803635 DOI: 10.3389/fonc.2024.1531972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/31/2024] [Indexed: 02/11/2025] Open
Abstract
Objective This study aimed to assess whether circulating tumor cells (CTCs) from colorectal cancer (CRC) could be used as an alternative to tissue samples for genetic mutation testing, overcoming the challenge of difficult tumor tissue acquisition. Methods We developed an immunolipid magnetic bead (IMB) system modified with antibodies against epithelial cell adhesion molecule (EpCAM) and vimentin to efficiently separate CTCs. We prepared EpCAM-modified IMBs (Ep-IMBs) and vimentin-modified IMBs (Vi-IMBs). The separation efficiency of the system was evaluated via in vitro experiments and by capturing and counting CTCs in blood samples from 23 CRC patients and 20 healthy controls. Hotspot mutations in patient tissue samples were identified via next-generation sequencing (NGS), whereas mutations in blood CTCs were detected via Sanger sequencing. The concordance between hotspot mutations in tumor tissue and blood CTCs was analyzed. Results The CTC sorting system exhibited good dispersion, stability, and low cytotoxicity, with a specificity of 90.54% and a sensitivity of 89.07%. CRC patients had an average of 8.39 CTCs per 7.5 mL of blood, whereas healthy controls had 0.09 per 7.5 mL of blood. The consistency of gene mutations was as follows: TP53 (91.31%), PIK3CA (76.00%), KRAS (85.36%), BRAF (51.00%), APC (65.67%), and EGFR (74.00%), with an overall gene mutation consistency of 85.06%. Conclusion Our CTC sorting system, which is based on Ep-IMBs and Vi-IMBs, effectively captures CTCs in the peripheral blood of CRC patients and enables clinical hotspot gene mutation testing via these enriched CTCs. This system partially solves the problem of difficult tumor tissue sample collection and provides a reference for gene mutation testing in early diagnosis, therapeutic efficacy evaluation, prognosis assessment, and minimal metastasis detection in CRC patients, showing significant potential for clinical application, especially in targeted therapy gene testing for CRC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yao Wang
- Department of Gastrointestinal Surgery, Zhongshan People’s Hospital, Zhongshan, Guangdong, China
| |
Collapse
|
12
|
Heo Y, Kim WJ, Cho YJ, Jung JW, Kim NS, Choi IY. Advances in cancer genomics and precision oncology. Genes Genomics 2025:10.1007/s13258-024-01614-7. [PMID: 39849190 DOI: 10.1007/s13258-024-01614-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/27/2024] [Indexed: 01/25/2025]
Abstract
BACKGROUND Next-generation sequencing has revolutionized genome science over the last two decades. Indeed, the wealth of sequence information on our genome has deepened our understanding on cancer. Cancer is a genetic disease caused by genetic or epigenetic alternations that affect the expression of genes that control cell functions, particularly cell growth and division. Utilization of next-generation sequencing in cancer gene panels has enabled the identification of actionable gene alterations in cancer patients to guide personalized precision medicine. OBJECTIVE The aim is to provide information that can identify actionable gene alterations, enabling personalized precision medicine for cancer patients. RESULTS & DISCUSSION Equipped with next-generation sequencing techniques, international collaboration programs on cancer genomics have identified numerous mutations, gene fusions, microsatellite variations, copy number variations, and epigenetics changes that promote the transformation of normal cells into tumors. Cancer classification has traditionally been based on cell type or tissue-of-origin and the morphological characteristics of the cancer. However, interactive genomic analyses have currently reclassified cancers based on systemic molecular-based taxonomy. Although all cancer-causing genes and mechanisms have yet to be completely understood or identified, personalized or precision medicine is now currently possible for some forms of cancer. Unlike the "one-size-fits-all" approach of traditional medicine, precision medicine allows for customized or personalized treatment based on genomic information. CONCLUSION Despite the availability of numerous cancer gene panels, technological innovation in genomics and expansion of knowledge on the cancer genome will allow precision oncology to manage even more types of cancers.
Collapse
Affiliation(s)
- Yonjong Heo
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, 24341, Gangwon, Republic of Korea
| | - Woo-Jin Kim
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, 24341, Gangwon, Republic of Korea
| | - Yong-Joon Cho
- Department of Molecular Bioscience, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jae-Won Jung
- Genetic Sciences Group, Thermo Fisher Scientific Solutions Korea Co., Ltd., Seoul, 06349, Republic of Korea
| | - Nam-Soo Kim
- Department of Molecular Bioscience, Kangwon National University, Chuncheon, 24341, Republic of Korea.
- NBIT Co., Ltd., Chuncheon, 24341, Republic of Korea.
| | - Ik-Young Choi
- Department of Smart Farm and Agricultural Industry, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
13
|
Pagliaro R, Medusa PM, Vitiello F, Aronne L, Campbell SFM, Perrotta F, Bianco A. Case report: Selpercatinib in the treatment of RET fusion-positive advanced lung adenocarcinoma: a challenging clinical case. Front Oncol 2025; 14:1500449. [PMID: 39882443 PMCID: PMC11774735 DOI: 10.3389/fonc.2024.1500449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/12/2024] [Indexed: 01/31/2025] Open
Abstract
Background Rearranged during transfection (RET) fusions represent a distinct molecular subset of non-small cell lung cancer (NSCLC) with targeted therapeutic potential. Selpercatinib, a highly selective RET inhibitor, has demonstrated efficacy in various solid tumors harboring RET alterations. Here, we present a case highlighting the use and clinical outcomes of selpercatinib in a patient diagnosed with advanced lung adenocarcinoma harboring a RET fusion. Case presentation A 59-year-old woman with a history of stage IV lung adenocarcinoma harboring a KIF5B-RET fusion presented with disease progression following first-line chemo-immunotherapy. Selpercatinib was initiated as a targeted therapy, leading to a notable radiographic response and clinical improvement. The patient experienced a significant reduction in tumor burden and reported improved symptom control, with no significant adverse effects during the 21-month follow-up period. Conclusions This case highlights the efficacy and tolerability of selpercatinib in treating advanced lung adenocarcinoma with a RET fusion. The observed clinical response supports the early use of selpercatinib as a targeted therapy for RET fusion-positive NSCLC, including in patients with compromised general and respiratory conditions, especially in cases refractory to conventional treatments. Long-term follow-up studies are warranted to validate these findings and assess the durability of responses.
Collapse
Affiliation(s)
- Raffaella Pagliaro
- Department of Translational Medical Sciences University of Campania L. Vanvitelli, Naples, Italy
- Clinic of Respiratory Diseases “Vanvitelli”, A.O. dei Colli, Monaldi Hospital, Naples, Italy
| | - Paola Maria Medusa
- Department of Translational Medical Sciences University of Campania L. Vanvitelli, Naples, Italy
- Department of Pneumology and Oncology, Monaldi Hospital A.O. Dei Colli, Naples, Italy
| | - Fabiana Vitiello
- Department of Pneumology and Oncology, Monaldi Hospital A.O. Dei Colli, Naples, Italy
| | - Luigi Aronne
- Department of Translational Medical Sciences University of Campania L. Vanvitelli, Naples, Italy
- Clinic of Respiratory Diseases “Vanvitelli”, A.O. dei Colli, Monaldi Hospital, Naples, Italy
| | - Susan F. M. Campbell
- Department of Translational Medical Sciences University of Campania L. Vanvitelli, Naples, Italy
- Clinic of Respiratory Diseases “Vanvitelli”, A.O. dei Colli, Monaldi Hospital, Naples, Italy
| | - Fabio Perrotta
- Department of Translational Medical Sciences University of Campania L. Vanvitelli, Naples, Italy
- Clinic of Respiratory Diseases “Vanvitelli”, A.O. dei Colli, Monaldi Hospital, Naples, Italy
| | - Andrea Bianco
- Department of Translational Medical Sciences University of Campania L. Vanvitelli, Naples, Italy
- Clinic of Respiratory Diseases “Vanvitelli”, A.O. dei Colli, Monaldi Hospital, Naples, Italy
| |
Collapse
|
14
|
Tan SK, Bettegowda C, Yip S, Sahgal A, Rhines L, Reynolds J, Lazary A, Laufer I, Gasbarrini A, Dea N, Verlaan JJ, Gokaslan ZL, Fisher CG, Boriani S, Cecchinato R, Goodwin ML, Goodwin CR, Charest-Morin R. Liquid Biopsy for Spinal Tumors: On the Frontiers of Clinical Application. Global Spine J 2025; 15:16S-28S. [PMID: 39801114 PMCID: PMC11726521 DOI: 10.1177/21925682231222012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
STUDY DESIGN Narrative review. OBJECTIVES This article aims to provide a narrative review of the current state of research for liquid biopsy in spinal tumors and to discuss the potential application of liquid biopsy in the clinical management of patients with spinal tumors. METHODS A comprehensive review of the literature was performed using PubMed, Google Scholar, Medline, Embase and Cochrane databases, and the review was limited to articles of English language. All the relevant articles which were identified to be related to liquid biomarker study in spinal tumors, were studied in full text. RESULTS Liquid biopsy has revolutionized the field of precision medicine by guiding personalized clinical management of cancer patients based on the liquid biomarker status. In recent years, more research has been done to investigate its potential utilization in patients with tumors from the spine. Herein, we review the liquid biomarkers that have been proposed in different spine malignancies including chordoma, chondrosarcoma, Ewing sarcoma, osteosarcoma, astrocytoma and ependymoma. We also discuss the wide window of opportunity to utilize these liquid biomarkers in diagnosis, treatment response, monitoring, and detection of minimal residual disease in patients with spinal tumors. CONCLUSIONS Liquid biomarkers, especially blood-derived circulating tumor DNA, has a promising clinical utility as they are disease-specific, minimally invasive, and the procedure is repeatable. Prospective studies with larger populations are needed to fully establish its use in the setting of spinal tumors.
Collapse
Affiliation(s)
- Sze Kiat Tan
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stephen Yip
- Department of Pathology & Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Odette Cancer Center, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Laurence Rhines
- Department of Neurosurgery, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| | | | - Aron Lazary
- Department of Spine Surgery, Semmelweis University, Budapest, Hungary
- Department of Orthopaedic Surgery, Semmelweis University, Budapest, Hungary
| | - Ilya Laufer
- Department of Neurosurgery at NYU Grossman School of Medicine, New York, NY, USA
| | - Alessandro Gasbarrini
- Department of Orthopedic Surgery, Rizzoli Institute, University of Bologna, Bologna, Italy
| | - Nicolas Dea
- Combined Neurosurgical and Orthopedic Spine Program, Department of Orthopedics Surgery, University of British Columbia, Vancouver, BC, Canada
| | - J J Verlaan
- Department of Orthopedic Surgery, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands
| | - Ziya L Gokaslan
- Department of Neurosurgery, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Charles G Fisher
- Combined Neurosurgical and Orthopedic Spine Program, Department of Orthopedics Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Stefano Boriani
- GSpine4, IRCCS Galeazzi-Sant'Ambrogio Hospital, Milan, Italy
| | | | - Matthew L Goodwin
- Department of Orthopedic Surgery, Washington University in St Louis, St Louis, MO, USA
| | - C Rory Goodwin
- Department of Neurosurgery, Spine Division, Duke University Medical Center, Durham, NC, USA
| | - Raphaële Charest-Morin
- Combined Neurosurgical and Orthopedic Spine Program, Department of Orthopedics Surgery, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
15
|
Huang C, Li J, Xie Z, Hu X, Huang Y. Relationship between exosomes and cancer: formation, diagnosis, and treatment. Int J Biol Sci 2025; 21:40-62. [PMID: 39744442 PMCID: PMC11667803 DOI: 10.7150/ijbs.95763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 11/02/2024] [Indexed: 01/11/2025] Open
Abstract
Exosomes are a member of extracellular vesicles. However, their biological characteristics differ from those of other vesicles, and recently, their powerful functions as information molecules, biomarkers, and carriers have been demonstrated. Malignancies are the leading cause of high morbidity and mortality worldwide. The cure rate of malignancies can be improved by improving early screening rates and therapy. Moreover, a close correlation between exosomes and malignancies has been observed. An in-depth study of exosomes can provide new methods for diagnosing and treating tumors. Therefore, this study aimed to review, sort, and summarize such achievements, and present ideas and opinions on the application of exosomes in tumor treatment.
Collapse
Affiliation(s)
- Chen Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jiajin Li
- Sichuan university, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Zichuan Xie
- Sichuan university, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xiangjun Hu
- Sichuan university, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yan Huang
- Health Management Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Respiratory Health and Multimorbidity, China
- Research Laboratory for Prediction and Evaluation of Chronic Diseases in the Elderly, National Clinical Research Center for Geriatric Diseases, China
- General Practice Research Institute, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Nguyen THH, Vu GH, Nguyen TT, Nguyen TA, Tran VU, Vu LT, Nguyen GTH, Nguyen ND, Tran TH, Nguyen VTC, Nguyen TD, Nguyen TH, Vo DH, Van TTV, Do TT, Le MP, Huynh LAK, Nguyen DS, Tang HS, Nguyen H, Phan M, Giang H, Tu LN, Tran LS. Combination of Hotspot Mutations With Methylation and Fragmentomic Profiles to Enhance Multi-Cancer Early Detection. Cancer Med 2025; 14:e70575. [PMID: 39748775 PMCID: PMC11695824 DOI: 10.1002/cam4.70575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/15/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Multi-cancer early detection (MCED) through a single blood test significantly advances cancer diagnosis. However, most MCED tests rely on a single type of biomarkers, leading to limited sensitivity, particularly for early-stage cancers. We previously developed SPOT-MAS, a multimodal ctDNA-based assay analyzing methylation and fragmentomic profiles to detect five common cancers. Despite its potential, SPOT-MAS exhibited moderate sensitivities for early-stage cancers. This study investigated whether integrating hotspot mutations into SPOT-MAS could enhance its detection rates. METHOD A targeted amplicon sequencing approach was developed to profile 700 hotspot mutations in cell-free DNA and integrated into the SPOT-MAS assay, creating a single-blood draw workflow. This workflow, namely SPOT-MAS Plus was retrospectively validated in a cohort of 255 non-metastatic cancer patients (breast, colorectal, gastric, liver, and lung) and 304 healthy individuals. RESULTS Hotspot mutations were detected in 131 of 255 (51.4%) cancer patients, with the highest rates in liver cancer (96.5%), followed by colorectal (59.3%) and lung cancer (53.7%). Lower detection rates were found for cancers with low tumor mutational burden, such as breast (31.3%) and gastric (41.9%) cancers. In contrast, SPOT-MAS demonstrated higher sensitivities for these cancers (51.6% for breast and 62.9% for gastric). The combination of hotspot mutations with SPOT-MAS predictions improved early-stage cancer detection, achieving an overall sensitivity of 78.5% at a specificity of 97.7%. Enhanced sensitivities were observed for colorectal (81.36%) and lung cancer (82.9%). CONCLUSION The integration of genetic and epigenetic alterations into a multimodal assay significantly enhances the early detection of various cancers. Further validation in larger cohorts is necessary to support broader clinical applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Dac Ho Vo
- Medical Genetics InstituteHo Chi MinhVietnam
| | | | | | | | | | | | | | | | | | - Hoa Giang
- Medical Genetics InstituteHo Chi MinhVietnam
| | - Lan N. Tu
- Medical Genetics InstituteHo Chi MinhVietnam
| | - Le Son Tran
- Medical Genetics InstituteHo Chi MinhVietnam
| |
Collapse
|
17
|
Xie W, Hu J, Zhao Z, Lu H, Han Y, Li B, Ouyang Z. Development of an accurate breast cancer detection classifier based on platelet RNA. Sci Rep 2024; 14:30733. [PMID: 39730431 DOI: 10.1038/s41598-024-80175-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 11/15/2024] [Indexed: 12/29/2024] Open
Abstract
Platelets possess cancer-induced reprogramming properties, thereby contributing to RNA profile alterations and further cancer progression, while the former is considered a promising biosource for cancer detection. Hence, tumor-educated platelets (TEP) are considered a prospective novel method for early breast cancer (BC) screening. Our study integrated the data from 276 patients with untreated BC, 95 with benign disease controls, 214 healthy controls, and 2 who underwent mastectomy in Chinese and European cohorts to develop a 10-biomarker diagnostic model. The model demonstrated high diagnostic performance for BC in an independent test set (n = 177) with an area under the curve of 0.957. The sensitivity for BC diagnosis was 89.2%, with 100% specificity in asymptomatic controls, while that for the symptomatic group, including benign tumors and inflammatory diseases, was 62.1%. The model demonstrated substantial accuracy for stages 0-III BC (80% for stage 0 [n = 5], 83.3% for stage I [n = 12], 94.6% for stage II [n = 37], and 88.9% for stage III [n = 9]) and precisely helped determine residual cancer in two patients who underwent mastectomy. Moreover, our developed classifiers distinguish different BC subtypes properly. In summary, we created and tested a new TEP-RNA-based BC diagnostic model that was confirmed valid and demonstrated high efficiency in detecting early-stage BC and heterogeneous subtypes, including recurrent tumors. However, these results warrant more validation in larger population-based prospective studies before clinical implementation.
Collapse
Affiliation(s)
- Wenlong Xie
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, Fujian, China
| | - Jie Hu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Zehang Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Medicine, Department of Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huixin Lu
- Fudan University Shanghai Cancer Center Xiamen Hospital, Xiamen, China
| | - Yu Han
- School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, Fujian, China
| | - Boan Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.
| | - Zhong Ouyang
- School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
18
|
Lu Y, Wang Z, Zhang D, Luo N, Yang H, Chen D, Huang H. Application of Circulating Tumor DNA in the Auxiliary Diagnosis and Prognosis Prediction of Glioma. Cell Mol Neurobiol 2024; 45:6. [PMID: 39692767 DOI: 10.1007/s10571-024-01515-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/12/2024] [Indexed: 12/19/2024]
Abstract
Glioma is the most common primary malignant brain tumor. Despite significant advances in the past decade in understanding the molecular pathogenesis of this tumor and exploring therapeutic strategies, the prognosis of patients with glioma remains poor. Accurate diagnosis of glioma is very important for the treatment and prognosis. Although the gold-standard method for the diagnosis and prognosis prediction of patients with glioma is tissue biopsy, it still has many limitations. Liquid biopsy can provide information on the auxiliary diagnosis and prognosis of gliomas. In this review, we summarized the application of cell-free DNA (cfDNA) and circulating tumor DNA (ctDNA) in the auxiliary diagnosis and prognosis of glioma. The common methods used to detect ctDNA in gliomas using samples including blood and cerebrospinal fluid (CSF) and the detection techniques for ctDNA, including droplet digital PCR (ddPCR) and next-generation sequencing (NGS), were discussed. Detection of ctDNA from plasma of patients with brain tumors remains challenging because of the blood-brain barrier (BBB). CSF has been proposed as a medium for ctDNA analysis in brain tumors, and mutation detection using plasma ctDNA was less sensitive than CSF ctDNA sequencing. Moreover, ongoing relevant clinical studies were summarized. Finally, we discussed the challenges, and future directions for the studies on ctDNA in glioma.
Collapse
Affiliation(s)
- Ying Lu
- Department of Oncology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, 545000, China
| | - Zhouyu Wang
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, 210002, China
| | - Danmeng Zhang
- Department of Oncology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, 545000, China
| | - Ningning Luo
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, 210002, China
| | - Hui Yang
- Department of Oncology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, 545000, China
| | - Dongsheng Chen
- The State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, 210002, China.
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China.
- Center of Translational Medicine, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China.
| | - Haixin Huang
- Department of Oncology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, 545000, China.
| |
Collapse
|
19
|
Rahadiani N, Stephanie M, Manatar AF, Krisnuhoni E. The Diagnostic Utility of cfDNA and ctDNA in Liquid Biopsies for Gastrointestinal Cancers over the Last Decade. Oncol Res Treat 2024; 48:125-141. [PMID: 39681095 DOI: 10.1159/000543030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024]
Abstract
BACKGROUND Cell-free DNA (cfDNA) is a fragmented DNA that is released into the blood through necrosis, apoptosis, phagocytosis, or active secretion. cfDNA includes a subclass called circulating tumor DNA (ctDNA) released from cancer cells and constitutes a varied proportion of the total cfDNA. Both cfDNA and ctDNA hold significant potential as diagnostic biomarkers in gastrointestinal cancers. SUMMARY cfDNA and ctDNA are promising diagnostic biomarkers for gastrointestinal cancers with varied diagnostic values in different types of cancers. cfDNA offers higher sensitivity that makes it more suitable for screening methods and constant monitoring, particularly in integration with conventional biomarkers or in a multimarker model. On the contrary, ctDNA gives a real-time picture of tumor genetics and is more suitable for definitive diagnosis due to its specificity for tumor-associated alterations. Different types of samples and methods of detection can influence sensitivity, and the amount of cfDNA is higher in serum but plasma is used for cfDNA analysis because it contains less cellular contamination. In summary, cfDNA is more sensitive than ctDNA, although they have comparable or slightly lower specificity. KEY MESSAGE Further studies are needed to create common guidelines, minimize the cost of analysis, and perform extensive clinical trials to demonstrate the utility of circulating cfDNA and ctDNA in the vast majority of gastrointestinal cancer stages. Therefore, with the advancement in these technologies, cfDNA and ctDNA will be highly beneficial and evolve cancer diagnostics and therapy.
Collapse
Affiliation(s)
- Nur Rahadiani
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Indonesia/Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Marini Stephanie
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Indonesia/Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Amelia Fossetta Manatar
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Indonesia/Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Ening Krisnuhoni
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Indonesia/Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| |
Collapse
|
20
|
Kurma K, Eslami-S Z, Alix-Panabières C, Cayrefourcq L. Liquid biopsy: paving a new avenue for cancer research. Cell Adh Migr 2024; 18:1-26. [PMID: 39219215 PMCID: PMC11370957 DOI: 10.1080/19336918.2024.2395807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/21/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
The current constraints associated with cancer diagnosis and molecular profiling, which rely on invasive tissue biopsies or clinical imaging, have spurred the emergence of the liquid biopsy field. Liquid biopsy involves the extraction of circulating tumor cells (CTCs), circulating free or circulating tumor DNA (cfDNA or ctDNA), circulating cell-free RNA (cfRNA), extracellular vesicles (EVs), and tumor-educated platelets (TEPs) from bodily fluid samples. Subsequently, these components undergo molecular characterization to identify biomarkers that are critical for early cancer detection, prognosis, therapeutic assessment, and post-treatment monitoring. These innovative biosources exhibit characteristics analogous to those of the primary tumor from which they originate or interact. This review comprehensively explores the diverse technologies and methodologies employed for processing these biosources, along with their principal clinical applications.
Collapse
Affiliation(s)
- Keerthi Kurma
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES),
University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Zahra Eslami-S
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES),
University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES),
University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Laure Cayrefourcq
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES),
University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| |
Collapse
|
21
|
Budhbaware T, Rathored J, Shende S. Molecular methods in cancer diagnostics: a short review. Ann Med 2024; 56:2353893. [PMID: 38753424 PMCID: PMC11100444 DOI: 10.1080/07853890.2024.2353893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND One of the ailments with the greatest fatality rates in the 21st century is cancer. Globally, molecular methods are widely employed to treat cancer-related disorders, and the body of research on this subject is growing yearly. A thorough and critical summary of the data supporting molecular methods for illnesses linked to cancer is required. OBJECTIVE In order to guide clinical practice and future research, it is important to examine and summarize the systematic reviews (SRs) that evaluate the efficacy and safety of molecular methods for disorders associated to cancer. METHODS We developed a comprehensive search strategy to find relevant articles from electronic databases like PubMed, Google Scholar, Web of Science (WoS), or Scopus. We looked through the literature and determined which diagnostic methods in cancer genetics were particularly reliable. We used phrases like 'cancer genetics', genetic susceptibility, Hereditary cancer, cancer risk assessment, 'cancer diagnostic tools', cancer screening', biomarkers, and molecular diagnostics, reviews and meta-analyses evaluating the efficacy and safety of molecular therapies for cancer-related disorders. Research that only consider treatment modalities that don't necessitate genetic or molecular diagnostics fall under the exclusion criteria. RESULTS The results of this comprehensive review clearly demonstrate the transformative impact of molecular methods in the realm of cancer genetics.This review underscores how these technologies have empowered researchers and clinicians to identify and understand key genetic alterations that drive malignancy, ranging from point mutations to structural variations. Such insights are instrumental in pinpointing critical oncogenic drivers and potential therapeutic targets, thus opening the door for methods in precision medicine that can significantly improve patient outcomes. LIMITATION The search does not specify a timeframe for publication inclusion, it may have missed recent advancements or changes in the field's landscape of molecular methods for cancer. As a result, it may not have included the most recent developments in the field. CONCLUSION After conducting an in-depth study on the molecular methods in cancer genetics, it is evident that these cutting-edge technologies have revolutionized the field of oncology, providing researchers and clinicians with powerful tools to unravel the complexities of cancer at the genetic level. The integration of molecular methods techniques has not only enhanced our understanding of cancer etiology, progression, and treatment response but has also opened new avenues for personalized medicine and targeted therapies, leading to improved patient outcomes.
Collapse
Affiliation(s)
- Tanushree Budhbaware
- Department of ‘School of Allied Health Sciences’, Central Research Laboratory (CRL) and Molecular Diagnostics, Datta Meghe Institute of Higher Education and Research, Sawangi (Meghe), Wardha, India
| | - Jaishriram Rathored
- Department of ‘School of Allied Health Sciences’, Central Research Laboratory (CRL) and Molecular Diagnostics, Datta Meghe Institute of Higher Education and Research, Sawangi (Meghe), Wardha, India
| | - Sandesh Shende
- Department of ‘School of Allied Health Sciences’, Central Research Laboratory (CRL) and Molecular Diagnostics, Datta Meghe Institute of Higher Education and Research, Sawangi (Meghe), Wardha, India
| |
Collapse
|
22
|
Mareso C, Crosta L, De Vita MG, Cristofoli F, Tanzi B, Benedetti S, Bonetti G, Donofrio CA, Cominetti M, Riccio L, Fioravanti A, Generali D, Lucci Cordisco E, Chiurazzi P, Gatta V, Stuppia L, Cecchin S, Bertelli M, Marceddu G. Assessing the efficacy of an innovative diagnostic method for identifying 5 % variants in somatic ctDNA. Gene 2024; 928:148771. [PMID: 39032702 DOI: 10.1016/j.gene.2024.148771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Liquid biopsy is considered a complementary and recently also an alternative method to surgical biopsy. It allows for the acquisition of valuable information regarding the potential presence of tumors, particularly through the analysis of circulating tumor DNA (ctDNA). CtDNA is a fraction of circulating free DNA (cfDNA) that can be extracted from various tissues, with blood being the most readily available. RESULTS To maximize the yield of plasma separation, specific Streck tubes are recommended for blood collection. The MagPurix CFC DNA Extraction Kit can be used for cfDNA extraction, and the TWIST Library Preparation protocol can be optimized for further analysis. Next-generation sequencing (NGS) can be employed to compare somatic and germline lineages, enabling the identification of somatic variants with a Variant Allele Frequency (VAF) of 5 % or higher, which are absent in the germline lineage. CONCLUSION This analysis helps in the assessment of recurrence, analysis, and monitoring of cancer tissue.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gabriele Bonetti
- MAGI'S LAB, 38068 Rovereto (TN), Italy; Department of Pharmaceutical Sciences, University of Perugia, 06123 Perugia, Italy.
| | - Carmine Antonio Donofrio
- Neurosurgery, ASST Cremona, 26100 Cremona, Italy; Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | | | - Lucia Riccio
- Neurosurgery, ASST Cremona, 26100 Cremona, Italy
| | | | - Daniele Generali
- Dipartimento Universitario Clinico di Scienze Mediche, Chirurgiche e della Salute, Università degli Studi di Trieste, 34127 Trieste, Italy
| | - Emanuela Lucci Cordisco
- Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; UOC Genetica Medica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| | - Pietro Chiurazzi
- Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; UOC Genetica Medica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| | - Valentina Gatta
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, G. d'Annunzio University, 66100 Chieti, Italy; Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Liborio Stuppia
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, G. d'Annunzio University, 66100 Chieti, Italy; Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | | | - Matteo Bertelli
- MAGI EUREGIO, 39100 Bolzano, Italy; MAGI'S LAB, 38068 Rovereto (TN), Italy; MAGISNAT, Atlanta Tech Park, Peachtree Corners, 30092 GA, USA
| | | |
Collapse
|
23
|
Si HQ, Wang P, Long F, Zhong W, Meng YD, Rong Y, Meng XY, Wang FB. Cancer liquid biopsies by Oxford Nanopore Technologies sequencing of cell-free DNA: from basic research to clinical applications. Mol Cancer 2024; 23:265. [PMID: 39614371 PMCID: PMC11605934 DOI: 10.1186/s12943-024-02178-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/17/2024] [Indexed: 12/01/2024] Open
Abstract
Liquid biopsies, in particular, analysis of cell-free DNA, are expected to revolutionize the current landscape of cancer diagnostics and treatment. However, the existing methods for cfDNA-based liquid biopsies for cancer have certain limitations, such as fragment interruption and GC bias, which are likely to be resolved by the emerging Oxford Nanopore Technologies (ONT), characterized by long read-length, fast read-times, high throughput, and polymerase chain reaction-free. In this review, we summarized the current literatures regarding the feasibility and applications of cfDNA-based liquid biopsies using ONT for cancer management, a possible game-changer that we believe is promising in detecting multimodal biomarkers and can be applied in a wide range of oncology utilities including early screening, diagnosis, and treatment monitoring.
Collapse
Affiliation(s)
- Hua-Qi Si
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Peng Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fei Long
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Zhong
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuan-Dong Meng
- Hubei Provincial Clinical Medical Research Center for Nephropathy, Hubei Minzu University, Enshi, China
| | - Yuan Rong
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Xiang-Yu Meng
- Hubei Provincial Clinical Medical Research Center for Nephropathy, Hubei Minzu University, Enshi, China.
| | - Fu-Bing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
24
|
Xi J, Ma CX, O'Shaughnessy J. Current Clinical Utility of Circulating Tumor DNA Testing in Breast Cancer: A Practical Approach. JCO Oncol Pract 2024; 20:1460-1470. [PMID: 39531841 DOI: 10.1200/op.24.00274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 11/16/2024] Open
Abstract
Circulating tumor DNA (ctDNA) refers to DNA fragments released from cancer cells into the bloodstream. Clinical utility of ctDNA in breast cancer has been explored in both metastatic breast cancer (MBC) and early-stage breast cancer (EBC) settings. In MBC, ctDNA can detect therapeutically targetable genomic alterations and has shown great potential in predicting treatment response or resistance. Accumulating data suggest that ctDNA might also have prognostic value in MBC. In EBC, emerging data have shown ctDNA's predictive and/or prognostic value in both neoadjuvant and adjuvant settings. Minimal residual disease (MRD) detection via ctDNA to detect clinical recurrence after curative therapy is a rapidly advancing field. In this review, we discuss the existing and emerging data regarding ctDNA utility in both MBC and EBC settings.
Collapse
Affiliation(s)
- Jing Xi
- Rocky Mountain Cancer Centers, Denver, CO
| | | | | |
Collapse
|
25
|
Bates M, Mohamed BM, Lewis F, O'Toole S, O'Leary JJ. Biomarkers in high grade serous ovarian cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189224. [PMID: 39581234 DOI: 10.1016/j.bbcan.2024.189224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 11/26/2024]
Abstract
High-grade serous ovarian cancer (HGSC) is the most common subtype of ovarian cancer. HGSC patients typically present with advanced disease, which is often resistant to chemotherapy and recurs despite initial responses to therapy, resulting in the poor prognosis associated with this disease. There is a need to utilise biomarkers to manage the various aspects of HGSC patient care. In this review we discuss the current state of biomarkers in HGSC, focusing on the various available immunohistochemical (IHC) and blood-based biomarkers, which have been examined for their diagnostic, prognostic and theranostic potential in HGSC. These include various routine clinical IHC biomarkers such as p53, WT1, keratins, PAX8, Ki67 and p16 and clinical blood-borne markers and algorithms such as CA125, HE4, ROMA, RMI, ROCA, and others. We also discuss various components of the liquid biopsy as well as a number of novel IHC biomarkers and non-routine blood-borne biomarkers, which have been examined in various ovarian cancer studies. We also discuss the future of ovarian cancer biomarker research and highlight some of the challenges currently facing the field.
Collapse
Affiliation(s)
- Mark Bates
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland; Trinity St James's Cancer Institute, Dublin, Ireland.
| | - Bashir M Mohamed
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland; Trinity St James's Cancer Institute, Dublin, Ireland
| | - Faye Lewis
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland; Trinity St James's Cancer Institute, Dublin, Ireland
| | - Sharon O'Toole
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland; Trinity St James's Cancer Institute, Dublin, Ireland; Department of Obstetrics and Gynaecology, Trinity College Dublin, Dublin, Ireland
| | - John J O'Leary
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland; Trinity St James's Cancer Institute, Dublin, Ireland; Department of Pathology, Coombe Women & Infants University Hospital, Dublin, Ireland
| |
Collapse
|
26
|
Wang B, Wang M, Lin Y, Zhao J, Gu H, Li X. Circulating tumor DNA methylation: a promising clinical tool for cancer diagnosis and management. Clin Chem Lab Med 2024; 62:2111-2127. [PMID: 38443752 DOI: 10.1515/cclm-2023-1327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/19/2024] [Indexed: 03/07/2024]
Abstract
Cancer continues to pose significant challenges to the medical community. Early detection, accurate molecular profiling, and adequate assessment of treatment response are critical factors in improving the quality of life and survival of cancer patients. Accumulating evidence shows that circulating tumor DNA (ctDNA) shed by tumors into the peripheral blood preserves the genetic and epigenetic information of primary tumors. Notably, DNA methylation, an essential and stable epigenetic modification, exhibits both cancer- and tissue-specific patterns. As a result, ctDNA methylation has emerged as a promising molecular marker for noninvasive testing in cancer clinics. In this review, we summarize the existing techniques for ctDNA methylation detection, describe the current research status of ctDNA methylation, and present the potential applications of ctDNA-based assays in the clinic. The insights presented in this article could serve as a roadmap for future research and clinical applications of ctDNA methylation.
Collapse
Affiliation(s)
- Binliang Wang
- Department of Respiratory Medicine, Huangyan Hospital Affiliated to Wenzhou Medical University, Taizhou, P.R. China
| | - Meng Wang
- Institute of Health Education, Hangzhou Center for Disease Control and Prevention, Hangzhou, P.R. China
| | - Ya Lin
- Zhejiang University of Chinese Medicine, Hangzhou, P.R. China
| | - Jinlan Zhao
- Scientific Research Department, Zhejiang Shengting Medical Company, Hangzhou, P.R. China
| | - Hongcang Gu
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, P.R. China
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Science, Hefei, P.R. China
| | - Xiangjuan Li
- Department of Gynaecology, Hangzhou Obstetrics and Gynecology Hospital, Hangzhou, P.R. China
| |
Collapse
|
27
|
Shong LYW, Deng JY, Kwok HH, Lee NCM, Tseng SCZ, Ng LY, Yee WKS, Lam DCL. Detection of EGFR mutations in patients with suspected lung cancer using paired tissue-plasma testing: a prospective comparative study with plasma ddPCR assay. Sci Rep 2024; 14:25701. [PMID: 39465302 PMCID: PMC11514293 DOI: 10.1038/s41598-024-76890-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024] Open
Abstract
Detecting EGFR mutations in plasma using droplet digital PCR (ddPCR) assay offers a promising diagnostic tool for lung cancer patients. The performance of plasma-based ddPCR assay relative to traditional EGFR mutation testing in tissue biopsies among Asian patients with suspected lung cancer remains underexplored. Consecutive patients admitted for diagnostic workup for suspected lung cancer were recruited. Peripheral blood samples were collected on the same day of tissue biopsies. Tissue samples were subjected to EGFR mutation analysis via real-time PCR, whereas plasma samples were processed for ddPCR assay to evaluate for EGFR mutation status. The tissue re-biopsy rate was 43.8% while 0.7% of patients failed blood taking. Despite repeat biopsy, 15.2% of patients could not achieve histological diagnosis. Of the 202 patients newly diagnosed with lung cancer, EGFR mutations were detected in 13.4% of plasma samples, compared to 44.3% in tissue samples. Plasma ddPCR for EGFR mutations detection were barely detectable in stages I and II non-small cell lung cancer (NSCLC), but the sensitivity was 25.0%, 56.3%, and 75.0% in stages III, IVA, and IVB NSCLC, respectively. Plasma EGFR mutations were highly specific among all stages of lung cancer. Concordance rates of plasma ddPCR assay also rose with more advanced stages, recorded at 41.9% for stages I and II, 71.9% for stage III, 86.3% for stage IV. In stage IV lung cancer, the false negative rate for the plasma ddPCR assay was 34.4%, whereas that for the tissue testing was 19.2% due to insufficient tissue samples. Plasma-based EGFR genotyping using ddPCR is a non-invasive method that offers early diagnosis and serves as a valuable adjunct to tissue-based testing for patients with advanced-stage lung cancer. However, its usefulness is limited in the context of early-stage lung cancer, indicating a need for further research to improve its accuracy in these patients.
Collapse
Affiliation(s)
- Lynn Yim-Wah Shong
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, P. R. China
- Department of Medicine, Queen Mary Hospital, Hong Kong SAR, P. R. China
| | - Jun-Yang Deng
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Hoi-Hin Kwok
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, P. R. China
| | | | | | - Lai-Yun Ng
- Department of Medicine and Geriatrics, Kwong Wah Hospital, Hong Kong SAR, P. R. China
| | - Wilson Kwok-Sang Yee
- Department of Medicine and Geriatrics, Kwong Wah Hospital, Hong Kong SAR, P. R. China
| | - David Chi-Leung Lam
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, P. R. China.
| |
Collapse
|
28
|
Du H, Liu W, Li Y, Zhang L, Jiang F, Zhu D, Li J, Hu P, Yan N, Mao M, Li S. Genomic profiling of cell-free DNA from dogs with benign and malignant tumors. BMC Res Notes 2024; 17:264. [PMID: 39272211 PMCID: PMC11401444 DOI: 10.1186/s13104-024-06932-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
OBJECTIVE Cancer is currently the most common cause of death in adult dogs. Like humans, dogs have a one-third chance of developing cancer in their lifetime. We used shallow whole-genome sequencing (sWGS) to analyze blood cell-free DNA (cfDNA) from four tumor-bearing dogs (one with benign and three with malignant tumors) and 38 healthy dogs. RESULTS Similar to the results observed in the healthy dogs, no copy number aberration (CNA) was detected in the dog with benign lipomas, and the distribution of cfDNA fragment size (FS) closely resembled that of the healthy dogs. However, among the three dogs diagnosed with malignant tumors, two dogs exhibited varying degrees and quantities of CNAs. Compared to the distribution of FS in the healthy dogs, the cancer dogs exhibited a noticeable shift towards shorter lengths. These findings indicated that CNA and FS profiles derived from sWGS data can be used for non-invasive cancer detection in dogs.
Collapse
Affiliation(s)
- Hongchao Du
- New Ruipeng Pet Healthcare Group Co, Ltd, Shenzhen, China
| | - Wenfeng Liu
- Shanghai Companion Animal Hospital, Shanghai, China
| | - Yunfei Li
- Research & Development, TwixBio, Shenzhen, China
| | - Lijuan Zhang
- Clinical Laboratories, Shenyou Bio, Zhengzhou, China
| | | | - Dandan Zhu
- Clinical Laboratories, Shenyou Bio, Zhengzhou, China
| | - Jingshuai Li
- Clinical Laboratories, Shenyou Bio, Zhengzhou, China
| | - Pan Hu
- Research & Development, TwixBio, Shenzhen, China
| | - Ningning Yan
- Clinical Laboratories, Shenyou Bio, Zhengzhou, China
| | - Mao Mao
- Research & Development, TwixBio, Shenzhen, China.
- Yonsei Song-Dang Institute for Cancer Research, Yonsei University, Seoul, Korea.
- DBH Life Sciences & Health Industrial Park, 11F, Building 2, 2028 Shenyan Road, Yantian, Shenzhen, 518000, Guangdong, China.
| | - Shiyong Li
- Research & Development, TwixBio, Shenzhen, China.
| |
Collapse
|
29
|
Nassar SI, Suk A, Nguyen SA, Adilbay D, Pang J, Nathan CAO. The Role of ctDNA and Liquid Biopsy in the Diagnosis and Monitoring of Head and Neck Cancer: Towards Precision Medicine. Cancers (Basel) 2024; 16:3129. [PMID: 39335101 PMCID: PMC11430155 DOI: 10.3390/cancers16183129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Recent data have shown a continued rise in the worldwide annual incidence and mortality rates of head and neck cancers. The present standard for diagnosis and monitoring for disease recurrence or progression involves clinical examination, imaging, and invasive biopsy techniques of lesions suspected of being malignant. In addition to limitations relating to cost, time, and patient discomfort, these methodologies have inherent inaccuracies for detecting recurrence. In view of these limitations, the analysis of patient bodily fluid samples via liquid biopsy proposes a cost-effective and convenient alternative, which provides insight on the biogenetic and biomolecular underpinnings of oncologic disease processes. The monitoring of biomarkers for head and neck cancer via liquid biopsy, including circulating tumor DNA, circulating tumor cells, and circulating cell-free RNA, has shown clinical utility in the screening, diagnosis, prognostication, and monitoring of patients with various forms of head and neck cancer. The present review will provide an update on the current literature examining the use of liquid biopsy in head and neck cancer care and the clinical applicability of potential biomarkers, with a focus on viral and non-viral circulating tumor DNA. Possible future avenues for research to address specific shortcomings of liquid biopsy will be discussed.
Collapse
Affiliation(s)
- Sami I. Nassar
- Department of Otolaryngology—Head and Neck Surgery, Medical University of South Carolina, Charleston, SC 29425, USA; (S.I.N.); (S.A.N.); (D.A.)
| | - Amber Suk
- Department of Otolaryngology—Head and Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA; (A.S.); (J.P.)
| | - Shaun A. Nguyen
- Department of Otolaryngology—Head and Neck Surgery, Medical University of South Carolina, Charleston, SC 29425, USA; (S.I.N.); (S.A.N.); (D.A.)
| | - Dauren Adilbay
- Department of Otolaryngology—Head and Neck Surgery, Medical University of South Carolina, Charleston, SC 29425, USA; (S.I.N.); (S.A.N.); (D.A.)
| | - John Pang
- Department of Otolaryngology—Head and Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA; (A.S.); (J.P.)
| | - Cherie-Ann O. Nathan
- Department of Otolaryngology—Head and Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA; (A.S.); (J.P.)
| |
Collapse
|
30
|
Cao Q, Dan Z, Hou N, Yan L, Yuan X, Lu H, Yu S, Zhang J, Xiao H, Liu Q, Zhang X, Zhang M, Pang M. Discovery and validation of colorectal cancer tissue-specific methylation markers: a dual-center retrospective cohort study. Clin Epigenetics 2024; 16:122. [PMID: 39244604 PMCID: PMC11380779 DOI: 10.1186/s13148-024-01735-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND AND PURPOSE Early detection, diagnosis, and treatment of colorectal cancer and its precancerous lesions can significantly improve patients' survival rates. The purpose of this research is to identify methylation markers specific to colorectal cancer tissues and validate their diagnostic capability in colorectal cancer and precancerous changes by measuring the level of DNA methylation in stool samples. METHOD We analyzed samples from six cancer tissues and adjacent normal tissues and fecal samples from 758 participants, including 62 patients with interfering diseases. Bioinformatics databases were used to screen for candidate biomarkers for CRC, and quantitative methylation-specific PCR methods were applied for identification. The methylation levels of the candidate biomarkers in fecal and tissue samples were measured. Logistic regression and random forest models were built and validated using fecal sample data from one of the centers, and the independent or combined diagnostic value of the candidate biomarkers in fecal samples for CRC and precancerous lesions was analyzed. Finally, the diagnostic capability and stability of the model were validated at another medical center. RESULTS This study identified two colorectal cancer CpG sites with tissue specificity. These two biomarkers have certain diagnostic power when used individually, but their diagnostic value for colorectal cancer and colorectal adenoma is more significant when they are used in combination. CONCLUSION The results indicate that a DNA methylation biomarker combined diagnostic model based on two CpG sites, cg13096260 and cg12587766, has the potential for screening and diagnosing precancerous lesions and colorectal cancer. Additionally, compared to traditional diagnostic models, machine learning algorithms perform better but may yield more false-positive results, necessitating further investigation.
Collapse
Affiliation(s)
- Qinxing Cao
- Department of Geriatric General Surgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Zhenjia Dan
- Department of Geriatric General Surgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Nengyi Hou
- Department of Geriatric General Surgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Li Yan
- Department of Geriatric General Surgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xingmei Yuan
- Department of Geriatric General Surgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Hejiang Lu
- Department of Geriatric General Surgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Song Yu
- Department of Geriatric General Surgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Jiangping Zhang
- Chongqing Bohao Diagnostic Technology Co., Ltd, Chongqing, 410010, China
| | - Huasheng Xiao
- Shanghai Biotechnology Corporation, Ltd, Shanghai, 200126, China
| | - Qiang Liu
- Shanghai Biotechnology Corporation, Ltd, Shanghai, 200126, China
| | - Xiaoyong Zhang
- Shanghai Biotechnology Corporation, Ltd, Shanghai, 200126, China
| | - Min Zhang
- Department of Outpatient, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Minghui Pang
- Department of Geriatric General Surgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| |
Collapse
|
31
|
Stefanes NM, Cunha-Silva ME, de Oliveira Silva L, Walter LO, Santos-Silva MC, Gartia MR. Circulating biomarkers for diagnosis and response to therapies in cancer patients. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 391:1-41. [PMID: 39939074 DOI: 10.1016/bs.ircmb.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Cancer presents a significant challenge to global health, driving worldwide concerted efforts to advance early detection, predict therapeutic response, and identify novel targeted therapies. Liquid biopsies emerge as promising avenues for discerning cancer biomarkers, offering less invasive approaches compared to conventional methods. Utilizing increasingly robust technologies, diverse bodily fluids can unveil genetic variants, epigenetic modifications, transcriptional alterations, and metabolomic signatures associated with cancer, thereby furnishing valuable insights for clinical management. This chapter intends to review the sources of cancer-related biomarkers found in circulation, prevalent techniques utilized for their identification, and the potential implications of different biomarker types on the management of cancer. Certain biomarkers currently used in clinical practice will be addressed, as well as potential biomarkers still in the study phase, and the inherent challenges in their practical implementation.
Collapse
Affiliation(s)
- Natália Marcéli Stefanes
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA, United States
| | - Maria Eduarda Cunha-Silva
- Post-Graduation Program in Pharmacy, Health Science Center, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Lisandra de Oliveira Silva
- Post-Graduation Program in Pharmacy, Health Science Center, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Laura Otto Walter
- Post-Graduation Program in Pharmacy, Health Science Center, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Maria Cláudia Santos-Silva
- Post-Graduation Program in Pharmacy, Health Science Center, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Manas Ranjan Gartia
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA, United States.
| |
Collapse
|
32
|
George S, Blay JY, Chi P, Jones RL, Serrano C, Somaiah N, Gelderblom H, Zalcberg JR, Reichmann W, Sprott K, Cox P, Sherman ML, Ruiz-Soto R, Heinrich MC, Bauer S. The INSIGHT study: a randomized, Phase III study of ripretinib versus sunitinib for advanced gastrointestinal stromal tumor with KIT exon 11 + 17/18 mutations. Future Oncol 2024; 20:1973-1982. [PMID: 39229786 PMCID: PMC11497949 DOI: 10.1080/14796694.2024.2376521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/02/2024] [Indexed: 09/05/2024] Open
Abstract
Somatic KIT activating mutations drive most gastrointestinal stromal tumors (GISTs). Disease progression eventually develops with first-line imatinib, commonly due to KIT secondary mutations, and different kinase inhibitors have various levels of treatment efficacy dependent on specific acquired resistance mutations. Ripretinib is a broad-spectrum switch-control KIT/PDGFRA tyrosine kinase inhibitor for patients with advanced GIST who received prior treatment with three or more kinase inhibitors, including imatinib. Exploratory baseline circulating tumor DNA analysis from the second-line INTRIGUE trial determined that patients with advanced GIST previously treated with imatinib harboring primary KIT exon 11 mutations and secondary resistance mutations restricted to KIT exons 17/18 had greater clinical benefit with ripretinib versus sunitinib. We describe the rationale and design of INSIGHT (NCT05734105), an ongoing Phase III open-label study of ripretinib versus sunitinib in patients with advanced GIST previously treated with imatinib exclusively harboring KIT exon 11 + 17/18 mutations detected by circulating tumor DNA.Clinical Trial Registration: NCT05734105 (ClinicalTrials.gov).
Collapse
Affiliation(s)
| | | | - Ping Chi
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Weill Cornell Medicine, New York, NY 10065, USA
| | - Robin L Jones
- Sarcoma Unit, The Royal Marsden NHS Foundation Trust & Institute of Cancer Research, London, SW3 6JJ, UK
| | - César Serrano
- Vall d'Hebron Institute of Oncology, Barcelona, 08035, Spain
| | - Neeta Somaiah
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hans Gelderblom
- Leiden University Medical Center, Leiden, 2333 ZA, Netherlands
| | - John R Zalcberg
- Monash University School of Public Health & Preventive Medicine & Department of Medical Oncology, Alfred Health, Melbourne, Victoria, 3004, Australia
| | | | - Kam Sprott
- Deciphera Pharmaceuticals, LLC, Waltham, MA 02451, USA
| | - Paulina Cox
- Deciphera Pharmaceuticals, LLC, Waltham, MA 02451, USA
| | | | | | - Michael C Heinrich
- Portland VA Health Care System, Portland, OR 97239, USA
- OHSU Knight Cancer Institute, Portland, OR 97239, USA
| | - Sebastian Bauer
- Department of Medical Oncology, Sarcoma Center, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, 45147, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, 45147, Germany
| |
Collapse
|
33
|
Löhr JM, Vujasinovic M, Kartalis N, Osten P. Pancreatic incidentaloma: incidental findings from history towards the era of liquid biopsy. EGASTROENTEROLOGY 2024; 2:e100082. [DOI: 10.1136/egastro-2024-100082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
This report provides an overview of the most common diagnostic methods that bring to light incidental findings of pancreatic cancer. It reviews the impact of medical imaging and genetic assessment on the definitions of incidental findings and incidentaloma of the pancreas. For different diagnostic approaches (eg, MRI and CT) and for different affections (cysts/intraductal papillary mucinous neoplasia, solid lesions), specific guidelines have been proposed and some are established. Based on this, we summarise the differences between the traditional methods with those applied in the PANCAID project. Biomarkers, genetic predispositions, mutations and circulating tumour cells give rise to different levels of concern. The final part of the report discusses the risks and the opportunities associated with further diagnostic procedures and surgical interventions. From the ethical perspective, the most urging question is, can a screening based on liquid biopsy and blood samples open a gateway for the prevention of pancreatic cancer—even if morbidity and lethality of today’s surgical interventions is still very high?
Collapse
|
34
|
Chung J, Xiao S, Gao Y, Soung YH. Recent Technologies towards Diagnostic and Therapeutic Applications of Circulating Nucleic Acids in Colorectal Cancers. Int J Mol Sci 2024; 25:8703. [PMID: 39201393 PMCID: PMC11354501 DOI: 10.3390/ijms25168703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Liquid biopsy has emerged as a promising noninvasive approach for colorectal cancer (CRC) management. This review focuses on technologies detecting circulating nucleic acids, specifically circulating tumor DNA (ctDNA) and circulating RNA (cfRNA), as CRC biomarkers. Recent advancements in molecular technologies have enabled sensitive and specific detection of tumor-derived genetic material in bodily fluids. These include quantitative real-time PCR, digital PCR, next-generation sequencing (NGS), and emerging nanotechnology-based methods. For ctDNA analysis, techniques such as BEAMing and droplet digital PCR offer high sensitivity in detecting rare mutant alleles, while NGS approaches provide comprehensive genomic profiling. cfRNA detection primarily utilizes qRT-PCR arrays, microarray platforms, and RNA sequencing for profiling circulating microRNAs and discovering novel RNA biomarkers. These technologies show potential in early CRC detection, treatment response monitoring, minimal residual disease assessment, and tumor evolution tracking. However, challenges remain in standardizing procedures, optimizing detection limits, and establishing clinical utility across disease stages. This review summarizes current circulating nucleic acid detection technologies, their CRC applications, and discusses future directions for clinical implementation.
Collapse
Affiliation(s)
| | | | | | - Young Hwa Soung
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (J.C.); (S.X.); (Y.G.)
| |
Collapse
|
35
|
da Silva TF, de Azevedo JC, Teixeira EB, Casseb SMM, Moreira FC, de Assumpção PP, dos Santos SEB, Calcagno DQ. From haystack to high precision: advanced sequencing methods to unraveling circulating tumor DNA mutations. Front Mol Biosci 2024; 11:1423470. [PMID: 39165643 PMCID: PMC11333322 DOI: 10.3389/fmolb.2024.1423470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/11/2024] [Indexed: 08/22/2024] Open
Abstract
Identifying mutations in cancer-associated genes to guide patient treatments is essential for precision medicine. Circulating tumor DNA (ctDNA) offers valuable insights for early cancer detection, treatment assessment, and surveillance. However, a key issue in ctDNA analysis from the bloodstream is the choice of a technique with adequate sensitivity to identify low frequent molecular changes. Next-generation sequencing (NGS) technology, evolving from parallel to long-read capabilities, enhances ctDNA mutation analysis. In the present review, we describe different NGS approaches for identifying ctDNA mutation, discussing challenges to standardized methodologies, cost, specificity, clinical context, and bioinformatics expertise for optimal NGS application.
Collapse
Affiliation(s)
- Tamires Ferreira da Silva
- Programa de Residência Multiprofissional em Saúde (Oncologia), Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, Brazil
| | - Juscelino Carvalho de Azevedo
- Programa de Residência Multiprofissional em Saúde (Oncologia), Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, Brazil
| | | | | | | | | | | | - Danielle Queiroz Calcagno
- Programa de Residência Multiprofissional em Saúde (Oncologia), Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, Brazil
| |
Collapse
|
36
|
Alsaab HO, Alzahrani MS, Bahauddin AA, Almutairy B. Circulating tumor DNA (ctDNA) application in investigation of cancer: Bench to bedside. Arch Biochem Biophys 2024; 758:110066. [PMID: 38906310 DOI: 10.1016/j.abb.2024.110066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/02/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Now, genomics forms the core of the precision medicine concept. Comprehensive investigations of tumor genomes have made it possible to characterize tumors at the molecular level and, specifically, to identify the fundamental processes that cause condition. A variety of kinds of tumors have seen better outcomes for patients as a result of the development of novel medicines to tackle these genetic-driving processes. Since therapy may exert selective pressure on cancers, non-invasive methods such as liquid biopsies can provide the opportunity for rich reservoirs of crucial and real-time genetic data. Liquid biopsies depend on the identification of circulating cells from tumors, circulating tumor DNA (ctDNA), RNA, proteins, lipids, and metabolites found in patient biofluids, as well as cell-free DNA (cfDNA), which exists in those with cancer. Although it is theoretically possible to examine biological fluids other than plasma, such as pleural fluid, urine, saliva, stool, cerebrospinal fluid, and ascites, we will limit our discussion to blood and solely cfDNA here for the sake of conciseness. Yet, the pace of wider clinical acceptance has been gradual, partly due to the increased difficulty of choosing the best analysis for the given clinical issue, interpreting the findings, and delaying proof of value from clinical trials. Our goal in this review is to discuss the current clinical value of ctDNA in cancers and how clinical oncology systems might incorporate procedures for ctDNA testing.
Collapse
Affiliation(s)
- Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, 21944, Saudi Arabia.
| | - Mohammad S Alzahrani
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| | - Ammar A Bahauddin
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Medina Al-Munawarah, Saudi Arabia.
| | - Bandar Almutairy
- Department of Pharmacology, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia.
| |
Collapse
|
37
|
Hou Y, Meng X, Zhou X. Systematically Evaluating Cell-Free DNA Fragmentation Patterns for Cancer Diagnosis and Enhanced Cancer Detection via Integrating Multiple Fragmentation Patterns. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308243. [PMID: 38881520 PMCID: PMC11321639 DOI: 10.1002/advs.202308243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/12/2024] [Indexed: 06/18/2024]
Abstract
Cell-free DNA (cfDNA) fragmentation patterns have immense potential for early cancer detection. However, the definition of fragmentation varies, ranging from the entire genome to specific genomic regions. These patterns have not been systematically compared, impeding broader research and practical implementation. Here, 1382 plasma cfDNA sequencing samples from 8 cancer types are collected. Considering that cfDNA within open chromatin regions is more susceptible to fragmentation, 10 fragmentation patterns within open chromatin regions as features and employed machine learning techniques to evaluate their performance are examined. All fragmentation patterns demonstrated discernible classification capabilities, with the end motif showing the highest diagnostic value for cross-validation. Combining cross and independent validation results revealed that fragmentation patterns that incorporated both fragment length and coverage information exhibited robust predictive capacities. Despite their diagnostic potential, the predictive power of these fragmentation patterns is unstable. To address this limitation, an ensemble classifier via integrating all fragmentation patterns is developed, which demonstrated notable improvements in cancer detection and tissue-of-origin determination. Further functional bioinformatics investigations on significant feature intervals in the model revealed its impressive ability to identify critical regulatory regions involved in cancer pathogenesis.
Collapse
Affiliation(s)
- Yuying Hou
- Hubei Key Laboratory of Agricultural BioinformaticsCollege of InformaticsHuazhong Agricultural UniversityWuhan430070China
| | - Xiang‐Yu Meng
- Hubei Key Laboratory of Agricultural BioinformaticsCollege of InformaticsHuazhong Agricultural UniversityWuhan430070China
- Health Science CenterHubei Minzu UniversityEnshi445000China
- Hubei Provincial Clinical Medical Research Center for NephropathyHubei Minzu UniversityEnshi445000China
| | - Xionghui Zhou
- Hubei Key Laboratory of Agricultural BioinformaticsCollege of InformaticsHuazhong Agricultural UniversityWuhan430070China
- Key Laboratory of Smart Farming for Agricultural AnimalsMinistry of Agriculture and Rural AffairsWuhan430070China
| |
Collapse
|
38
|
Chen HS, Negoita S, Schwartz S, Hsu E, Hafterson J, Coyle L, Stevens J, Fernandez A, Potts M, Feuer EJ. Toward real-time reporting of cancer incidence: methodology, pilot study, and SEER Program implementation. J Natl Cancer Inst Monogr 2024; 2024:123-131. [PMID: 39102887 DOI: 10.1093/jncimonographs/lgae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/18/2024] [Accepted: 04/23/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND A lag time between cancer case diagnosis and incidence reporting impedes the ability to monitor the impact of recent events on cancer incidence. Currently, the data submission standard is 22 months after a diagnosis year ends, and the reporting standard is 27.5 months after a diagnosis year ends. This paper presents the National Cancer Institute (NCI) Surveillance, Epidemiology, and End Results (SEER) Program's efforts to minimize the lag and achieve "real-time" reporting, operationalized as submission within 2 months from the end of a diagnosis year. METHODS Technology for rapidly creating a consolidated tumor case (CTC) from electronic pathology (e-path) reports is described. Statistical methods are extended to adjust for biases in incidence rates due to reporting delays for the most recent diagnosis years. RESULTS A registry pilot study demonstrated that real-time submissions can approximate rates obtained from 22-month submissions after adjusting for reporting delays. A plan to be implemented across the SEER Program rapidly ascertains unstructured e-path reports and uses machine learning algorithms to translate the reports into the core data items that comprise a CTC for incidence reporting. Across the program, cases were submitted 2 months after the end of the calendar year. Registries with the most promising baseline values and a willingness to modify registry operations have joined a program to become certified as real-time reporting. CONCLUSION Advances in electronic reporting, natural language processing, registry operations, and statistical methodology, energized by the SEER Program's mobilization and coordination of these efforts, will make real-time reporting an achievable goal.
Collapse
Affiliation(s)
- Huann-Sheng Chen
- Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, MD, USA
| | - Serban Negoita
- Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, MD, USA
| | - Steve Schwartz
- Fred Hutch Cancer Surveillance System (CSS), Seattle, WA, USA
| | - Elizabeth Hsu
- Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, MD, USA
| | | | - Linda Coyle
- Information Management Services (IMS), Inc, Calverton, MD, USA
| | | | - Anna Fernandez
- Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, MD, USA
| | - Mary Potts
- Fred Hutch Cancer Surveillance System (CSS), Seattle, WA, USA
| | - Eric J Feuer
- Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, MD, USA
| |
Collapse
|
39
|
Adugna A, Muche Y, Melkamu A, Jemal M, Belew H, Amare GA. Current updates on the molecular and genetic signals as diagnostic and therapeutic targets for hepatitis B virus-associated hepatic malignancy. Heliyon 2024; 10:e34288. [PMID: 39100497 PMCID: PMC11295980 DOI: 10.1016/j.heliyon.2024.e34288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/28/2024] [Accepted: 07/07/2024] [Indexed: 08/06/2024] Open
Abstract
Liver cancer caused by the hepatitis B virus (HBV) is the third most common cancer-related cause of death worldwide. Early detection of HBV-caused hepatic tumors increases the likelihood of a successful cure. Molecular and genetic signals are becoming more and more recognized as possible indicators of HBV-associated hepatic malignancy and of how well a treatment is working. As a result, we have discussed the current literature on molecular and genetic sensors, including extracellular vesicle microRNAs (EV-miRNAs), long non-coding circulating RNAs (lncRNAs), extracellular vesicles (EVs), and cell free circulating DNA (cfDNA), for the diagnosis and forecasting of HBV-related hepatic cancer. Extracellular vesicle microRNAs such as miR-335-5p, miR-172-5p, miR-1285-5p, miR-497-5p, miR-636, miR-187-5p, miR-223-3p, miR-21, miR-324-3p, miR-210-3p, miR-718, miR-122, miR-522, miR-0308-3p, and miR-375 are essential for the posttranscriptional regulation of oncogenes in hepatic cells as well as the epigenetic modulation of many internal and external signaling pathways in HBV-induced hepatic carcinogenesis. LncRNAs like lnc01977, HULC (highly up-regulated in liver cancer), MALAT1 (metastasis-associated lung adenocarcinoma transcript 1), and HOTAIR (hox transcript antisense intergenic RNA) have been demonstrated to control hepatic-tumors cell growth, relocation, encroachment, and cell death resiliency. They are also becoming more and more involved in immune tracking, hepatic shifting, vasculature oversight, and genomic destabilization. EVs are critical mediators involved in multiple aspects of liver-tumors like angiogenesis, immunology, tumor formation, and the dissemination of malignant hepatocytes. Furthermore, cfDNA contributes to signals associated with tumors, including mutations and abnormal epigenetic changes during HBV-related hepatic tumorigenesis.
Collapse
Affiliation(s)
- Adane Adugna
- Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Yalew Muche
- Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Abateneh Melkamu
- Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Mohammed Jemal
- Department of Biomedical Sciences, School of Medicine, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Habtamu Belew
- Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Gashaw Azanaw Amare
- Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
40
|
Tao XY, Li QQ, Zeng Y. Clinical application of liquid biopsy in colorectal cancer: detection, prediction, and treatment monitoring. Mol Cancer 2024; 23:145. [PMID: 39014366 PMCID: PMC11250976 DOI: 10.1186/s12943-024-02063-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent malignancies affecting the gastrointestinal tract and is ranked third among cancers with the highest incidence and second-highest mortality rate worldwide. CRC exhibits a slow progression providing a wide treatment window. The currently employed CRC screening methods have shown great potential to prevent CRC and reduce CRC-related morbidity and mortality. The diagnosis of CRC is achieved by colonoscopy and tissue biopsy, with studies showing that liquid biopsy is more effective in detecting and diagnosing early CRC patients. Increasing number of studies have shown that the tumor components shed into circulating blood can be detected in liquid form, and can be applied in the clinical management of CRC. Analysis of circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), or tumor-associated platelets (TEPs) in the blood can be used for early screening and diagnosis of CRC, aid tumor staging, treatment response monitoring, and prediction of CRC recurrence and metastasis in a minimally invasive manner. This chapter provides an updated review of CTCs, ctDNA, and TEPs as novel biomarkers for CRC, highlighting their strengths and limitations.
Collapse
Affiliation(s)
- Xiang-Yuan Tao
- Translational Medicine Center, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- School of Pharmacy, University of South China, Hengyang, China
| | - Qian-Qian Li
- Translational Medicine Center, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- School of Pharmacy, University of South China, Hengyang, China
| | - Yong Zeng
- Translational Medicine Center, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.
- School of Pharmacy, University of South China, Hengyang, China.
| |
Collapse
|
41
|
Zalis M, Viana Veloso GG, Aguiar Jr. PN, Gimenes N, Reis MX, Matsas S, Ferreira CG. Next-generation sequencing impact on cancer care: applications, challenges, and future directions. Front Genet 2024; 15:1420190. [PMID: 39045325 PMCID: PMC11263191 DOI: 10.3389/fgene.2024.1420190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/13/2024] [Indexed: 07/25/2024] Open
Abstract
Fundamentally precision oncology illustrates the path in which molecular profiling of tumors can illuminate their biological behavior, diversity, and likely outcomes by identifying distinct genetic mutations, protein levels, and other biomarkers that underpin cancer progression. Next-generation sequencing became an indispensable diagnostic tool for diagnosis and treatment guidance in current clinical practice. Nowadays, tissue analysis benefits from further support through methods like comprehensive genomic profiling and liquid biopsies. However, precision medicine in the field of oncology presents specific hurdles, such as the cost-benefit balance and widespread accessibility, particularly in countries with low- and middle-income. A key issue is how to effectively extend next-generation sequencing to all cancer patients, thus empowering treatment decision-making. Concerns also extend to the quality and preservation of tissue samples, as well as the evaluation of health technologies. Moreover, as technology advances, novel next-generation sequencing assessments are being developed, including the study of Fragmentomics. Therefore, our objective was to delineate the primary uses of next-generation sequencing, discussing its' applications, limitations, and prospective paths forward in Oncology.
Collapse
Affiliation(s)
- Mariano Zalis
- Oncoclínicas&Co/MedSir, Rio de Janeiro, Brazil
- Medical School of the Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gilson Gabriel Viana Veloso
- Oncoclínicas&Co/MedSir, Rio de Janeiro, Brazil
- Santa Casa de Misericórdia de Belo Horizonte, Belo Horizonte, Brazil
| | | | | | | | - Silvio Matsas
- Centro de Estudos e Pesquisas de Hematologia e Oncologia (CEPHO), Sao Paulo, Brazil
| | | |
Collapse
|
42
|
Rodríguez-Ces AM, Rapado-González Ó, Salgado-Barreira Á, Santos MA, Aroso C, Vinhas AS, López-López R, Suárez-Cunqueiro MM. Liquid Biopsies Based on Cell-Free DNA Integrity as a Biomarker for Cancer Diagnosis: A Meta-Analysis. Diagnostics (Basel) 2024; 14:1465. [PMID: 39061602 PMCID: PMC11276058 DOI: 10.3390/diagnostics14141465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Liquid biopsies have been identified as a viable source of cancer biomarkers. We aim to evaluate the diagnostic accuracy of cell-free DNA integrity (cfDI) in liquid biopsies for cancer. A comprehensive literature search was conducted through PubMed, Embase, Web of Science, and Cochrane Library up to June 2024. Seventy-two study units from forty-six studies, comprising 4286 cancer patients, were identified and evaluated. The Quality Assessment for Studies of Diagnostic Accuracy-2 (QUADAS-2) was used to assess study quality. Meta-regression analysis was employed to investigate the underlying factors contributing to heterogeneity, alongside an evaluation of publication bias. The bivariate random-effect model was utilized to compute the primary diagnostic outcomes and their corresponding 95% confidence intervals (CIs). The pooled sensitivity, specificity, and positive and negative likelihood ratios of cfDI in cancer diagnosis were 0.70 and 0.77, 3.26 and 0.34, respectively. The overall area under the curve was 0.84, with a diagnostic odds ratio of 10.63. This meta-analysis suggested that the cfDI index has a promising potential as a non-invasive and accurate diagnostic tool for cancer. Study registration: The study was registered at PROSPERO (reference No. CRD42021276290).
Collapse
Affiliation(s)
- Ana María Rodríguez-Ces
- Department of Surgery and Medical-Surgical Specialties, Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain; (A.M.R.-C.); (Ó.R.-G.)
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain;
- Liquid Biopsy Analysis Unit, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), 15706 Santiago de Compostela, Spain
| | - Óscar Rapado-González
- Department of Surgery and Medical-Surgical Specialties, Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain; (A.M.R.-C.); (Ó.R.-G.)
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain;
- Liquid Biopsy Analysis Unit, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Ángel Salgado-Barreira
- Department of Public Health, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain;
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiology and Public Health—CIBERESP), 28029 Madrid, Spain
- Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - María Arminda Santos
- UNIPRO-Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU, 4585-116 Gandra, Portugal; (M.A.S.); (C.A.); (A.S.V.)
| | - Carlos Aroso
- UNIPRO-Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU, 4585-116 Gandra, Portugal; (M.A.S.); (C.A.); (A.S.V.)
| | - Ana Sofia Vinhas
- UNIPRO-Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU, 4585-116 Gandra, Portugal; (M.A.S.); (C.A.); (A.S.V.)
| | - Rafael López-López
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain;
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS, SERGAS), 15706 Santiago de Compostela, Spain
| | - María Mercedes Suárez-Cunqueiro
- Department of Surgery and Medical-Surgical Specialties, Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain; (A.M.R.-C.); (Ó.R.-G.)
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain;
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS, SERGAS), 15706 Santiago de Compostela, Spain
| |
Collapse
|
43
|
Turabi K, Klute K, Radhakrishnan P. Decoding the Dynamics of Circulating Tumor DNA in Liquid Biopsies. Cancers (Basel) 2024; 16:2432. [PMID: 39001494 PMCID: PMC11240538 DOI: 10.3390/cancers16132432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Circulating tumor DNA (ctDNA), a fragment of tumor DNA found in the bloodstream, has emerged as a revolutionary tool in cancer management. This review delves into the biology of ctDNA, examining release mechanisms, including necrosis, apoptosis, and active secretion, all of which offer information about the state and nature of the tumor. Comprehensive DNA profiling has been enabled by methods such as whole genome sequencing and methylation analysis. The low abundance of the ctDNA fraction makes alternative techniques, such as digital PCR and targeted next-generation exome sequencing, more valuable and accurate for mutation profiling and detection. There are numerous clinical applications for ctDNA analysis, including non-invasive liquid biopsies for minimal residual disease monitoring to detect cancer recurrence, personalized medicine by mutation profiling for targeted therapy identification, early cancer detection, and real-time evaluation of therapeutic response. Integrating ctDNA analysis into routine clinical practice creates promising avenues for successful and personalized cancer care, from diagnosis to treatment and follow-up.
Collapse
Affiliation(s)
- Khadija Turabi
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kelsey Klute
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Division of Oncology and Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Prakash Radhakrishnan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
44
|
Gromek P, Senkowska Z, Płuciennik E, Pasieka Z, Zhao LY, Gielecińska A, Kciuk M, Kłosiński K, Kałuzińska-Kołat Ż, Kołat D. Revisiting the standards of cancer detection and therapy alongside their comparison to modern methods. World J Methodol 2024; 14:92982. [PMID: 38983668 PMCID: PMC11229876 DOI: 10.5662/wjm.v14.i2.92982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/15/2024] [Accepted: 04/28/2024] [Indexed: 06/13/2024] Open
Abstract
In accordance with the World Health Organization data, cancer remains at the forefront of fatal diseases. An upward trend in cancer incidence and mortality has been observed globally, emphasizing that efforts in developing detection and treatment methods should continue. The diagnostic path typically begins with learning the medical history of a patient; this is followed by basic blood tests and imaging tests to indicate where cancer may be located to schedule a needle biopsy. Prompt initiation of diagnosis is crucial since delayed cancer detection entails higher costs of treatment and hospitalization. Thus, there is a need for novel cancer detection methods such as liquid biopsy, elastography, synthetic biosensors, fluorescence imaging, and reflectance confocal microscopy. Conventional therapeutic methods, although still common in clinical practice, pose many limitations and are unsatisfactory. Nowadays, there is a dynamic advancement of clinical research and the development of more precise and effective methods such as oncolytic virotherapy, exosome-based therapy, nanotechnology, dendritic cells, chimeric antigen receptors, immune checkpoint inhibitors, natural product-based therapy, tumor-treating fields, and photodynamic therapy. The present paper compares available data on conventional and modern methods of cancer detection and therapy to facilitate an understanding of this rapidly advancing field and its future directions. As evidenced, modern methods are not without drawbacks; there is still a need to develop new detection strategies and therapeutic approaches to improve sensitivity, specificity, safety, and efficacy. Nevertheless, an appropriate route has been taken, as confirmed by the approval of some modern methods by the Food and Drug Administration.
Collapse
Affiliation(s)
- Piotr Gromek
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
| | - Zuzanna Senkowska
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
| | - Elżbieta Płuciennik
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
| | - Zbigniew Pasieka
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
| | - Lin-Yong Zhao
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Adrianna Gielecińska
- Department of Molecular Biotechnology and Genetics, University of Lodz, Lodz 90-237, Lodzkie, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, Lodz 90-237, Lodzkie, Poland
| | - Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Lodz 90-237, Lodzkie, Poland
| | - Karol Kłosiński
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
| | - Żaneta Kałuzińska-Kołat
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
| | - Damian Kołat
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
| |
Collapse
|
45
|
Gerke MB, Jansen CS, Bilen MA. Circulating Tumor DNA in Genitourinary Cancers: Detection, Prognostics, and Therapeutic Implications. Cancers (Basel) 2024; 16:2280. [PMID: 38927984 PMCID: PMC11201475 DOI: 10.3390/cancers16122280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
CtDNA is emerging as a non-invasive clinical detection method for several cancers, including genitourinary (GU) cancers such as prostate cancer, bladder cancer, and renal cell carcinoma (RCC). CtDNA assays have shown promise in early detection of GU cancers, providing prognostic information, assessing real-time treatment response, and detecting residual disease and relapse. The ease of obtaining a "liquid biopsy" from blood or urine in GU cancers enhances its potential to be used as a biomarker. Interrogating these "liquid biopsies" for ctDNA can then be used to detect common cancer mutations, novel genomic alterations, or epigenetic modifications. CtDNA has undergone investigation in numerous clinical trials, which could address clinical needs in GU cancers, for instance, earlier detection in RCC, therapeutic response prediction in castration-resistant prostate cancer, and monitoring for recurrence in bladder cancers. The utilization of liquid biopsy for ctDNA analysis provides a promising method of advancing precision medicine within the field of GU cancers.
Collapse
Affiliation(s)
- Margo B. Gerke
- Emory University School of Medicine, Atlanta, GA 30322, USA; (M.B.G.); (C.S.J.)
| | - Caroline S. Jansen
- Emory University School of Medicine, Atlanta, GA 30322, USA; (M.B.G.); (C.S.J.)
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Mehmet A. Bilen
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
46
|
Hu Q, Mao Y, Lan H, Wei Y, Chen Y, Ye Q, Che H. Value of altered methylation patterns of genes RANBP3, LCP2 and GRAP2 in cfDNA in breast cancer diagnosis. J Med Biochem 2024; 43:387-396. [PMID: 39139156 PMCID: PMC11318043 DOI: 10.5937/jomb0-47507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/27/2023] [Indexed: 08/15/2024] Open
Abstract
Background The purpose of this study was to investigate the potential of plasma cfDNA methylation patterns in reflecting tumour methylation changes, focusing on three candidate sites, cg02469161, cg11528914, and cg20131654. These sites were selected for verification, with a particular emphasis on their association with breast cancer. Methods We conducted a comprehensive analysis of 850k whole-methylation sequencing data to identify potential markers for breast cancer detection. Subsequently, we investigated the methylation status of the genes Ran-binding protein 3 (RANBP3), Lymphocyte cytoplasmic protein 2 (LCP2), and GRB2 related adaptor protein 2 (GRAP2), situated at the specified sites, using cancer and canceradjacent tissues from 17 breast cancer patients. We also examined the methylation patterns in different molecular subtypes and pathological grades of breast cancer. Additionally, we compared the methylation levels of these genes in plasma cfDNA to their performance in tissues. Results Our analysis revealed that RANBP3, LCP2, and GRAP2 genes exhibited significant methylation differences between cancer and cancer-adjacent tissues. In breast cancer, these genes displayed diagnostic efficiencies of 91.0%, 90.6%, and 92.2%, respectively. Notably, RANBP3 showed a tendency towards lower methylation in HR+ breast cancer, and LCP2 methylation was correlated with tumour malignancy. Importantly, the methylation levels of these three genes in plasma cfDNA closely mirrored their tissue counterparts, with diagnostic efficiencies of 83.3%, 83.9%, and 77.6% for RANBP3, LCP2, and GRAP2, respectively. Conclusions Our findings propose that the genes RANBP3, LCP2, and GRAP2, located at the identified methylation sites, hold significant potential as molecular markers in blood for the supplementary diagnosis of breast cancer. This study lays the groundwork for a more in-depth investigation into the changes in gene methylation patterns in circulating free DNA (cfDNA) for the early detection not only of breast cancer but also for various other types of cancer.
Collapse
Affiliation(s)
- Qin Hu
- Zigong Maternal and Child Health Hospital, Department of Clinical Laboratory, Zigong, China
| | - Yu Mao
- Zigong First People's Hospital, Department of Thyroid and Breast Surgery, Zigong, China
| | - Haomiao Lan
- Zigong First People's Hospital, Department of Thyroid and Breast Surgery, Zigong, China
| | - Yi Wei
- Zigong Maternal and Child Health Hospital, Department of Clinical Laboratory, Zigong, China
| | - Yuehua Chen
- Zigong Maternal and Child Health Hospital, Department of Clinical Laboratory, Zigong, China
| | - Qiang Ye
- Zigong Maternal and Child Health Hospital, Department of Clinical Laboratory, Zigong, China
| | - Hongying Che
- Zigong First People's Hospital, Department of Thyroid and Breast Surgery, Zigong, China
| |
Collapse
|
47
|
Fuentes-Rodriguez A, Mitchell A, Guérin SL, Landreville S. Recent Advances in Molecular and Genetic Research on Uveal Melanoma. Cells 2024; 13:1023. [PMID: 38920653 PMCID: PMC11201764 DOI: 10.3390/cells13121023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 06/27/2024] Open
Abstract
Uveal melanoma (UM), a distinct subtype of melanoma, presents unique challenges in its clinical management due to its complex molecular landscape and tendency for liver metastasis. This review highlights recent advancements in understanding the molecular pathogenesis, genetic alterations, and immune microenvironment of UM, with a focus on pivotal genes, such as GNAQ/11, BAP1, and CYSLTR2, and delves into the distinctive genetic and chromosomal classifications of UM, emphasizing the role of mutations and chromosomal rearrangements in disease progression and metastatic risk. Novel diagnostic biomarkers, including circulating tumor cells, DNA and extracellular vesicles, are discussed, offering potential non-invasive approaches for early detection and monitoring. It also explores emerging prognostic markers and their implications for patient stratification and personalized treatment strategies. Therapeutic approaches, including histone deacetylase inhibitors, MAPK pathway inhibitors, and emerging trends and concepts like CAR T-cell therapy, are evaluated for their efficacy in UM treatment. This review identifies challenges in UM research, such as the limited treatment options for metastatic UM and the need for improved prognostic tools, and suggests future directions, including the discovery of novel therapeutic targets, immunotherapeutic strategies, and advanced drug delivery systems. The review concludes by emphasizing the importance of continued research and innovation in addressing the unique challenges of UM to improve patient outcomes and develop more effective treatment strategies.
Collapse
Affiliation(s)
- Aurélie Fuentes-Rodriguez
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada; (A.F.-R.); (A.M.); (S.L.G.)
- Hôpital du Saint-Sacrement, Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC G1S 4L8, Canada
- Centre de Recherche en Organogénèse Expérimentale de l‘Université Laval/LOEX, Quebec City, QC G1J 1Z4, Canada
- Université Laval Cancer Research Center, Quebec City, QC G1R 3S3, Canada
| | - Andrew Mitchell
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada; (A.F.-R.); (A.M.); (S.L.G.)
- Hôpital du Saint-Sacrement, Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC G1S 4L8, Canada
- Centre de Recherche en Organogénèse Expérimentale de l‘Université Laval/LOEX, Quebec City, QC G1J 1Z4, Canada
- Université Laval Cancer Research Center, Quebec City, QC G1R 3S3, Canada
| | - Sylvain L. Guérin
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada; (A.F.-R.); (A.M.); (S.L.G.)
- Hôpital du Saint-Sacrement, Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC G1S 4L8, Canada
- Centre de Recherche en Organogénèse Expérimentale de l‘Université Laval/LOEX, Quebec City, QC G1J 1Z4, Canada
| | - Solange Landreville
- Department of Ophthalmology and Otorhinolaryngology-Cervico-Facial Surgery, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada; (A.F.-R.); (A.M.); (S.L.G.)
- Hôpital du Saint-Sacrement, Regenerative Medicine Division, CHU de Québec-Université Laval Research Centre, Quebec City, QC G1S 4L8, Canada
- Centre de Recherche en Organogénèse Expérimentale de l‘Université Laval/LOEX, Quebec City, QC G1J 1Z4, Canada
- Université Laval Cancer Research Center, Quebec City, QC G1R 3S3, Canada
| |
Collapse
|
48
|
Jary A, Kim Y, Rozemeijer K, Eijk PP, van der Zee RP, Bleeker MCG, Wilting SM, Steenbergen RDM. Accurate detection of copy number aberrations in FFPE samples using the mFAST-SeqS approach. Exp Mol Pathol 2024; 137:104906. [PMID: 38820761 DOI: 10.1016/j.yexmp.2024.104906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND Shallow whole genome sequencing (Shallow-seq) is used to determine the copy number aberrations (CNA) in tissue samples and circulating tumor DNA. However, costs of NGS and challenges of small biopsies ask for an alternative to the untargeted NGS approaches. The mFAST-SeqS approach, relying on LINE-1 repeat amplification, showed a good correlation with Shallow-seq to detect CNA in blood samples. In the present study, we evaluated whether mFAST-SeqS is suitable to assess CNA in small formalin-fixed paraffin-embedded (FFPE) tissue specimens, using vulva and anal HPV-related lesions. METHODS Seventy-two FFPE samples, including 36 control samples (19 vulva;17 anal) for threshold setting and 36 samples (24 vulva; 12 anal) for clinical evaluation, were analyzed by mFAST-SeqS. CNA in vulva and anal lesions were determined by calculating genome-wide and chromosome arm-specific z-scores in comparison with the respective control samples. Sixteen samples were also analyzed with the conventional Shallow-seq approach. RESULTS Genome-wide z-scores increased with the severity of disease, with highest values being found in cancers. In vulva samples median and inter quartile ranges [IQR] were 1[0-2] in normal tissues (n = 4), 3[1-7] in premalignant lesions (n = 9) and 21[13-48] in cancers (n = 10). In anal samples, median [IQR] were 0[0-1] in normal tissues (n = 4), 14[6-38] in premalignant lesions (n = 4) and 18[9-31] in cancers (n = 4). At threshold 4, all controls were CNA negative, while 8/13 premalignant lesions and 12/14 cancers were CNA positive. CNA captured by mFAST-SeqS were mostly also found by Shallow-seq. CONCLUSION mFAST-SeqS is easy to perform, requires less DNA and less sequencing reads reducing costs, thereby providing a good alternative for Shallow-seq to determine CNA in small FFPE samples.
Collapse
Affiliation(s)
- Aude Jary
- Department of Pathology, Amsterdam UMC, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Biomarkers and Imaging, Amsterdam, the Netherlands
| | - Yongsoo Kim
- Department of Pathology, Amsterdam UMC, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Biomarkers and Imaging, Amsterdam, the Netherlands
| | - Kirsten Rozemeijer
- Department of Pathology, Amsterdam UMC, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Biomarkers and Imaging, Amsterdam, the Netherlands
| | - Paul P Eijk
- Department of Pathology, Amsterdam UMC, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Biomarkers and Imaging, Amsterdam, the Netherlands
| | - Ramon P van der Zee
- Department of Pathology, Amsterdam UMC, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Internal Medicine, division of Infectious Diseases, Amsterdam UMC, location Universiteit van Amsterdam, Amsterdam, the Netherlands
| | - Maaike C G Bleeker
- Department of Pathology, Amsterdam UMC, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Biomarkers and Imaging, Amsterdam, the Netherlands
| | - Saskia M Wilting
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Renske D M Steenbergen
- Department of Pathology, Amsterdam UMC, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Cancer Center Amsterdam, Biomarkers and Imaging, Amsterdam, the Netherlands.
| |
Collapse
|
49
|
Duffy MJ, Crown J. Circulating tumor DNA (ctDNA): can it be used as a pan-cancer early detection test? Crit Rev Clin Lab Sci 2024; 61:241-253. [PMID: 37936529 DOI: 10.1080/10408363.2023.2275150] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/21/2023] [Indexed: 11/09/2023]
Abstract
Circulating tumor DNA (ctDNA, DNA shed by cancer cells) is emerging as one of the most transformative cancer biomarkers discovered to-date. Although potentially useful at all the phases of cancer detection and patient management, one of its most exciting possibilities is as a relatively noninvasive pan-cancer screening test. Preliminary findings with ctDNA tests such as Galleri or CancerSEEK suggest that they have high specificity (> 99.0%) for malignancy. Their sensitivity varies depending on the type of cancer and stage of disease but it is generally low in patients with stage I disease. A major advantage of ctDNA over existing screening strategies is the potential ability to detect multiple cancer types in a single test. A limitation of most studies published to-date is that they are predominantly case-control investigations that were carried out in patients with a previous diagnosis of malignancy and that used apparently healthy subjects as controls. Consequently, the reported sensitivities, specificities and positive predictive values might be lower if the tests are used for screening in asymptomatic populations, that is, in the population where these tests are likely be employed. To demonstrate clinical utility in an asymptomatic population, these tests must be shown to reduce cancer mortality without causing excessive overdiagnosis in a large randomized prospective randomized trial. Such trials are currently ongoing for Galleri and CancerSEEK.
Collapse
Affiliation(s)
- Michael J Duffy
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- UCD Clinical Research Centre, St. Vincent's University Hospital, Dublin, Ireland
| | - John Crown
- Department of Medical Oncology, St Vincent's University Hospital, Dublin, Ireland
| |
Collapse
|
50
|
Pandya D, Tomita S, Rhenals MP, Swierczek S, Reid K, Camacho-Vanegas O, Camacho C, Engelman K, Polukort S, RoseFigura J, Chuang L, Andikyan V, Cohen S, Fiedler P, Sieber S, Shih IM, Billaud JN, Sebra R, Reva B, Dottino P, Martignetti JA. Mutations in cancer-relevant genes are ubiquitous in histologically normal endometrial tissue. Gynecol Oncol 2024; 185:194-201. [PMID: 38452634 DOI: 10.1016/j.ygyno.2024.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 03/09/2024]
Abstract
OBJECTIVE Endometrial cancer (EndoCA) is the most common gynecologic cancer and incidence and mortality rate continue to increase. Despite well-characterized knowledge of EndoCA-defining mutations, no effective diagnostic or screening tests exist. To lay the foundation for testing development, our study focused on defining the prevalence of somatic mutations present in non-cancerous uterine tissue. METHODS We obtained ≥8 uterine samplings, including separate endometrial and myometrial layers, from each of 22 women undergoing hysterectomy for non-cancer conditions. We ultra-deep sequenced (>2000× coverage) samples using a 125 cancer-relevant gene panel. RESULTS All women harbored complex mutation patterns. In total, 308 somatic mutations were identified with mutant allele frequencies ranging up to 96.0%. These encompassed 56 unique mutations from 24 genes. The majority of samples possessed predicted functional cancer mutations but curiously no growth advantage over non-functional mutations was detected. Functional mutations were enriched with increasing patient age (p = 0.045) and BMI (p = 0.0007) and in endometrial versus myometrial layers (68% vs 39%, p = 0.0002). Finally, while the somatic mutation landscape shared similar mutation prevalence in key TCGA-defined EndoCA genes, notably PIK3CA, significant differences were identified, including NOTCH1 (77% vs 10%), PTEN (9% vs 61%), TP53 (0% vs 37%) and CTNNB1 (0% vs 26%). CONCLUSIONS An important caveat for future liquid biopsy/DNA-based cancer diagnostics is the repertoire of shared and distinct mutation profiles between histologically unremarkable and EndoCA tissues. The lack of selection pressure between functional and non-functional mutations in histologically unremarkable uterine tissue may offer a glimpse into an unrecognized EndoCA protective mechanism.
Collapse
Affiliation(s)
- Deep Pandya
- The Rudy L. Ruggles Biomedical Research Institute, Nuvance Health, Danbury, CT 06902, United States of America
| | - Shannon Tomita
- Departments of Obstetrics/Gynecology & Reproductive Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Maria Padron Rhenals
- Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Sabina Swierczek
- The Rudy L. Ruggles Biomedical Research Institute, Nuvance Health, Danbury, CT 06902, United States of America; Department of Obstetrics, Gynecology and Reproductive Sciences, Larner College of Medicine, University of Vermont, Burlington, VT, United States of America
| | - Katherine Reid
- Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Olga Camacho-Vanegas
- Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Catalina Camacho
- Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Kelsey Engelman
- Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Stephanie Polukort
- The Rudy L. Ruggles Biomedical Research Institute, Nuvance Health, Danbury, CT 06902, United States of America
| | | | - Linus Chuang
- The Rudy L. Ruggles Biomedical Research Institute, Nuvance Health, Danbury, CT 06902, United States of America
| | - Vaagn Andikyan
- The Rudy L. Ruggles Biomedical Research Institute, Nuvance Health, Danbury, CT 06902, United States of America
| | - Samantha Cohen
- Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Paul Fiedler
- The Rudy L. Ruggles Biomedical Research Institute, Nuvance Health, Danbury, CT 06902, United States of America
| | - Steven Sieber
- The Rudy L. Ruggles Biomedical Research Institute, Nuvance Health, Danbury, CT 06902, United States of America
| | - Ie-Ming Shih
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States of America
| | - Jean-Noël Billaud
- QIAGEN Bioinformatics, 1001 Marshall Street, Redwood City, CA 94063, United States of America
| | - Robert Sebra
- Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Boris Reva
- Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Peter Dottino
- Departments of Obstetrics/Gynecology & Reproductive Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; MDDx Inc., Tarrytown, NY 10591., United States of America
| | - John A Martignetti
- The Rudy L. Ruggles Biomedical Research Institute, Nuvance Health, Danbury, CT 06902, United States of America; Departments of Obstetrics/Gynecology & Reproductive Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; MDDx Inc., Tarrytown, NY 10591., United States of America.
| |
Collapse
|