1
|
Joos R, Boucher K, Lavelle A, Arumugam M, Blaser MJ, Claesson MJ, Clarke G, Cotter PD, De Sordi L, Dominguez-Bello MG, Dutilh BE, Ehrlich SD, Ghosh TS, Hill C, Junot C, Lahti L, Lawley TD, Licht TR, Maguin E, Makhalanyane TP, Marchesi JR, Matthijnssens J, Raes J, Ravel J, Salonen A, Scanlan PD, Shkoporov A, Stanton C, Thiele I, Tolstoy I, Walter J, Yang B, Yutin N, Zhernakova A, Zwart H, Doré J, Ross RP. Examining the healthy human microbiome concept. Nat Rev Microbiol 2025; 23:192-205. [PMID: 39443812 DOI: 10.1038/s41579-024-01107-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 10/25/2024]
Abstract
Human microbiomes are essential to health throughout the lifespan and are increasingly recognized and studied for their roles in metabolic, immunological and neurological processes. Although the full complexity of these microbial communities is not fully understood, their clinical and industrial exploitation is well advanced and expanding, needing greater oversight guided by a consensus from the research community. One of the most controversial issues in microbiome research is the definition of a 'healthy' human microbiome. This concept is complicated by the microbial variability over different spatial and temporal scales along with the challenge of applying a unified definition to the spectrum of healthy microbiome configurations. In this Perspective, we examine the progress made and the key gaps that remain to be addressed to fully harness the benefits of the human microbiome. We propose a road map to expand our knowledge of the microbiome-health relationship, incorporating epidemiological approaches informed by the unique ecological characteristics of these communities.
Collapse
Affiliation(s)
- Raphaela Joos
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Katy Boucher
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Aonghus Lavelle
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Manimozhiyan Arumugam
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin J Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Marcus J Claesson
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Paul D Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre and VistaMilk SFI Research Centre, Moorepark, Fermoy, Moorepark, Ireland
| | - Luisa De Sordi
- Centre de Recherche Saint Antoine, Sorbonne Université, INSERM, Paris, France
| | | | - Bas E Dutilh
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
- Theoretical Biology and Bioinformatics, Department of Biology, Science for Life, Utrecht University, Utrecht, The Netherlands
| | - Stanislav D Ehrlich
- Université Paris-Saclay, INRAE, MetaGenoPolis (MGP), Jouy-en-Josas, France
- Department of Clinical and Movement Neurosciences, University College London, London, UK
| | - Tarini Shankar Ghosh
- Department of Computational Biology, Indraprastha Institute of Information Technology Delhi (IIIT-Delhi), New Delhi, India
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Christophe Junot
- Département Médicaments et Technologies pour La Santé (DMTS), Université Paris-Saclay, CEA, INRAE, MetaboHUB, Gif-sur-Yvette, France
| | - Leo Lahti
- Department of Computing, University of Turku, Turku, Finland
| | - Trevor D Lawley
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Tine R Licht
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Emmanuelle Maguin
- Université Paris-Saclay, INRAE, AgroParisTech, MICALIS, Jouy-en-Josas, France
| | - Thulani P Makhalanyane
- Department of Microbiology, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Julian R Marchesi
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Jelle Matthijnssens
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Leuven, Belgium
| | - Jeroen Raes
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Leuven, Belgium
- Vlaams Instituut voor Biotechnologie (VIB) Center for Microbiology, Leuven, Belgium
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Anne Salonen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Pauline D Scanlan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Andrey Shkoporov
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre and VistaMilk SFI Research Centre, Moorepark, Fermoy, Moorepark, Ireland
| | - Ines Thiele
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Medicine, University of Ireland, Galway, Ireland
| | - Igor Tolstoy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Jens Walter
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- Department of Medicine, University College Cork, Cork, Ireland
| | - Bo Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Natalia Yutin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Alexandra Zhernakova
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hub Zwart
- Erasmus School of Philosophy, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Joël Doré
- Université Paris-Saclay, INRAE, MetaGenoPolis (MGP), Jouy-en-Josas, France
- Université Paris-Saclay, INRAE, AgroParisTech, MICALIS, Jouy-en-Josas, France
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- School of Microbiology, University College Cork, Cork, Ireland.
| |
Collapse
|
2
|
Porcari S, Mullish BH, Asnicar F, Ng SC, Zhao L, Hansen R, O'Toole PW, Raes J, Hold G, Putignani L, Hvas CL, Zeller G, Koren O, Tun H, Valles-Colomer M, Collado MC, Fischer M, Allegretti J, Iqbal T, Chassaing B, Keller J, Baunwall SM, Abreu M, Barbara G, Zhang F, Ponziani FR, Costello SP, Paramsothy S, Kao D, Kelly C, Kupcinskas J, Youngster I, Franceschi F, Khanna S, Vehreschild M, Link A, De Maio F, Pasolli E, Miguez AB, Brigidi P, Posteraro B, Scaldaferri F, Stojanovic MR, Megraud F, Malfertheiner P, Masucci L, Arumugam M, Kaakoush N, Segal E, Bajaj J, Leong R, Cryan J, Weersma RK, Knight R, Guarner F, Shanahan F, Cani PD, Elinav E, Sanguinetti M, de Vos WM, El-Omar E, Dorè J, Marchesi J, Tilg H, Sokol H, Segata N, Cammarota G, Gasbarrini A, Ianiro G. International consensus statement on microbiome testing in clinical practice. Lancet Gastroenterol Hepatol 2025; 10:154-167. [PMID: 39647502 DOI: 10.1016/s2468-1253(24)00311-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 12/10/2024]
Abstract
There is growing interest in the potential exploitation of the gut microbiome as a diagnostic tool in medicine, but evidence supporting its clinical usefulness is scarce. An increasing number of commercial providers offer direct-to-consumer microbiome diagnostic tests without any consensus on their regulation or any proven value in clinical practice, which could result in considerable waste of individual and health-care resources and potential drawbacks in the clinical management of patients. We convened an international multidisciplinary expert panel to standardise best practices of microbiome testing for clinical implementation, including recommendations on general principles and minimum requirements for their provision, indications, pre-testing protocols, method of analyses, reporting of results, and potential clinical value. We also evaluated current knowledge gaps and future directions in this field. We aimed to establish a framework to regulate the provision of microbiome testing and minimise the use of inappropriate tests and pave the way for the evidence-based development and use of human microbiome diagnostics in clinical medicine.
Collapse
Affiliation(s)
- Serena Porcari
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Benjamin H Mullish
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, St Mary's Hospital Campus, Imperial College London, London, UK; Departments of Gastroenterology and Hepatology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
| | | | - Siew C Ng
- Microbiota I-Center (MagIC), Hong Kong Special Administrative Region, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Liping Zhao
- Department of Biochemistry and Microbiology, New Jersey Institute of Food, Nutrition and Health, Rutgers University, New Brunswick, NY, USA
| | - Richard Hansen
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Paul W O'Toole
- APC Microbiome Ireland, Department of Medicine, University College Cork, Cork, Ireland; School of Microbiology, University College Cork, Cork, Ireland
| | - Jeroen Raes
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Leuven, Belgium; VIB, Center for Microbiology, Leuven, Belgium
| | - Georgina Hold
- Microbiome Research Centre, University of New South Wales, Sydney, Australia
| | - Lorenza Putignani
- Unit of Microbiomics and Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Christian Lodberg Hvas
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus Denmark
| | - Georg Zeller
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, Leiden, Netherlands; Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, Netherlands; Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Omry Koren
- Azrieli Faculty of Medicine Bar-Ilan University, Safed, Israel
| | - Hein Tun
- The Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Mireia Valles-Colomer
- Department CIBIO, University of Trento, Trento, Italy; MELIS Department, Pompeu Fabra University, Barcelona, Spain
| | - Maria Carmen Collado
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain
| | - Monika Fischer
- Division of Gastroenterology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jessica Allegretti
- Division of Gastroenterology, Brigham and Women's Hospital, Boston, MA, USA
| | - Tariq Iqbal
- Department of Gastroenterology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK; Microbiome Treatment Centre, University of Birmingham, Edgbaston, UK
| | - Benoit Chassaing
- Microbiome-Host Interactions, Institut Pasteur, Université Paris Cité, INSERM, Paris, France
| | - Josbert Keller
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, Netherlands; Public Health Laboratory, Faculty of Medicine, University of Birmingham, Birmingham, UK
| | - Simon Mark Baunwall
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Maria Abreu
- Division of Gastroenterology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Giovanni Barbara
- IRCCS Azienda Ospedaliero, University of Bologna, Bologna, Italy; Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Faming Zhang
- Medical Center for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China; Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing, China
| | - Francesca Romana Ponziani
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Liver Unit-Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Sam P Costello
- Department of Gastroenterology, The Queen Elizabeth Hospital, Adelaide, South Australia, Australia; Faculty of Health and Medical Sciences, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Sudarshan Paramsothy
- Department of Gastroenterology and Hepatology, Concord Repatriation General Hospital, Sydney, Australia; Concord Clinical School, University of Sydney, Sydney, Australia
| | - Dina Kao
- Edmonton FMT program, Division of Gastroenterology, University of Alberta, Edmonton, AB, Canada
| | - Colleen Kelly
- Division of Gastroenterology, Brigham and Women's Hospital, Boston, MA, USA
| | - Juozas Kupcinskas
- Gastroenterology Department and Institute for Digestive Research; Lithuanian University of Health Sciences Kaunas, Lithuania
| | - Ilan Youngster
- Division of Pediatrics and the Center for Microbiome Research, Shamir Medical Center, Israel, Faculty of Medical & Health Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Francesco Franceschi
- Department of Emergency Medicine, Fondazione Policlinico Universitario, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Sahil Khanna
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Maria Vehreschild
- Goethe University Frankfurt, University Hospital Frankfurt, Department II of Internal Medicine, Infectious Diseases, Frankfurt am Main, Germany
| | - Alexander Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Magdeburg, Germany
| | - Flavio De Maio
- Department of Laboratory and Infectious Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Edoardo Pasolli
- University of Naples Federico II, Department of Agricultural Sciences, Portici, Italy
| | | | - Patrizia Brigidi
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Brunella Posteraro
- Department of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Franco Scaldaferri
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Mirjana Rajilic Stojanovic
- Department for Biochemical Engineering and Biotechnology, University of Belgrade, Belgrade, Serbia; Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | | | - Peter Malfertheiner
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Magdeburg, Germany; LMU, University Clinic, Medical Department II, Munich, Germany
| | - Luca Masucci
- Department of Laboratory and Infectious Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Manimozhiyan Arumugam
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nadeem Kaakoush
- School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Eran Segal
- Computer Science and Applied Mathematics Department, Weizmann Institute of Science, Rehovot, Israel
| | - Jasmohan Bajaj
- Division of Gastroenterology, Hepatology, and Nutrition, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, VA, USA
| | - Rupert Leong
- Department of Gastroenterology, Concord Repatriation General Hospital, Sydney, Australia; MQ Health, Macquarie University Hospital, Sydney, Australia
| | - John Cryan
- APC Microbiome Ireland, Department of Medicine, University College Cork, Cork, Ireland
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Robert Knight
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | | | - Fergus Shanahan
- APC Microbiome Ireland, Department of Medicine, University College Cork, Cork, Ireland
| | - Patrice D Cani
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group, UCLouvain, Université Catholique de Louvain, Brussels, Belgium; Institute of Experimental and Clinical Research (IREC), UCLouvain, Université Catholique de Louvain, Brussels, Belgium; Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium
| | - Eran Elinav
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel; Cancer-Microbiome Division, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Maurizio Sanguinetti
- Department of Laboratory and Infectious Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Willem M de Vos
- Laboratory of Microbiology, Wageningen University, Netherlands; Human Microbiome Research Program, University of Helsinki, Finland
| | - Emad El-Omar
- Microbiome Research Centre, St George & Sutherland Clinical Campuses, School of Clinical Medicine, University of New South Wales, Sydney, Australia
| | - Joel Dorè
- MR Micalis Institut, INRA, Paris-Saclay University, Jouy-En-Josas, France
| | - Julian Marchesi
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, St Mary's Hospital Campus, Imperial College London, London, UK
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Harry Sokol
- MR Micalis Institut, INRA, Paris-Saclay University, Jouy-En-Josas, France; Gastroenterology Department, Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint-Antoine Hospital, Paris, France; Paris Center for Microbiome MedICIsne (PaCeMM) FHU, Paris, France
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy; Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Giovanni Cammarota
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Gianluca Ianiro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
3
|
Du X, Zhao J, Wu L, Ding S. Effects of Different Preservation Methods on the Structure and Diversity of Intestinal Microbiota of Marine Fishes. Curr Microbiol 2025; 82:81. [PMID: 39804371 DOI: 10.1007/s00284-025-04060-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/02/2025] [Indexed: 01/31/2025]
Abstract
The fish intestine is a complex ecosystem where microbial communities are dynamic and influenced by various factors. Preservation conditions during field collection can introduce biases affecting the microbiota amplified during sequencing. Therefore, establishing effective, standardized methods for sampling fish intestinal microbiota is crucial. This study used hybrid groupers (Epinephelus fuscoguttatus ♀ × E. lanceolatus ♂) to examine the effects of six preservation methods: dry ice (1 day), dry ice (1 day) followed by - 80 °C storage (5 days), liquid nitrogen (1 day), liquid nitrogen (1 day) with subsequent - 80 °C storage (5 days), refrigeration at 4 °C (3 days), and freezing at - 20 °C (3 days), with fresh samples as controls. High-throughput 16S rRNA sequencing assessed microbial diversity, community structure, dominant species, and OTU abundance across treatments. Results indicated that dry ice and liquid nitrogen methods, especially with - 80 °C storage, had minimal impact on microbial diversity and structure. Compared to other preservation methods, refrigeration at 4 °C and freezing at - 20 °C may result in suboptimal reproducibility and altered community structure, particularly affecting rare microbial taxa. This study underscores the need for standardized preservation techniques to ensure accurate fish intestinal microbiota analysis and provides a foundation for future research.
Collapse
Affiliation(s)
- Xueqing Du
- College of Ocean and Earth Sciences, Xiamen University, Fujian, 361005, China
| | - Jing Zhao
- College of Ocean and Earth Sciences, Xiamen University, Fujian, 361005, China
| | - Lisheng Wu
- College of Ocean and Earth Sciences, Xiamen University, Fujian, 361005, China
| | - Shaoxiong Ding
- College of Ocean and Earth Sciences, Xiamen University, Fujian, 361005, China.
| |
Collapse
|
4
|
Hoogendijk R, van den Broek TJM, Lee H, Mueller S, Kline C, Bianco J, Top J, de Zoete MR, Kester L, Calkoen F, van der Lugt J. Omnigene-Gut tm ensures fecal microbiome stability in the pediatric population. AMB Express 2024; 14:132. [PMID: 39641864 PMCID: PMC11624167 DOI: 10.1186/s13568-024-01798-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/23/2024] [Indexed: 12/07/2024] Open
Abstract
Increasing evidence exists that the gut microbiome influences toxicity as well as outcomes in a variety of cancers. To investigate the role of the gut microbiome in pediatric neuro-oncology, microbiome analysis has been included in multiple prospective pediatric neuro-oncology clinical trials (NCT05009992, NCT04732065, NCT04775485). In these trials, the OMNIgene-GUTtm preservation tubes are used for the collection of the feces. OMNIgene-GUTtm has demonstrated reliability in preserving the composition of the gut microbiome in adults; however, its validation for use in the pediatric population remains limited. Therefore, we compared the quality of the DNA by 16S rRNA gene sequencing after various methods of stabilizing fecal samples in pediatric populations, from the direct freeze method at - 80 °C to preserving samples with OMNIgene-GUTtm at room temperature for various durations. Our results showed that there were no statistically significant differences between the alpha-diversity, and beta-diversity. However, pairwise differential abundance analyses demonstrated that OMNIgene-GUT™ is superior in maintaining microbial community structure compared to storing samples without any preservation method. With the OMNIgene-GUTtm's stabilization of the fecal samples being superior and its ease-of-use benefits, it proves to be a valid and ideal method of stabilizing fecal samples for current and future pediatric clinical trials.
Collapse
Affiliation(s)
- Raoull Hoogendijk
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, The Netherlands.
- Department of Neurology, Brain Tumor Center, Erasmus MC Cancer Institute, University Medical Center, 3015 GD, Rotterdam, The Netherlands.
| | | | - Hyunju Lee
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Sabine Mueller
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, 94143, USA
- Neurology, University of California San Francisco, San Francisco, CA, 94143, USA
- Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Cassie Kline
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - John Bianco
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, The Netherlands
| | - Janetta Top
- Department of Medical Microbiology, University Medical Center, Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Marcel R de Zoete
- Department of Medical Microbiology, University Medical Center, Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Lennart Kester
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, The Netherlands
| | - Friso Calkoen
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, The Netherlands
| | - Jasper van der Lugt
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, The Netherlands.
| |
Collapse
|
5
|
Maghini DG, Dvorak M, Dahlen A, Roos M, Doyle B, Kuersten S, Bhatt AS. Quantifying bias introduced by sample collection in relative and absolute microbiome measurements. Nat Biotechnol 2024; 42:328-338. [PMID: 37106038 DOI: 10.1038/s41587-023-01754-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 03/21/2023] [Indexed: 04/29/2023]
Abstract
To gain insight into the accuracy of microbial measurements, it is important to evaluate sources of bias related to sample condition, preservative method and bioinformatic analyses. There is increasing evidence that measurement of the total count and concentration of microbes in the gut, or 'absolute abundance', provides a richer source of information than relative abundance and can correct some conclusions drawn from relative abundance data. However, little is known about how preservative choice can affect these measurements. In this study, we investigated how two common preservatives and short-term storage conditions impact relative and absolute microbial measurements. OMNIgene GUT OMR-200 yields lower metagenomic taxonomic variation between different storage temperatures, whereas Zymo DNA/RNA Shield yields lower metatranscriptomic taxonomic variation. Absolute abundance quantification reveals two different causes of variable Bacteroidetes:Firmicutes ratios across preservatives. Based on these results, we recommend OMNIgene GUT OMR-200 preservative for field studies and Zymo DNA/RNA Shield for metatranscriptomics studies, and we strongly encourage absolute quantification for microbial measurements.
Collapse
Affiliation(s)
- Dylan G Maghini
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Mai Dvorak
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Alex Dahlen
- Quantitative Sciences Unit, Stanford University, Stanford, CA, USA
| | | | - Boryana Doyle
- School of Medicine, Stanford University, Stanford, CA, USA
| | | | - Ami S Bhatt
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Department of Medicine (Hematology, Blood and Marrow Transplantation), Stanford University, Stanford, CA, USA.
| |
Collapse
|
6
|
Hussan H, Clinton SK, Grainger EM, Webb M, Wang C, Webb A, Needleman B, Noria S, Zhu J, Choueiry F, Pietrzak M, Bailey MT. Distinctive patterns of sulfide- and butyrate-metabolizing bacteria after bariatric surgery: potential implications for colorectal cancer risk. Gut Microbes 2023; 15:2255345. [PMID: 37702461 PMCID: PMC10501170 DOI: 10.1080/19490976.2023.2255345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/09/2023] [Accepted: 08/31/2023] [Indexed: 09/14/2023] Open
Abstract
Despite improved cardiometabolic outcomes following bariatric surgery, its long-term impact on colorectal cancer (CRC) risk remains uncertain. In parallel, the influence of bariatric surgery on the host microbiome and relationships with disease outcomes is beginning to be appreciated. Therefore, we investigated the impact of Roux-en-Y gastric bypass (RYGB) and vertical sleeve gastrectomy (VSG) on the patterns of sulfide-reducing and butyrate-producing bacteria, which are hypothesized to modulate CRC risk after bariatric surgery. In this single-center, cross-sectional study, we included 15 pre-surgery subjects with severe obesity and patients who are at a median (range) of 25.6 (9.9-46.5) months after RYGB (n = 16) or VSG (n = 10). The DNA abundance of fecal bacteria and enzymes involved in butyrate and sulfide metabolism were identified using metagenomic sequencing. Differences between pre-surgery and post-RYGB or post-VSG cohorts were quantified using the linear discriminant analysis (LDA) effect size (LEfSe) method. Our sample was predominantly female (87%) with a median (range) age of 46 (23-71) years. Post-RYGB and post-VSG patients had a higher DNA abundance of fecal sulfide-reducing bacteria than pre-surgery controls (LDA = 1.3-4.4, p < .05). The most significant enrichments were for fecal E. coli, Acidaminococcus and A. finegoldii after RYGB, and for A. finegoldii, S. vestibularis, V. parvula after VSG. As for butyrate-producing bacteria, R. faecis was more abundant, whereas B. dentium and A. hardus were lower post-RYGB vs. pre-surgery. B. dentium was also lower in post-VSG vs. pre-surgery. Consistent with these findings, our analysis showed a greater enrichment of sulfide-reducing enzymes after bariatric surgery, especially RYGB, vs. pre-surgery. The DNA abundance of butyrate-producing enzymes was lower post-RYGB. In conclusion, the two most used bariatric surgeries, RYGB and VSG, are associated with microbiome patterns that are potentially implicated in CRC risk. Future studies are needed to validate and understand the impact of these microbiome changes on CRC risk after bariatric surgery.
Collapse
Affiliation(s)
- Hisham Hussan
- Division of Gastroenterology, Department of Internal Medicine, University of California, Davis; Sacramento, CA, USA
- The UC Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - Steven K. Clinton
- Division of Medical Oncology; Department of Internal Medicine, The Ohio StateUniversity, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Elizabeth M. Grainger
- Division of Medical Oncology; Department of Internal Medicine, The Ohio StateUniversity, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Maxine Webb
- Division of Medical Oncology; Department of Internal Medicine, The Ohio StateUniversity, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Cankun Wang
- Division of Biomedical Informatics, Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Amy Webb
- Division of Biomedical Informatics, Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Bradley Needleman
- Center for Minimally Invasive Surgery; Department of General Surgery, The Ohio State University, Columbus, OH, USA
| | - Sabrena Noria
- Center for Minimally Invasive Surgery; Department of General Surgery, The Ohio State University, Columbus, OH, USA
| | - Jiangjiang Zhu
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- The Department of Human Sciences, The Ohio State University, Columbus, OH, USA
| | - Fouad Choueiry
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- The Department of Human Sciences, The Ohio State University, Columbus, OH, USA
| | - Maciej Pietrzak
- Division of Biomedical Informatics, Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Michael T. Bailey
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital and Department of Pediatrics, Columbus, OH, USA
- The Oral and Gastrointestinal Microbiology Research Affinity Group, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| |
Collapse
|
7
|
Pedroza Matute S, Iyavoo S. Exploring the gut microbiota: lifestyle choices, disease associations, and personal genomics. Front Nutr 2023; 10:1225120. [PMID: 37867494 PMCID: PMC10585655 DOI: 10.3389/fnut.2023.1225120] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
The gut microbiota is a rich and dynamic ecosystem that actively interacts with the human body, playing a significant role in the state of health and disease of the host. Diet, exercise, mental health, and other factors have exhibited the ability to influence the gut bacterial composition, leading to changes that can prevent and improve, or favor and worsen, both intestinal and extra-intestinal conditions. Altered gut microbial states, or 'dysbiosis', associated with conditions and diseases are often characterized by shifts in bacterial abundance and diversity, including an impaired Firmicutes to Bacteroidetes ratio. By understanding the effect of lifestyle on the gut microbiota, personalized advice can be generated to suit each individual profile and foster the adoption of lifestyle changes that can both prevent and ameliorate dysbiosis. The delivery of effective and reliable advice, however, depends not only on the available research and current understanding of the topic, but also on the methods used to assess individuals and to discover the associations, which can introduce bias at multiple stages. The aim of this review is to summarize how human gut microbial variability is defined and what lifestyle choices and diseases have shown association with gut bacterial composition. Furthermore, popular methods to investigate the human gut microbiota are outlined, with a focus on the possible bias caused by the lack of use of standardized methods. Finally, an overview of the current state of personalized advice based on gut microbiota testing is presented, underlining its power and limitations.
Collapse
Affiliation(s)
| | - Sasitaran Iyavoo
- Nkaarco Diagnostics Limited, Norwich, United Kingdom
- School of Chemistry, College of Health and Science, University of Lincoln, Lincoln, United Kingdom
| |
Collapse
|
8
|
Li XM, Shi X, Yao Y, Shen YC, Wu XL, Cai T, Liang LX, Wang F. Effects of Stool Sample Preservation Methods on Gut Microbiota Biodiversity: New Original Data and Systematic Review with Meta-Analysis. Microbiol Spectr 2023; 11:e0429722. [PMID: 37093040 PMCID: PMC10269478 DOI: 10.1128/spectrum.04297-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/16/2023] [Indexed: 04/25/2023] Open
Abstract
Here, we aimed to compare the effects of different preservation methods on outcomes of fecal microbiota. We evaluated the effects of different preservation methods using stool sample preservation experiments for up to 1 year. The stool samples from feces of healthy volunteers were grouped based on whether absolute ethanol was added and whether they were hypothermically preserved. Besides, we performed a systematic review to combine current fecal microbiota preservation evidence. We found that Proteobacteria changed significantly and Veillonellaceae decreased significantly in the 12th month in the room temperature + absolute ethanol group. The four cryopreservation groups have more similarities with fresh sample in the 12 months; however, different cryopreservation methods have different effects on several phyla, families, and genera. A systematic review showed that the Shannon diversity and Simpson index of samples stored in RNAlater for 1 month were not statistically significant compared with those stored immediately at -80°C (P = 0.220 and P = 0.123, respectively). The -80°C refrigerator and liquid nitrogen cryopreservation with 10% glycerine can both maintain stable microbiota of stool samples for long-term preservation. The addition of absolute ethanol to cryopreserved samples had no significant difference in the effect of preserving fecal microbial characteristics. Our study provides empirical insights into preservation details for future studies of the long-term preservation of fecal microbiota. Systematic review and meta-analysis found that the gut microbiota structure, composition, and diversity of samples preserved by storage methods, such as preservation solution, are relatively stable, which were suitable for short-term storage at room temperature. IMPORTANCE The study of gut bacteria has become increasingly popular, and fecal sample preservation methods and times need to be standardized. Here, we detail a 12-month study of fecal sample preservation, and our study provides an empirical reference about experimental details for long-term high-quality storage of fecal samples in the field of gut microbiology research. The results showed that the combination of -80°C/liquid nitrogen deep cryopreservation and 10% glycerol was the most effective method for the preservation of stool samples, which is suitable for long-term storage for at least 12 months. The addition of anhydrous ethanol to the deep cryopreserved samples did not make a significant difference in the preservation of fecal microbiological characteristics. Combined with the results of systematic reviews and meta-analyses, we believe that, when researchers preserve fecal specimens, it is essential to select the proper preservation method and time period in accordance with the goal of the study.
Collapse
Affiliation(s)
- Xin-meng Li
- Department of Gastroenterology, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Non-resolving Inflammation and Cancer, Central South University, Changsha, Hunan, China
| | - Xiao Shi
- Department of Dermatology, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Yao Yao
- Department of Gastroenterology, Zhangjiajie People’s Hospital, Zhangjiajie, Hunan, China
| | - Yi-cun Shen
- Department of Gastroenterology, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Non-resolving Inflammation and Cancer, Central South University, Changsha, Hunan, China
| | - Xiang-ling Wu
- Department of Gastroenterology, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Non-resolving Inflammation and Cancer, Central South University, Changsha, Hunan, China
| | - Ting Cai
- Department of Gastroenterology, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Non-resolving Inflammation and Cancer, Central South University, Changsha, Hunan, China
| | - Lun-xi Liang
- Department of Gastroenterology, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Non-resolving Inflammation and Cancer, Central South University, Changsha, Hunan, China
- Department of Gastroenterology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Fen Wang
- Department of Gastroenterology, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Non-resolving Inflammation and Cancer, Central South University, Changsha, Hunan, China
| |
Collapse
|
9
|
Abbes S, Baldi S, Sellami H, Amedei A, Keskes L. Molecular methods for colorectal cancer screening: Progress with next-generation sequencing evolution. World J Gastrointest Oncol 2023; 15:425-442. [PMID: 37009313 PMCID: PMC10052664 DOI: 10.4251/wjgo.v15.i3.425] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/02/2023] [Accepted: 02/14/2023] [Indexed: 03/14/2023] Open
Abstract
Currently, colorectal cancer (CRC) represents the third most common malignancy and the second most deadly cancer worldwide, with a higher incidence in developed countries. Like other solid tumors, CRC is a heterogeneous genomic disease in which various alterations, such as point mutations, genomic rearrangements, gene fusions or chromosomal copy number alterations, can contribute to the disease development. However, because of its orderly natural history, easily accessible onset location and high lifetime incidence, CRC is ideally suited for preventive intervention, but the many screening efforts of the last decades have been compromised by performance limitations and low penetrance of the standard screening tools. The advent of next-generation sequencing (NGS) has both facilitated the identification of previously unrecognized CRC features such as its relationship with gut microbial pathogens and revolutionized the speed and throughput of cataloguing CRC-related genomic alterations. Hence, in this review, we summarized the several diagnostic tools used for CRC screening in the past and the present, focusing on recent NGS approaches and their revolutionary role in the identification of novel genomic CRC characteristics, the advancement of understanding the CRC carcinogenesis and the screening of clinically actionable targets for personalized medicine.
Collapse
Affiliation(s)
- Salma Abbes
- Laboratory of Parasitic and Fungal Molecular Biology, University of Sfax, Sfax 3029, Tunisia
| | - Simone Baldi
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Hayet Sellami
- Drosophila Research Unit-Parasitology and Mycologie Laboratory, University of Sfax, Sfax 3029, Tunisia
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
- SOD of Interdisciplinary Internal Medicine, Careggi University Hospital, Florence 50134, Italy
| | - Leila Keskes
- Laboratory of Human Molecular Genetic, University of Sfax, Sfax 3029, Tunisia
| |
Collapse
|
10
|
The standardisation of the approach to metagenomic human gut analysis: from sample collection to microbiome profiling. Sci Rep 2022; 12:8470. [PMID: 35589762 PMCID: PMC9120454 DOI: 10.1038/s41598-022-12037-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 04/29/2022] [Indexed: 11/12/2022] Open
Abstract
In recent years, the number of metagenomic studies increased significantly. Wide range of factors, including the tremendous community complexity and variability, is contributing to the challenge in reliable microbiome community profiling. Many approaches have been proposed to overcome these problems making hardly possible to compare results of different studies. The significant differences between procedures used in metagenomic research are reflected in a variation of the obtained results. This calls for the need for standardisation of the procedure, to reduce the confounding factors originating from DNA isolation, sequencing and bioinformatics analyses in order to ensure that the differences in microbiome composition are of a true biological origin. Although the best practices for metagenomics studies have been the topic of several publications and the main aim of the International Human Microbiome Standard (IHMS) project, standardisation of the procedure for generating and analysing metagenomic data is still far from being achieved. To highlight the difficulties in the standardisation of metagenomics methods, we thoroughly examined each step of the analysis of the human gut microbiome. We tested the DNA isolation procedure, preparation of NGS libraries for next-generation sequencing, and bioinformatics analysis, aimed at identifying microbial taxa. We showed that the homogenisation time is the leading factor impacting sample diversity, with the recommendation for a shorter homogenisation time (10 min). Ten minutes of homogenisation allows for better reflection of the bacteria gram-positive/gram-negative ratio, and the obtained results are the least heterogenous in terms of beta-diversity of samples microbial composition. Besides increasing the homogenisation time, we observed further potential impact of the library preparation kit on the gut microbiome profiling. Moreover, our analysis revealed that the choice of the library preparation kit influences the reproducibility of the results, which is an important factor that has to be taken into account in every experiment. In this study, a tagmentation-based kit allowed for obtaining the most reproducible results. We also considered the choice of the computational tool for determining the composition of intestinal microbiota, with Kraken2/Bracken pipeline outperforming MetaPhlAn2 in our in silico experiments. The design of an experiment and a detailed establishment of an experimental protocol may have a serious impact on determining the taxonomic profile of the intestinal microbiome community. Results of our experiment can be helpful for a wide range of studies that aim to better understand the role of the gut microbiome, as well as for clinical purposes.
Collapse
|
11
|
Linehan K, Dempsey EM, Ryan CA, Ross RP, Stanton C. First encounters of the microbial kind: perinatal factors direct infant gut microbiome establishment. MICROBIOME RESEARCH REPORTS 2022; 1:10. [PMID: 38045649 PMCID: PMC10688792 DOI: 10.20517/mrr.2021.09] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/28/2021] [Accepted: 01/11/2022] [Indexed: 12/05/2023]
Abstract
The human gut microbiome harbors a diverse range of microbes that play a fundamental role in the health and well-being of their host. The early-life microbiome has a major influence on human development and long-term health. Perinatal factors such as maternal nutrition, antibiotic use, gestational age and mode of delivery influence the initial colonization, development, and function of the neonatal gut microbiome. The perturbed early-life gut microbiome predisposes infants to diseases in early and later life. Understanding how perinatal factors guide and shape the composition of the early-life microbiome is essential to improving infant health. The following review provides a synopsis of perinatal factors with the most decisive influences on initial microbial colonization of the infant gut.
Collapse
Affiliation(s)
- Kevin Linehan
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61 C996, Ireland
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Lee Maltings, Cork, Cork T12 YT20, Ireland
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland
| | - Eugene M. Dempsey
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Lee Maltings, Cork, Cork T12 YT20, Ireland
- Department of Paediatrics & Child Health and INFANT Centre, University College Cork, Cork T12 YN60, Ireland
| | - C. Anthony Ryan
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Lee Maltings, Cork, Cork T12 YT20, Ireland
- Department of Paediatrics & Child Health and INFANT Centre, University College Cork, Cork T12 YN60, Ireland
| | - R. Paul Ross
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Lee Maltings, Cork, Cork T12 YT20, Ireland
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland
| | - Catherine Stanton
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61 C996, Ireland
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Lee Maltings, Cork, Cork T12 YT20, Ireland
| |
Collapse
|
12
|
Ahlin R, Bergmark K, Bull C, Devarakonda S, Landberg R, Sigvardsson I, Sjöberg F, Skokic V, Steineck G, Hedelin M. A Preparatory Study for a Randomized Controlled Trial of Dietary Fiber Intake During Adult Pelvic Radiotherapy. Front Nutr 2021; 8:756485. [PMID: 34950688 PMCID: PMC8688914 DOI: 10.3389/fnut.2021.756485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/15/2021] [Indexed: 01/10/2023] Open
Abstract
Background: Patients undergoing pelvic radiotherapy are often advised to omit fiber-rich foods from their diet to reduce the adverse effects of treatment. Scientific evidence supporting this recommendation is lacking, and recent studies on animals and humans have suggested that there is a beneficial effect of dietary fiber for the alleviation of symptoms. Randomized controlled studies on dietary fiber intake during pelvic radiotherapy of sufficient size and duration are needed. As preparation for such a large-scale study, we evaluated the feasibility, compliance, participation rate, and logistics and report our findings here in this preparatory study. Methods: In this preparatory study of a fiber intervention trial, Swedish gynecological cancer patients scheduled for radiotherapy were recruited between January 2019 and August 2020. During the intervention, the participants filled out questionnaires and used an application. They also consumed a fiber supplement at first in powder form, later in capsules. Blood- and fecal samples were collected. The study is registered in clinicaltrials.gov (https://clinicaltrials.gov/ct2/show/NCT04534075?cond=fidura&draw=2&rank=1). Results: Among 136 approached patients, 57 started the study and the participation rate for primary outcomes was 63% (third blood sample) and 65% (third questionnaire). Barely half of the participants provided fecal samples. Providing concise and relevant information to the patients at the right time was crucial in getting them to participate and stay in the study. The most common reasons for declining participation or dropping out were the expected burden of radiotherapy or acute side effects. Tailoring the ambition level to each patient concerning the collection of data beyond the primary endpoints was an important strategy to keep the dropout rate at an acceptable level. Using capsules rather than psyllium in powder form made it much easier to document intake and to create a control group. During the course of the preparatory study, we improved the logistics and for the last 12 participants included, the participation rate was 100% for the earliest primary outcome. Conclusion: A variety of adjustments in this preparatory study resulted in an improved participation rate, which allowed us to set a final protocol and proceed with the main study.
Collapse
Affiliation(s)
- Rebecca Ahlin
- Division of Clinical Cancer Epidemiology, Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Karin Bergmark
- Division of Clinical Cancer Epidemiology, Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Cecilia Bull
- Division of Clinical Cancer Epidemiology, Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Sravani Devarakonda
- Division of Clinical Cancer Epidemiology, Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Rikard Landberg
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Ida Sigvardsson
- Division of Clinical Cancer Epidemiology, Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Fei Sjöberg
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Viktor Skokic
- Division of Clinical Cancer Epidemiology, Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Pelvic Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Gunnar Steineck
- Division of Clinical Cancer Epidemiology, Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Maria Hedelin
- Division of Clinical Cancer Epidemiology, Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Regional Cancer Center West, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
13
|
Jurek L, Sevil M, Jay A, Schröder C, Baghdadli A, Héry-Arnaud G, Geoffray MM. Is there a dysbiosis in individuals with a neurodevelopmental disorder compared to controls over the course of development? A systematic review. Eur Child Adolesc Psychiatry 2021; 30:1671-1694. [PMID: 32385698 DOI: 10.1007/s00787-020-01544-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/24/2020] [Indexed: 12/16/2022]
Abstract
Many scientific papers reported that an unbalanced gut microbiota could lead to or worsen neurodevelopmental disorders (NDD). A dysbiosis may then be observed in the course of development and mark a dysfunction within what is called the gut-brain axis. The aim of this systematic review is to investigate potential evidence of dysbiosis in children and young adults with NDD compared to controls. Using the PRISMA guidelines we systematically reviewed studies that compared the gut microbiota in NDD participants (with an age inferior to thirty) to the gut microbiota of controls, regardless of the data analysis methods used. The MEDLINE, Scopus and PsycINFO databases were searched up to September 2018. 31 studies with a total sample size of 3002 ASD (Autism Spectrum Disorder) and 84 ADHD (Attention Deficit Hyperactivity Disorder) participants were included in this systematic review. Independent data extraction and quality assessment were conducted. The quality of the studies was rated from low to high. Population characterization and experimental methods were highly heterogeneous in terms of the data available, selection of criteria, and dysbiosis measurement. A dysbiosis was reported in 28 studies in terms of either diversity, bacterial composition or metabolome dysfunction. Due to heterogeneity, a quantitative synthesis was not applicable. In this paper, we discuss the different biases to understand the complexity of microbiota and neurodevelopmental disorders to provide leads for future cohort studies looking to answer the questions raised by the trillions of microorganisms that inhabit key body niches.
Collapse
Affiliation(s)
- Lucie Jurek
- Child and Adolescent Psychiatry Departement, Center for Assessment and Diagnostic of Autism, Le Vinatier Hospital, Bron, France.
- Health Services and Performance Research EA7425, Claude Bernard Lyon 1 University (CBL1), Lyon, France.
| | - Marine Sevil
- Child and Adolescent Psychiatry Departement, Center for Assessment and Diagnostic of Autism, Le Vinatier Hospital, Bron, France
| | - Agathe Jay
- Child and Adolescent Psychiatry Departement, Center for Assessment and Diagnostic of Autism, Le Vinatier Hospital, Bron, France
| | - Carmen Schröder
- Department of Child and Adolescent Psychiatry, Strasbourg University Hospital, Strasbourg, France
- CNRS UPR 3212, Team 9 Institute of Cellular and Integrative Neurosciences (INCI), Strasbourg, France
| | - Amaria Baghdadli
- Child and Adolescent Psychiatry Departement, Montpellier University Hospital, Montpellier, France
- INSERM U1178 Centre de Recherche en Epidémiologie Et Santé Des Populations (CESP), Paris Sud University (UPS) Et Versailles Saint Quentin University (UVSQ), Versailles, France
| | - Geneviève Héry-Arnaud
- UMR1078, Génétique, Génomique Fonctionnelle Et Biotechnologies, INSERM, Université de Brest, EFS, IBSAM, Brest, France
- Unité de Bactériologie, Pôle de Biologie-Pathologie, Hôpital La Cavale Blanche, CHRU de Brest, Brest, France
| | - Marie-Maude Geoffray
- Child and Adolescent Psychiatry Departement, Center for Assessment and Diagnostic of Autism, Le Vinatier Hospital, Bron, France
- Health Services and Performance Research EA7425, Claude Bernard Lyon 1 University (CBL1), Lyon, France
| |
Collapse
|
14
|
Abstract
Integrative analysis of high-quality metagenomics and metabolomics data from fecal samples provides novel clues for the mechanism underpinning gut microbe-human interactions. However, data regarding the influence of fecal collection methods on both metagenomics and metabolomics are sparse. Six fecal collection methods (the gold standard [GS] [i.e., immediate freezing at −80°C with no solution], 95% ethanol, RNAlater, OMNIgene Gut, fecal occult blood test [FOBT] cards, and Microlution) were used to collect 88 fecal samples from eight healthy volunteers for whole-genome shotgun sequencing (WGSS) and untargeted metabolomic profiling. Metrics assessed included the abundances of predominant phyla and α- and β-diversity at the species, gene, and pathway levels. Intraclass correlation coefficients (ICCs) were calculated for microbes and metabolites to estimate (i) stability (day 4 versus day 0 within each method), (ii) concordance (day 0 for each method versus the GS), and (iii) reliability (day 4 for each method versus the GS). For the top 4 phyla and microbial diversity metrics at the species, gene, and pathway levels, generally high stability and reliability were observed for most methods except for 95% ethanol; similar concordances were seen for different methods. For metabolomics data, 95% ethanol showed the highest stability, concordance, and reliability (median ICCs = 0.71, 0.71, and 0.65, respectively). Taken together, OMNIgene Gut, FOBT cards, RNAlater, and Microlution, but not 95% ethanol, were reliable collection methods for gut metagenomic studies. However, 95% ethanol was the best for preserving fecal metabolite profiles. We recommend using separate collecting methods for gut metagenomic sequencing and fecal metabolomic profiling in large population studies. IMPORTANCE The choice of fecal collection method is essential for studying gut microbe-human interactions in large-scale population-based research. In this study, we examined the effects of fecal collection methods and storage time at ambient temperature on variations in the gut microbiome community composition; microbial diversity metrics at the species, gene, and pathway levels; antibiotic resistance genes; and metabolome profiling. Our findings suggest using different fecal sample collection methods for different data generation purposes. OMNIgene Gut, FOBT cards, RNAlater, and Microlution, but not 95% ethanol, were reliable collection methods for gut metagenomic studies. However, 95% ethanol was the best for preserving fecal metabolite profiles.
Collapse
|
15
|
Yang Z, Xu F, Li H, He Y. Beyond samples: A metric revealing more connections of gut microbiota between individuals. Comput Struct Biotechnol J 2021; 19:3930-3937. [PMID: 34377361 PMCID: PMC8319210 DOI: 10.1016/j.csbj.2021.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/03/2021] [Accepted: 07/07/2021] [Indexed: 10/31/2022] Open
Abstract
Studies of gut microbiota explore their complicated connections between individuals of different characteristics by applying different metrics to abundance data obtained from fecal samples. Although classic metrics are capable to quantify differences between samples, the microbiome of fecal sample is not a good surrogate for the gut microbiome of individuals because the microbial populations of the distal colon does not adequately represent that of the entire gastrointestinal tract. To overcome the deficiency of classic metrics in which the differences can be measured between the samples analyzed, but not the corresponding populations, we propose a metric for representing composition differences in the gut microbiota of individuals. Our investigation shows this metric outperforms traditional measures for multiple scenarios. For gut microbiota in diverse geographic populations, this metric presents more explainable data variance than others, not only in regular variance analysis but also in principle component analysis and partition analysis of biologic characteristics. With time-series data, the metric further presents a strong correlation with the time interval of serial sampling. Our findings suggest that the metric is robust and powerfully detects the intrinsic variations in gut microbiota. The metric holds promise for revealing more relations between gut microbiota and human health.
Collapse
Affiliation(s)
- Zhen Yang
- Shanghai Fifth People's Hospital, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Feng Xu
- Shanghai Fifth People's Hospital, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Hongdou Li
- Obstetrics Gynecology Hospital, The Institute of Reproduction and Developmental Biology, Fudan University, Shanghai, China
| | - Yungang He
- Shanghai Fifth People's Hospital, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
16
|
Comparison between Whatman FTA Elute Cards and Conventional Swab for the Detection of Pathogenic Enteric Bacteria Using an RT-qPCR Assay. ACTA ACUST UNITED AC 2021; 2021:9963047. [PMID: 34306273 PMCID: PMC8270717 DOI: 10.1155/2021/9963047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 06/25/2021] [Indexed: 11/17/2022]
Abstract
The emergence of outbreaks of foodborne illness is closely associated with food contamination caused by various enteric pathogens, such as Escherichia coli O157:H7, Listeria monocytogenes, Salmonella enterica serovar Enteritidis, and Staphylococcus aureus. The control of enteric pathogens poses a challenge due to the fact that these pathogens can persist for a long period of time in the environment. The rapid detection of pathogenic organisms plays a crucial role in the prevention and identification of crises related to health, safety, and well-being. Improper sample handling and processing may influence the diagnostic efficacy and accuracy. The aim of the present study was to compare the preservation capacity for enteric bacteria between Whatman Flinders Technology Associates (FTA) cards and swabs for reverse transcription-quantitative PCR (RT-qPCR) detection. It was found that Whatman FTA cards exhibited an improved preservation capacity for five types (both laboratory and environmental strains) of enteric bacteria, including Escherichia coli O157:H7, Listeria monocytogenes, Salmonella enterica serovar Enteritidis, and Staphylococcus aureus for RT-qPCR detection. Hence, Whatman FTA cards may be a suitable tool for the routine isolation of foodborne bacteria for molecular diagnosis. Therefore, the use of Whatman FTA cards for sample collection and preservation may increase sensitivity and accuracy for bacteria isolation and diagnosis.
Collapse
|
17
|
Matthews C, Cotter PD, O’ Mahony J. MAP, Johne's disease and the microbiome; current knowledge and future considerations. Anim Microbiome 2021; 3:34. [PMID: 33962690 PMCID: PMC8105914 DOI: 10.1186/s42523-021-00089-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/20/2021] [Indexed: 12/17/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis is the causative agent of Johne's disease in ruminants. As an infectious disease that causes reduced milk yields, effects fertility and, eventually, the loss of the animal, it is a huge financial burden for associated industries. Efforts to control MAP infection and Johne's disease are complicated due to difficulties of diagnosis in the early stages of infection and challenges relating to the specificity and sensitivity of current testing methods. The methods that are available contribute to widely used test and cull strategies, vaccination programmes also in place in some countries. Next generation sequencing technologies have opened up new avenues for the discovery of novel biomarkers for disease prediction within MAP genomes and within ruminant microbiomes. Controlling Johne's disease in herds can lead to improved animal health and welfare, in turn leading to increased productivity. With current climate change bills, such as the European Green Deal, targeting livestock production systems for more sustainable practices, managing animal health is now more important than ever before. This review provides an overview of the current knowledge on genomics and detection of MAP as it pertains to Johne's disease.
Collapse
Affiliation(s)
- Chloe Matthews
- Cork Institute of Technology, Bishopstown, Co. Cork, Ireland
- Teagasc, Food Research Centre, Food Biosciences Department, Fermoy, Co. Cork, Ireland
| | - Paul D. Cotter
- Teagasc, Food Research Centre, Food Biosciences Department, Fermoy, Co. Cork, Ireland
- APC Microbiome Institute, University College Cork, Co. Cork, Ireland
| | - Jim O’ Mahony
- Cork Institute of Technology, Bishopstown, Co. Cork, Ireland
| |
Collapse
|
18
|
Pribyl AL, Parks DH, Angel NZ, Boyd JA, Hasson AG, Fang L, MacDonald SL, Wills BA, Wood DLA, Krause L, Tyson GW, Hugenholtz P. Critical evaluation of faecal microbiome preservation using metagenomic analysis. ISME COMMUNICATIONS 2021; 1:14. [PMID: 37938632 PMCID: PMC9645250 DOI: 10.1038/s43705-021-00014-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/14/2021] [Accepted: 04/06/2021] [Indexed: 05/04/2023]
Abstract
The ability to preserve microbial communities in faecal samples is essential as increasing numbers of studies seek to use the gut microbiome to identify biomarkers of disease. Here we use shotgun metagenomics to rigorously evaluate the technical and compositional reproducibility of five room temperature (RT) microbial stabilisation methods compared to the best practice of flash-freezing. These methods included RNALater, OMNIGene-GUT, a dry BBL swab, LifeGuard, and a novel method for preserving faecal samples, a Copan FLOQSwab in an active drying tube (FLOQSwab-ADT). Each method was assessed using six replicate faecal samples from five participants, totalling 180 samples. The FLOQSwab-ADT performed best for both technical and compositional reproducibility, followed by RNAlater and OMNIgene-GUT. LifeGuard and the BBL swab had unpredictable outgrowth of Escherichia species in at least one replicate from each participant. We further evaluated the FLOQSwab-ADT in an additional 239 samples across 10 individuals after storage at -20 °C, RT, and 50 °C for four weeks compared to fresh controls. The FLOQSwab-ADT maintained its performance across all temperatures, indicating this method is an excellent alternative to existing RT stabilisation methods.
Collapse
Affiliation(s)
| | | | | | - Joel A Boyd
- Microba Life Sciences, Brisbane, QLD, Australia
| | | | - Liang Fang
- Microba Life Sciences, Brisbane, QLD, Australia
| | | | | | | | - Lutz Krause
- Microba Life Sciences, Brisbane, QLD, Australia
| | - Gene W Tyson
- Microba Life Sciences, Brisbane, QLD, Australia
- Centre for Microbiome Research, School of Biomedical Science, Translational Research Institute, Queensland University of Technology, Woolloongabba, QLD, Australia
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
19
|
Wegl G, Grabner N, Köstelbauer A, Klose V, Ghanbari M. Toward Best Practice in Livestock Microbiota Research: A Comprehensive Comparison of Sample Storage and DNA Extraction Strategies. Front Microbiol 2021; 12:627539. [PMID: 33708184 PMCID: PMC7940207 DOI: 10.3389/fmicb.2021.627539] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/01/2021] [Indexed: 11/24/2022] Open
Abstract
Understanding the roles of microorganisms in the animal gastrointestinal microenvironment is highly important for the development of effective strategies to manage and manipulate these microbial communities. In order to guide future animal gut microbiota research projects and standardization efforts, we have conducted a systematic comparison of 10 currently used sample preservation and DNA extraction approaches for pig and chicken microbiota samples and quantified their effects on bacterial DNA yield, quality, integrity, and on the resulting sequence-based bacterial composition estimates. The results showed how key stages of conducting a microbiota study, including the sample storage and DNA extraction, can substantially affect DNA recovery from the microbial community, and therefore, biological interpretation in a matrix-dependent manner. Our results highlight the fact that the influence of storage and extraction methods on the resulting microbial community structure differed by sample type, even within the same species. As the effects of these technical steps are potentially large compared with the real biological variability to be explained, standardization is crucial for accelerating progress in the area of livestock microbiota research. This study provided a framework to assist future animal gut microbiota research projects and standardization efforts.
Collapse
|
20
|
Wang S, Egan M, Ryan CA, Boyaval P, Dempsey EM, Ross RP, Stanton C. A good start in life is important-perinatal factors dictate early microbiota development and longer term maturation. FEMS Microbiol Rev 2021; 44:763-781. [PMID: 32821932 PMCID: PMC7685781 DOI: 10.1093/femsre/fuaa030] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 08/18/2020] [Indexed: 12/20/2022] Open
Abstract
Maternal health status is vital for the development of the offspring of humans, including physiological health and psychological functions. The complex and diverse microbial ecosystem residing within humans contributes critically to these intergenerational impacts. Perinatal factors, including maternal nutrition, antibiotic use and maternal stress, alter the maternal gut microbiota during pregnancy, which can be transmitted to the offspring. In addition, gestational age at birth and mode of delivery are indicated frequently to modulate the acquisition and development of gut microbiota in early life. The early-life gut microbiota engages in a range of host biological processes, particularly immunity, cognitive neurodevelopment and metabolism. The perturbed early-life gut microbiota increases the risk for disease in early and later life, highlighting the importance of understanding relationships of perinatal factors with early-life microbial composition and functions. In this review, we present an overview of the crucial perinatal factors and summarise updated knowledge of early-life microbiota, as well as how the perinatal factors shape gut microbiota in short and long terms. We further discuss the clinical consequences of perturbations of early-life gut microbiota and potential therapeutic interventions with probiotics/live biotherapeutics.
Collapse
Affiliation(s)
- Shaopu Wang
- APC Microbiome Ireland, Cork, Ireland, P12 YT20.,Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland, P61 C996
| | - Muireann Egan
- APC Microbiome Ireland, Cork, Ireland, P12 YT20.,Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland, P61 C996
| | - C Anthony Ryan
- APC Microbiome Ireland, Cork, Ireland, P12 YT20.,Department of Paediatrics & Child Health, University College Cork, Cork, Ireland, T12 YN60
| | - Patrick Boyaval
- DuPont Nutrition & Biosciences, Danisco France SAS - DuPont, 22, rue Brunel, F- 75017 Paris, France
| | - Eugene M Dempsey
- APC Microbiome Ireland, Cork, Ireland, P12 YT20.,Department of Paediatrics & Child Health, University College Cork, Cork, Ireland, T12 YN60
| | - R Paul Ross
- APC Microbiome Ireland, Cork, Ireland, P12 YT20
| | - Catherine Stanton
- APC Microbiome Ireland, Cork, Ireland, P12 YT20.,Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland, P61 C996
| |
Collapse
|
21
|
Westaway JAF, Huerlimann R, Miller CM, Kandasamy Y, Norton R, Rudd D. Methods for exploring the faecal microbiome of premature infants: a review. Matern Health Neonatol Perinatol 2021; 7:11. [PMID: 33685524 PMCID: PMC7941982 DOI: 10.1186/s40748-021-00131-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
The premature infant gut microbiome plays an important part in infant health and development, and recognition of the implications of microbial dysbiosis in premature infants has prompted significant research into these issues. The approaches to designing investigations into microbial populations are many and varied, each with its own benefits and limitations. The technique used can influence results, contributing to heterogeneity across studies. This review aimed to describe the most common techniques used in researching the preterm infant microbiome, detailing their various limitations. The objective was to provide those entering the field with a broad understanding of available methodologies, so that the likely effects of their use can be factored into literature interpretation and future study design. We found that although many techniques are used for characterising the premature infant microbiome, 16S rRNA short amplicon sequencing is the most common. 16S rRNA short amplicon sequencing has several benefits, including high accuracy, discoverability and high throughput capacity. However, this technique has limitations. Each stage of the protocol offers opportunities for the injection of bias. Bias can contribute to variability between studies using 16S rRNA high throughout sequencing. Thus, we recommend that the interpretation of previous results and future study design be given careful consideration.
Collapse
Affiliation(s)
- Jacob A F Westaway
- James Cook University, 1 McGregor Road, Smithfield, QLD, 4878, Australia.
| | - Roger Huerlimann
- James Cook University, 1 James Cook Dr, Douglas, QLD, 4811, Australia
| | - Catherine M Miller
- James Cook University, 1 McGregor Road, Smithfield, QLD, 4878, Australia
| | - Yoga Kandasamy
- Townsville University Hospital, 100 Angus Smith Dr, Douglas, QLD, 4814, Australia
| | - Robert Norton
- Pathology Queensland, 100 Angus Smith Dr, Douglas, QLD, 4814, Australia
| | - Donna Rudd
- James Cook University, 1 James Cook Dr, Douglas, QLD, 4811, Australia
| |
Collapse
|
22
|
Wiesenborn DS, Gálvez EJC, Spinel L, Victoria B, Allen B, Schneider A, Gesing A, Al-Regaiey KA, Strowig T, Schäfer KH, Masternak MM. The Role of Ames Dwarfism and Calorie Restriction on Gut Microbiota. J Gerontol A Biol Sci Med Sci 2021; 75:e1-e8. [PMID: 31665244 DOI: 10.1093/gerona/glz236] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Indexed: 12/12/2022] Open
Abstract
The gut microbiome (GM) represents a large and very complex ecosystem of different microorganisms. There is an extensive interest in the potential role of the GM in different diseases including cancer, diabetes, cardiovascular diseases, and aging. The GM changes over the lifespan and is strongly associated with various age-related diseases. Ames dwarf (df/df) mice are characterized by an extended life- and healthspan, and although these mice are protected from many age-related diseases, their microbiome has not been studied. To determine the role of microbiota on longevity animal models, we investigated the changes in the GM of df/df and normal control (N) mice, by comparing parents before mating and littermate mice at three distinct time points during early life. Furthermore, we studied the effects of a 6-month calorie restriction (CR), the most powerful intervention extending the lifespan. Our data revealed significant changes of the GM composition during early life development, and we detected differences in the abundance of some bacteria between df/df and N mice, already in early life. Overall, the variability of the microbiota by genotype, time-point, and breeding pair showed significant differences. In addition, CR caused significant changes in microbiome according to gastrointestinal (GI) location (distal colon, ileum, and cecum), genotype, and diet. However, the overall impact of the genotype was more prominent than that of the CR. In conclusion, our findings suggest that the gut microbiota plays an important role during postnatal development in long-living df/df mice and CR dietary regimen can significantly modulate the GM.
Collapse
Affiliation(s)
- Denise S Wiesenborn
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando.,Department of Biotechnology, University of Applied Sciences Kaiserslautern, Zweibrücken, Germany
| | - Eric J C Gálvez
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lina Spinel
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando
| | - Berta Victoria
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando
| | - Brittany Allen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando
| | - Augusto Schneider
- Department of Nutrition, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Adam Gesing
- Department of Endocrinology of Ageing, Medical University of Lodz, Poland
| | - Khalid A Al-Regaiey
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Germany
| | - Karl-Herbert Schäfer
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando.,Department of Biotechnology, University of Applied Sciences Kaiserslautern, Zweibrücken, Germany.,Department of Pediatric Surgery, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Michal M Masternak
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando.,Department of Head and Neck Surgery, The Greater Poland Cancer Center, Poznan, Poland
| |
Collapse
|
23
|
Lyons KE, Fouhy F, O’ Shea C, Ryan CA, Dempsey EM, Ross RP, Stanton C. Effect of storage, temperature, and extraction kit on the phylogenetic composition detected in the human milk microbiota. Microbiologyopen 2021; 10:e1127. [PMID: 33373099 PMCID: PMC7841076 DOI: 10.1002/mbo3.1127] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 01/10/2023] Open
Abstract
Human milk is considered the optimum feeding regime for newborns and is a source of bacteria for the developing infant gastrointestinal tract. However, as with all low biomass samples, standardization across variabilities such as sample collection, storage, and extraction methods is needed to eliminate discrepancies in microbial composition across studies. The aim of this study was to investigate how different storage methods, temperatures, preservatives, and extraction kits influence the human milk microbiome, compared to fresh samples. Breast milk samples were processed via six different methods: fresh (Method 1), frozen at -80°C (Method 2), treated with RNAlater and stored at 4°C or -80°C (Methods 3 and 4), and treated with Milk Preservation Solution at room temperature (Methods 5 and 6). Methods 1-5 were extracted using PowerFoodTM Microbial DNA Isolation kit (Mobio), and Method 6 was extracted using Milk DNA Preservation and Isolation kit (Norgen BioTek). At genus level, the most abundant genera were shared across Methods 1-5. Samples frozen at -80°C had fewest significant changes while samples treated and extracted using Milk Preservation and Isolation kit had the most significant changes when compared to fresh samples. Diversity analysis indicated that variation in microbiota composition was related to the method and extraction kit used. This study highlighted that, when extraction from fresh milk samples is not an option, freezing at -80°C is the next best option to preserve the integrity of the milk microbiome. Furthermore, our results demonstrate that choice of extraction kit had a profound impact on the microbiota populations detected in milk.
Collapse
Affiliation(s)
- Katriona E. Lyons
- Teagasc Food Research CentreMoorepark, Fermoy, Co.CorkIreland
- School of MicrobiologyUniversity College CorkCorkIreland
| | - Fiona Fouhy
- Teagasc Food Research CentreMoorepark, Fermoy, Co.CorkIreland
- APC Microbiome IrelandUniversity College CorkCorkIreland
| | | | - C. Anthony Ryan
- APC Microbiome IrelandUniversity College CorkCorkIreland
- Department of NeonatologyCork University Maternity HospitalCorkIreland
| | - Eugene M. Dempsey
- APC Microbiome IrelandUniversity College CorkCorkIreland
- Department of NeonatologyCork University Maternity HospitalCorkIreland
| | - R. Paul Ross
- APC Microbiome IrelandUniversity College CorkCorkIreland
| | - Catherine Stanton
- Teagasc Food Research CentreMoorepark, Fermoy, Co.CorkIreland
- APC Microbiome IrelandUniversity College CorkCorkIreland
| |
Collapse
|
24
|
Ruiz L, Alba C, García-Carral C, Jiménez EA, Lackey KA, McGuire MK, Meehan CL, Foster J, Sellen DW, Kamau-Mbuthia EW, Kamundia EW, Mbugua S, Moore SE, Prentice AM, Gindola K D, Otoo GE, Pareja RG, Bode L, McGuire MA, Williams JE, Rodríguez JM. Comparison of Two Approaches for the Metataxonomic Analysis of the Human Milk Microbiome. Front Cell Infect Microbiol 2021; 11:622550. [PMID: 33842385 PMCID: PMC8027255 DOI: 10.3389/fcimb.2021.622550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/05/2021] [Indexed: 01/04/2023] Open
Abstract
Recent work has demonstrated the existence of large inter-individual and inter-population variability in the microbiota of human milk from healthy women living across variable geographical and socio-cultural settings. However, no studies have evaluated the impact that variable sequencing approaches targeting different 16S rRNA variable regions may have on the human milk microbiota profiling results. This hampers our ability to make meaningful comparisons across studies. In this context, the main purpose of the present study was to re-process and re-sequence the microbiome in a large set of human milk samples (n = 412) collected from healthy women living at diverse international sites (Spain, Sweden, Peru, United States, Ethiopia, Gambia, Ghana and Kenya), by targeting a different 16S rRNA variable region and reaching a larger sequencing depth. Despite some differences between the results obtained from both sequencing approaches were notable (especially regarding alpha and beta diversities and Proteobacteria representation), results indicate that both sequencing approaches revealed a relatively consistent microbiota configurations in the studied cohorts. Our data expand upon the milk microbiota results we previously reported from the INSPIRE cohort and provide, for the first time across globally diverse populations, evidence of the impact that different DNA processing and sequencing approaches have on the microbiota profiles obtained for human milk samples. Overall, our results corroborate some similarities regarding the microbial communities previously reported for the INSPIRE cohort, but some differences were also detected. Understanding the impact of different sequencing approaches on human milk microbiota profiles is essential to enable meaningful comparisons across studies. Clinical Trial Registration www.clinicaltrials.gov, identifier NCT02670278.
Collapse
Affiliation(s)
- Lorena Ruiz
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
- *Correspondence: Lorena Ruiz, ; Juan Miguel Rodriguez,
| | - Claudio Alba
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| | - Cristina García-Carral
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| | - Esther A. Jiménez
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| | - Kimberly A. Lackey
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID, United States
| | - Michelle K. McGuire
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID, United States
| | - Courtney L. Meehan
- Department of Anthropology, Washington State University, Pullman, WA, United States
| | - James Foster
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID, United States
| | - Daniel W. Sellen
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | | | | | - Samwel Mbugua
- Department of Human Nutrition, Egerton University, Nakuru, Kenya
| | - Sophie E. Moore
- Division of Women’s Health, King’s College London, London, United Kingdom
- MRC Unit, Serekunda, Gambia
| | - Andrew M. Prentice
- MRC International Nutrition Group, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Debela Gindola K
- Department of Anthropology, Hawassa University, Hawassa, Ethiopia
| | - Gloria E. Otoo
- Department of Nutrition and Food Science, University of Ghana, Accra, Ghana
| | | | - Lars Bode
- Department of Pediatrics and Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CoRE), University of California, San Diego, La Jolla, CA, United States
| | - Mark A. McGuire
- Department of Animal and Veterinary Science, University of Idaho, Moscow, ID, United States
| | - Janet E. Williams
- Department of Animal and Veterinary Science, University of Idaho, Moscow, ID, United States
| | - Juan M. Rodríguez
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
- *Correspondence: Lorena Ruiz, ; Juan Miguel Rodriguez,
| |
Collapse
|
25
|
Mancabelli L, Tarracchini C, Milani C, Lugli GA, Fontana F, Turroni F, van Sinderen D, Ventura M. Multi-population cohort meta-analysis of human intestinal microbiota in early life reveals the existence of infant community state types (ICSTs). Comput Struct Biotechnol J 2020; 18:2480-2493. [PMID: 33005310 PMCID: PMC7516180 DOI: 10.1016/j.csbj.2020.08.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022] Open
Abstract
Appropriate development of the intestinal microbiota during infancy is known to be important for human health. In fact, aberrant alterations of the microbial composition during childhood may cause short- and/or long-term negative health effects. Many factors influence the initial assembly and subsequent progression of the gut microbiota of a neonate, such as feeding type, delivery mode, gestational age, maternal metabolic status and antibiotic exposure. In the current study, the composition of the infant gut core-microbiota was explored, revealing particular variations of this core-microbiota during the first three years as influenced by delivery mode and feeding type. A multi-population cohort meta-analysis was performed by selecting 15 publicly available datasets pertaining to taxonomic profiles of 1035 fecal samples of healthy infants, as obtained by means of a 16S rRNA gene-based profiling approach. Interestingly, this multi-population cohort meta-analysis revealed great microbial complexity and specific taxonomic shifts in children older than six months, suggesting a major impact by the introduction of solid foods which prompts progression of infant gut microbiota towards that typical of adults. The taxonomic data sets employed in this multi-population cohort meta-analysis possess the statistical robustness to allow the identification of infant community state types (ICSTs). Our analysis therefore reveals the existence of specific taxonomic patterns that correspond to particular nutritional and developmental stages of early life, and that had previously been obscured by the high variability typical of such infant gut microbiota.
Collapse
Affiliation(s)
- Leonardo Mancabelli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience Institute, National University of Ireland, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| |
Collapse
|
26
|
An ambient temperature collection and stabilization strategy for canine microbiota studies. Sci Rep 2020; 10:13383. [PMID: 32770113 PMCID: PMC7414149 DOI: 10.1038/s41598-020-70232-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 07/27/2020] [Indexed: 12/14/2022] Open
Abstract
Similar to humans, the fecal microbiome of dogs may be useful in diagnosing diseases or assessing dietary interventions. The accuracy and reproducibility of microbiome data depend on sample integrity, which can be affected by storage methods. Here, we evaluated the ability of a stabilization device to preserve canine fecal samples under various storage conditions simulating shipping in hot or cold climates. Microbiota data from unstabilized samples stored at room temperature (RT) and samples placed in PERFORMAbiome·GUT collection devices (PB-200) (DNA Genotek, Inc. Ottawa, Canada) and stored at RT, 37 °C, 50 °C, or undergoing repeated freeze-thaw cycles, were compared with freshly extracted samples. Alpha- and beta diversity indices were not affected in stabilized samples, regardless of storage temperature. Unstabilized samples stored at RT, however, had higher alpha diversity. Moreover, the relative abundance of dominant bacterial phyla (Firmicutes, Fusobacteria, Bacteriodetes, and Actinobacteria) and 24 genera were altered in unstabilized samples stored at RT, while microbiota abundance was not significantly changed in stabilized samples stored at RT. Our results suggest that storage method is important in microbiota studies and that the stabilization device may be useful in maintaining microbial profile integrity, especially for samples collected off-site and/or those undergoing temperature changes during shipment or storage.
Collapse
|
27
|
A Recent Overview of Microbes and Microbiome Preservation. Indian J Microbiol 2020; 60:297-309. [PMID: 32655197 DOI: 10.1007/s12088-020-00880-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 05/06/2020] [Indexed: 12/17/2022] Open
Abstract
Microbes are mediators in almost all ecosystem processes and act as a pivotal game changer in various ecological activities, globally. Therefore, understanding of microbial community structure and related functions in different environmental and micro-environmental niches is not only critical, but also a matter of greatest importance. Due to our inability to cultivate and preserve all sorts of microorganisms, we are losing some ecologically and industrially relevant components of microbial community, due to extinction caused by environmental and climatic variations with time. Intact sample and microbiome preservation are crucial for future cultivation as well as to study the effects of ecological and climatic variations on community functionality and shift with time, using OMICS. Although, methods for pure culture preservation are almost optimized, the techniques of microbiome preservation still remain as an unsolved challenge for microbiologists due to technical and physiological constraints. Present article discusses, recent approaches of microbial preservation with special reference to intact sample, mixed culture and microbiome preservation. It also incorporates recent practices used to achieve the highest viability and metabolic activities in long-term preserved microbiome.
Collapse
|
28
|
Johnson AJ, Zheng JJ, Kang JW, Saboe A, Knights D, Zivkovic AM. A Guide to Diet-Microbiome Study Design. Front Nutr 2020; 7:79. [PMID: 32596250 PMCID: PMC7303276 DOI: 10.3389/fnut.2020.00079] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022] Open
Abstract
Intense recent interest in understanding how the human gut microbiome influences health has kindled a concomitant interest in linking dietary choices to microbiome variation. Diet is known to be a driver of microbiome variation, and yet the precise mechanisms by which certain dietary components modulate the microbiome, and by which the microbiome produces byproducts and secondary metabolites from dietary components, are not well-understood. Interestingly, despite the influence of diet on the gut microbiome, the majority of microbiome studies published to date contain little or no analysis of dietary intake. Although an increasing number of microbiome studies are now collecting some form of dietary data or even performing diet interventions, there are no clear standards in the microbiome field for how to collect diet data or how to design a diet-microbiome study. In this article, we review the current practices in diet-microbiome analysis and study design and make several recommendations for best practices to provoke broader discussion in the field. We recommend that microbiome studies include multiple consecutive microbiome samples per study timepoint or phase and multiple days of dietary history prior to each microbiome sample whenever feasible. We find evidence that direct effects of diet on the microbiome are likely to be observable within days, while the length of an intervention required for observing microbiome-mediated effects on the host phenotype or host biomarkers, depending on the outcome, may be much longer, on the order of weeks or months. Finally, recent studies demonstrating that diet-microbiome interactions are personalized suggest that diet-microbiome studies should either include longitudinal sampling within individuals to identify personalized responses, or should include an adequate number of participants spanning a range of microbiome types to identify generalized responses.
Collapse
Affiliation(s)
- Abigail J Johnson
- BioTechnology Institute, College of Biological Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Jack Jingyuan Zheng
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Jea Woo Kang
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Anna Saboe
- BioTechnology Institute, College of Biological Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Dan Knights
- BioTechnology Institute, College of Biological Sciences, University of Minnesota, Minneapolis, MN, United States.,Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Angela M Zivkovic
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| |
Collapse
|
29
|
Peng Z, Zhu X, Wang Z, Yan X, Wang G, Tang M, Jiang A, Kristiansen K. Comparative Analysis of Sample Extraction and Library Construction for Shotgun Metagenomics. Bioinform Biol Insights 2020; 14:1177932220915459. [PMID: 32546984 PMCID: PMC7271268 DOI: 10.1177/1177932220915459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 02/25/2020] [Indexed: 01/12/2023] Open
Abstract
Human fecal specimens, serve as important materials, are widely used in the field of microbiome research, in which inconsistent results have been a pressing issue. The possible attribute factors have been proposed including the specimen status after preservation, extracted DNA quality, library preparation protocol, and sample DNA input. In this study, quality comparisons for shotgun metagenomics sequencing were performed between 2 DNA extraction methods for fresh and freeze-thaw samples, 2 library preparation protocols, and various sample inputs. The results indicate that Mag-Bind® Universal Metagenomics Kit (OM) outperformed DNeasy PowerSoil Kit (QP) with a higher DNA quantity. Controlling on library preparation protocol, OM detected on-average more genes than QP. For library construction comparison by controlling on the same DNA sample, KAPA Hyper Prep Kit (KH) outperformed the TruePrep DNA Library Prep Kit V2 (TP) with the higher number of detected genes number and Shannon index. No significant differences were found in taxonomy between 2 library preparation protocols using the fresh, freeze-thaw and mock community samples. No significant difference was observed between 250 and 50 ng DNA inputs for library preparation on both fresh and freeze-thaw samples. Through the preliminary study, a combined protocol is recommended for performing metagenomics studies, by using OM method plus KH protocol as well as suitable DNA quantity on either fresh or freeze-thaw samples. Our findings provide clues for potential variations from various DNA extraction methods, library protocols, and sample DNA inputs, which are critical for consistent and comprehensive profiling of the human gut microbiome.
Collapse
Affiliation(s)
- Zonghui Peng
- BGI Americas Corporation, Cambridge, MA, USA.,Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | - Karsten Kristiansen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.,BGI-Shenzhen, Shenzhen, China.,China National GeneBank, Shenzhen, China
| |
Collapse
|
30
|
Chen CC, Wu WK, Chang CM, Panyod S, Lu TP, Liou JM, Fang YJ, Chuang EY, Wu MS. Comparison of DNA stabilizers and storage conditions on preserving fecal microbiota profiles. J Formos Med Assoc 2020; 119:1791-1798. [PMID: 32111519 DOI: 10.1016/j.jfma.2020.01.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/04/2019] [Accepted: 01/22/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND/PURPOSE Appropriate storage of fecal samples is a critical step for the unbiased analysis of microbial communities in metagenomic studies. Rapid freezing at -80 °C is usually considered to be best practice, but this approach is challenging. DNA stabilizing kits may provide a more convenient method to preserve and store clinical samples. We evaluated the reliability of two collection kits (Stratec stool collection tube with stabilizer, #1038111200 and OMNIgene.GUT OMR-200) on preserving fecal microbiota. METHODS Samples were collected from two locations of the fecal specimen, in four healthy volunteers. The samples were sub-aliquoted and stored in a -80 °C freezer, in Stratec and OMNIgene.GUT (incubation at ambient temperature for 0, 3, or 7 days). The fecal microbial composition was assessed by 16S rRNA sequencing. RESULTS We found that alpha diversity was not significantly affected by storage conditions. Samples stored in DNA stabilizers were still representative of the original microbial community after 7 days at ambient temperature. Individual differences were found to have a greater contribution to the differences in microbial community composition than storage conditions or sampling location. Samples subjected to stabilizers displayed microbial community shifts compared with immediately frozen samples. A linear discriminant analysis effect size (LEfSe) analysis showed that the relative abundances of Faecalibacterium were significantly higher in samples stored in Stratec kits. CONCLUSION Our study reveals that both Stratec and OMNIgene.GUT kits provide good microbiome preservation for up to 7 days in ambient temperature and would represent good options for fecal sample collection in large scale, population-based studies.
Collapse
Affiliation(s)
- Chieh-Chang Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan; Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wei-Kai Wu
- Department of Internal Medicine, National Taiwan University Hospital Bei-Hu Branch, Taipei, Taiwan; Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Chih-Min Chang
- Bioinformatics and Biostatistics Core, Center of Genomic Medicine, National Taiwan University, Taiwan; Institute of Epidemiology and Preventive Medicine, Department of Public Health, National Taiwan University, Taiwan
| | - Suraphan Panyod
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan; Bioinformatics and Biostatistics Core, Center of Genomic Medicine, National Taiwan University, Taiwan
| | - Tzu-Pin Lu
- Bioinformatics and Biostatistics Core, Center of Genomic Medicine, National Taiwan University, Taiwan; Institute of Epidemiology and Preventive Medicine, Department of Public Health, National Taiwan University, Taiwan
| | - Jyh-Ming Liou
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Jen Fang
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Yun-Lin, Taiwan
| | - Eric Y Chuang
- Bioinformatics and Biostatistics Core, Center of Genomic Medicine, National Taiwan University, Taiwan; Institute of Epidemiology and Preventive Medicine, Department of Public Health, National Taiwan University, Taiwan; Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Ming-Shiang Wu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
31
|
Lim MY, Hong S, Kim BM, Ahn Y, Kim HJ, Nam YD. Changes in microbiome and metabolomic profiles of fecal samples stored with stabilizing solution at room temperature: a pilot study. Sci Rep 2020; 10:1789. [PMID: 32019987 PMCID: PMC7000387 DOI: 10.1038/s41598-020-58719-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 01/21/2020] [Indexed: 11/09/2022] Open
Abstract
The gut microbiome is related to various host health conditions through metabolites produced by microbiota. Investigating their relationships involves association analysis of the population-level microbiome and metabolome data, which requires the appropriate collection, handling, and storage of specimens. Simplification of the specimen handling processes will facilitate such investigations. As a pilot study for population-level studies, we collected the fecal samples from three volunteers and tested whether a single sample collection procedure, particularly using OMNIgene-GUT, can be used to reliably obtain both microbiome and metabolome data. We collected fecal samples from three young and healthy Korean adults, stored them at room temperature with and without OMNIgene-GUT solution up to three weeks, and analyzed their microbiome and metabolite profiles. We found that the microbiome profiles were stably maintained in OMNIgene-GUT solution for 21 days, and the abundance relationships among metabolites were well preserved, although their absolute abundances slightly varied over time. Our results show that a single sampling procedure suffices to obtain a fecal sample for collecting gut microbiome and gut metabolome data of an individual. We expect that the health effects of gut microbiome via fecal metabolites can be further understood by increasing the sampling size to the population level.
Collapse
Affiliation(s)
- Mi Young Lim
- Research Group of Healthcare, Korea Food Research Institute, Jeollabuk-do, 55365, Republic of Korea
| | - Seungpyo Hong
- Research Group of Healthcare, Korea Food Research Institute, Jeollabuk-do, 55365, Republic of Korea
| | - Bo-Min Kim
- EZmass Co., Ltd., Gyeongsangnam-do, 52828, Republic of Korea
| | - Yongju Ahn
- Theragen Etex Bio Institute, Gyeonggi-do, 16229, Republic of Korea
| | - Hyun-Jin Kim
- EZmass Co., Ltd., Gyeongsangnam-do, 52828, Republic of Korea.,Department of Food Science and Technology, Division of Applied Life Sciences (BK21 Plus), Institute of Agriculture and Life Science, Gyeongsang National University, Gyeongsangnam-do, 52828, Republic of Korea
| | - Young-Do Nam
- Research Group of Healthcare, Korea Food Research Institute, Jeollabuk-do, 55365, Republic of Korea. .,Department of Food Biotechnology, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
32
|
Videnska P, Smerkova K, Zwinsova B, Popovici V, Micenkova L, Sedlar K, Budinska E. Stool sampling and DNA isolation kits affect DNA quality and bacterial composition following 16S rRNA gene sequencing using MiSeq Illumina platform. Sci Rep 2019; 9:13837. [PMID: 31554833 PMCID: PMC6761292 DOI: 10.1038/s41598-019-49520-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 08/22/2019] [Indexed: 12/30/2022] Open
Abstract
Many studies correlate changes in human gut microbiome with the onset of various diseases, mostly by 16S rRNA gene sequencing. Setting up the optimal sampling and DNA isolation procedures is crucial for robustness and reproducibility of the results. We performed a systematic comparison of several sampling and DNA isolation kits, quantified their effect on bacterial gDNA quality and the bacterial composition estimates at all taxonomic levels. Sixteen volunteers tested three sampling kits. All samples were consequently processed by two DNA isolation kits. We found that the choice of both stool sampling and DNA isolation kits have an effect on bacterial composition with respect to Gram-positivity, however the isolation kit had a stronger effect than the sampling kit. The proportion of bacteria affected by isolation and sampling kits was larger at higher taxa levels compared to lower taxa levels. The PowerLyzer PowerSoil DNA Isolation Kit outperformed the QIAamp DNA Stool Mini Kit mainly due to better lysis of Gram-positive bacteria while keeping the values of all the other assessed parameters within a reasonable range. The presented effects need to be taken into account when comparing results across multiple studies or computing ratios between Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- Petra Videnska
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Kristyna Smerkova
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Barbora Zwinsova
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Vlad Popovici
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Lenka Micenkova
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Karel Sedlar
- Department of Biomedical Engineering, Brno University of Technology, Technicka 12, Brno, Czech Republic
| | - Eva Budinska
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
| |
Collapse
|
33
|
Ilett EE, Jørgensen M, Noguera-Julian M, Daugaard G, Murray DD, Helleberg M, Paredes R, Lundgren J, Sengeløv H, MacPherson C. Gut microbiome comparability of fresh-frozen versus stabilized-frozen samples from hospitalized patients using 16S rRNA gene and shotgun metagenomic sequencing. Sci Rep 2019; 9:13351. [PMID: 31527823 PMCID: PMC6746779 DOI: 10.1038/s41598-019-49956-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 09/04/2019] [Indexed: 02/06/2023] Open
Abstract
Collection of faecal samples for microbiome analysis in acutely sick patients is logistically difficult, particularly if immediate freezing is required (i.e. fresh-frozen, or FF sampling). Previous studies in healthy/non-hospitalized volunteers have shown that chemical stabilization (i.e. stabilized-frozen, or SF sampling) allows room-temperature storage with comparable results to FF samples. To test this in a hospital setting we compared FF and SF approaches across 17 patients undergoing haematopoietic stem cell transplantation (HSCT) using both 16S rRNA gene and shotgun metagenomic sequencing. A paired (same stool specimen) comparison of FF and SF samples was made, with an overall comparable level in relative taxonomic abundances between the two sampling techniques. Though shotgun metagenomic sequencing found significant differences for certain bacterial genera (P < 0.001), these were considered minor methodological effects. Within-sample diversity of either method was not significantly different (Shannon diversity P16SrRNA = 0.68 and Pshotgun = 0.89) and we could not reject the null hypothesis that between-sample variation in FF and SF were equivalent (P16SrRNA = 0.98 and Pshotgun = 1.0). This indicates that SF samples can be used to reliably study the microbiome in acutely sick patient populations, thus creating and enabling further outcomes-based metagenomic studies on similarly valuable cohorts.
Collapse
Affiliation(s)
- Emma E Ilett
- PERSIMUNE Centre of Excellence, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen Ø, Denmark.
| | - Mette Jørgensen
- PERSIMUNE Centre of Excellence, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen Ø, Denmark
| | - Marc Noguera-Julian
- Institut de Recerca de la SIDA - IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, Catalonia, Spain
| | - Gedske Daugaard
- Department of Oncology, Rigshospitalet Blegdamsvej 9, DK-2100, Copenhagen Ø, Denmark
| | - Daniel D Murray
- PERSIMUNE Centre of Excellence, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen Ø, Denmark
| | - Marie Helleberg
- PERSIMUNE Centre of Excellence, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen Ø, Denmark
| | - Roger Paredes
- Institut de Recerca de la SIDA - IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, Catalonia, Spain.,Infectious Diseases Service, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Jens Lundgren
- PERSIMUNE Centre of Excellence, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen Ø, Denmark
| | - Henrik Sengeløv
- Department of Haematology, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen Ø, Denmark
| | - Cameron MacPherson
- PERSIMUNE Centre of Excellence, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen Ø, Denmark
| |
Collapse
|
34
|
Ryan PM, Stanton C, Ross RP, Kelly AL, Dempsey E, Ryan CA. Paediatrician's perspective of infant gut microbiome research: current status and challenges. Arch Dis Child 2019; 104:701-705. [PMID: 31113768 DOI: 10.1136/archdischild-2019-316891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 01/16/2023]
Abstract
Due to its innately intriguing nature and recent genomic technological advances, gut microbiome research has been at the epicentre of medical research for over a decade now. Despite the degree of publicisation, a comprehensive understanding and, therefore, acceptance of the area as a whole may be somewhat lacking within the broader medical community. This paper summarises the main analytical techniques and tools currently applied to compositional microbiome research. In addition, we outline five major lessons learnt from a decade of infant microbiome research, along with the current research gaps. Finally, we aim to provide an introduction and general guidelines relating to infant gut microbiome research for the practising paediatrician.
Collapse
Affiliation(s)
| | - Catherine Stanton
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Alan L Kelly
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Eugene Dempsey
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland.,Department of Neonatology, Cork University Maternity Hospital, Cork, Ireland
| | - C Anthony Ryan
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland.,Department of Neonatology, Cork University Maternity Hospital, Cork, Ireland
| |
Collapse
|
35
|
Morales E, Chen J, Greathouse KL. Compositional Analysis of the Human Microbiome in Cancer Research. Methods Mol Biol 2019; 1928:299-335. [PMID: 30725462 DOI: 10.1007/978-1-4939-9027-6_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Gut microbial composition has shown to be associated with obesity, diabetes mellitus, inflammatory bowel disease, colitis, autoimmune disorders, and cancer, among other diseases. Microbiome research has significantly evolved through the years and continues to advance as we develop new and better strategies to more accurately measure its composition and function. Careful selection of study design, inclusion and exclusion criteria of participants, and methodology are paramount to accurately analyze microbial structure. Here we present the most up-to-date available information on methods for gut microbial collection and analysis.
Collapse
Affiliation(s)
- Elisa Morales
- Robbins College of Health and Human Sciences, Baylor University, Waco, TX, USA
| | - Jun Chen
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - K Leigh Greathouse
- Robbins College of Health and Human Sciences, Baylor University, Waco, TX, USA.
| |
Collapse
|
36
|
Gut microbiome analysis by post: Evaluation of the optimal method to collect stool samples from infants within a national cohort study. PLoS One 2019; 14:e0216557. [PMID: 31188837 PMCID: PMC6561628 DOI: 10.1371/journal.pone.0216557] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/23/2019] [Indexed: 12/30/2022] Open
Abstract
Background Understanding the role of the gut microbiome is pivotal for the future development of therapies for the prevention and management of autoimmune conditions such as type 1 diabetes when sampling during early life may be particularly important. The current standard methods for collecting gut microbiome samples for research is to extract fresh samples or freeze samples immediately after collection. This is often impractical however for population-based studies. The aim of this study was to determine the optimal method for the stabilization of stool bacterial DNA obtained from nappies and transported by post in ambient conditions to the research centre for a national birth cohort study. Methods Four methods to collect samples were compared to immediate freezing of samples: 1) collecting faeces onto a swab which was immediately frozen, 2) using a commercially available kit with stabilisation solution (OMNIgene•GUT kit) at ambient temperature, 3) collecting onto a swab and 4) collecting into a sterile plain tube. Samples 3) and 4) were returned to the laboratory by post at ambient temperatures. A Bland Altman analysis was used to assess the agreement between the different methods and the frozen standard. Results Stool samples were collected by parents. For samples transported in ambient conditions, the limits of agreement showed that the OMNIgene•GUT kit had the narrowest 95% limits of agreement with the frozen standard as measured by the number of operational taxonomic units and the Shannon diversity index. Conclusions All methods assessed for preserving samples collected from nappies at a distance and delivered by post for gut microbiome analysis showed variation / disagreement from the frozen standard. Overall, the OMNIgene•GUT kit preserved the samples with minimal changes compared to other methods and was practical for parents to use.
Collapse
|
37
|
Martínez N, Hidalgo-Cantabrana C, Delgado S, Margolles A, Sánchez B. Filling the gap between collection, transport and storage of the human gut microbiota. Sci Rep 2019; 9:8327. [PMID: 31171823 PMCID: PMC6554407 DOI: 10.1038/s41598-019-44888-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/20/2019] [Indexed: 12/11/2022] Open
Abstract
Stool collection devices minimizing the exposure of gut bacteria to oxygen are critical for the standardization of further microbiota-based studies, analysis and developments. The aim of this work was to evidence that keeping anaerobiosis has a deep impact on the viability and diversity of the fecal microbiota that is recovered in the laboratory. Recovering certain microbial populations, such as obligate anaerobic bacteria, is particularly critical if the purpose of the study is to envisage personalized therapeutic purposes, such as autologous Fecal Microbiota Transplant. In this study the same fecal specimens were sampled in conventional stool containers and GutAlive, a disposable device that minimizes exposure of the gut microbiota to oxygen. Samples from five healthy donors were analysed and 150 differential colonies were recovered and identified by 16S rRNA gene sequencing. Globally, GutAlive maintained extremely oxygen sensitive (EOS) populations that were lost in conventional stool containers, and thus viability of species such as as Akkermansia muciniphila, Faecalibacterium prausnitzii and a novel member of the Clostridiales order was kept. These obligate anaerobes were not recovered using the conventional stool collection device. In conclusion, the use of GutAlive for stool collection and transport optimized the viability and recovery of EOS bacteria in the lab by diminishing oxygen toxicity.
Collapse
Affiliation(s)
- Noelia Martínez
- Microviable Therapeutics SL. Edificio Severo Ochoa, Campus de El Cristo. C/Fernando Bonguera s/n, 33006, Oviedo, Spain
| | - Claudio Hidalgo-Cantabrana
- Department of Food, Processing and Nutrition Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Susana Delgado
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas, Asturias, CSIC, Spain
| | - Abelardo Margolles
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas, Asturias, CSIC, Spain
| | - Borja Sánchez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas, Asturias, CSIC, Spain.
| |
Collapse
|
38
|
Lee KM, Adams M, Klassen JL. Evaluation of DESS as a storage medium for microbial community analysis. PeerJ 2019; 7:e6414. [PMID: 30740279 PMCID: PMC6368006 DOI: 10.7717/peerj.6414] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/24/2018] [Indexed: 12/14/2022] Open
Abstract
Microbial ecology research requires sampling strategies that accurately represent the microbial community under study. These communities must typically be transported from the collection location to the laboratory and then stored until they can be processed. However, there is a lack of consensus on how best to preserve microbial communities during transport and storage. Here, we evaluated dimethyl sulfoxide, ethylenediamine tetraacetic acid, saturated salt (DESS) solution as a broadly applicable preservative for microbial ecology experiments. We stored fungus gardens grown by the ant Trachymyrmex septentrionalis in DESS, 15% glycerol, and phosphate buffered saline (PBS) to test their impact on the fungus garden microbial community. Variation in microbial community structure due to differences in preservative type was minimal when compared to variation between ant colonies. Additionally, DESS preserved the structure of a defined mock community more faithfully than either 15% glycerol or PBS. DESS is inexpensive, easy to transport, and effective in preserving microbial community structure. We therefore conclude that DESS is a valuable preservative for use in microbial ecology research.
Collapse
Affiliation(s)
- Kevin M Lee
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Madison Adams
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Jonathan L Klassen
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
39
|
Tap J, Cools-Portier S, Pavan S, Druesne A, Öhman L, Törnblom H, Simren M, Derrien M. Effects of the long-term storage of human fecal microbiota samples collected in RNAlater. Sci Rep 2019; 9:601. [PMID: 30679604 PMCID: PMC6345939 DOI: 10.1038/s41598-018-36953-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/23/2018] [Indexed: 12/14/2022] Open
Abstract
The adequate storage of fecal samples from clinical trials is crucial if analyses are to be performed later and in long-term studies. However, it is unknown whether the composition of the microbiota is preserved during long-term stool storage (>1 year). We therefore evaluated the influence of long-term storage on the microbiota composition of human stool samples collected in RNAlater and stored for approximately five years at −80 °C. We compared storage effects on stool samples from 24 subjects with the effects of technical variation due to different sequencing runs and biological variation (intra- and inter-subject), in another 101 subjects, based on alpha-diversity, beta-diversity and taxonomic composition. We also evaluated the impact of initial alpha-diversity and fecal microbiota composition on beta-diversity instability upon storage. Overall, long-term stool storage at −80 °C had only limited effects on the microbiota composition of human feces. The magnitude of changes in alpha- and beta- diversity and taxonomic composition after long-term storage was similar to inter-sequencing variation and smaller than biological variation (both intra- and inter-subject). The likelihood of fecal samples being affected by long-term storage correlated with the initial relative abundance of some genera and tend to be affected by initial taxonomic richness.
Collapse
Affiliation(s)
- Julien Tap
- Danone Nutricia Research, Innovation, Science and Nutrition Department, RD 128 - Avenue de la Vauve, 91767, Palaiseau, France
| | - Stéphanie Cools-Portier
- Danone Nutricia Research, Innovation, Science and Nutrition Department, RD 128 - Avenue de la Vauve, 91767, Palaiseau, France
| | | | - Anne Druesne
- Danone Nutricia Research, Innovation, Science and Nutrition Department, RD 128 - Avenue de la Vauve, 91767, Palaiseau, France
| | - Lena Öhman
- Department of Immunology and Microbiology, Inst. of Biomedicine, University of Gothenburg, Gothenburg, Sweden.,Department of Internal Medicine and Clinical Nutrition, Inst. Of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Hans Törnblom
- Department of Internal Medicine and Clinical Nutrition, Inst. Of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Magnus Simren
- Department of Internal Medicine and Clinical Nutrition, Inst. Of Medicine, University of Gothenburg, Gothenburg, Sweden.,Center for Functional Gastrointestinal and Motility Disorders, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Muriel Derrien
- Danone Nutricia Research, Innovation, Science and Nutrition Department, RD 128 - Avenue de la Vauve, 91767, Palaiseau, France.
| |
Collapse
|
40
|
Frankel AE, Deshmukh S, Reddy A, Lightcap J, Hayes M, McClellan S, Singh S, Rabideau B, Glover TG, Roberts B, Koh AY. Cancer Immune Checkpoint Inhibitor Therapy and the Gut Microbiota. Integr Cancer Ther 2019; 18:1534735419846379. [PMID: 31014119 PMCID: PMC6482659 DOI: 10.1177/1534735419846379] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 12/18/2022] Open
Abstract
The past decade has seen tremendous advances in both our understanding of cancer immunosuppressive microenvironments and colonic bacteria facilitated by immune checkpoint inhibitor antibodies and next generation sequencing, respectively. Because an important role of the host immune system is to communicate with and regulate the gut microbial community, it should not come as a surprise that the behavior of one is coupled to the other. In this review, we will attempt to dissect some of the studies demonstrating cancer immunotherapy modulation by specific gut microbes and discuss possible molecular mechanisms for this effect.
Collapse
Affiliation(s)
- Arthur E. Frankel
- University of South Alabama Mitchell Cancer Institute, Mobile, AL, USA
| | - Sachin Deshmukh
- University of South Alabama Mitchell Cancer Institute, Mobile, AL, USA
| | - Amit Reddy
- University of South Alabama Mitchell Cancer Institute, Mobile, AL, USA
| | - John Lightcap
- University of South Alabama Mitchell Cancer Institute, Mobile, AL, USA
| | - Maureen Hayes
- University of South Alabama Mitchell Cancer Institute, Mobile, AL, USA
| | - Steven McClellan
- University of South Alabama Mitchell Cancer Institute, Mobile, AL, USA
| | - Seema Singh
- University of South Alabama Mitchell Cancer Institute, Mobile, AL, USA
| | | | | | | | - Andrew Y. Koh
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
41
|
Szopinska JW, Gresse R, van der Marel S, Boekhorst J, Lukovac S, van Swam I, Franke B, Timmerman H, Belzer C, Arias Vasquez A. Reliability of a participant-friendly fecal collection method for microbiome analyses: a step towards large sample size investigation. BMC Microbiol 2018; 18:110. [PMID: 30189859 PMCID: PMC6127955 DOI: 10.1186/s12866-018-1249-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 08/27/2018] [Indexed: 12/14/2022] Open
Abstract
Background The effects of gut microbiota on human traits are expected to be small to moderate and adding the complexity of the human diseases, microbiome research demands big sample sizes. Fecal samples for such studies are mostly self-collected by participants at home. This imposes an extra level of complexity as sample collection and storage can be challenging. Effective, low-burden collection and storage methods allowing fecal samples to be transported properly and ensuring optimal quality and quantity of bacterial DNA for upstream analyses are necessary. Moreover, accurate assessment of the microbiome composition also depends on bacterial DNA extraction method. The aim of this study was to evaluate the reliability and efficiency of the OMNIgene•GUT kit as a participant-fecal friendly collection method (storage at room temperature for 24 h (O24h) or 7 days (O7d)) in comparison to the standard collection method (Fresh, storage at 4 °C for less than 24 h) in terms of amount of variability and information content accounting for two common DNA extraction methods. Results Fourteen fecal samples were collected from healthy individuals (7 males, 7 females). Collection and storage methods did not differ significantly in terms of DNA concentration and Shannon diversity index. Phylum relative abundance showed significant differences for Bacteroidetes, Actinobacteria and Cyanobacteria. The differences were observed between control (Fresh) and O24h methods, but not between Fresh and O7d. These differences were not seen when performing bacterial DNA quantification based on three bacterial groups: Bacteroides spp., Bifidobacterium spp. and Clostridium cluster IV, which represent three major phyla: Bacteroidetes, Actinobacteria and Firmicutes respectively. The two DNA extraction methods differ in terms of DNA quantity, quality, bacterial diversity and bacterial relative abundance. Furthermore, principal component analysis revealed differences in microbial structure, which are driven by the DNA extraction methods more than the collection/storage methods. Conclusion Our results have highlighted the potential of using the OMNIgene•GUT kit for collection and storage at ambient temperature, which is convenient for studies aiming to collect large samples by giving participants the possibility to send samples by post. Importantly, we revealed that the choice of DNA extraction method have an impact on the microbiome profiling. Electronic supplementary material The online version of this article (10.1186/s12866-018-1249-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joanna W Szopinska
- Department of Psychiatry, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, P.O. Box 9101 HB, Nijmegen, The Netherlands
| | - Raphaële Gresse
- UMR 454 MEDIS UCA-INRA, Université Clermont Auvergne, F-63000, Clermont-Ferrand, France
| | - Saskia van der Marel
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, P.O. Box 9101 HB, Nijmegen, The Netherlands
| | - Jos Boekhorst
- NIZO Food Research BV, P.O. Box 20, 6710 BA, Ede, The Netherlands
| | - Sabina Lukovac
- NIZO Food Research BV, P.O. Box 20, 6710 BA, Ede, The Netherlands
| | - Iris van Swam
- NIZO Food Research BV, P.O. Box 20, 6710 BA, Ede, The Netherlands
| | - Barbara Franke
- Department of Psychiatry, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, P.O. Box 9101 HB, Nijmegen, The Netherlands.,Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, P.O. Box 9101 HB, Nijmegen, The Netherlands
| | - Harro Timmerman
- NIZO Food Research BV, P.O. Box 20, 6710 BA, Ede, The Netherlands
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Alejandro Arias Vasquez
- Department of Psychiatry, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, P.O. Box 9101 HB, Nijmegen, The Netherlands. .,Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, P.O. Box 9101 HB, Nijmegen, The Netherlands. .,Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, P.O. Box 9101 HB, Nijmegen, The Netherlands.
| |
Collapse
|
42
|
Fazlollahi M, Chun Y, Grishin A, Wood RA, Burks AW, Dawson P, Jones SM, Leung DY, Sampson HA, Sicherer SH, Bunyavanich S. Early-life gut microbiome and egg allergy. Allergy 2018; 73:1515-1524. [PMID: 29318631 PMCID: PMC6436531 DOI: 10.1111/all.13389] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Gut microbiota may play a role in egg allergy. We sought to examine the association between early-life gut microbiota and egg allergy. METHODS We studied 141 children with egg allergy and controls from the multicenter Consortium of Food Allergy Research study. At enrollment (age 3 to 16 months), fecal samples were collected, and clinical evaluation, egg-specific IgE measurement, and egg skin prick test were performed. Gut microbiome was profiled by 16S rRNA sequencing. Analyses for the primary outcome of egg allergy at enrollment, and the secondary outcomes of egg sensitization at enrollment and resolution of egg allergy by age 8 years, were performed using Quantitative Insights into Microbial Ecology, Phylogenetic Investigation of Communities by Reconstruction of Unobserved States, and Statistical Analysis of Metagenomic Profiles. RESULTS Compared to controls, increased alpha diversity and distinct taxa (PERMANOVA P = 5.0 × 10-4 ) characterized the early-life gut microbiome of children with egg allergy. Genera from the Lachnospiraceae, Streptococcaceae, and Leuconostocaceae families were differentially abundant in children with egg allergy. Predicted metagenome functional analyses showed differential purine metabolism by the gut microbiota of egg-allergic subjects (Kruskal-Wallis Padj = 0.021). Greater gut microbiome diversity and genera from Lachnospiraceae and Ruminococcaceae were associated with egg sensitization (PERMANOVA P = 5.0 × 10-4 ). Among those with egg allergy, there was no association between early-life gut microbiota and egg allergy resolution by age 8 years. CONCLUSION The distinct early-life gut microbiota in egg-allergic and egg-sensitized children identified by our study may point to targets for preventive or therapeutic intervention.
Collapse
Affiliation(s)
- Mina Fazlollahi
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yoojin Chun
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexander Grishin
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert A. Wood
- Department of Pediatrics, Johns Hopkins University, Baltimore, MD, USA
| | - A. Wesley Burks
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC
| | | | - Stacie M. Jones
- Department of Pediatrics, University of Arkansas for Medical Sciences and Arkansas Children’s Hospital, Little Rock, AR, USA
| | | | - Hugh A. Sampson
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Scott H. Sicherer
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Supinda Bunyavanich
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
43
|
Penington JS, Penno MAS, Ngui KM, Ajami NJ, Roth-Schulze AJ, Wilcox SA, Bandala-Sanchez E, Wentworth JM, Barry SC, Brown CY, Couper JJ, Petrosino JF, Papenfuss AT, Harrison LC. Influence of fecal collection conditions and 16S rRNA gene sequencing at two centers on human gut microbiota analysis. Sci Rep 2018; 8:4386. [PMID: 29531234 PMCID: PMC5847573 DOI: 10.1038/s41598-018-22491-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 02/22/2018] [Indexed: 12/14/2022] Open
Abstract
To optimise fecal sampling for reproducible analysis of the gut microbiome, we compared different methods of sample collection and sequencing of 16S rRNA genes at two centers. Samples collected from six individuals on three consecutive days were placed in commercial collection tubes (OMNIgeneGut OMR-200) or in sterile screw-top tubes in a home fridge or home freezer for 6-24 h, before transfer and storage at -80 °C. Replicate samples were shipped to centers in Australia and the USA for DNA extraction and sequencing by their respective PCR protocols, and analysed with the same bioinformatic pipeline. Variation in gut microbiome was dominated by differences between individuals. Minor differences in the abundance of taxa were found between collection-processing methods and day of collection, and between the two centers. We conclude that collection with storage and transport at 4 °C within 24 h is adequate for 16S rRNA analysis of the gut microbiome. Other factors including differences in PCR and sequencing methods account for relatively minor variation compared to differences between individuals.
Collapse
Affiliation(s)
| | - Megan A S Penno
- Robinson Research Institute, University of Adelaide, Adelaide, 5006, South Australia, Australia
| | - Katrina M Ngui
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
| | - Nadim J Ajami
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Alexandra J Roth-Schulze
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, University of Melbourne, Victoria, 3010, Australia
| | - Stephen A Wilcox
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, University of Melbourne, Victoria, 3010, Australia
| | - Esther Bandala-Sanchez
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, University of Melbourne, Victoria, 3010, Australia
| | - John M Wentworth
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, University of Melbourne, Victoria, 3010, Australia
| | - Simon C Barry
- Robinson Research Institute, University of Adelaide, Adelaide, 5006, South Australia, Australia
| | - Cheryl Y Brown
- Robinson Research Institute, University of Adelaide, Adelaide, 5006, South Australia, Australia
| | - Jennifer J Couper
- Robinson Research Institute, University of Adelaide, Adelaide, 5006, South Australia, Australia
| | - Joseph F Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Anthony T Papenfuss
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia.
- Department of Medical Biology, University of Melbourne, Victoria, 3010, Australia.
| | - Leonard C Harrison
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia.
- Department of Medical Biology, University of Melbourne, Victoria, 3010, Australia.
| |
Collapse
|
44
|
Wu WK, Chen CC, Panyod S, Chen RA, Wu MS, Sheen LY, Chang SC. Optimization of fecal sample processing for microbiome study - The journey from bathroom to bench. J Formos Med Assoc 2018; 118:545-555. [PMID: 29490879 DOI: 10.1016/j.jfma.2018.02.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/23/2018] [Accepted: 02/05/2018] [Indexed: 12/30/2022] Open
Abstract
Although great interest has been displayed by researchers in the contribution of gut microbiota to human health, there is still no standard protocol with consensus to guarantee the sample quality of metagenomic analysis. Here we reviewed existing methodology studies and present suggestions for optimizing research pipeline from fecal sample collection to DNA extraction. First, we discuss strategies of clinical metadata collection as common confounders for microbiome research. Second, we propose general principles for freshly collected fecal sample and its storage and share a DIY stool collection kit protocol based on the manual procedure of Human Microbiome Project (HMP). Third, we provide a useful information of collection kit with DNA stabilization buffers and compare their pros and cons for multi-omic study. Fourth, we offer technical strategies as well as information of novel tools for sample aliquoting before long-term storage. Fifth, we discuss the substantial impact of different DNA extraction protocols on technical variations of metagenomic analysis. And lastly, we point out the limitation of current methods and the unmet needs for better quality control of metagenomic analysis. We hope the information provided here will help investigators in this exciting field to advance their studies while avoiding experimental artifacts.
Collapse
Affiliation(s)
- Wei-Kai Wu
- Department of Internal Medicine, National Taiwan University Hospital Bei-Hu Branch, Taipei, Taiwan; Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Chieh-Chang Chen
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Suraphan Panyod
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan; College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Rou-An Chen
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Ming-Shiang Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Lee-Yan Sheen
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Shan-Chwen Chang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
45
|
Su T, Liu R, Long Y, Quan S, Lai S, Wang L, Si J, Chen S. 1-Day or 5-Day Fecal Samples, Which One is More Beneficial to be Used for DNA-Based Gut Microbiota Study. Curr Microbiol 2018; 75:288-295. [PMID: 29353421 DOI: 10.1007/s00284-017-1378-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 10/19/2017] [Indexed: 12/22/2022]
Abstract
Fecal sample collection is an important influential factor for DNA-based gut microbiota study. It is controversial whether the microbiome detected in fecal sample collected at one random day could fully represent the gut microbial community. The aim of the study is to figure out whether the use of fecal sample mixture collected at consecutive 5 days could more accurately represent gut microbial community. 1- and 5-day fecal samples were collected from 8 healthy adults and analyzed by 16S rRNA sequence. Our results indicated that both 1-day fecal samples and 5-day samples exhibited relatively high repeatability. The relative abundance of majority of bacterial taxa did not changed between 1-day fecal samples and 5-day fecal samples. However, the alpha diversity of 5-day fecal samples was higher than that of 1-day fecal samples. When the aims of studies are to analyze the relative abundance of specific OTUs among subjects, fecal samples collected at one day could be used. When microbial diversity is one of essential factors to be analyzed, the use of 5-day fecal samples may be more recommended.
Collapse
Affiliation(s)
- Tingting Su
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou, 310016, Zhejiang, China
| | - Rongbei Liu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou, 310016, Zhejiang, China
| | - Yanqin Long
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China
| | - Sheng Quan
- Institute of Gastroenterology, Zhejiang University, Hangzhou, 310016, Zhejiang, China
| | - Sanchuan Lai
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou, 310016, Zhejiang, China
| | - Lan Wang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou, 310016, Zhejiang, China
| | - Jianmin Si
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China. .,Institute of Gastroenterology, Zhejiang University, Hangzhou, 310016, Zhejiang, China.
| | - Shujie Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang, China. .,Institute of Gastroenterology, Zhejiang University, Hangzhou, 310016, Zhejiang, China.
| |
Collapse
|
46
|
Esaiassen E, Hjerde E, Cavanagh JP, Pedersen T, Andresen JH, Rettedal SI, Støen R, Nakstad B, Willassen NP, Klingenberg C. Effects of Probiotic Supplementation on the Gut Microbiota and Antibiotic Resistome Development in Preterm Infants. Front Pediatr 2018; 6:347. [PMID: 30505830 PMCID: PMC6250747 DOI: 10.3389/fped.2018.00347] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/26/2018] [Indexed: 12/15/2022] Open
Abstract
Objectives: In 2014 probiotic supplementation (Lactobacillus acidophilus and Bifidobacterium longum subspecies infantis; InfloranⓇ) was introduced as standard of care to prevent necrotizing enterocolitis (NEC) in extremely preterm infants in Norway. We aimed to evaluate the influence of probiotics and antibiotic therapy on the developing gut microbiota and antibiotic resistome in extremely preterm infants, and to compare with very preterm infants and term infants not given probiotics. Study design: A prospective, observational multicenter study in six tertiary-care neonatal units. We enrolled 76 infants; 31 probiotic-supplemented extremely preterm infants <28 weeks gestation, 35 very preterm infants 28-31 weeks gestation not given probiotics and 10 healthy full-term control infants. Taxonomic composition and collection of antibiotic resistance genes (resistome) in fecal samples, collected at 7 and 28 days and 4 months age, were analyzed using shotgun-metagenome sequencing. Results: Median (IQR) birth weight was 835 (680-945) g and 1,290 (1,150-1,445) g in preterm infants exposed and not exposed to probiotics, respectively. Two extremely preterm infants receiving probiotic developed NEC requiring surgery. At 7 days of age we found higher median relative abundance of Bifidobacterium in probiotic supplemented infants (64.7%) compared to non-supplemented preterm infants (0.0%) and term control infants (43.9%). Lactobacillus was only detected in small amounts in all groups, but the relative abundance increased up to 4 months. Extremely preterm infants receiving probiotics had also much higher antibiotic exposure, still overall microbial diversity and resistome was not different than in more mature infants at 4 weeks and 4 months. Conclusion: Probiotic supplementation may induce colonization resistance and alleviate harmful effects of antibiotics on the gut microbiota and antibiotic resistome. Clinical Trial Registration: Clinicaltrials.gov: NCT02197468. https://clinicaltrials.gov/ct2/show/NCT02197468.
Collapse
Affiliation(s)
- Eirin Esaiassen
- Paediatric Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway.,Department of Paediatrics, University Hospital of North Norway, Tromsø, Norway
| | - Erik Hjerde
- Department of Chemistry, Norstruct, UiT The Arctic University of Norway, Tromsø, Norway
| | - Jorunn Pauline Cavanagh
- Paediatric Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway.,Department of Paediatrics, University Hospital of North Norway, Tromsø, Norway
| | - Tanja Pedersen
- Department of Paediatrics, Haukeland University Hospital, Bergen, Norway
| | - Jannicke H Andresen
- Department of Neonatal Intensive Care, Oslo University Hospital, Oslo, Norway
| | - Siren I Rettedal
- Department of Paediatrics, Stavanger University Hospital, Stavanger, Norway
| | - Ragnhild Støen
- Department of Paediatrics, St. Olavs University Hospital, Trondheim, Norway.,Department of Laboratory Medicine, Children's and Women's Health, University of Science and Technology, Trondheim, Norway
| | - Britt Nakstad
- Department of Paediatric and Adolescents Medicine, Akershus University Hospital, Nordbyhagen, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Nils P Willassen
- Department of Chemistry, Norstruct, UiT The Arctic University of Norway, Tromsø, Norway
| | - Claus Klingenberg
- Paediatric Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway.,Department of Paediatrics, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
47
|
Abstract
Microbiome analysis involves determining the composition and function of a community of microorganisms in a particular location. For the gastroenterologist, this technology opens up a rapidly evolving set of challenges and opportunities for generating novel insights into the health of patients on the basis of microbiota characterizations from intestinal, hepatic or extraintestinal samples. Alterations in gut microbiota composition correlate with intestinal and extraintestinal disease and, although only a few mechanisms are known, the microbiota are still an attractive target for developing biomarkers for disease detection and management as well as potential therapeutic applications. In this Review, we summarize the major decision points confronting new entrants to the field or for those designing new projects in microbiome research. We provide recommendations based on current technology options and our experience of sequencing platform choices. We also offer perspectives on future applications of microbiome research, which we hope convey the promise of this technology for clinical applications.
Collapse
|
48
|
Vandeputte D, Tito RY, Vanleeuwen R, Falony G, Raes J. Practical considerations for large-scale gut microbiome studies. FEMS Microbiol Rev 2017; 41:S154-S167. [PMID: 28830090 PMCID: PMC7207147 DOI: 10.1093/femsre/fux027] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/19/2017] [Indexed: 12/14/2022] Open
Abstract
First insights on the human gut microbiome have been gained from medium-sized, cross-sectional studies. However, given the modest portion of explained variance of currently identified covariates and the small effect size of gut microbiota modulation strategies, upscaling seems essential for further discovery and characterisation of the multiple influencing factors and their relative contribution. In order to guide future research projects and standardisation efforts, we here review currently applied collection and preservation methods for gut microbiome research. We discuss aspects such as sample quality, applicable omics techniques, user experience and time and cost efficiency. In addition, we evaluate the protocols of a large-scale microbiome cohort initiative, the Flemish Gut Flora Project, to give an idea of perspectives, and pitfalls of large-scale faecal sampling studies. Although cryopreservation can be regarded as the gold standard, freezing protocols generally require more resources due to cold chain management. However, here we show that much can be gained from an optimised transport chain and sample aliquoting before freezing. Other protocols can be useful as long as they preserve the microbial signature of a sample such that relevant conclusions can be drawn regarding the research question, and the obtained data are stable and reproducible over time.
Collapse
Affiliation(s)
- Doris Vandeputte
- KU Leuven, Department of Microbiology and Immunology, Rega Institute, Herestraat 49, B-3000 Leuven, Belgium
- VIB, Center for Microbiology, Herestraat 49, B-3000 Leuven, Belgium
- Microbiology Unit, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Raul Y. Tito
- KU Leuven, Department of Microbiology and Immunology, Rega Institute, Herestraat 49, B-3000 Leuven, Belgium
- VIB, Center for Microbiology, Herestraat 49, B-3000 Leuven, Belgium
- Microbiology Unit, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Rianne Vanleeuwen
- Universiteit Antwerpen, Productontwikkeling, Ambtmanstraat 1, B-2000 Antwerpen, Belgium
| | - Gwen Falony
- KU Leuven, Department of Microbiology and Immunology, Rega Institute, Herestraat 49, B-3000 Leuven, Belgium
- VIB, Center for Microbiology, Herestraat 49, B-3000 Leuven, Belgium
| | - Jeroen Raes
- KU Leuven, Department of Microbiology and Immunology, Rega Institute, Herestraat 49, B-3000 Leuven, Belgium
- VIB, Center for Microbiology, Herestraat 49, B-3000 Leuven, Belgium
| |
Collapse
|
49
|
Abrahamson M, Hooker E, Ajami NJ, Petrosino JF, Orwoll ES. Successful collection of stool samples for microbiome analyses from a large community-based population of elderly men. Contemp Clin Trials Commun 2017; 7:158-162. [PMID: 29250605 PMCID: PMC5726580 DOI: 10.1016/j.conctc.2017.07.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The relationship of the gastrointestinal microbiome to health and disease is of major research interest, including the effects of the gut microbiota on age related conditions. Here we report on the outcome of a project to collect stool samples on a large number of community dwelling elderly men using the OMNIgene-GUT stool/feces collection kit (OMR-200, DNA Genotek, Ottawa, Canada). Among 1,328 men who were eligible for stool collection, 982 (74%) agreed to participate and 951 submitted samples. The collection process was reported to be acceptable, almost all samples obtained were adequate, the process of sample handling by mail was uniformly successful. The DNA obtained provided excellent results in microbiome analyses, yielding an abundance of species and a diversity of taxa as would be predicted. Our results suggest that population studies of older participants involving remote stool sample collection are feasible. These approaches would allow large scale research projects of the association of the gut microbiota with important clinical outcomes.
Collapse
Affiliation(s)
| | | | - Nadim J Ajami
- Alkek Center for Metagenomics and Microbiome Research, Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Joseph F Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Eric S Orwoll
- Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
50
|
Tarnecki AM, Burgos FA, Ray CL, Arias CR. Fish intestinal microbiome: diversity and symbiosis unravelled by metagenomics. J Appl Microbiol 2017; 123:2-17. [PMID: 28176435 DOI: 10.1111/jam.13415] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/11/2017] [Accepted: 02/02/2017] [Indexed: 12/20/2022]
Abstract
The gut microbiome of vertebrates plays an integral role in host health by stimulating development of the immune system, aiding in nutrient acquisition and outcompeting opportunistic pathogens. Development of next-generation sequencing technologies allows researchers to survey complex communities of microorganisms within the microbiome at great depth with minimal costs, resulting in a surge of studies investigating bacterial diversity of fishes. Many of these studies have focused on the microbial structure of economically significant aquaculture species with the goal of manipulating the microbes to increase feed efficiency and decrease disease susceptibility. The unravelling of intricate host-microbe symbioses and identification of core microbiome functions is essential to our ability to use the benefits of a healthy microbiome to our advantage in fish culture, as well as gain deeper understanding of bacterial roles in vertebrate health. This review aims to summarize the available knowledge on fish gastrointestinal communities obtained from metagenomics, including biases from sample processing, factors influencing assemblage structure, intestinal microbiology of important aquaculture species and description of the teleostean core microbiome.
Collapse
Affiliation(s)
| | - F A Burgos
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - C L Ray
- United States Department of Agriculture, Agricultural Research Service, Harry K. Dupree Stuttgart National Aquaculture Research Center, Stuttgart, AR, USA
| | - C R Arias
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| |
Collapse
|