1
|
Syed S, Painda MYK, Ghafoor D, Gu D, Wang F. Physiological roles and therapeutic implications of USP6. Cell Death Discov 2025; 11:231. [PMID: 40348771 PMCID: PMC12065817 DOI: 10.1038/s41420-025-02466-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/21/2025] [Accepted: 03/31/2025] [Indexed: 05/14/2025] Open
Abstract
Ubiquitin-specific protease 6 (USP6) is a member of deubiquitinating enzyme family, recognized for its essential roles in physiological and pathological processes. USP6 is initially identified as a hominoid-specific enzyme residing on chromosome 17p13. USP6 is involved in regulating cellular functions, signaling pathways, protein degradation, intracellular trafficking, tumorigenesis and immune responses. USP6 is pivotal in signaling pathways, including NF-κB, JAK-STAT, and Wnt, which are fundamental for maintaining cellular homeostasis and mediating stress responses. Dysregulation of USP6 has been implicated in a spectrum of diseases, including bone tumors, breast and colorectal cancers, cranial fasciitis, and neurological disorders such as memory dysfunction. Furthermore, USP6 is involved in emerging therapeutic strategies highlighting its implications for drug development. A number of potential small molecule inhibitors are known to be responsible for suppression of USP6, such as Momelotinib (CYT387), FT385, USP30 Inh-1, -2 and -3, 2,6-Diaminopyridine-3,5-bis(thiocyanate) (PR-619) and so on. This review explores the emerging role of USP6 as a key regulator of cellular signaling pathways, its involvement in disease progression, its physiological functions, and the inhibitors that effectively suppress USP6 activity in detail. The comprehensive study provides insight to enhance our understanding of biological importance and therapeutic interventions of USP6 in drug development.
Collapse
Affiliation(s)
- Suaad Syed
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | | | - Dawood Ghafoor
- Veterinary Preclinical Sciences, College of Science and Engineering (CSE), James Cook University, Townsville, QLD, 4811, Australia
| | - Dongjin Gu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Feng Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
2
|
Li Q, Guo R, Wu Z, Zhao C, Shen C. Key genes linking gut microbiota, immune cells, and osteoporosis: A multi-omics approach. Microb Pathog 2025; 202:107412. [PMID: 39993547 DOI: 10.1016/j.micpath.2025.107412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/07/2025] [Accepted: 02/21/2025] [Indexed: 02/26/2025]
Abstract
BACKGROUND Osteoporosis, a debilitating condition characterized by decreased bone mass and increased fracture risk, requires novel insights into its molecular mechanisms for improved therapeutic approaches. In this study, we comprehensively explore the causal links between gut microbiota, immune cell regulation, and osteoporosis by integrating Mendelian randomization (MR), single-cell RNA sequencing (scRNA-seq), and bioinformatics analyses. METHODS We employed a two-sample MR approach to investigate the causal associations between 412 gut microbiota species and two osteoporosis traits using data from the UK Biobank and Finnish cohorts. Additionally, 731 immune cell types were analyzed as potential mediators between the gut microbiota and osteoporosis. Bioinformatics analysis, including gene ontology (GO) and KEGG pathway enrichment, was used to assess the functional implications of differentially expressed genes. ScRNA-seq from publicly available datasets was conducted to profile the expression of key genes, including USP6NL, SELENOT, and TAF1A, in osteoporotic and control samples. RESULTS The MR analysis identified significant causal relationships between the gut microbiota (notably the glyoxylate cycle) and osteoporosis outcomes. Furthermore, HLA-DR expression on hematopoietic stem cells (HSCs) was identified as a crucial immune cell mediator between the gut microbiota and osteoporosis, highlighting the immune-microbiota-bone axis. Differential expression analysis from scRNA-seq confirmed the upregulation of USP6NL, SELENOT, and TAF1A in osteoporotic samples. Functional enrichment analysis revealed that these genes play significant roles in pathways related to oxidative stress, calcium homeostasis, and immune modulation. These findings were validated through GTEX data integration, identifying USP6NL, SELENOT, and TAF1A as potential therapeutic targets for osteoporosis. CONCLUSIONS This study provides novel insights into the interplay between gut microbiota, immune regulation, and bone metabolism in osteoporosis. The integration of Mendelian randomization, single-cell RNA sequencing, and bioinformatics analyses uncovers USP6NL, SELENOT, and TAF1A as key mediators and potential therapeutic targets in osteoporosis. These findings open up new avenues for personalized treatment strategies targeting the gut-immune-bone axis in osteoporosis management.
Collapse
Affiliation(s)
- Qiuwei Li
- Department of Orthopedics and Spine Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui, 230022, China; Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui, 230022, China
| | - Ruocheng Guo
- Department of Orthopedics and Spine Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui, 230022, China; Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui, 230022, China
| | - Zuomeng Wu
- Department of Orthopedics and Spine Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui, 230022, China; Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui, 230022, China
| | - Chenhao Zhao
- Department of Orthopedics and Spine Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui, 230022, China; Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui, 230022, China
| | - Cailiang Shen
- Department of Orthopedics and Spine Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui, 230022, China; Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui, 230022, China.
| |
Collapse
|
3
|
Kumar S, Basu M, Ghosh MK. E3 ubiquitin ligases and deubiquitinases in colorectal cancer: Emerging molecular insights and therapeutic opportunities. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119827. [PMID: 39187067 DOI: 10.1016/j.bbamcr.2024.119827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024]
Abstract
Colorectal cancer (CRC) presents ongoing challenges due to limited treatment effectiveness and a discouraging prognosis, underscoring the need for ground-breaking therapeutic approaches. This review delves into the pivotal role of E3 ubiquitin ligases and deubiquitinases (DUBs), underscoring their role as crucial regulators for tumor suppression and oncogenesis in CRC. We spotlight the diverse impact of E3 ligases and DUBs on CRC's biological processes and their remarkable versatility. We closely examine their specific influence on vital signaling pathways, particularly Wnt/β-catenin and NF-κB. Understanding these regulatory mechanisms is crucial for unravelling the complexities of CRC progression. Importantly, we explore the untapped potential of E3 ligases and DUBs as novel CRC treatment targets, discussing aspects that may guide more effective therapeutic strategies. In conclusion, our concise review illuminates the E3 ubiquitin ligases and deubiquitinases pivotal role in CRC, offering insights to inspire innovative approaches for transforming the treatment landscape in CRC.
Collapse
Affiliation(s)
- Sunny Kumar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata-700091 & Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201 002, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24 Paraganas, PIN - 743372, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata-700091 & Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201 002, India.
| |
Collapse
|
4
|
Ma T, Wang M, Wang S, Hu H, Zhang X, Wang H, Wang G, Jin Y. BMSC derived EVs inhibit colorectal Cancer progression by transporting MAGI2-AS3 or something similar. Cell Signal 2024; 121:111235. [PMID: 38806109 DOI: 10.1016/j.cellsig.2024.111235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024]
Abstract
In this study, we investigated the molecular mechanisms underlying the impact of extracellular vesicles (EVs) derived from bone marrow stromal cells (BMSCs) on colorectal cancer (CRC) development. The focus was on the role of MAGI2-AS3, delivered by BMSC-EVs, in regulating USP6NL DNA methylation-mediated MYC protein translation modification to promote CDK2 downregulation. Utilizing bioinformatics analysis, we identified significant enrichment of MAGI2-AS3 related to copper-induced cell death in CRC. In vitro experiments demonstrated the downregulation of MAGI2-AS3 in CRC cells, and BMSC-EVs were found to deliver MAGI2-AS3 to inhibit CRC cell proliferation, migration, and invasion. Further exploration revealed that MAGI2-AS3 suppressed MYC protein translation modification by regulating USP6NL DNA methylation, leading to CDK2 downregulation and prevention of colorectal cancer. Overexpression of MYC reversed the functional effects of BMSC-EVs-MAGI2-AS3. In vivo experiments validated the inhibitory impact of BMSC-EVs-MAGI2-AS3 on CRC tumorigenicity by promoting CDK2 downregulation through USP6NL DNA methylation-mediated MYC protein translation modification. Overall, BMSC-EVs-MAGI2-AS3 may serve as a potential intervention to prevent CRC occurrence by modulating key molecular pathways.
Collapse
Affiliation(s)
- Tianyi Ma
- Department of Colorectal Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Meng Wang
- Department of Colorectal Surgery, Zhejiang Cancer Hospital (Affiliated Cancer Hospital of the Chinese Academy of Sciences), Hangzhou 310000, China
| | - Song Wang
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Hanqing Hu
- Department of Colorectal Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Xin Zhang
- Department of Colorectal Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Hufei Wang
- Department of Colorectal Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Guiyu Wang
- Department of Colorectal Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150000, China.
| | - Yinghu Jin
- Department of Colorectal Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin 150000, China.
| |
Collapse
|
5
|
Wang Z, Sun Y, Wu M, Zhou L, Zheng Y, Ren T, Li M, Zhao W. Hawthorn Proanthocyanidin Extract Inhibits Colorectal Carcinoma Metastasis by Targeting the Epithelial-Mesenchymal Transition Process and Wnt/β-Catenin Signaling Pathway. Foods 2024; 13:1171. [PMID: 38672844 PMCID: PMC11049232 DOI: 10.3390/foods13081171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/31/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Colorectal carcinoma (CRC) is a major global health concern, with cancer metastasis being the main cause of patient mortality, and current CRC treatments are challenged by drug resistance. Although natural compounds, especially in foods like hawthorn proanthocyanidin extract (HPOE), have good anticancer activity, their effects on CRC metastasis remain unknown. Therefore, our objective was to investigate the impact and potential mechanisms of HPOE on the movement and infiltration of cells in the HCT116 CRC cells. Firstly, scratch-healing experiments confirmed the anti-migratory and anti-invasive capabilities of HPOE. Then, network pharmacology identified 16 possible targets, including MMP-9. Subsequently, RT-qPCR and Western blotting experiments confirmed that HPOE downregulated epithelial-mesenchymal transition-related factors (N-cadherin and MMP-9) and inhibited Wnt/β-catenin pathway activation. Finally, these results were experimentally validated using the Wnt pathway activator Licl and inhibitor XAV939. It was confirmed that HPOE had a certain inhibitory effect on the activation of the Wnt signaling pathway caused by the activator Licl and could enhance the inhibitory effect of the inhibitor XAV939. Our findings provide a basis for developing functional foods or dietary supplements, especially positioning HPOE as a functional food raw material for adjuvant treatment of CRC, given its ability to inhibit metastasis through the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wen Zhao
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; (Z.W.); (Y.S.); (M.W.); (L.Z.); (Y.Z.); (T.R.); (M.L.)
| |
Collapse
|
6
|
Al-Balushi E, Al Marzouqi A, Tavoosi S, Baghsheikhi AH, Sadri A, Aliabadi LS, Salarabedi MM, Rahman SA, Al-Yateem N, Jarrahi AM, Halimi A, Ahmadvand M, Abdel-Rahman WM. Comprehensive analysis of the role of ubiquitin-specific peptidases in colorectal cancer: A systematic review. World J Gastrointest Oncol 2024; 16:197-213. [PMID: 38292842 PMCID: PMC10824112 DOI: 10.4251/wjgo.v16.i1.197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/05/2023] [Accepted: 12/07/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most frequent and the second most fatal cancer. The search for more effective drugs to treat this disease is ongoing. A better understanding of the mechanisms of CRC development and progression may reveal new therapeutic strategies. Ubiquitin-specific peptidases (USPs), the largest group of the deubiquitinase protein family, have long been implicated in various cancers. There have been numerous studies on the role of USPs in CRC; however, a comprehensive view of this role is lacking. AIM To provide a systematic review of the studies investigating the roles and functions of USPs in CRC. METHODS We systematically queried the MEDLINE (via PubMed), Scopus, and Web of Science databases. RESULTS Our study highlights the pivotal role of various USPs in several processes implicated in CRC: Regulation of the cell cycle, apoptosis, cancer stemness, epithelial-mesenchymal transition, metastasis, DNA repair, and drug resistance. The findings of this study suggest that USPs have great potential as drug targets and noninvasive biomarkers in CRC. The dysregulation of USPs in CRC contributes to drug resistance through multiple mechanisms. CONCLUSION Targeting specific USPs involved in drug resistance pathways could provide a novel therapeutic strategy for overcoming resistance to current treatment regimens in CRC.
Collapse
Affiliation(s)
- Eman Al-Balushi
- College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Amina Al Marzouqi
- College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Shima Tavoosi
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan 81746-73441, Iran
| | - Amir Hossein Baghsheikhi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran 11365/4435, Iran
| | - Arash Sadri
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Leyla Sharifi Aliabadi
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Mohammad-Mahdi Salarabedi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1983969411, Iran
| | - Syed Azizur Rahman
- College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Nabeel Al-Yateem
- Department of Nursing, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Alireza Mosavi Jarrahi
- Cancer Research Centre, Shahid Beheshti University of Medical Sciences, Tehran 1983969411, Iran
| | - Aram Halimi
- Cancer Research Centre, Shahid Beheshti University of Medical Sciences, Tehran 1983969411, Iran
| | - Mohammad Ahmadvand
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences , Tehran 1416634793, Iran
| | - Wael M Abdel-Rahman
- Department of Medical Laboratory Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
7
|
Chen Y, Chen M, Deng K. Blocking the Wnt/β‑catenin signaling pathway to treat colorectal cancer: Strategies to improve current therapies (Review). Int J Oncol 2022; 62:24. [PMID: 36579676 PMCID: PMC9854240 DOI: 10.3892/ijo.2022.5472] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/02/2022] [Indexed: 12/28/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumor types occurring in the digestive system. The incidence of CRC has exhibits yearly increases and the mortality rate among patients with CRC is high. The Wnt/β‑catenin signaling pathway, which is associated with carcinogenesis, is abnormally activated in CRC. Most patients with CRC have adenomatous polyposis coli mutations, while half of the remaining patients have β‑catenin gene mutations. Therefore, targeting the Wnt/β‑catenin signaling pathway for the treatment of CRC is of clinical value. In recent years, with in‑depth research on the Wnt/β‑catenin signaling pathway, inhibitors have been developed that are able to suppress or hinder the development and progression of CRC. In the present review, the role of the Wnt/β‑catenin signaling pathway in CRC is summarized, the research status on Wnt/β‑catenin pathway inhibitors is outlined and potential targets for inhibition of this pathway are presented.
Collapse
Affiliation(s)
- Yuxiang Chen
- Department of Gastroenterology and Hepatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China,The Laboratory of Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Mo Chen
- Department of Gerontology, Tibetan Chengdu Branch Hospital of West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China,Department of Gerontology, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Chengdu, Sichuan 610041, P.R. China,Professor Mo Chen, Department of Gerontology, Tibetan Chengdu Branch Hospital of West China Hospital, Sichuan University, 20 Ximianqiao Cross Street, Chengdu, Sichuan 610041, P.R. China, E-mail:
| | - Kai Deng
- Department of Gastroenterology and Hepatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China,The Laboratory of Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China,Correspondence to: Professor Kai Deng, Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, 37 Guoxue Lane, Chengdu, Sichuan 610041, P.R. China, E-mail:
| |
Collapse
|
8
|
Yang J, Chang Y, Tien JCY, Wang Z, Zhou Y, Zhang P, Huang W, Vo J, Apel IJ, Wang C, Zeng VZ, Cheng Y, Li S, Wang GX, Chinnaiyan AM, Ding K. Discovery of a Highly Potent and Selective Dual PROTAC Degrader of CDK12 and CDK13. J Med Chem 2022; 65:11066-11083. [PMID: 35938508 PMCID: PMC9876424 DOI: 10.1021/acs.jmedchem.2c00384] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Indexed: 01/28/2023]
Abstract
Selective degradation of the cyclin-dependent kinases 12 and 13 (CDK12/13) presents a novel therapeutic opportunity for triple-negative breast cancer (TNBC), but there is still a lack of dual CDK12/13 degraders. Here, we report the discovery of the first series of highly potent and selective dual CDK12/13 degraders by employing the proteolysis-targeting chimera (PROTAC) technology. The optimal compound 7f effectively degraded CDK12 and CDK13 with DC50 values of 2.2 and 2.1 nM, respectively, in MDA-MB-231 breast cancer cells. Global proteomic profiling demonstrated the target selectivity of 7f. In vitro, 7f suppressed expression of core DNA damage response (DDR) genes in a time- and dose-dependent manner. Further, 7f markedly inhibited proliferation of multiple TNBC cell lines including MFM223, with an IC50 value of 47 nM. Importantly, 7f displayed a significantly improved antiproliferative activity compared to the structurally similar inhibitor 4, suggesting the potential advantage of a CDK12/13 degrader for TNBC targeted therapy.
Collapse
Affiliation(s)
- Jianzhang Yang
- International
Cooperative Laboratory of Traditional Chinese Medicine Modernization
and Innovative Drug Discovery of Chinese Ministry of Education (MOE),
Guangzhou City Key Laboratory of Precision Chemical Drug Development,
College of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou 511400, People’s Republic of China
| | - Yu Chang
- International
Cooperative Laboratory of Traditional Chinese Medicine Modernization
and Innovative Drug Discovery of Chinese Ministry of Education (MOE),
Guangzhou City Key Laboratory of Precision Chemical Drug Development,
College of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou 511400, People’s Republic of China
- Michigan
Center for Translational Pathology, University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jean Ching-Yi Tien
- Michigan
Center for Translational Pathology, University
of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Zhen Wang
- State
Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy
of Sciences, #345 Ling Ling Road, Shanghai 200032, People’s Republic of China
| | - Yang Zhou
- International
Cooperative Laboratory of Traditional Chinese Medicine Modernization
and Innovative Drug Discovery of Chinese Ministry of Education (MOE),
Guangzhou City Key Laboratory of Precision Chemical Drug Development,
College of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou 511400, People’s Republic of China
| | - Pujuan Zhang
- State
Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy
of Sciences, #345 Ling Ling Road, Shanghai 200032, People’s Republic of China
| | - Weixue Huang
- State
Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy
of Sciences, #345 Ling Ling Road, Shanghai 200032, People’s Republic of China
| | - Josh Vo
- Michigan
Center for Translational Pathology, University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ingrid J. Apel
- Michigan
Center for Translational Pathology, University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Cynthia Wang
- Michigan
Center for Translational Pathology, University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Victoria Zhixuan Zeng
- Michigan
Center for Translational Pathology, University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yunhui Cheng
- Michigan
Center for Translational Pathology, University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - Shuqin Li
- Michigan
Center for Translational Pathology, University
of Michigan, Ann Arbor, Michigan 48109, United States
| | - George Xiaoju Wang
- Michigan
Center for Translational Pathology, University
of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Arul M. Chinnaiyan
- Michigan
Center for Translational Pathology, University
of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, United States
- Howard Hughes
Medical Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Urology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ke Ding
- International
Cooperative Laboratory of Traditional Chinese Medicine Modernization
and Innovative Drug Discovery of Chinese Ministry of Education (MOE),
Guangzhou City Key Laboratory of Precision Chemical Drug Development,
College of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou 511400, People’s Republic of China
- State
Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy
of Sciences, #345 Ling Ling Road, Shanghai 200032, People’s Republic of China
- Institute
of Basic Medicine and Cancer (IBMC), Chinese
Academy of Sciences, Hangzhou, Zhejiang 310022, People’s Republic of China
- The
First Affiliated Hospital (Huaqiao Hospital), Jinan University, 601
Huangpu Avenue West, Guangzhou 510632, China
| |
Collapse
|
9
|
LIU J, LEUNG CT, LIANG L, WANG Y, CHEN J, LAI KP, TSE WKF. Deubiquitinases in Cancers: Aspects of Proliferation, Metastasis, and Apoptosis. Cancers (Basel) 2022; 14:cancers14143547. [PMID: 35884607 PMCID: PMC9323628 DOI: 10.3390/cancers14143547] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary This review summarizes the current DUBs findings that correlate with the most common cancers in the world (liver, breast, prostate, colorectal, pancreatic, and lung cancers). The DUBs were further classified by their biological functions in terms of proliferation, metastasis, and apoptosis. The work provides an updated of the current findings, and could be used as a quick guide for researchers to identify target DUBs in cancers. Abstract Deubiquitinases (DUBs) deconjugate ubiquitin (UBQ) from ubiquitylated substrates to regulate its activity and stability. They are involved in several cellular functions. In addition to the general biological regulation of normal cells, studies have demonstrated their critical roles in various cancers. In this review, we evaluated and grouped the biological roles of DUBs, including proliferation, metastasis, and apoptosis, in the most common cancers in the world (liver, breast, prostate, colorectal, pancreatic, and lung cancers). The current findings in these cancers are summarized, and the relevant mechanisms and relationship between DUBs and cancers are discussed. In addition to highlighting the importance of DUBs in cancer biology, this study also provides updated information on the roles of DUBs in different types of cancers.
Collapse
Affiliation(s)
- Jiaqi LIU
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin 541004, China; (J.L.); (L.L.); (Y.W.); (K.P.L.)
| | - Chi Tim LEUNG
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China;
| | - Luyun LIANG
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin 541004, China; (J.L.); (L.L.); (Y.W.); (K.P.L.)
| | - Yuqin WANG
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin 541004, China; (J.L.); (L.L.); (Y.W.); (K.P.L.)
| | - Jian CHEN
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541004, China
- Correspondence: (J.C.); (W.K.F.T.); Tel.: +86-773-5895860 (J.C.); +81-92-802-4767 (W.K.F.T.)
| | - Keng Po LAI
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin 541004, China; (J.L.); (L.L.); (Y.W.); (K.P.L.)
| | - William Ka Fai TSE
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
- Correspondence: (J.C.); (W.K.F.T.); Tel.: +86-773-5895860 (J.C.); +81-92-802-4767 (W.K.F.T.)
| |
Collapse
|
10
|
Ubiquitin-Specific Protease 6 n-Terminal-like Protein (USP6NL) and the Epidermal Growth Factor Receptor (EGFR) Signaling Axis Regulates Ubiquitin-Mediated DNA Repair and Temozolomide-Resistance in Glioblastoma. Biomedicines 2022; 10:biomedicines10071531. [PMID: 35884836 PMCID: PMC9312792 DOI: 10.3390/biomedicines10071531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 11/29/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most malignant glioma, with a 30–60% epidermal growth factor receptor (EGFR) mutation. This mutation is associated with unrestricted cell growth and increases the possibility of cancer invasion. Patients with EGFR-mutated GBM often develop resistance to the available treatment modalities and higher recurrence rates. The drug resistance observed is associated with multiple genetic or epigenetic factors. The ubiquitin-specific protease 6 N-terminal-like protein (USP6NL) is a GTPase-activating protein that functions as a deubiquitinating enzyme and regulates endocytosis and signal transduction. It is highly expressed in many cancer types and may promote the growth and proliferation of cancer cells. We hypothesized that USP6NL affects GBM chemoresistance and tumorigenesis, and that its inhibition may be a novel therapeutic strategy for GBM treatment. The USP6NL level, together with EGFR expression in human GBM tissue samples and cell lines associated with therapy resistance, tumor growth, and cancer invasion, were investigated. Its pivotal roles and potential mechanism in modulating tumor growth, and the key mechanism associated with therapy resistance of GBM cells, were studied, both in vitro and in vivo. Herein, we found that deubiquitinase USP6NL and growth factor receptor EGFR were strongly associated with the oncogenicity and resistance of GBM, both in vitro and in vivo, toward temozolomide, as evidenced by enhanced migration, invasion, and acquisition of a highly invasive and drug-resistant phenotype by the GBM cells. Furthermore, abrogation of USP6NL reversed the properties of GBM cells and resensitized them toward temozolomide by enhancing autophagy and reducing the DNA damage repair response. Our results provide novel insights into the probable mechanism through which USP6NL/EGFR signaling might suppress the anticancer therapeutic response, induce cancer invasiveness, and facilitate reduced sensitivity to temozolomide treatment in GBM in an autolysosome-dependent manner. Therefore, controlling the USP6NL may offer an alternative, but efficient, therapeutic strategy for targeting and eradicating otherwise resistant and recurrent phenotypes of aggressive GBM cells.
Collapse
|
11
|
Hernandez I, Hayward JJ, Brockman JA, White ME, Mouttham L, Wilcox EA, Garrison S, Castelhano MG, Loftus JP, Gomes FE, Balkman C, Brooks MB, Fiani N, Forman M, Kern T, Kornreich B, Ledbetter EC, Peralta S, Struble AM, Caligiuri L, Corey E, Lin L, Jordan J, Sack D, Boyko AR, Lyons LA, Todhunter RJ. Complex Feline Disease Mapping Using a Dense Genotyping Array. Front Vet Sci 2022; 9:862414. [PMID: 35782544 PMCID: PMC9244801 DOI: 10.3389/fvets.2022.862414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
The current feline genotyping array of 63 k single nucleotide polymorphisms has proven its utility for mapping within breeds, and its use has led to the identification of variants associated with Mendelian traits in purebred cats. However, compared to single gene disorders, association studies of complex diseases, especially with the inclusion of random bred cats with relatively low linkage disequilibrium, require a denser genotyping array and an increased sample size to provide statistically significant associations. Here, we undertook a multi-breed study of 1,122 cats, most of which were admitted and phenotyped for nine common complex feline diseases at the Cornell University Hospital for Animals. Using a proprietary 340 k single nucleotide polymorphism mapping array, we identified significant genome-wide associations with hyperthyroidism, diabetes mellitus, and eosinophilic keratoconjunctivitis. These results provide genomic locations for variant discovery and candidate gene screening for these important complex feline diseases, which are relevant not only to feline health, but also to the development of disease models for comparative studies.
Collapse
Affiliation(s)
- Isabel Hernandez
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Jessica J. Hayward
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
- *Correspondence: Jessica J. Hayward
| | - Jeff A. Brockman
- Pet Nutrition Center, Hill's Pet Nutrition, Topeka, KS, United States
| | - Michelle E. White
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, United States
- Vertebrate Genomics Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Lara Mouttham
- Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Elizabeth A. Wilcox
- Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Susan Garrison
- Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Marta G. Castelhano
- Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - John P. Loftus
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Filipe Espinheira Gomes
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Cheryl Balkman
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Marjory B. Brooks
- Department of Population Medicine and Diagnostic Services, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Nadine Fiani
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Marnin Forman
- Cornell University Veterinary Specialists, Stamford, CT, United States
| | - Tom Kern
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Bruce Kornreich
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Eric C. Ledbetter
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Santiago Peralta
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Angela M. Struble
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Lisa Caligiuri
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Elizabeth Corey
- Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Lin Lin
- Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Julie Jordan
- Cornell Veterinary Biobank, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Danny Sack
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Adam R. Boyko
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Leslie A. Lyons
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Rory J. Todhunter
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| |
Collapse
|
12
|
Disoma C, Zhou Y, Li S, Peng J, Xia Z. Wnt/β-catenin signaling in colorectal cancer: Is therapeutic targeting even possible? Biochimie 2022; 195:39-53. [DOI: 10.1016/j.biochi.2022.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/03/2021] [Accepted: 01/17/2022] [Indexed: 02/07/2023]
|
13
|
Hu H, Jing J, Lu X, Yuan Y, Xing C. XPF expression and its relationship with the risk and prognosis of colorectal cancer. Cancer Cell Int 2021; 21:12. [PMID: 33407486 PMCID: PMC7789628 DOI: 10.1186/s12935-020-01710-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/07/2020] [Indexed: 08/30/2023] Open
Abstract
BACKGROUND XPF (xeroderma pigmentosum complementation group F) is a key factor contributing to DNA damage excision of nucleotide excision repair pathway. The relationship between XPF expression and the risk and prognosis of colorectal cancer (CRC) is unclear. METHODS In this experiment, a total of 824 cases of colorectal tissue were collected. XPF protein expression was detected by immunohistochemical staining. We conducted a Mann-Whitney U test in order to explore the differential expression of XPF between CRC and non-cancer controls, and the correlation between XPF expression and CRC clinicopathological parameters. Univariate and multivariate Cox regression analyses were conducted to investigate the relationship between XPF expression and CRC prognosis. The Java based software GSEA as well as STRING, David, GO, KEGG were used to explore the function and regulation network of XPF. RESULTS The results demonstrated that the XPF expression in CRC was significantly up-regulated compared with non-tumor controls (P < 0.001) and adenoma tissue (P < 0.001). XPF protein was increased in the dynamic sequence of anal diseases to adenoma tissue to CRC. Expression of XPF was related to tumor location (P = 0.005) and tumor growth pattern (P = 0.009). The results of prognosis analysis suggested that in patients with stage T1-T2, XPF low expression may be significantly associated with better overall survival (HR = 7.978, 95% CI 1.208-52.673, P = 0.031). XPF and its interacting genes played a vital role in different processes of nucleotide excision repair pathway. XPF expression was related with Ubiquitin like protein specific protease activity. CONCLUSIONS XPF might be a promising biomarker for CRC risk, and also showed potential as a prognostic predictor in CRC patients.
Collapse
Affiliation(s)
- Huixin Hu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, Liaoning Province, 110001, China.,Liaoning Provincial Education Department, Key Laboratory of Cancer Etiology and Prevention (China Medical University), Shenyang, 110001, China.,Key Laboratory of Gastrointestinal Cancer Etiology and Screening, Shenyang, 110001, Liaoning Province, China
| | - Jingjing Jing
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, Liaoning Province, 110001, China.,Liaoning Provincial Education Department, Key Laboratory of Cancer Etiology and Prevention (China Medical University), Shenyang, 110001, China.,Key Laboratory of Gastrointestinal Cancer Etiology and Screening, Shenyang, 110001, Liaoning Province, China
| | - Xiaodong Lu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, Liaoning Province, 110001, China.,Liaoning Provincial Education Department, Key Laboratory of Cancer Etiology and Prevention (China Medical University), Shenyang, 110001, China.,Key Laboratory of Gastrointestinal Cancer Etiology and Screening, Shenyang, 110001, Liaoning Province, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, Liaoning Province, 110001, China. .,Liaoning Provincial Education Department, Key Laboratory of Cancer Etiology and Prevention (China Medical University), Shenyang, 110001, China. .,Key Laboratory of Gastrointestinal Cancer Etiology and Screening, Shenyang, 110001, Liaoning Province, China.
| | - Chengzhong Xing
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Hospital of China Medical University, 155# North Nanjing Street, Heping District, Shenyang City, Liaoning Province, 110001, China. .,Liaoning Provincial Education Department, Key Laboratory of Cancer Etiology and Prevention (China Medical University), Shenyang, 110001, China. .,Key Laboratory of Gastrointestinal Cancer Etiology and Screening, Shenyang, 110001, Liaoning Province, China.
| |
Collapse
|
14
|
Schistosoma mansoni eggs induce Wnt/β-catenin signaling and activate the protooncogene c-Jun in human and hamster colon. Sci Rep 2020; 10:22373. [PMID: 33361772 PMCID: PMC7758332 DOI: 10.1038/s41598-020-79450-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/08/2020] [Indexed: 12/15/2022] Open
Abstract
Schistosomiasis (bilharzia) is a neglected tropical disease caused by parasitic flatworms of the genus Schistosoma, with considerable morbidity in parts of the Middle East, South America, Southeast Asia, in sub-Saharan Africa, and particularly also in Europe. The WHO describes an increasing global health burden with more than 290 million people threatened by the disease and a potential to spread into regions with temperate climates like Corsica, France. The aim of our study was to investigate the influence of S. mansoni infection on colorectal carcinogenic signaling pathways in vivo and in vitro. S. mansoni infection, soluble egg antigens (SEA) and the Interleukin-4-inducing principle from S. mansoni eggs induce Wnt/β-catenin signaling and the protooncogene c-Jun as well as downstream factor Cyclin D1 and markers for DNA-damage, such as Parp1 and γH2a.x in enterocytes. The presence of these characteristic hallmarks of colorectal carcinogenesis was confirmed in colon biopsies from S. mansoni-infected patients demonstrating the clinical relevance of our findings. For the first time it was shown that S. mansoni SEA may be involved in the induction of colorectal carcinoma-associated signaling pathways.
Collapse
|
15
|
Kaushal K, Ramakrishna S. Deubiquitinating Enzyme-Mediated Signaling Networks in Cancer Stem Cells. Cancers (Basel) 2020; 12:E3253. [PMID: 33158118 PMCID: PMC7694198 DOI: 10.3390/cancers12113253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/23/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer stem cells (CSCs) have both the capacity for self-renewal and the potential to differentiate and contribute to multiple tumor properties, such as recurrence, metastasis, heterogeneity, multidrug resistance, and radiation resistance. Thus, CSCs are considered to be promising therapeutic targets for cancer therapy. The function of CSCs can be regulated by ubiquitination and deubiquitination of proteins related to the specific stemness of the cells executing various stem cell fate choices. To regulate the balance between ubiquitination and deubiquitination processes, the disassembly of ubiquitin chains from specific substrates by deubiquitinating enzymes (DUBs) is crucial. Several key developmental and signaling pathways have been shown to play essential roles in this regulation. Growing evidence suggests that overactive or abnormal signaling within and among these pathways may contribute to the survival of CSCs. These signaling pathways have been experimentally shown to mediate various stem cell properties, such as self-renewal, cell fate decisions, survival, proliferation, and differentiation. In this review, we focus on the DUBs involved in CSCs signaling pathways, which are vital in regulating their stem-cell fate determination.
Collapse
Affiliation(s)
- Kamini Kaushal
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea;
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea;
- College of Medicine, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
16
|
Ma T, Liu H, Liu Y, Liu T, Wang H, Qiao F, Song L, Zhang L. USP6NL mediated by LINC00689/miR-142-3p promotes the development of triple-negative breast cancer. BMC Cancer 2020; 20:998. [PMID: 33054738 PMCID: PMC7559130 DOI: 10.1186/s12885-020-07394-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 09/09/2020] [Indexed: 01/08/2023] Open
Abstract
Background Triple-negative breast cancer (TNBC), in part because of the high metastasis rate, is one of the most prevalent causes of malignancy-related mortality globally. Ubiquitin specific peptidase 6 N-terminal like (USP6NL) has been unmasked to be implicated in some human cancers. However, the precise biological function of USP6NL in TNBC has not been defined. Methods RNA expression was examined by real-time quantitative PCR (RT-qPCR), while USP6NL protein level was tested through western blot. Besides, cell proliferation was assessed by using colony formation assay, whereas cell apoptosis estimated by flow cytometry analysis, JC-1 assay and TUNEL assay. Transwell assays were adopted to detect the migration and invasion of indicated TNBC cells. Immunofluorescence (IF) assay evaluated epithelial-mesenchymal transitions (EMT) progress in TNBC. Further, RNA immunoprecipitation (RIP), RNA pull down and luciferase reporter assays were implemented for measuring the mutual interplay among USP6NL, miR-142-3p and long intergenic non-protein coding RNA 689 (LINC00689). Results Elevated USP6NL level was uncovered in TNBC cells. RNA interference-mediated knockdown of USP6NL inhibited TNBC cell growth, motility and EMT. Further, USP6NL was proved as the target of a tumor-inhibitor miR-142-3p, and LINC00689 augmented USP6NL expression by absorbing miR-142-3p. Importantly, miR-142-3p deficiency or USP6NL overexpression fully abolished the inhibitory effect of LINC00689 silence on TNBC cellular behaviors. Conclusion All data revealed the important role of USP6NL/LINC00689/miR-142-3p signaling in TNBC. The findings might provide a new and promising therapeutic biomarker for treating patients with TNBC.
Collapse
Affiliation(s)
- Teng Ma
- Department of Breast Surgery, Taian City Central Hospital, Taian, 271000, Shandong, China
| | - Huaidong Liu
- Department of Oncology, Huai'an Second People's Hospital, the Affiliated Huai'an Hospital of Xuzhou Medical University, No.62 South Huaihai Road, Huai'an, 223002, Shandong, Jiangsu, China.
| | - Yan Liu
- Department of Vascular Surgery, Taian City Central Hospital, Taian, 271000, Shandong, China
| | - Tingting Liu
- Department of Breast Surgery, Taian City Central Hospital, Taian, 271000, Shandong, China
| | - Hui Wang
- Department of Breast Surgery, Taian City Central Hospital, Taian, 271000, Shandong, China
| | - Fulu Qiao
- Department of Breast Surgery, Taian City Central Hospital, Taian, 271000, Shandong, China
| | - Lu Song
- Department of Breast Surgery, Taian City Central Hospital, Taian, 271000, Shandong, China
| | - Lin Zhang
- Department of Breast Surgery, Taian City Central Hospital, Taian, 271000, Shandong, China
| |
Collapse
|
17
|
Regulation of Wnt Signaling through Ubiquitination and Deubiquitination in Cancers. Int J Mol Sci 2020; 21:ijms21113904. [PMID: 32486158 PMCID: PMC7311976 DOI: 10.3390/ijms21113904] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022] Open
Abstract
The Wnt signaling pathway plays important roles in embryonic development, homeostatic processes, cell differentiation, cell polarity, cell proliferation, and cell migration via the β-catenin binding of Wnt target genes. Dysregulation of Wnt signaling is associated with various diseases such as cancer, aging, Alzheimer’s disease, metabolic disease, and pigmentation disorders. Numerous studies entailing the Wnt signaling pathway have been conducted for various cancers. Diverse signaling factors mediate the up- or down-regulation of Wnt signaling through post-translational modifications (PTMs), and aberrant regulation is associated with several different malignancies in humans. Of the numerous PTMs involved, most Wnt signaling factors are regulated by ubiquitination and deubiquitination. Ubiquitination by E3 ligase attaches ubiquitins to target proteins and usually induces proteasomal degradation of Wnt signaling factors such as β-catenin, Axin, GSK3, and Dvl. Conversely, deubiquitination induced by the deubiquitinating enzymes (DUBs) detaches the ubiquitins and modulates the stability of signaling factors. In this review, we discuss the effects of ubiquitination and deubiquitination on the Wnt signaling pathway, and the inhibitors of DUBs that can be applied for cancer therapeutic strategies.
Collapse
|
18
|
Lai KP, Chen J, Tse WKF. Role of Deubiquitinases in Human Cancers: Potential Targeted Therapy. Int J Mol Sci 2020; 21:ijms21072548. [PMID: 32268558 PMCID: PMC7177317 DOI: 10.3390/ijms21072548] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023] Open
Abstract
Deubiquitinases (DUBs) are involved in various cellular functions. They deconjugate ubiquitin (UBQ) from ubiquitylated substrates to regulate their activity and stability. Studies on the roles of deubiquitylation have been conducted in various cancers to identify the carcinogenic roles of DUBs. In this review, we evaluate the biological roles of DUBs in cancer, including proliferation, cell cycle control, apoptosis, the DNA damage response, tumor suppression, oncogenesis, and metastasis. This review mainly focuses on the regulation of different downstream effectors and pathways via biochemical regulation and posttranslational modifications. We summarize the relationship between DUBs and human cancers and discuss the potential of DUBs as therapeutic targets for cancer treatment. This review also provides basic knowledge of DUBs in the development of cancers and highlights the importance of DUBs in cancer biology.
Collapse
Affiliation(s)
- Keng Po Lai
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541004, China;
| | - Jian Chen
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541004, China;
- Correspondence: (J.C.); (W.K.F.T.); Tel.: +86-773-5895810 (J.C.); +81-92-802-4767 (W.K.F.T.)
| | - William Ka Fai Tse
- Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
- Correspondence: (J.C.); (W.K.F.T.); Tel.: +86-773-5895810 (J.C.); +81-92-802-4767 (W.K.F.T.)
| |
Collapse
|
19
|
Zhang GC, Yu XN, Sun JL, Xiong J, Yang YJ, Jiang XM, Zhu JM. UBE2M promotes cell proliferation via the β-catenin/cyclin D1 signaling in hepatocellular carcinoma. Aging (Albany NY) 2020; 12:2373-2392. [PMID: 32012120 PMCID: PMC7041726 DOI: 10.18632/aging.102749] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/07/2020] [Indexed: 12/19/2022]
Abstract
Upregulated ubiquitin-conjugating enzyme E2M (UBE2M) is associated with poor prognosis in malignancies; However, the phenotype and mechanism of action of UBE2M in hepatocellular carcinoma (HCC) remain elusive. Here, we report that UBE2M is overexpressed and correlated with poor prognosis in HCC patients. The UBE2M level is an independent prognostic factor for HCC patients. UBE2M knockdown inhibits HCC cell proliferation, migration, and invasion, whereas its overexpression has an opposite effect. Mechanistically, upregulated UBE2M exerts oncogenic effects by translocation of accumulated β-catenin from the cytoplasm to the nucleus, thus activating downstream β-catenin/cyclin D1 signaling. In summary, our study demonstrates a notable role of UBE2M in promoting the growth of HCC, providing a novel strategy for HCC prevention and treatment.
Collapse
Affiliation(s)
- Guang-Cong Zhang
- Department of Gastroenterology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou 570100, China.,Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200030, China.,Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Xiang-Nan Yu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200030, China.,Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Jia-Lei Sun
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200030, China.,Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Ju Xiong
- Department of Hepatobiliary Surgery, Hainan General Hospital, Haikou 570100, China
| | - Yi-Jun Yang
- Department of Hepatobiliary Surgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou 570100, China
| | - Xue-Mei Jiang
- Department of Gastroenterology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou 570100, China.,Department of Gastroenterology, Hainan General Hospital, Haikou 570100, China
| | - Ji-Min Zhu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200030, China.,Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| |
Collapse
|
20
|
He QJ, Wang P, Liu QQ, Wu QG, Li YF, Wang J, Lee SC. Secreted Wnt6 mediates diabetes-associated centrosome amplification via its receptor FZD4. Am J Physiol Cell Physiol 2020; 318:C48-C62. [DOI: 10.1152/ajpcell.00091.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We recently published that type 2 diabetes promotes cell centrosome amplification via upregulation of Rho-associated protein kinase 1 (ROCK1) and 14-3-3 protein-σ (14-3-3σ). This study further investigates the molecular mechanisms underlying diabetes-associated centrosome amplification. We found that treatment of cells with high glucose, insulin, and palmitic acid levels increased the intracellular and extracellular protein levels of Wingless-type MMTV integration site family member 6 (Wnt6) as well as the cellular level of β-catenin. The treatment also activated β-catenin and promoted its nuclear translocation. Treatment of cells with siRNA species for Wnt6, Frizzled-4 (FZD4), or β-catenin as well as introduction of antibodies against Wnt6 or FZD4 to the cell culture medium could all attenuate the treatment-triggered centrosome amplification. Moreover, we showed that secreted Wnt6-FZD4-β-catenin was the signaling pathway that was upstream of ROCK1 and 14-3-3σ. We found that advanced glycation end products (AGEs) were also able to increase the cellular and extracellular levels of Wnt6, the cellular protein level of β-catenin, and centrosome amplification. Treatment of the cells with siRNA species for Wnt6 or FZD4 as well as introduction of antibodies against Wnt6 or FZD4 to the cell culture could all inhibit the AGEs-elicited centrosome amplification. In colon tissues from a diabetic mouse model, the protein levels of Wnt6 and 14-3-3σ were increased. In conclusion, our results showed that the pathophysiological factors in type 2 diabetes, including AGEs, were able to induce centrosome amplification. It is suggested that secreted Wnt6 binds to FZD4 to activate the canonical Wnt6 signaling pathway, which is upstream of ROCK1 and 14-3-3σ, and that this is the cell signaling pathway underlying diabetes-associated centrosome amplification.
Collapse
Affiliation(s)
- Qin Ju He
- School of Life Sciences, Shanxi University, Taiyuan, People’s Republic of China
| | - Pu Wang
- School of Life Sciences, Shanxi University, Taiyuan, People’s Republic of China
| | - Qin Qin Liu
- School of Life Sciences, Shanxi University, Taiyuan, People’s Republic of China
| | - Qi Gui Wu
- School of Life Sciences, Shanxi University, Taiyuan, People’s Republic of China
| | - Yuan Fei Li
- Department of Oncology, First Clinical Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Jie Wang
- Shanxi College of Traditional Chinese Medicine, Taiyuan, People’s Republic of China
| | - Shao Chin Lee
- School of Life Sciences, Shanxi University, Taiyuan, People’s Republic of China
- School of Life Sciences, Jiangsu Normal University, Xuzhou, People’s Republic of China
| |
Collapse
|
21
|
He X, Meng F, Qin L, Liu Z, Zhu X, Yu Z, Zheng Y. KLK11 suppresses cellular proliferation via inhibition of Wnt/β-catenin signaling pathway in esophageal squamous cell carcinoma. Am J Cancer Res 2019; 9:2264-2277. [PMID: 31720087 PMCID: PMC6834484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/28/2019] [Indexed: 06/10/2023] Open
Abstract
Studies have demonstrated that kallikrein-associated peptidase 11 (KLK11) is dysregulated in various cancers. However, the potential roles of KLK11 in esophageal squamous cell carcinoma (ESCC) are still unknown. In our study, we found that the expression of KLK11 in advanced ESCC was significantly down regulated than that in the adjacent tissues, and patients with higher KLK11 expression had markedly increased overall survival rates compared with those with lower KLK11 expression. In addition, up regulation of KLK11 decreased the proliferation capacity of TE-1 and EC18 cells, and down regulation of KLK11 increased the proliferation capacity. To explore the possible mechanism of KLK11 in regulating the proliferation of ESCC, the expression of the related factors in Wnt/β-catenin pathway and cell cycle-mediated factors, such as GSK-3β/p-GSK-3β, β-catenin, Ki67, p-Rb/Rb, CDK6, CDK4 and Cyclin D1, were determined. Furthermore, KLK11 was found to be negatively correlated with the expression of β-catenin in the nucleus, as showed by decreased expression of cyclin D1 and Ki67 through deactivation of the Wnt/β-catenin signaling pathway. XAV-939, a Wnt/β-catenin inhibitor, partially decreased the effects of KLK11 deficiency on ESCC cell proliferation. Finally, we validated that KLK11 inhibited ESCC proliferation in vivo. Our results showed that the inhibitory effects of KLK11 on the proliferation of TE-1 and EC18 cells might be associated with inhibition of Wnt/β-catenin signaling pathway. KLK11 played a key role in inhibiting ESCC carcinogenesis and progression and became a potential biomarker for poor prognosis in patients with ESCC.
Collapse
Affiliation(s)
- Xin He
- Department of Oncology, Zhujiang Hospital of Southern Medical UniversityGuangzhou, Guangdong Province, China
- The First Affiliated Hospital of Gannan Medical UniversityGanzhou, Jiangxi Province, China
| | - Fan Meng
- The First Affiliated Hospital of Gannan Medical UniversityGanzhou, Jiangxi Province, China
| | - Lingyu Qin
- Department of Oncology, Zhujiang Hospital of Southern Medical UniversityGuangzhou, Guangdong Province, China
| | - Zhile Liu
- Department of Oncology, Zhujiang Hospital of Southern Medical UniversityGuangzhou, Guangdong Province, China
| | - Xiongjie Zhu
- Department of Oncology, Zhujiang Hospital of Southern Medical UniversityGuangzhou, Guangdong Province, China
| | - Zhongjian Yu
- Department of Oncology, Zhujiang Hospital of Southern Medical UniversityGuangzhou, Guangdong Province, China
| | - Yanfang Zheng
- Department of Oncology, Zhujiang Hospital of Southern Medical UniversityGuangzhou, Guangdong Province, China
| |
Collapse
|