1
|
Feng H, Deng D, Zhu F, Chen S, Geng J, Jiang S, Zhang K, Jiang J, Yin S, Zhang C. Acute exposure to glufosinate-ammonium induces hepatopancreas toxicity in juvenile Chinese mitten crab (Eriocheir sinensis). JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137487. [PMID: 39914334 DOI: 10.1016/j.jhazmat.2025.137487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/24/2025] [Accepted: 02/02/2025] [Indexed: 03/19/2025]
Abstract
Glufosinate-ammonium (GLA) is a widely used organophosphorus herbicide, which poses a potential threat to non-target aquatic species. This study aimed to evaluate the toxic effects of acute exposure to GLA on the hepatopancreas of juvenile Eriocheir sinensis, and to preliminarily reveal the toxicity mechanism. The results showed that the 96h-LC50 of GLA on juvenile E. sinensis was 386.61 mg/L. The acute test showed that GLA exposure caused hepatopancreas histological lesions, DNA damage and a higher apoptosis rate. The activities of aspartate aminotransferase and alanine aminotransferase in serum increased significantly and had a concentration-dependent effect. Moreover, GLA exposure resulted in a significant increase in malondialdehyde content, which subsequently activated the antioxidant system and detoxification system, and the related enzyme activities and gene expression levels were significantly increased. In addition, the RNA-Seq analysis showed that the toxic effects of GLA exposure on juvenile crabs may mainly involve physiological pathways such as energy metabolism, protein synthesis and nervous system function. This study highlights the hepatotoxic effects of GLA on aquatic crustaceans and preliminarily reveals the key pathways of action. The results of this study will helpful to provide new insights into the toxic effects and risk assessment of herbicides on non-target organisms.
Collapse
Affiliation(s)
- Huixia Feng
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China
| | - Dunqian Deng
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China
| | - Fei Zhu
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
| | - Shuyin Chen
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
| | - Jiayin Geng
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China
| | - Su Jiang
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China
| | - Kai Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China
| | - Jianbin Jiang
- Nantong Tongzhou District Aquatic Technology Guidance Station, Nantong 226399, China
| | - Shaowu Yin
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China.
| | - Cong Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China.
| |
Collapse
|
2
|
An RF, Wu KT, Pan J, Zhang WJ, Qin HY, Li XR, Liu W, Huang XF. Design, synthesis and cytotoxic activity of novel lipophilic cationic derivatives of diosgenin and sarsasapogenin. Bioorg Med Chem Lett 2025; 119:130094. [PMID: 39778752 DOI: 10.1016/j.bmcl.2025.130094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 12/27/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025]
Abstract
Novel lipophilic cationic derivatives including quaternary ammonium salt and triphenylphosphine series were designed and synthesized using diosgenin (1) and sarsasapogenin (2) as substrates to improve the cytotoxicity and selectivity. Most of the derivatives showed higher cytotoxicity against all cancer cell lines tested, compound 13 exhibited the most superior activity against A549 cells with an IC50 value of 0.95 μM, which was 34-fold of diosgenin. Preliminary cellular mechanism studies elucidated that compound 13 might arrest cell cycle at G0/G1 phase, trigger apoptosis via up-regulating the expression of Bax, down-regulating the expression of Bcl-2 and caspase-3, and induce an increase in the generation of intracellular reactive oxygen species (ROS) in A549 cells. In addition, molecular docking analysis revealed that compound 13 could occupy the active site of p38α-MAPK well and interact to the surrounding amino acids by salt bridge and conjugation. These results suggested that compound 13 had the potential to serve as an antitumor lead agent, probably exert antitumor effect through mitochondrial pathway and p38α MAPK pathway.
Collapse
Affiliation(s)
- Ren-Feng An
- Department of Natural Medicinal Chemistry, School of Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009 China
| | - Kai-Tian Wu
- Department of Natural Medicinal Chemistry, School of Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009 China
| | - Jie Pan
- Department of Pharmacology, Nanjing Medical University, Nanjing 210029 China
| | - Wen-Jin Zhang
- Department of Natural Medicinal Chemistry, School of Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009 China
| | - Hui-Ying Qin
- Department of Natural Medicinal Chemistry, School of Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009 China
| | - Xiao-Rui Li
- Department of Natural Medicinal Chemistry, School of Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009 China
| | - Wei Liu
- Department of Pharmacology, Nanjing Medical University, Nanjing 210029 China.
| | - Xue-Feng Huang
- Department of Natural Medicinal Chemistry, School of Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009 China.
| |
Collapse
|
3
|
Xiao ZW, Zeng YC, Ji LT, Yuan JT, Li L. Nitric oxide synthase 1 inhibits the progression of esophageal cancer through interacting with nitric oxide synthase 1 adaptor protein. World J Gastrointest Oncol 2025; 17:103843. [DOI: 10.4251/wjgo.v17.i4.103843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/22/2025] [Accepted: 02/17/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Esophageal cancer (ESCA) is among the most prevalent and lethal tumors globally. While nitric oxide synthase 1 (NOS1) is recognized for its important involvement in various cancers, its specific function in ESCA remains unclear.
AIM To explore the potential role and underlying mechanisms of NOS1 in ESCA.
METHODS Survival rates were analyzed using GeneCards and Gene Expression Profiling Interactive Analysis. The effects and mechanisms of NOS1 on ESCA cells were evaluated via the Cell Counting Kit-8 assay, scratch assay, Transwell assay, flow cytometry, quantitative polymerase chain reaction, western blotting, and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end labeling staining. The protein interaction network was used to screen the interacting proteins of NOS1 and validate these interactions through co-immunoprecipitation and dual luciferase assays. Additionally, a nude mouse xenograft model was established to evaluate the effect of NOS1 in vivo.
RESULTS The survival rate of patients with ESCA with high NOS1 expression was higher than that of patients with low NOS1 expression. NOS1 expression in ESCA cell lines was lower than that in normal esophageal epithelial cells. Overexpression of NOS1 (oe-NOS1) inhibited proliferation, invasion, and migration abilities in ESCA cell lines, resulting in decreased autophagy levels and increased apoptosis, pyroptosis, and ferroptosis. Protein interaction studies confirmed the interaction between NOS1 and NOS1 adaptor protein (NOS1AP). Following oe-NOS1 and the silencing of NOS1AP, levels of P62 and microtubule-associated protein 1 light chain 3 beta increased both in vitro and in vivo. Furthermore, the expression levels of E-cadherin, along with the activation of phosphatidylinositol 3-kinase (PI3K) and protein kinase B (AKT), were inhibited in ESCA cell lines.
CONCLUSION NOS1 and NOS1 proteins interact to suppress autophagy, activate the PI3K/AKT pathway, and exert anti-cancer effects in ESCA.
Collapse
Affiliation(s)
- Zi-Wei Xiao
- College of Medical, Hunan Normal University, Changsha 410081, Hunan Province, China
| | - Ying-Chao Zeng
- College of Medical, Hunan Normal University, Changsha 410081, Hunan Province, China
| | - Lin-Tao Ji
- College of Medical, Hunan Normal University, Changsha 410081, Hunan Province, China
| | - Jia-Tao Yuan
- College of Medical, Hunan Normal University, Changsha 410081, Hunan Province, China
| | - Lin Li
- College of Medical, Hunan Normal University, Changsha 410081, Hunan Province, China
| |
Collapse
|
4
|
Singh S, Singh V, Singh R, Gouri V, Koch B, Samant M. Synergistic combination of doxorubicin with fisetin for the treatment of lymphoma. Eur J Pharmacol 2025; 992:177361. [PMID: 39929420 DOI: 10.1016/j.ejphar.2025.177361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 02/25/2025]
Abstract
Lymphoma is a common cancer of the lymphatic system, and its treatment presents considerable clinical difficulties due to the constraints of existing medicines. Anticancer drug such as Doxorubicin (DOX) is an effective chemotherapeutic drug that is frequently used to treat lymphoma and other cancers; however, it is linked with considerable toxicities. Fisetin, a naturally occurring flavonoid, exhibits anticancer properties and has the potential to augment the therapeutic effects of DOX. This study explores the synergistic effects of combining DOX with fisetin in the treatment of lymphoma. The combination of DOX and fisetin significantly inhibits cell viability, induced membrane blabbing, chromatin condensation, and promoted apoptosis compared to monotherapies. The study also showed that the synergistic effect of fisetin along with DOX significantly promotes apoptosis in DL cells through intracellular ROS generation, mitochondrial aggregation at the periphery of the nucleus and, increased p53, Bax, cytochrome c, caspase 3, caspase 9, and cleaved caspase 9 expression. Additionally, combination therapy not only increased the mean survival of the treated group animals but also reduced the tumor burden. While histopathological parameters have shown overall improvement in combination therapy. This study proposes a novel combinational therapy for the treatment of lymphoma and requires further clinical investigation.
Collapse
Affiliation(s)
- Sumeet Singh
- Cell and Molecular Biology Laboratory, Department of Zoology, Soban Singh Jeena University, Almora, Uttarakhand, India
| | - Virendra Singh
- Genotoxicology and Cancer Biology Laboratory, Department of Zoology Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Ranjeet Singh
- Department of Zoology, Soban Singh Jeena University (Bageshwar Campus), Almora, Uttarakhand, India; Department of Zoology Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Vinita Gouri
- Cell and Molecular Biology Laboratory, Department of Zoology, Soban Singh Jeena University, Almora, Uttarakhand, India; Department of Zoology, Kumaun University, Nainital, Uttarakhand, India
| | - Biplob Koch
- Genotoxicology and Cancer Biology Laboratory, Department of Zoology Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| | - Mukesh Samant
- Cell and Molecular Biology Laboratory, Department of Zoology, Soban Singh Jeena University, Almora, Uttarakhand, India.
| |
Collapse
|
5
|
Christian Y, Redkar AS, Kumar N, Jancy SV, Chandrasekharan A, Retnabai Santhoshkumar T, Ramakrishnan V. Structural regression modelling of peptide based drug delivery vectors for targeted anti-cancer therapy. Drug Deliv Transl Res 2025; 15:1284-1298. [PMID: 39117921 DOI: 10.1007/s13346-024-01674-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2024] [Indexed: 08/10/2024]
Abstract
Drug resistance in cancer poses a serious challenge in finding an effective remedy for cancer patients, because of the multitude of contributing factors influencing this complex phenomenon. One way to counter this problem is using a more targeted and dose-limiting approach for drug delivery, rather than relying on conventional therapies that exhibit multiple pernicious side-effects. Stability and specificity have traditionally been the core issues of peptide-based delivery vectors. In this study, we employed a structural regression modelling approach in the design, synthesis and characterization of a series of peptides that belong to approximately same topological cluster, yet with different electrostatic signatures encoded as a result of their differential positioning of amino acids in a given sequence. The peptides tagged with the fluorophore 5(6)-carboxyfluorescein, showed higher uptake in cancer cells with some of them colocalizing in the lysosomes. The peptides tagged with the anti-cancer drug methotrexate have displayed enhanced cytotoxicity and inducing apoptosis in triple-negative breast cancer cells. They also showed comparable uptake in side-population cells of lung cancer with stem-cell like properties. The most-optimized peptide showed accumulation in the tumor resulting in significant reduction of tumor size, compared to the untreated mice in in-vivo studies. Our results point to the following directives; (i) peptides can be design engineered for targeted delivery (ii) stereochemical engineering of peptide main chain can resist proteolytic enzymes and (iii) cellular penetration of peptides into cancer cells can be modulated by varying their electrostatic signatures.
Collapse
Affiliation(s)
- Yvonne Christian
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Amay Sanjay Redkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Naveen Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Shine Varghese Jancy
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India
| | - Aneesh Chandrasekharan
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India
| | | | - Vibin Ramakrishnan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
- Mehta Family School of Data Science & Artificial Intelligence, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
6
|
Xie Q, Sun T, Zhang L, Gong M, Zhang W, Liu X, Zhao Y, Wang M, Yang X, Zhang Z, Liu G, Zhou C, Zhang D. Responsive plasmonic hybrid nanorods enables metabolism reprogramming via cuproptosis-photothermal combined cancer therapy. Biomaterials 2025; 315:122971. [PMID: 39577035 DOI: 10.1016/j.biomaterials.2024.122971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/30/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024]
Abstract
Abnormal tumor metabolism leads to tumor growth, metastasis, and recurrence, reprogramming tumor metabolism and activating potent anti-tumor immune response have been demonstrated to have good therapeutic effects on tumor elimination. Copper-based nanomaterials involved in cuproptosis show great prospects in these two aspects, but their efficiency is restricted by Cu homeostasis and the toxicity of the chelator. Here, the pH-responsive AuNRs@Cu2O core-shell plasmonic hybrid nanorods (ACNRs) have been successfully fabricated to realize microenvironment-controlled release at the tumor site for the combined therapy of cuproptosis and photothermal treatment. The AuNRs core exhibited excellent NIR-II photothermal property, which boost the intracellular concentration of copper to trigger severe cuproptosis and induce immunogenic cell death of tumor cells. In vivo studies demonstrated the ACNR exhibited efficient tumor therapy for primary, metastatic, and recurrent tumors. ACNRs-induced cuproptosis and PTT were capable of reprogramming energy metabolism, leading to a decreased production of lactic acid. This potential of metabolic reprogramming assisted in reshaping the immunosuppressive tumor microenvironment to facilitate the infiltration of immune cells and boost the immune responses triggered by PTT. The therapeutic mechanism was further verified by metabolomics analysis, which indicated that ACNRs + PTT treatment led to the inhibition of the Pentose Phosphate Pathway and Glycolysis pathways in tumor cells. The suppression of glycolytic reduced ATP synthesis, thereby hindering energy-dependent copper efflux, which in turn promoted cuproptosis. Taken together, this study offers promising insights for cuproptosis-based cancer treatment and sheds new light on nanomedicine-mediated metabolic modulation for future tumor therapy.
Collapse
Affiliation(s)
- Qian Xie
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Tao Sun
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China; Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Liang Zhang
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Mingfu Gong
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Wansu Zhang
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Xu Liu
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Yue Zhao
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Miaomiao Wang
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Xiaofeng Yang
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Zhipeng Zhang
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Chunyu Zhou
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| | - Dong Zhang
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
7
|
Naidoo DB, Phulukdaree A, Chuturgoon AA, Sewram V. Centella Asiatica Fraction-3 Enhances Antioxidant Capacity and Apoptotic Cell Death in HEK293 Kidney Cells. J Med Food 2025. [PMID: 40160106 DOI: 10.1089/jmf.2022.0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
The traditional medicinal plant Centella asiatica is commonly used in Chinese and Ayurvedic medicine due to its vast range of therapeutic properties. Previously, the ethanolic C. asiatica leaf extract was subjected to silica column fractionation, and the C3 fraction was obtained. We investigated the antioxidant and anti-proliferative effects of C3 in human embryonic kidney (HEK293) cells. In HEK293 cells, C3 cytotoxicity was assessed (viability assay; 24 h; [0.2-3 mg/mL]), and a half maximal inhibitory concentration (IC50) was determined. Malondialdehyde (MDA), lactate dehydrogenase (LDH) (spectrophotometry), mitochondrial depolarization (Δψm), intracellular reactive oxygen species (flow cytometry), glutathione (GSH), oxidized glutathione (GSSG) concentrations, caspase activities, ATP levels (luminometry), and fragmentation of DNA (SCGE assay) were evaluated. Protein expressions were assessed by western blotting. Gene expressions were quantified by qPCR. Cell viability in HEK293 cells was decreased in a dose-dependent manner by C3. MDA, Δψm, LDH, caspase activities, and DNA fragmentation (P < .0004) were significantly increased by C3. Nuclear factor erythroid 2-related factor 2 (Nrf-2) protein expression, GSH, and GSSG concentrations were increased, whereas antioxidant (Nrf-2, GPx, SOD, and CAT) gene expression was significantly decreased by C3 (P < .001). C3 decreased both Bax and Bcl-2 protein expression (P < .03). Gene expression of c-myc was significantly increased, whereas OGG-1 was significantly reduced by C3 (P < .05). C3 reduced antioxidant gene expression, increased antioxidant levels, and elevated anti-proliferative effects in HEK293 cells, suggesting that high concentrations of C3 are potentially toxic to kidney cells, thus rendering cause for concern with its human use.
Collapse
Affiliation(s)
- Dhaneshree B Naidoo
- Faculty of Health Sciences, Discipline of Medical Biochemistry and Chemical Pathology, Howard College, University of KwaZulu-Natal, Durban, South Africa
| | - Alisa Phulukdaree
- Faculty of Health Sciences, Discipline of Medical Biochemistry and Chemical Pathology, Howard College, University of KwaZulu-Natal, Durban, South Africa
| | - Anil Armichund Chuturgoon
- Faculty of Health Sciences, Discipline of Medical Biochemistry and Chemical Pathology, Howard College, University of KwaZulu-Natal, Durban, South Africa
| | - Vikash Sewram
- Division of Health Systems and Public Health, Faculty of Medicine and Health Sciences, African Cancer Institute, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
8
|
Wang Y, Sun X, Ren M, Ma F, Zhao R, Zhu X, Xu Y, Cao N, Chen Y, Pan Y, Zhao A. Integrative network pharmacology, transcriptomics, and proteomics reveal the material basis and mechanism of the Shen Qing Weichang Formula against gastric cancer. Chin Med 2025; 20:42. [PMID: 40155922 PMCID: PMC11954191 DOI: 10.1186/s13020-025-01091-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/05/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Gastric cancer (GC) is a common malignancy with poor prognosis and lack of efficient therapeutic methods. Shen Qing Weichang Formula (SQWCF) is a patented traditional herbal prescription for GC, but its efficacy and underlying mechanism remains to be clarified. PURPOSE To explore the efficacy and potential mechanism of SQWCF in treating GC. METHODS A subcutaneous transplantation tumor model of human GC was established for assessing SQWCF's efficacy and safety. A comprehensive strategy integrating mass spectrometry, network pharmacology, omics analysis, and bioinformatic methods was adopted to explore the core components, key targets, and potential mechanism of SQWCF in treating GC. Molecular docking, immunohistochemistry, quantitative real-time PCR, and western blot were applied to validation. RESULTS In the mouse model of GC, SQWCF effectively suppressed the GC growth without evident toxicity and enhanced the therapeutic efficacy of paclitaxel. Network pharmacology and molecular docking based on mass spectrometry showed that key targets (CASP3, TP53, Bcl-2, and AKT1) and core active components (Calycosin, Glycitein, Liquiritigenin, Hesperetin, and Eriodictyol) involved in the anti-GC effect of SQWCF had stable binding affinity, of which AKT1 ranked the top in the affinity. Validation based on network pharmacology and omics analysis confirmed that PI3K-AKT and MAPK signaling pathways, as well as downstream apoptosis pathway, explained the therapeutic effects of SQWCF on GC. In addition, family with sequence similarity 81 member A (FAM81A) was identified as a novel biomarker of GC that was aberrantly highly expressed in GC and associated with poor prognosis by bioinformatic analysis, and was an effector target of SQWCF at both mRNA and protein levels. CONCLUSION This study uncovers a synergistic multi-component, multi-target, and multi-pathway regulatory mechanism of SQWCF in treating GC comprehensively, emphasizing its potential for therapeutic use and providing new insights into GC treatment.
Collapse
Affiliation(s)
- Yi Wang
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, South Wanping Rd. 725, Shanghai, 200032, China
| | - Xiaoyu Sun
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, South Wanping Rd. 725, Shanghai, 200032, China
| | - Mingming Ren
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, South Wanping Rd. 725, Shanghai, 200032, China
| | - Fangqi Ma
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, South Wanping Rd. 725, Shanghai, 200032, China
| | - Ruohan Zhao
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, South Wanping Rd. 725, Shanghai, 200032, China
| | - Xiaohong Zhu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, South Wanping Rd. 725, Shanghai, 200032, China
| | - Yan Xu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, South Wanping Rd. 725, Shanghai, 200032, China
| | - Nida Cao
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, South Wanping Rd. 725, Shanghai, 200032, China
| | - Yuanyuan Chen
- Cancer Institute of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, South Wanping Rd. 725, Shanghai, 200032, China
| | - Yongfu Pan
- Cancer Institute of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, South Wanping Rd. 725, Shanghai, 200032, China.
| | - Aiguang Zhao
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, South Wanping Rd. 725, Shanghai, 200032, China.
| |
Collapse
|
9
|
Fan H, Liu J, Hu X, Cai J, Su B, Jiang J. The critical role of X-linked inhibitor of apoptosis protein (XIAP) in tumor development. Apoptosis 2025:10.1007/s10495-025-02101-4. [PMID: 40146486 DOI: 10.1007/s10495-025-02101-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2025] [Indexed: 03/28/2025]
Abstract
X-linked inhibitor of apoptosis protein (XIAP) is the most potent endogenous member of the inhibitor of apoptosis protein family. XIAP exerts its anti-apoptotic effects by inhibiting both the death receptor pathway and mitochondrial pathway of apoptosis through various mechanisms such as directly binding to caspases, activating the nuclear factor kappa B (NF-κB) pathway, and other signaling pathways. These processes are closely related to tumor development and progression, making XIAP a therapeutic target for various types of cancer. This article will first review the structural characteristics and biological functions of XIAP, followed by its effects on tumors and an overview of XIAP-targeted inhibitors.
Collapse
Affiliation(s)
- Hui Fan
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jiyuan Liu
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiangyan Hu
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jiye Cai
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Bo Su
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jinhuan Jiang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
10
|
Wen Q, Liu J, Hu J, Kou KI, Li H, Zhang J, Zhang R, Zhong S, Huang R. Molecular mechanisms underlying the anti-Colon Cancer effects of Caulerpa lentillifera polysaccharides (CLP). Int J Biol Macromol 2025:142594. [PMID: 40157667 DOI: 10.1016/j.ijbiomac.2025.142594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/15/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
Colon cancer (CC) ranks is the second leading cause of cancer-related deaths globally. Despite chemotherapy being a primary treatment its effectiveness significantly declines in advanced in stage. Emerging evidence suggests that dietary components particularly polysaccharides, play a role in CC progression. This study employed multi-omics and network pharmacology to elucidate the mechanisms underlying the apoptotic effects of Caulerpa lentillifera polysaccharide (CLP) in CC, validated through in vitro and in vivo experiments. Transcriptomics and network pharmacology analysis identified the p53/Bax/Caspase-3 pathway as a key regulatory axis. Further targeted analysis of amino acid metabolism revealed that CLP significantly decreased intracellular aspartate (Asp) levels. Additionally, reactive oxygen species (ROS) accumulation was detected in cells. CLP treatment reduced Asp content, leading to ROS accumulation, which activated the p53/Bax/Caspase-3 pathway, triggering apoptosis. In vivo, CLP effectively inhibited tumor growth in BALB/c mice bearing CT26 colon cancer cells. These findings suggest that CLP exerts anti-colon cancer effects by modulating amino acid metabolism and inducing apoptosis via the p53/Bax/Caspase-3 axis, providing a promising therapeutic strategy for CC.
Collapse
Affiliation(s)
- Qinghua Wen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jun Liu
- Laboratory of Pathogenic Biology, Guangdong Medical University, Zhanjiang 524023, China
| | - Jiaheng Hu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Kit Ian Kou
- Department of Mathematics, Faculty of Science and Technology, University of Macau, Macao
| | - Haichou Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiaojiao Zhang
- College of Food and Health, Zhejiang A& F University, Hangzhou 311300, China
| | - Rongxin Zhang
- Department of Colorectal Surgery, Sun Yatsen University Cancer center, Guangzhou 510060, China; State Key Laboratory of Oncology in South China, Guangzhou 510060, China
| | - Saiyi Zhong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518108, China.
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
11
|
Abid J, Al-Rawi BAM, Mahmood A, Li A, Jiang T. Identification and functional characterization of key biomarkers in diffuse large B-cell lymphoma: emphasis on STYX as a prognostic marker and therapeutic target. Hereditas 2025; 162:45. [PMID: 40128844 PMCID: PMC11931869 DOI: 10.1186/s41065-025-00411-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 03/07/2025] [Indexed: 03/26/2025] Open
Abstract
Diffuse large B-cell lymphoma (DLBC) is the most common subtype of non-Hodgkin lymphoma, characterized by its aggressive nature and poor prognosis in advanced stages. Despite advances in treatment, the molecular mechanisms driving DLBC progression remain incompletely understood, necessitating the identification of novel biomarkers for diagnosis and prognosis. In this study, we analyzed two publicly available datasets (GSE32018 and GSE56315) from the Gene Expression Omnibus database (GEO) to identify overlapping differentially expressed genes (DEGs). Later on, a comprehensive in silico and in vitro methodology was adopted to decipher the role of identify DEGs in DLBC. DEGs analysis of GSE32018 and GSE56315 datasets identified five overlapping gene: SP3, CSNK1A1, STYX, SIRT5, and MGEA5. Expression validation using the GEPIA2 database confirmed the upregulation of SP3, CSNK1A1, STYX, and SIRT5, and the downregulation of MGEA5 in DLBC tissues compared to normal controls. Furthermore, mutational analysis revealed that CSNK1A1 was the only gene among these DEGs to exhibit mutations, with a 2.7% mutation frequency in DLBC patients. Methylation analysis highlighted a negative correlation between DEGs methylation levels and mRNA expression, while survival analysis identified high STYX expression as significantly associated with poorer overall survival in DLBC patients. Functional assays demonstrated that STYX knockdown in U2932 cells led to reduced cell proliferation, colony formation, and enhanced wound healing, indicating STYX's pivotal role in DLBC cell survival and migration. Additionally, gene enrichment analysis revealed the involvement of these DEGs in key biological processes, including intracellular trafficking and myeloid progenitor cell differentiation. These findings emphasize the potential of SP3, CSNK1A1, STYX, SIRT5, and MGEA5 as biomarkers and therapeutic targets in DLBC, particularly highlighting STYX as a promising prognostic marker and potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Junaid Abid
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300222, China
| | - Basil A Mahmood Al-Rawi
- Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, 11433, Saudi Arabia
| | - Ahmad Mahmood
- Department of Hepatobiliary & Hydatid Diseases, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China
| | - An Li
- Department of Hepatobiliary & Hydatid Diseases, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China.
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, Urumqi, 830054, China.
| | - Tiemin Jiang
- Department of Hepatobiliary & Hydatid Diseases, Digestive & Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China.
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, Urumqi, 830054, China.
| |
Collapse
|
12
|
Wang Z, Su X, Zhan Z, Wang H, Zhou S, Mao J, Xu H, Duan S. miR-660: A novel regulator in human cancer pathogenesis and therapeutic implications. Gene 2025; 953:149434. [PMID: 40120868 DOI: 10.1016/j.gene.2025.149434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 03/12/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
MicroRNAs (miRNAs) are non-coding RNAs that regulate gene expression. Among these, miR-660, located on chromosome Xp11.23, is increasingly studied for its role in cancer due to its abnormal expression in various biological contexts. It is regulated by 8 competing endogenous RNAs (ceRNAs), which adds complexity to its function. miR- 660 targets 19 genes involved in 6 pathways such as PI3K/AKT/mTOR, STAT3, Wnt/β-catenin, p53, NF‑κB, and RAS, influencing cell cycle, proliferation, apoptosis, and invasion/migration. It also plays a role in resistance to chemotherapies like cisplatin, gemcitabine, and sorafenib in lung adenocarcinoma (LUAD), pancreatic ductal adenocarcinoma (PDAC), and hepatocellular carcinoma (HCC), thus highlighting its clinical importance. Additionally, leveraging liposomes as nanocarriers presents a promising avenue for enhancing cancer drug delivery. Our comprehensive study not only elucidates the aberrant expression patterns, biological functions, and regulatory networks of miR-660 and its ceRNAs but also delves into the intricate signaling pathways implicated. We envisage that our findings will furnish a robust framework and serve as a seminal reference for future investigations of miR-660, fostering advancements in cancer research and potentially catalyzing breakthroughs in cancer diagnosis and treatment paradigms.
Collapse
Affiliation(s)
- Zehua Wang
- Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Xinming Su
- Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Zhiqing Zhan
- Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Hangxuan Wang
- Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Shuhan Zhou
- Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Jiasheng Mao
- Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Hening Xu
- Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Shiwei Duan
- Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.
| |
Collapse
|
13
|
Ouyang Y, Cao L, Zhao Q, Yang W, Lin C. Biodegradable Mg-1%Ca alloy inhibits the growth of cervical cancer. Biomed Mater 2025; 20:035002. [PMID: 39908673 DOI: 10.1088/1748-605x/adb2cc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 02/05/2025] [Indexed: 02/07/2025]
Abstract
The traditional treatment for cervical cancer involves aggressive surgery combined with radiotherapy and chemotherapy. Nevertheless, these treatments have certain limitations and side effects, thus breakthroughs and advances are required in cervical cancer therapy. Magnesium alloy is a promising antitumor biomaterial with excellent biocompatibility and biodegradability. However, the potential effects of magnesium alloy on cervical tumors have not been extensively explored. Recent studies have demonstrated that adding a small amount of calcium to the magnesium matrix can reduce grain size and corrosion rate while providing good biocompatibility. We conductedin vivoandin vitroexperiments to test the antitumor properties of Mg-1%Ca alloys. The results indicated that the Mg-1%Ca alloy released Mg2+and OH-more slowly, inhibited the proliferation of SiHa and HeLa cells, induced apoptosis in tumor cells, disrupted the cytoskeleton, and inhibited cell migration and invasion. At the molecular level, Mg-1%Ca alloy significantly activated the mitochondrial apoptosis pathway and inhibited the MAPK/ERK signaling pathway. In the future, Mg-1%Ca may be employed in the treatment of cervical cancer as a novel adjuvant therapeutic material with anticancer function to prevent the occurrence and progression of cancer proliferation and metastasis.
Collapse
Affiliation(s)
- Yunshan Ouyang
- Department of Pathology, School of Basic Medical Sciences
- Key Laboratory of Molecular Biology of Endemic Diseases, Xinjiang Medical University, Urumqi 830017, People's Republic of China
| | - Lingling Cao
- Department of Pathology, School of Basic Medical Sciences
- Key Laboratory of Molecular Biology of Endemic Diseases, Xinjiang Medical University, Urumqi 830017, People's Republic of China
| | - Qian Zhao
- Department of Pathology, School of Basic Medical Sciences
- Key Laboratory of Molecular Biology of Endemic Diseases, Xinjiang Medical University, Urumqi 830017, People's Republic of China
| | - Wang Yang
- Department of Pathology, School of Basic Medical Sciences
- Key Laboratory of Molecular Biology of Endemic Diseases, Xinjiang Medical University, Urumqi 830017, People's Republic of China
| | - Chen Lin
- Department of Pathology, School of Basic Medical Sciences
| |
Collapse
|
14
|
Chen J, Ji Z, Wu D, Wei S, Zhu W, Peng G, Hu M, Zhao Y, Wu H. MYBL2 promotes cell proliferation and inhibits cell apoptosis via PI3K/AKT and BCL2/BAX/Cleaved-caspase-3 signaling pathway in gastric cancer cells. Sci Rep 2025; 15:9148. [PMID: 40097530 PMCID: PMC11914465 DOI: 10.1038/s41598-025-93022-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 03/04/2025] [Indexed: 03/19/2025] Open
Abstract
The transcription factor MYB proto-oncogene like 2 (MYBL2) has been reported to be involved in the occurrence and development of various tumors, however, its role in gastric cancer (GC) remains to be elucidated. In this study, the Kaplan-Meier plotter was used to evaluate the prognostic value of different MYBL2 expression levels in GC patients. The UALCAN database were applied to analyze the relationships between MYBL2 and clinicopathological characteristics of GC. GC cell proliferation, cell cycle and apoptosis were determined by CCK-8 and flow cytometry assays, and proteins were examined by Western blot analysis. Next, signaling pathway enrichment analysis of MYBL2-related genes and protein expression were analyzed by Gene Set Enrichment Analysis (GSEA) and Western blot assays. The results found that MYBL2 expression was significantly upregulated in GC compared with adjacent non-malignant tissues and associated with poor patient survival, tumor, stages and lymph node metastasis. Forced expression of MYBL2 could promote cell proliferation, resulting in an accelerated S phase progression and inhibiting cell apoptosis in GC cells. Conversely, MYBL2 silencing inhibited cell proliferation, induced G2/M phase arrest and promoted cell apoptosis in GC cells. Mechanistically, Western blot analysis showed that MYBL2 silencing decreased the expression of BCL2 and upregulated the expression of Cleaved-caspase-3 and BAX in HGC-27 cells. Conversely, MYBL2 overexpression in AGS cells resulted in the opposite effects. Furthermore, enforced expression of MYBL2 activated the PI3K/AKT signaling pathway, especially AKT phosphorylation. Additionally, the AKT inhibitor MK2206 significantly reversed the proliferation capacity of GC cells induced by MYBL2 overexpression. Therefore, these results suggest that upregulated expression of MYBL2 contributes to GC cell growth and inhibits cell apoptosis by regulating the PI3K/AKT and BCL2/BAX/Cleaved-caspase-3 signaling pathways in GC cells indicating that MYBL2 may be a new therapeutic target and prognostic marker for GC.
Collapse
Affiliation(s)
- Jingya Chen
- School of Public Health, Bengbu Medical University, Bengbu, China
| | - Zhenglei Ji
- School of Public Health, Bengbu Medical University, Bengbu, China
| | - Di Wu
- School of Life Science, Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, China
| | - Siyang Wei
- School of Public Health, Bengbu Medical University, Bengbu, China
| | - Wanjing Zhu
- School of Life Science, Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, China
| | - Guisen Peng
- School of Life Science, Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, China
| | - Mingjie Hu
- School of Life Science, Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, China.
| | - Yunli Zhao
- School of Public Health, Bengbu Medical University, Bengbu, China.
| | - Huazhang Wu
- School of Life Science, Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, China.
| |
Collapse
|
15
|
An Y, Sun JX, Ma SY, Xu MY, Xu JZ, Liu CQ, Wang SG, Xia QD. From Plant Based Therapy to Plant-Derived Vesicle-Like Nanoparticles for Cancer Treatment: Past, Present and Future. Int J Nanomedicine 2025; 20:3471-3491. [PMID: 40125436 PMCID: PMC11927496 DOI: 10.2147/ijn.s499893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/21/2025] [Indexed: 03/25/2025] Open
Abstract
Cancer stands as a formidable malady profoundly impacting human health. Throughout history, plant-based therapies have remained pivotal in the arsenal against cancer, evolving alongside the epochs. Presently, challenges such as the arduous extraction of active components and potential safety concerns impede the progression of plant-based anticancer therapies. The isolation of plant-derived vesicle-like nanoparticles (PDVLNs), a kind of lipid bilayer capsules isolated from plants, has brought plant-based anticancer therapy into a novel realm and has led to decades of research on PDVLNs. Accumulating evidence indicates that PDVLNs can deliver plant-derived active substances to human cells and regulate cellular functions. Regulating immunity, inducing cell cycle arrest, and promoting apoptosis in cancer cells are the most commonly reported mechanisms of PDVLNs in tumor suppression. Low immunogenicity and lack of tumorigenicity make PDVLNs a good platform for drug delivery. The molecules within the PDVLNs are all from source plants, so the selection of source plants is crucial. In recent years, there has been a clear trend that the source plants have changed from vegetables or fruits to medicinal plants. This review highlights the mechanisms of medicinal plant-based cancer therapies to identify candidate source plants. More importantly, the current research on PDVLN-based cancer therapy and the applications of PDVLNs for drug delivery are systematically discussed.
Collapse
Affiliation(s)
- Ye An
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Jian-Xuan Sun
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Si-Yang Ma
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Meng-Yao Xu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Jin-Zhou Xu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Chen-Qian Liu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Shao-Gang Wang
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Qi-Dong Xia
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
16
|
Deng YR, Wu QZ, Zhang W, Jiang HP, Xu CQ, Chen SC, Fan J, Guo SQ, Chen XJ. Apoptotic cell-derived extracellular vesicles-MTA1 confer radioresistance in cervical cancer by inducing cellular dormancy. J Transl Med 2025; 23:328. [PMID: 40087679 PMCID: PMC11908104 DOI: 10.1186/s12967-025-06350-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 03/03/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Radioresistance presents a major challenge in the treatment of cervical cancer (CC). Apoptotic tumor cells can create an "onco-regenerative niche," contributing to radioresistance. However, the intercellular signaling mechanisms mediating the transfer of radioresistance from apoptotic to surviving cancer cells remain unclear. METHODS The role of apoptotic tumor cell-derived extracellular vesicles (apoEVs) in mediating radioresistance was investigated through integrated bioinformatics and experimental approaches. The GSE236738 dataset was analyzed to identify potential regulators, with subsequent validation of apoEV-MTA1 function using in vitro and in vivo models. Mechanistic studies focused on caspase-3 activation, p-STAT1 signaling pathway, and dormancy-associated protein networks. Furthermore, therapeutic strategies targeting MTA1 and its downstream signaling were evaluated for radiosensitization potential. RESULTS MTA1 was identified as a critical factor enriched in and transferred by apoEVs from apoptotic tumor cells to neighboring CC cells. Caspase-3 activation facilitated the nuclear export and encapsulation of MTA1 in apoEVs. Transferred MTA1 retained transcriptional activity, activated the p-STAT1 signaling pathway, and induced cellular dormancy via NR2F1, a key dormancy regulator, resulting in increased radioresistance. Knockdown of MTA1 in apoEVs or inhibition of p-STAT1 in recipient cells enhanced radiosensitivity. Furthermore, apoEV-MTA1 promoted tumor radioresistance and reduced survival rates in irradiated cervical cancer mouse model. CONCLUSIONS This study demonstrates that apoEV-MTA1 confers radioresistance in CC by promoting cellular dormancy via the p-STAT1/NR2F1 signaling axis. Targeting this pathway could improve radiosensitivity and provide a promising therapeutic strategy for CC patients.
Collapse
Affiliation(s)
- Yuan-Run Deng
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, 183 Zhongshan Avenue West, Tianhe District, Guangzhou, 510630, P.R. China
| | - Qiao-Zhi Wu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, 183 Zhongshan Avenue West, Tianhe District, Guangzhou, 510630, P.R. China
| | - Wan Zhang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Radiation Oncology, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, China
| | - Hui-Ping Jiang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, 183 Zhongshan Avenue West, Tianhe District, Guangzhou, 510630, P.R. China
| | - Cai-Qiu Xu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, 183 Zhongshan Avenue West, Tianhe District, Guangzhou, 510630, P.R. China
| | - Shao-Cheng Chen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, 183 Zhongshan Avenue West, Tianhe District, Guangzhou, 510630, P.R. China
| | - Jing Fan
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, 183 Zhongshan Avenue West, Tianhe District, Guangzhou, 510630, P.R. China
| | - Sui-Qun Guo
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, 183 Zhongshan Avenue West, Tianhe District, Guangzhou, 510630, P.R. China.
| | - Xiao-Jing Chen
- Department of Gynecology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan 2nd Road, Yuexiu District, Guangzhou, 510080, P.R. China.
| |
Collapse
|
17
|
Yang J, Wang F, Hu Z, Liu X, Zhang W, Li C, Wang W, Reaila J, Zhang X, Zhu G, Tian F, Chen B, Zhu X. Huachansu Injection induces ferroptosis in multiple myeloma through NRF2/HO-1 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 343:119454. [PMID: 39922329 DOI: 10.1016/j.jep.2025.119454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/27/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Multiple myeloma (MM) is a common hematologic malignancy. Huachansu (HCS) is extracted from the skin of Bufo bufo gargarizans, known for its well-established and multi-target anti-tumor effect. It has been reported to be effective in treating patients with multiple myeloma but its underlying mechanism remains unclear. AIM OF THE STUDY This study aims to investigate the cellular and molecular mechanisms in which HCS induces cell death of MM. MATERIALS AND METHODS Cell viability was assessed using the CCK-8 assay. The effect of HCS on the gene expression of MM were screened by transcriptome sequencing and validated by quantitative real-time PCR, Western blot, and immunofluorescence. The ferroptosis phenotype were evaluated by measuring iron ion concentration, lipid peroxidation degree in terms of malondialdehyde (MDA), and reduced glutathione (GSH) level. Flow cytometry was adopted to measure intracellular ROS and PGSK levels. The ability of ferroptosis inhibitors to reverse these effects was also assessed. The treatment effect and ferroptosis induction of HCS on MM in vivo were explored on a xenograft nude mice model, with mitochondrial damage observed by transmission electron microscopy. RESULTS HCS modulated the NRF2/HO-1 pathway, upregulating PRP and ZIP8, leading to Fe2+ accumulation and PGSK elevation, while increasing ROS and MDA levels and reducing GSH content. These effects were significantly reversed by the ferroptosis inhibitor Ferrostin-1. HCS induced MM cell ferroptosis through the NRF2/HO-1 pathway in vivo, inhibiting MM progression similarly to the positive control drug bortezomib. CONCLUSION These results indicate that HCS can induce ferroptosis in MM cells via the NRF2/HO-1 pathway, thereby controlling MM progression. Our study provides a solid theoretical basis for the clinical use of HCS in treating MM. Additionally, it suggests an innovative treatment alternative based on natural medicine, proposing the combined use of HCS and chemotherapy drugs as a new therapeutic avenue for MM.
Collapse
Affiliation(s)
- Jing Yang
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, China; The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, China
| | - Fengnan Wang
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, China; The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, China
| | - Zhongxiao Hu
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, China; The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, China; Lianshui Hospital of Traditional Chinese Medicine, Huaian, Jiangsu, 223400, China
| | - Xixi Liu
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, China; The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, China
| | - Weiguang Zhang
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, China; The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, China
| | - Chencheng Li
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, China; The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, China; Wisdom Lake Academy of Pharmacy, Xi' an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, China
| | - Wanxia Wang
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, China; The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, China
| | - Jianati Reaila
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, China; The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, China
| | - Xiaoli Zhang
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, China; The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, China
| | - Guangrong Zhu
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, China
| | - Fang Tian
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, China.
| | - Biqing Chen
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, China.
| | - Xuejun Zhu
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
18
|
Zhang K, Wang X, Liu F, Lin H, Wang Y, Zhao M, Wang X, Chu Y, Xu L. miR-34a-5p modulation of polycystic ovary syndrome via targeting the NOTCH signaling pathway. J Ovarian Res 2025; 18:55. [PMID: 40082891 PMCID: PMC11907913 DOI: 10.1186/s13048-025-01623-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 02/12/2025] [Indexed: 03/16/2025] Open
Abstract
PURPOSE Polycystic ovary syndrome (PCOS) is currently recognized as a condition that affects several systems in the body, including the reproductive, endocrine, and cardiovascular systems. Prevalent among teenagers and women of reproductive age. Prior research has demonstrated an elevation of miR-34a-5p within the follicular fluid (FF) of women of PCOS. Despite this, the precise mechanisms through which miR-34a-5p influences granulosa cells (GC) development and function remain poorly characterized. METHODS Therefore, this study investigates the involvement and pathogenic mechanisms of miR-34a-5p within GCs in the context of PCOS. The human granulosa-like tumor cell line (KGN) got transfected at a control, as well as a miR-34a-5p mimic and inhibitor, respectively. Monitor cellular proliferation in each experimental group. The experimental methods included RT-qPCR, CCK8, flow cytometry and western blotting. Also, the interaction between miR-34a-5p and the particular sequence of JAG1 has been verified using the dual luciferase assay. Further investigation of the connection involving miR-34a-5p and the Notch signaling pathway was conducted using bioinformatics analysis and experimental methods. RESULTS The results demonstrated that miR-34a-5p expression was significantly elevated in the serum(p<0. 0001)and FF (p = 0. 0402) of PCOS, whereas its expression in GCs (p = 0. 5522) showed no significant variation. Overexpressing miR-34a-5p caused a decrease in the rate at which KGN cells multiplied and an increase in programmed cell death. Conversely, inhibiting miR-34a-5p resulted in an increase in cell growth and a decrease in programmed cell death. Bioinformatics analysis and experimental results further demonstrated thatmiR-34a-5p interacts with the 3'UTR region of JAG1, leading to a negative regulation of the Jagged1-Notch signaling pathway. CONCLUSION In summary, the miR-34a-5p molecule inhibits the growth of GCs as well as triggers programmed cell death by regulating the Jagged1-Notch signaling pathway. Silencing miR-34a-5p prevents dysfunction in GCs. Our analysis implies that miR-34a-5p is a new molecular site to treat PCOS.
Collapse
Affiliation(s)
- Kexin Zhang
- Department of Obstetrics, The Affiliated Hospital of Qingdao University, 59 Haier Road, Qingdao, 266000, China
- Qingdao University, Qingdao, China
| | - Xiaomeng Wang
- Department of Obstetrics, The Affiliated Hospital of Qingdao University, 59 Haier Road, Qingdao, 266000, China
| | - Fang Liu
- Department of Gynecology and Obstetrics, Dazhou Dachuan District People's Hospital (Dazhou Third People's Hospital), Dazhou, Sichuan Province, 635000, China
| | - Hong Lin
- Qingdao Laoshan District Maternal and Child Health Care Family Planning Service Center, Qingdao, 266000, China
| | - Yan Wang
- Department of Obstetrics, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, China
| | - Min Zhao
- Department of Obstetrics, The Affiliated Hospital of Qingdao University, 59 Haier Road, Qingdao, 266000, China
| | - Xiaofei Wang
- Department of Obstetrics, The Affiliated Hospital of Qingdao University, 59 Haier Road, Qingdao, 266000, China
| | - Yijing Chu
- Department of Obstetrics, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, China
| | - Lin Xu
- Department of Obstetrics, The Affiliated Hospital of Qingdao University, 59 Haier Road, Qingdao, 266000, China.
| |
Collapse
|
19
|
Wang W, Li T, Wu K. Cell death in tumor microenvironment: an insight for exploiting novel therapeutic approaches. Cell Death Discov 2025; 11:93. [PMID: 40064873 PMCID: PMC11894105 DOI: 10.1038/s41420-025-02376-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 02/07/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Cell death is critical in tumor biology. The common cancer therapies can cause cell death and alleviate tumor, while the cancer cells can develop a resistance to cell death and survive from the therapies. Thus, not only observing the alternative mechanisms of tumor cells resistant to cell death, but also understanding the intricate dynamics of cell death processes within the tumor microenvironment (TME), are essential for tailoring effective therapeutic strategies. High-throughput sequencing technologies have revolutionized cancer research by enabling comprehensive molecular profiling. Recent advances in single cell sequencing have unraveled the heterogeneity of TME components, shedding light on their complex interactions. In this review, we explored the interplay between cell death signaling and the TME, summarised the potential drugs inducing cell death in pre-clinical stage, reviewed some studies applying next-generation sequencing technologies in cancer death research, and discussed the future utilization of updated sequencing platforms in screening novel treatment methods targeted cell death. In conclusion, leveraging multi-omics technologies to dissect cell death signaling in the context of the TME holds great promise for advancing cancer research and therapy development.
Collapse
Affiliation(s)
- Wenxin Wang
- BGI Genomics, Shenzhen, 518083, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, 518083, China
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, 310030, China
| | - Tong Li
- BGI Genomics, Shenzhen, 518083, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, 518083, China
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, 310030, China
| | - Kui Wu
- BGI Genomics, Shenzhen, 518083, China.
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, 518083, China.
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, 310030, China.
| |
Collapse
|
20
|
Wyżewski Z, Gregorczyk-Zboroch KP, Mielcarska MB, Świtlik W, Niedzielska A. Bid Protein: A Participant in the Apoptotic Network with Roles in Viral Infections. Int J Mol Sci 2025; 26:2385. [PMID: 40141030 PMCID: PMC11942203 DOI: 10.3390/ijms26062385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/01/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
The BH3-interacting domain death agonist (Bid), a proapoptotic signaling molecule of the B-cell lymphoma 2 (Bcl-2) family, is a key regulator of mitochondrial outer membrane (MOM) permeability. Uniquely positioned at the intersection of extrinsic and intrinsic apoptosis pathways, Bid links death receptor signaling to the mitochondria-dependent cascade and can also be activated by endoplasmic reticulum (ER) stress. In its active forms, cleaved Bid (cBid) and truncated Bid (tBid), it disrupts MOM integrity via Bax/Bak-dependent and independent mechanisms. Apoptosis plays a dual role in viral infections, either promoting or counteracting viral propagation. Consequently, viruses modulate Bid signaling to favor their replication. The deregulation of Bid activity contributes to oncogenic transformation, inflammation, immunosuppression, neurotoxicity, and pathogen propagation during various viral infections. In this work, we explore Bid's structure, function, activation processes, and mitochondrial targeting. We describe its role in apoptosis induction and its involvement in infections with multiple viruses. Additionally, we discuss the therapeutic potential of Bid in antiviral strategies. Understanding Bid's signaling pathways offers valuable insights into host-virus interactions and the pathogenesis of infections. This knowledge may facilitate the development of novel therapeutic approaches to combat virus-associated diseases effectively.
Collapse
Affiliation(s)
- Zbigniew Wyżewski
- Institute of Biological Sciences, Cardinal Stefan Wyszynski University in Warsaw, Dewajtis 5, 01-815 Warsaw, Poland
| | - Karolina Paulina Gregorczyk-Zboroch
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (K.P.G.-Z.); (M.B.M.); (A.N.)
| | - Matylda Barbara Mielcarska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (K.P.G.-Z.); (M.B.M.); (A.N.)
| | - Weronika Świtlik
- Centre for Advanced Materials and Technologies, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland;
| | - Adrianna Niedzielska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (K.P.G.-Z.); (M.B.M.); (A.N.)
| |
Collapse
|
21
|
Cai F, Mao S, Peng S, Wang Z, Li W, Zhang R, Wang S, Sun A, Zhang S. A comprehensive pan-cancer examination of transcription factor MAFF: Oncogenic potential, prognostic relevance, and immune landscape dynamics. Int Immunopharmacol 2025; 149:114105. [PMID: 39923580 DOI: 10.1016/j.intimp.2025.114105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/05/2025] [Accepted: 01/14/2025] [Indexed: 02/11/2025]
Abstract
AIMS Previous studies indicate that MAF BZIP Transcription Factor F (MAFF) facilitates ectopic metastasis and tumor cell migration. While its role in neoplasm progression is recognized, a thorough pan-cancer analysis of MAFF's impact remains pending. MAIN METHODS MAFF expression across normal and tumor tissues was analyzed using transcriptomic data from Genomic Data Commons (GDC) and UCSC XENA, with protein details from Human Protein Atlas (HPA) and GeneMANIA. Tumor Immune Single-cell Hub (TISCH) and Spatial Transcriptomics Omics DataBase (STOmics DB) identified MAFF expression in the tumor microenvironment (TME). MAFF's prognostic significance and immune-related gene associations were evaluated through univariate Cox regression, TIMER2.0 immune cell infiltration analysis, and Spearman correlation. Critical pathways were identified using Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA), while molecular docking explored anticancer agent interactions. KEY FINDINGS MAFF expression varies across cancers, affecting tumor prognosis, notably in monocytes/macrophages and endothelial cells. Copy number variation (CNV) positively correlates with MAFF expression, while methylation shows inverse correlation. MAFF mutations significantly affect LGG patient prognosis and correlate with immune therapy responses. ESTIMATE and immune profiling linked MAFF to immunosuppression pathways. Molecular docking identified MAFF-targeted drugs, with validated effects on breast cancer and endometrial cancer cell survival and migration in vitro. SIGNIFICANCE Multi-omics analysis identified MAFF as a potential prognostic marker correlating with tumor immunity and microenvironment, suggesting its value for personalized cancer immunotherapy, particularly in BRCA and UCEC.
Collapse
Affiliation(s)
- Fengze Cai
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu, China
| | - Shining Mao
- School of Chemical Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu, China
| | - Shuangfu Peng
- Department of Thyroid and Breast Oncological Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huaian, Jiangsu, China
| | - Zirui Wang
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu, China
| | - Wen Li
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu, China
| | - Ruixuan Zhang
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu, China
| | - Shiyan Wang
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu, China.
| | - Aijun Sun
- Department of Thyroid and Breast Oncological Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huaian, Jiangsu, China.
| | - Shasha Zhang
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
22
|
Gupta G, Afzal M, Moglad E, Goyal A, Almalki WH, Goyal K, Rana M, Ali H, Rekha1 A, Kazmi I, Alzarea SI, Singh SK. Parthanatos and apoptosis: unraveling their roles in cancer cell death and therapy resistance. EXCLI JOURNAL 2025; 24:351-380. [PMID: 40166425 PMCID: PMC11956527 DOI: 10.17179/excli2025-8251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 02/20/2025] [Indexed: 04/02/2025]
Abstract
Cell death is a fundamental process that needs to be maintained to balance cellular functions and prevent disease. There are several cell death pathways; however, apoptosis and parthanatos are the most prominent and have important roles in cancer biology. As an extremely well-regulated process, apoptosis removes damaged or abnormal cells via caspase activation and mitochondrial involvement. Unlike in the healthy cells, the loss of ability to induce apoptosis in cancer permits tumor cells to survive and multiply out of control and contribute to tumor progression and therapy resistance. On the contrary, parthanatos is a caspase-independent metabolic collapse driven by poly (ADP-ribose) polymerase 1 (PARP1) overactivation, translocation of apoptosis-inducing factor (AIF), and complete DNA damage. Several cancer models are involved with parthanatos. Deoxypodophyllotoxin (DPT) induces parthanatos in glioma cells by excessive ROS generation, PARP1 upregulation, and AIF nuclear translocation. Like in acute myeloid leukemia (AML), the cannabinoid derivative WIN-55 triggers parthanatos, and the effects can be reversed by PARP inhibitors such as olaparib. Developing cancer treatment strategies involving advanced cancer treatment strategies relies on the interplay between apoptosis and parthanatos. However, such apoptosis-based cancer therapies tend to develop resistance, so there is an urgent need to look into alternative pathways like parthanatos, which may not always trigger apoptosis. In overcoming apoptosis resistance, there is evidence that combining apoptosis-inducing agents, such as BH3 mimetics, with PARP inhibitors synergistically enhances cell death. Oxidative stress modulators have been found to promote the execution of parthanatic and apoptotic pathways and allow treatment. In this review, apoptosis and parthanatos are thoroughly compared at the molecular level, and their roles in cancer pathogenesis as related to cancer therapeutic potential are discussed. We incorporate recent findings to demonstrate that not only can parthanatos be used to manage therapy resistance and enhance cancer treatment via the combination of parthanatos and apoptosis but also that immunity and bone deposition can feasibly be employed against long-circulating cancer stem cells to treat diverse forms of metastatic cancers.
Collapse
Affiliation(s)
- Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, 248002, Dehradun, India
| | - Mohit Rana
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Arcot Rekha1
- Dr. D.Y. Patil Medical College, Hospital and Research Centre, Pimpri, Pune, India
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Al-Jouf, Saudi Arabia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, Sunway, Malaysia
| |
Collapse
|
23
|
El Rabey HA, Almutairi FM. The antioxidant, antidiabetic, antimicrobial and anticancer constituents of Artemisia species. Nat Prod Res 2025; 39:1685-1695. [PMID: 39056203 DOI: 10.1080/14786419.2024.2384082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/03/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Artemisia species are characterised by their antioxidant, anticancer, antibacterial, and anti-diabetic activities thanks to their phenolic and flavonoid content. These phenolic and flavonoid chemicals scavenge free radicals and reduce oxidative stress, which helps to guard against many diseases brought on by the buildup of free radicals and increased oxidative stress. In addition to acting as an antibacterial agent, it assisted in preventing cancer, hyperglycaemia, and diabetes. Antioxidant research has generally drawn attention due to its major contribution to the fight against numerous chronic illnesses, such as cancer and cardiovascular disorders. Several techniques were used to measure the enzymatic antioxidants (glutathione reductase, catalase, peroxidase, ascorbate oxidase, guaiacol peroxidase, superoxide dismutase and ascorbate peroxidase) in addition to the nonenzymatic antioxidants such as total phenolic acids, total polyphenol, ascorbic acid, total flavonoids and anthocyanin. Artemisinin (endoperoxide 1,2,4-trioxane ring.) is the main therapeutic constituent of Artemisia species.
Collapse
Affiliation(s)
- Haddad A El Rabey
- Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Fahad M Almutairi
- Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| |
Collapse
|
24
|
Haghir-Sharif-Zamini Y, Khosravi A, Hassan M, Zarrabi A, Vosough M. c-FLIP/Ku70 complex; A potential molecular target for apoptosis induction in hepatocellular carcinoma. Arch Biochem Biophys 2025; 765:110306. [PMID: 39818348 DOI: 10.1016/j.abb.2025.110306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal malignancies worldwide and the most common form of liver cancer. Despite global efforts toward early diagnosis and effective treatments, HCC is often diagnosed at advanced stages, where conventional therapies frequently lead to resistance and/or high recurrence rates. Therefore, novel biomarkers and promising medications are urgently required. Epi-drugs, or epigenetic-based medicines, have recently emerged as a promising therapeutic modality. Since the epigenome of the cancer cells is always dysregulated and this is followed by apoptosis-resistance, reprogramming the epigenome of cancer cells by epi-drugs (such as HDAC inhibitors (HDACis), and DNMT inhibitors (DNMTis)) could be an alternative approach to use in concert with established treatment protocols. C-FLIP, an anti-apoptotic protein, and Ku70, a member of the DNA repair system, bind together and make a cytoplasmic complex in certain cancers and induce resistance to apoptosis. Many epi-drugs, such as HDACis, can dissociate this complex through Ku70 acetylation and activate cellular apoptosis. The novel compounds for dissociating this complex could provide an innovative insight into molecular targeted HCC treatments. In this review, we address the innovative therapeutic potential of targeting c-FLIP/Ku70 complex by epi-drugs, particularly HDACis, to overcome apoptosis resistance of HCC cells. This review will cover the mechanisms by which the c-FLIP/Ku70 complex facilitates cancer cell survival, the impact of epigenetic alterations on the complex dissociation, and highlight HDACis potential in combination therapies, biomarker developments and mechanistic overviews. This review highlights c-FLIP ubiquitination and Ku70 acetylation levels as diagnostic and prognostic tools in HCC management.
Collapse
Affiliation(s)
- Yasamin Haghir-Sharif-Zamini
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul, 34959, Turkiye
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Turkiye; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, 320315, Taiwan; Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 600 077, India.
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
25
|
Saekee A, Sooknual P, Punpai S, Prachayasittikul V, Hongthong S, Tanechpongtamb W, Prachayasittikul S, Ruchirawat S, Prachayasittikul V, Pingaew R. Synthesis, anti-proliferation, apoptosis induction in breast cancer cells, and aromatase inhibition of coumarin-triazole hybrids: In vitro and in silico studies. Arch Biochem Biophys 2025; 765:110308. [PMID: 39837395 DOI: 10.1016/j.abb.2025.110308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 12/07/2024] [Accepted: 01/14/2025] [Indexed: 01/23/2025]
Abstract
Breast cancer is one of the most common cancers found in women worldwide. Besides the availability of clinical drugs, drug resistance and considerable side effects are concerning issues driven the needs for the discovery of novel anticancer agents. Aromatase inhibition is one of the effective strategies for management of hormone-dependent breast cancer. Triazole, coumarin, and isatin are heterocyclic scaffolds holding great attention in the field of drug design. Molecular hybridization is a well-known strategy to achieve new molecules with improved potency and properties. Herein, a set of 27 triazole-based hybrids (i.e., coumarin-triazoles series 5-6 and isatin-triazoles series 7) were synthesized and investigated for their anti-proliferation, apoptosis induction, and aromatase inhibitory potentials. Anti-proliferative study against the hormone-dependent breast cancer (T47D) cell line indicated that coumarin-triazoles 5h (R=NO2) and 6i (R=SO2NH2) were the two most potent antiproliferative agents. Particularly, compound 5h showed comparable potency and superior selectivity index than that of the reference drug, doxorubicin. Moreover, the coumarin-triazole 5h induced cellular apoptosis of the estrogen-dependent breast cancer (MCF-7) cells. Additionally, findings from the aromatase inhibitory assay suggested four compounds as potential aromatase inhibitors (i.e., 5i, 6f, 6g and 6i, IC50 = 1.4-2.4 μM). Two QSAR models with preferable predictive performances were constructed to reveal key properties influencing antiproliferative and aromatase inhibitory effects. Molecular docking was conducted to elucidate the possible binding modalities against the target aromatase enzyme. Key structural features essential for the binding were highlighted. Moreover, the drug-like properties of top-ranking compounds were assessed to ensure their possibilities for successful development.
Collapse
Affiliation(s)
- Amporn Saekee
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Pichjira Sooknual
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Sakdiphong Punpai
- Innovative Learning Center, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Veda Prachayasittikul
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand.
| | - Sakchai Hongthong
- Division of Chemistry, Faculty of Science and Technology, Rajabhat Rajanagarindra University, Chachoengsao, 24000, Thailand
| | - Wanlaya Tanechpongtamb
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Supaluk Prachayasittikul
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Somsak Ruchirawat
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, Bangkok, 10210, Thailand; Program in Chemical Sciences, Chulabhorn Graduate Institute, Bangkok, 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), Commission on Higher Education, Ministry of Education, Bangkok, 10400, Thailand
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Ratchanok Pingaew
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand.
| |
Collapse
|
26
|
Wang Y. Durvalumab and T-DXd Synergistically Promote Apoptosis of Cholangiocarcinoma Cells by Downregulating EGR1 Expression Through Inhibiting P38 MAPK Pathway. Appl Biochem Biotechnol 2025; 197:1773-1789. [PMID: 39607471 DOI: 10.1007/s12010-024-05112-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
Cholangiocarcinoma is a hepatobiliary system tumor with a high mortality rate. Although durvalumab and trastuzumab deruxtecan (T-DXd) have shown efficacy in treating cancers such as non-small cell lung cancer, their effects and regulatory mechanisms in cholangiocarcinoma remain unclear. In this study, we aimed to investigate the role and mechanism of durvalumab and T-DXd in inducing apoptosis in cholangiocarcinoma cells. Cholangiocarcinoma cells were treated with varying concentrations of durvalumab and T-DXd, either individually or in combination, to evaluate their effects. Apoptosis was quantified using flow cytometry. Quantitative real-time PCR (qPCR) and Western blotting were used to measure the mRNA expression and protein levels of genes associated with apoptosis and cell cycle regulation. The underlying mechanism was further explored through pathway enrichment analysis of differentially expressed genes (DEGs) and corroborated by qPCR and Western blotting. Xenotransplantation models using immune-deficient NOD-SCID/IL2Rγnull (NSG) mice were established to assess the in vivo effects of durvalumab and T-DXd. Our results showed that both durvalumab and T-DXd inhibited cholangiocarcinoma cell proliferation in a dose-dependent manner. Both agents promoted apoptosis and arrested the cell cycle of cholangiocarcinoma cells, with the combination treatment having the most significant effect. Furthermore, treatment with durvalumab, T-DXd, and the combination downregulated the protein levels of early growth response 1 (EGR1) by inactivating the p38 mitogen-activated protein kinase (MAPK) pathway. In vivo experiments indicated that durvalumab and T-DXd prolonged the survival of NSG mice bearing cholangiocarcinoma xenografts. In conclusion, our findings demonstrated that durvalumab and T-DXd synergistically promoted apoptosis in cholangiocarcinoma cells by inhibiting EGR1 expression through inactivation of the p38 MAPK pathway. This study confirmed the potential of durvalumab and T-DXd for the treatment of cholangiocarcinoma.
Collapse
Affiliation(s)
- Yuepeng Wang
- Department of Medical Oncology, Xinglongtai District, Panjin Central Hospital, No.32, Liaohe Middle RoadLiaoning Province 124010, Panjin City, China.
| |
Collapse
|
27
|
Zheng G, Xu M, Dong Z, Abdelrahman Z, Wang X. Meta-analysis reveals an inverse relationship between Alzheimer's disease and cancer. Behav Brain Res 2025; 478:115327. [PMID: 39521145 DOI: 10.1016/j.bbr.2024.115327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/21/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Recent reports have suggested an inverse relationship between Alzheimer's disease (AD) and cancer, although the underlying mechanism remains unclear. We performed an epidemiological meta-analysis to assess cancer likelihood in AD patients and vice versa and explored the role of APOE in tumor immunity across 33 The Cancer Genome Atlas (TCGA) cancer types. Our analysis revealed that people with AD are epidemiologically less likely to develop cancer than individuals without AD (RR: 0.53), and cancer patients are less likely to develop AD than non-cancer patients (RR: 0.61). Notably, APOE expression was positively associated with anti-tumor immune signatures and prevalent in early-stage tumors. This research reveals that AD patients are less likely to develop cancer and vice versa, pinpoints APOE gene as a risk factor for AD with anti-tumor activity, and provides new insight into the epidemiologically observed inverse relationship between both diseases.
Collapse
Affiliation(s)
- Gui Zheng
- Department of Nursing, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Mengli Xu
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Big Data Research Institute, China Pharmaceutical University, Nanjing 211198, China
| | - Zehua Dong
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Big Data Research Institute, China Pharmaceutical University, Nanjing 211198, China
| | - Zeinab Abdelrahman
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast BT12 6BA, UK.
| | - Xiaosheng Wang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Big Data Research Institute, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
28
|
Zhivkov AM, Hristova SH, Popov TT. Anticancer Nanoparticle Carriers of the Proapoptotic Protein Cytochrome c. Pharmaceutics 2025; 17:305. [PMID: 40142969 PMCID: PMC11945056 DOI: 10.3390/pharmaceutics17030305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 03/28/2025] Open
Abstract
This review discusses the literature data on the synthesis, physicochemical properties, and cytotoxicity of composite nanoparticles bearing the mitochondrial protein cytochrome c (cytC), which can act as a proapoptotic mediator in addition to its main function as an electron carrier in the electron transport chain. The introduction of exogenous cytC via absorption of carrier particles, the phagocytosis of colloid particles of submicrometric size, or the receptor-mediated endocytosis of nanoparticles in cancer cells, initiates the process of apoptosis-a multistage cascade of biochemical reactions leading to complete destruction of the cells. CytC-carrier composite particles have the potential for use in the treatment of neoplasms with superficial localization: skin, mouth, stomach, colon, etc. This approach can solve the two main problems of anticancer therapy: selectivity and non-toxicity. Selectivity is based on the incapability of the normal cell to absorb (nano)particles, except for the cells of the immune system. The use of cytC as a protein that normally functions in mitochondria is harmless for the macroorganism. In this review, the factors limiting cytotoxicity and the ways to increase it are discussed from the point of view of the physicochemical properties of the cytC-carrier particles. The different techniques used for the preparation of cytC-bearing colloids and nanoparticles are discussed. Articles reporting the achievement of high cytotoxicity with each of the techniques are critically analyzed.
Collapse
Affiliation(s)
- Alexandar M. Zhivkov
- Scientific Research Center, “St. Kliment Ohridski” Sofia University, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria
| | - Svetlana H. Hristova
- Department of Medical Physics and Biophysics, Medical Faculty, Medical University—Sofia, Zdrave Str. 2, 1431 Sofia, Bulgaria
- Faculty of Physics, Sofia University, 5 James Bourchier Blvd., 1164 Sofia, Bulgaria
| | - Trifon T. Popov
- Medical Faculty, Medical University—Sofia, Zdrave Str. 2, 1431 Sofia, Bulgaria
| |
Collapse
|
29
|
Hu M, Wang L, Zhang F, Xie Y, Zhang T, Liu H, Li Z, Zhang J. Network pharmacology combined with molecular docking and experimental validation of the mechanism of action of columbianetin acetate in the treatment of ovarian cancer. Front Oncol 2025; 15:1515976. [PMID: 40071097 PMCID: PMC11894577 DOI: 10.3389/fonc.2025.1515976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/03/2025] [Indexed: 03/14/2025] Open
Abstract
Background Ovarian cancer is the most prevalent malignant tumor of the female reproductive system and has the highest mortality rate among gynecological cancers. Columbianetin acetate (CE) is one of the active ingredients of Angelica sinensis, which has good antifungal and anti-inflammatory activities. However, its potential mechanism of action in ovarian cancer remains unclear. This study used network pharmacology and molecular docking technology to investigate the molecular mechanism and material basis of CE in the treatment of ovarian cancer, and further verified by in vitro experiments. Methods Relevant targets for CE were obtained from TCMSP and SwissTargetPrediction databases. OMIM, GeneCards and DisGeNET databases were applied to screen ovarian cancer-related targets. The STRING database to obtain protein-protein interaction (PPI) network. Then key targets were obtained using Cytoscape software, followed by expression, survival and ROC diagnostic analyses of core genes using R software. GO and KEGG enrichment analyses were performed using the DAVID database. Binding ability of CE to core targets was assessed by molecular docking. KEGG sites were used to predict core gene-related pathways. Subsequently, in vitro cellular experiments were performed to further investigate the molecular mechanism of CE treatment for ovarian cancer. Results A total of 55 CE-ovarian cancer interaction targets were identified using network pharmacology techniques. Among these, eight key targets -ESR1, GSK3B, JAK2, MAPK1, MDM2, PARP1, PIK3CA, and SRC-were screened using Cytoscape software. Core genes ESR1, GSK3B and JAK2 were obtained based on expression, prognostic and diagnostic values using R software. GO and KEGG enrichment analyses indicated that CE treatment of ovarian cancer might be related to PI3K/Akt signaling pathway, MAPK signaling pathway, ErbB signaling pathway and Ras signaling pathway. The molecular docking results showed that CE had good binding ability with core targets ESR1, GSK3B and JAK2. The results of in vitro cellular experiments indicated that CE may inhibit the proliferation and metastasis of ovarian cancer and promote apoptosis by inhibiting the PI3K/AKT/GSK3B pathway. Conclusions Based on the network pharmacology approach, we predicted the potential mechanism of CE for the treatment of ovarian cancer, which provided a new idea for further research on its pharmacological mechanism.
Collapse
Affiliation(s)
- Mengling Hu
- Department of Genetics, School of Life Sciences, Bengbu Medical University, Bengbu, China
| | - Luyao Wang
- Department of Genetics, School of Life Sciences, Bengbu Medical University, Bengbu, China
| | - Feiyue Zhang
- Department of Genetics, School of Life Sciences, Bengbu Medical University, Bengbu, China
| | - Yiluo Xie
- Department of Clinical Medicine, Bengbu Medical University, Bengbu, China
| | - Tingting Zhang
- Department of Genetics, School of Life Sciences, Bengbu Medical University, Bengbu, China
| | - Hongli Liu
- Department of Gynecological Oncology, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Zhenghong Li
- Department of Genetics, School of Life Sciences, Bengbu Medical University, Bengbu, China
| | - Jing Zhang
- Department of Genetics, School of Life Sciences, Bengbu Medical University, Bengbu, China
| |
Collapse
|
30
|
Zou JX, Chang MR, Kuznetsov NA, Kee JX, Babak MV, Ang WH. Metal-based immunogenic cell death inducers for cancer immunotherapy. Chem Sci 2025:d4sc08495k. [PMID: 40160356 PMCID: PMC11949249 DOI: 10.1039/d4sc08495k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/24/2025] [Indexed: 04/02/2025] Open
Abstract
Immunogenic cell death (ICD) has attracted enormous attention over the past decade due to its unique characteristics in cancer cell death and its role in activating innate and adaptive immune responses against tumours. Many efforts have been dedicated to screening, identifying and discovering ICD inducers, resulting in the validation of several based on metal complexes. In this review, we provide a comprehensive summary of current metal-based ICD inducers, their molecular mechanisms for triggering ICD initiation and subsequent protective antitumour immune responses, along with considerations for validating ICD both in vitro and in vivo. We also aim to offer insights into the future development of metal complexes with enhanced ICD-inducing properties and their applications in potentiating antitumour immunity.
Collapse
Affiliation(s)
- Jiao Xia Zou
- Department of Chemistry, National University of Singapore 4 Science Drive 2 Singapore 117544 Singapore
| | - Meng Rui Chang
- Department of Chemistry, National University of Singapore 4 Science Drive 2 Singapore 117544 Singapore
| | - Nikita A Kuznetsov
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong 83 Tat Chee Avenue Hong Kong SAR 999077 People's Republic of China
| | - Jia Xuan Kee
- Department of Chemistry, National University of Singapore 4 Science Drive 2 Singapore 117544 Singapore
| | - Maria V Babak
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong 83 Tat Chee Avenue Hong Kong SAR 999077 People's Republic of China
| | - Wee Han Ang
- Department of Chemistry, National University of Singapore 4 Science Drive 2 Singapore 117544 Singapore
- NUS Graduate School - Integrative Science and Engineering Programme (ISEP), National University of Singapore 21 Lower Kent Ridge Rd Singapore 119077 Singapore
| |
Collapse
|
31
|
Zhang R, Zhang Z, Xie L, Yu Z, Gao R, Zhang ZR, Zhang Y, Wei X, Chen Y, Jiao S, Gao Y, Guo JP. In vitro analysis of the molecular mechanisms of ursolic acid against ovarian cancer. BMC Complement Med Ther 2025; 25:65. [PMID: 39984915 PMCID: PMC11846399 DOI: 10.1186/s12906-025-04808-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/03/2025] [Indexed: 02/23/2025] Open
Abstract
Ovarian cancer is one of most common gynaecologic malignancy and ranks third in cancer-related deaths among women. Ursolic acid (UA) is a pharmacologically active pentacyclic triterpenoid isolated from a large variety of vegetables, fruits and many traditional medicinal plants. However, the mechanism of action of UA in inhibiting the proliferation of ovarian cancer cells remains unclear. Consequently, this experiment was designed to elucidate the mechanism of action of UA in inhibiting the proliferation of ovarian cancer cells in greater detail.The results indicated that UA was capable of effectively inhibiting the proliferation, migration, and colony formation of ovarian cancer cells.UA was observed to up-regulate Bcl-2-associated X protein(BAX)and cysteinyl aspartate specific proteinase 3 (Caspase3) expression and down-regulating B-cell lymphoma-2(Bcl-2) expression.Meanwhile, UA up-regulated Sequestosome 1(p62)expression and down-regulated coiled-coil, moesin-like BCL2-interacting protein(Becline1), microtubule-associated proteins light chain 3(LC3), Phosphoinositide 3-Kinase(PI3K), andProtein Kinase B( AKT) expression, thus effectively inhibiting autophagy in ovarian cancer cells.Furthermore, UA upregulated pancreatic ER kinase (PKR)-like ER kinase (PERK), eukaryotic translation initiation factor 2 A(eIF2α), and The C/EBP Homologous Protein(CHOP) expression.In addition UA upregulates PERK, eIF2α, and CHOP expression and effectively promotes endoplasmic reticulum stress(ERS).In conclusion, UA can inhibit ovarian cancer cell proliferation, migration, colony formation, and may inhibit tumor cell autophagy by promoting tumor cell ERS, and ultimately promote ovarian cancer cell apoptosis.
Collapse
Affiliation(s)
- Ru Zhang
- School of Clinical Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Zhaopeng Zhang
- School of Pharmacy, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Lulu Xie
- Affiliated Hospital, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Ziqing Yu
- School of Clinical Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Rui Gao
- School of Clinical Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Zhi-Run Zhang
- School of Clinical Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Ying Zhang
- School of Clinical Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Xuyang Wei
- School of Clinical Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Yang Chen
- School of Clinical Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Sue Jiao
- School of Clinical Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Yiren Gao
- Affiliated Hospital, Changchun University of Traditional Chinese Medicine, Changchun, China.
| | - Jun-Peng Guo
- School of Clinical Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China.
| |
Collapse
|
32
|
Nirgude S, Desai S, Ravindran F, Mhatre A, Mahadeva R, Sharma S, Rai PK, Shahana MV, Thumsi J, Choudhary B. Global transcriptome profiling of ST09 treated breast cancer cells identifies miR-197-5p/GPX3 antioxidant axis as a regulator of tumorigenesis. Int Immunopharmacol 2025; 148:114127. [PMID: 39870007 DOI: 10.1016/j.intimp.2025.114127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 01/29/2025]
Abstract
ROS (Reactive Oxygen Species) has a dual role in tumorigenesis. Some cancers have high ROS conditions, and others have low ROS. TNBC thrives on high ROS compared to other Breast Cancer subtypes. Several antioxidant enzymes catalyze the detoxification of reactive oxygen species and prevent free radicals from damaging DNA and accumulation of mutation. Curcumin, a polyphenol dietary supplement, acts as a potent antioxidant, is known to reduce inflammation, and has anticancer properties. Here, we aim to understand alterations in the transcriptome (miRNA and mRNA expression) induced by ST09 in breast cancer cell lines. We identified an antioxidant system that is upregulated in breast cancer cell lines. Among the antioxidant enzymes regulated by miRNA was GPX3. A novel miRNA-mRNA antioxidant axis, miR-197-5p/GPX3, was observed in the TNBC cell line. We further validated the regulation of GPX3 by miRNA using luciferase assay. GPX3 overexpression, knockdown, and activity assay indicated the anti-tumorigenic role of GPX3 in the TNBC cell line. Further, treatment of TNBC xenograft with ST09 showed tumor reduction in vivo. ST09 potentiates the effect of standard-of-care (SOC) drug Cisplatin in vivo. ST09 can be exploited as a single chemotherapeutic agent or in combination treatment modalities, reducing the dosage of potent drugs.
Collapse
Affiliation(s)
- Snehal Nirgude
- Institute of Bioinformatics and Applied Biotechnology, Electronic City Phase 1, Bangalore 560100 India; Working at Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sagar Desai
- Institute of Bioinformatics and Applied Biotechnology, Electronic City Phase 1, Bangalore 560100 India
| | - Febina Ravindran
- Institute of Bioinformatics and Applied Biotechnology, Electronic City Phase 1, Bangalore 560100 India
| | - Anisha Mhatre
- Institute of Bioinformatics and Applied Biotechnology, Electronic City Phase 1, Bangalore 560100 India
| | - Raghunandan Mahadeva
- Institute of Bioinformatics and Applied Biotechnology, Electronic City Phase 1, Bangalore 560100 India
| | - Shivangi Sharma
- Institute of Bioinformatics and Applied Biotechnology, Electronic City Phase 1, Bangalore 560100 India; Graduate Students Registered Under Manipal Academy of Higher Education, Manipal 576104, India; Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka, India
| | - Prashant Kumar Rai
- Institute of Bioinformatics and Applied Biotechnology, Electronic City Phase 1, Bangalore 560100 India; Graduate Students Registered Under Manipal Academy of Higher Education, Manipal 576104, India
| | - M V Shahana
- Institute of Bioinformatics and Applied Biotechnology, Electronic City Phase 1, Bangalore 560100 India; Graduate Students Registered Under Manipal Academy of Higher Education, Manipal 576104, India
| | - Jayanthi Thumsi
- BGS Gleneagles Global Hospitals, Bangalore, Karnataka, India
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Electronic City Phase 1, Bangalore 560100 India.
| |
Collapse
|
33
|
Yin Y, Sun Y, Yao H, Yu F, Jia Q, Hu C, Zhu Y, Duan Z, Liu D, Sun Y, Huo Y, Yang M, Liu W. TMEM105 modulates disulfidptosis and tumor growth in pancreatic cancer via the β-catenin-c-MYC-GLUT1 axis. Int J Biol Sci 2025; 21:1932-1948. [PMID: 40083702 PMCID: PMC11900826 DOI: 10.7150/ijbs.104598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/27/2025] [Indexed: 03/16/2025] Open
Abstract
Background: Pancreatic cancer (PCa) is one of the most malignant diseases in the world. Different from ferroptosis and apoptosis, disulfidptosis is a novel type of cell death. The role of disulfidptosis in PCa remains uncovered. Methods: Disulfidptosis-related lncRNAs were identified based on TCGA-PAAD database. The disulfidptosis-related predict signature was constructed and verified by bioinformatic analysis. TCGA and GTEx database and Renji tissue microarray (TMA) were applied to determine TMEM105 and its clinical significance. F-actin and PI staining were performed to detect disulfidptosis of PCa cells. The biological function of TMEM105 was investigated by loss-of-function and gain-of-function assays. RNA pull-down and LC-MS/MS analysis were employed to detect TMEM105 interacted proteins. The tissue samples from PCa patients with PET-CT information were utilized to validate the TMEM105-β-catenin-c-MYC-GLUT1 pathway in clinical settings. Results: A disulfidptosis-related predict signature, which was comprised of six lncRNAs, was constructed and validated by bioinformatic analysis. TMEM105 was identified as disulfidptosis-related lncRNA whose high expression predicted a poor prognosis in PCa. Functional studies revealed that TMEM105 promoted the growth and mitigated the disulfidptosis in PCa. Mechanically, TMEM105 upregulated the expression of β-catenin by maintaining the protein stability through the proteosome pathway. The forced expressed β-catenin increased the expression of glycolysis-related transcription factor c-MYC, thus induced the transcription activity of GLUT1. Conclusion: These results revealed the growth acceleration and the disulfidptosis mitigation function of TMEM105 in PCa. Targeting the TMEM105-β-catenin-c-MYC-GLUT1 pathway could be a potent therapy for PCa patients.
Collapse
Affiliation(s)
- Yifan Yin
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yixuan Sun
- Department of Gynecology and Obstetrics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200235, China
| | - Hongfei Yao
- Department of General Surgery, Pancreatobiliary Surgery Center, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, China
| | - Feng Yu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Qinyuan Jia
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Chengyu Hu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yuheng Zhu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Zonghao Duan
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Dejun Liu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yongwei Sun
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yanmiao Huo
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Minwei Yang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Wei Liu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
34
|
Yang LK, Ma WJ, Wang X, Chen HR, Jiang YN, Sun H. Apoptosis in polycystic ovary syndrome: Mechanisms and therapeutic implications. Life Sci 2025; 363:123394. [PMID: 39809382 DOI: 10.1016/j.lfs.2025.123394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/30/2024] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
Polycystic ovary syndrome (PCOS) is a common disorder that affects the female reproductive system, with an incidence of 8 % to 15 %. It is characterized by irregular menstruation, hyperandrogenemia, and polycystic abnormalities in the ovaries. Nevertheless, there is still much to learn about the molecular pathways underlying PCOS. Apoptosis is the process by which cells actively destroy themselves, and it is vital to an organism's ability to develop normally and maintain homeostasis. In recent years, a growing body of research has indicated a connection between the pathophysiology of PCOS and apoptosis. Therefore, it is critical to comprehend the relationship between PCOS and apoptosis in greater detail, identify the pathophysiological underpinnings of PCOS, and provide fresh perspectives and targets for its treatment. This review aims to summarize the relationship between PCOS and apoptosis, discuss how apoptosis affects normal ovarian function and how it becomes dysfunctional in the ovaries of PCOS patients, and investigate the signaling pathways associated with apoptosis in PCOS, including PI3K-Akt, TNF, NF-κB, and p53. Additionally, potential therapeutic approaches for PCOS treatment are provided by summarizing the role of apoptosis in PCOS therapy.
Collapse
Affiliation(s)
- Ling-Kun Yang
- Pharmaceutical Experiment Teaching Center, College of Pharmacy, Harbin Medical University, Harbin 150081, PR China
| | - Wan-Jing Ma
- Pharmaceutical Experiment Teaching Center, College of Pharmacy, Harbin Medical University, Harbin 150081, PR China
| | - Xiao Wang
- Pharmaceutical Experiment Teaching Center, College of Pharmacy, Harbin Medical University, Harbin 150081, PR China
| | - Huan-Ran Chen
- Pharmaceutical Experiment Teaching Center, College of Pharmacy, Harbin Medical University, Harbin 150081, PR China
| | - Ya-Nan Jiang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, PR China.
| | - Hui Sun
- Pharmaceutical Experiment Teaching Center, College of Pharmacy, Harbin Medical University, Harbin 150081, PR China.
| |
Collapse
|
35
|
Trybus W, Trybus E, Obarzanowski M, Król T. Quinalizarin induces autophagy, apoptosis and mitotic catastrophe in cervical and prostate cancer cells. Sci Rep 2025; 15:5252. [PMID: 39939343 PMCID: PMC11822151 DOI: 10.1038/s41598-025-89847-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/07/2025] [Indexed: 02/14/2025] Open
Abstract
Cancer diseases are a serious health problem for society, and among them cervical and prostate cancer rank high in terms of mortality. One of the reasons is the phenomenon of drug resistance and side effects accompanying conventional chemo- and radiotherapy. This requires continuous development of alternative treatment methods and searching for new compounds with anti-cancer potential. An example is quinalizarin, which was tested for its anti-cancer potential. The MTT test showed cytotoxic activity of quinalizarin against Hela and DU145 cell lines. Morphological analysis showed nuclear changes typical of apoptosis, which was confirmed by the annexin V/PE test, activation of caspases 3/7 and inhibition of Bcl-2 protein expression. Increased permeability of mitochondrial membranes and ROS generation were demonstrated. Inhibition of cell migration, blocking in the G0/G1 phase, increased number of cells with damaged DNA and an increase in markers of mitotic catastrophe, i.e. micro- and multinucleation including the presence of abnormal mitotic figures were also observed. At the same time, increased autophagy was observed, and preincubation of cells with chloroquine inhibited this process, which contributed to the increased cytotoxicity of quinalizarin towards the tested cells. Quinalizarin has a multidirectional effect based on apoptosis and alternative types of cell death.
Collapse
Affiliation(s)
- Wojciech Trybus
- Department of Medical Biology, Jan Kochanowski University of Kielce, Uniwersytecka 7, Kielce, 25-406, Poland.
| | - Ewa Trybus
- Department of Medical Biology, Jan Kochanowski University of Kielce, Uniwersytecka 7, Kielce, 25-406, Poland.
| | - Mateusz Obarzanowski
- Department of Oncology, Medical College, Jan Kochanowski University of Kielce, al. IX Wieków Kielc 19a, Kielce, 25-516, Poland
- Department of Urology, Holy Cross Cancer Center, Stefana Artwińskiego, Kielce, 25-734, Poland
| | - Teodora Król
- Department of Medical Biology, Jan Kochanowski University of Kielce, Uniwersytecka 7, Kielce, 25-406, Poland
| |
Collapse
|
36
|
Pyrczak-Felczykowska A, Herman-Antosiewicz A. Modification in Structures of Active Compounds in Anticancer Mitochondria-Targeted Therapy. Int J Mol Sci 2025; 26:1376. [PMID: 39941144 PMCID: PMC11818413 DOI: 10.3390/ijms26031376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
Cancer is a multifaceted disease characterised by uncontrolled cellular proliferation and metastasis, resulting in significant global mortality. Current therapeutic strategies, including surgery, chemotherapy, and radiation therapy, face challenges such as systemic toxicity and tumour resistance. Recent advancements have shifted towards targeted therapies that act selectively on molecular structures within cancer cells, reducing off-target effects. Mitochondria have emerged as pivotal targets in this approach, given their roles in metabolic reprogramming, retrograde signalling, and oxidative stress, all of which drive the malignant phenotype. Targeting mitochondria offers a promising strategy to address these mechanisms at their origin. Synthetic derivatives of natural compounds hold particular promise in mitochondrial-targeted therapies. Innovations in drug design, including the use of conjugates and nanotechnology, focus on optimizing these compounds for mitochondrial specificity. Such advancements enhance therapeutic efficacy while minimizing systemic toxicity, presenting a significant step forward in modern anticancer strategies.
Collapse
Affiliation(s)
| | - Anna Herman-Antosiewicz
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, 80-308 Gdańsk, Poland;
| |
Collapse
|
37
|
Varlamova EG, Gudkov SV, Turovsky EA. Differential effect of cerium nanoparticles on the viability, redox-status and Ca 2+-signaling system of cancer cells of various origins. Arch Biochem Biophys 2025; 764:110261. [PMID: 39645139 DOI: 10.1016/j.abb.2024.110261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/12/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
The present study aims to understand the molecular mechanism underlying the therapeutic effect of cerium nanoparticles (CeNPs) in oncology. Cancer cells were treated with different concentrations of pure nanocerium of different sizes synthesized by laser ablation. Due to the not insignificant influence of surface defects and oxygen species on the ROS-modulating properties of cerium nanoparticles, the nanoparticles were not coated with surfactants or organic molecules during synthesis, which could potentially inhibit a number of pro-oxidative effects. Reactive oxygen species (ROS) production, expression of genes encoding redox-status proteins, selenoproteins and proteins regulating cell death and endoplasmic reticulum stress (ER-stress) were investigated as indicators of the molecular mechanism of cancer cell death. Studies were conducted on the effects of cerium nanoparticles on the Ca2+ signaling system of cancer cells of different origins. Mouse fibroblasts (L-929 cell line) were used as non-cancerous ("normal") cells for which a whole series of experiments were performed, and a comparative analysis of the effects of nanoceria. It was found that 75 nm-sized cerium nanoparticles did not affect the redox-status and ROS production of cancer cells. In fibroblast cells, however, this nanoparticle diameter led to a deterioration of the cellular redox status and ROS production in a wide range of nanoparticle concentrations. Larger nanoparticles (100 nm-sized and 160 nm-sized), on the other hand, showed a different effect on cancer cells of different origins. In mouse fibroblast L-929 cells, however, 100 nm-sized or 160 nm-sized CeNPs acted in a high concentration range to disrupt mitochondrial membrane potential and activate early apoptosis. High concentrations of CeNPs were required to increase ROS production, reduce redox-status and induce apoptosis in human A-172 glioblastoma cells compared to the hepatocellular carcinoma cell line HepG2 and the breast cancer cell line MCF-7. In the A-172 glioblastoma cells, ER-stress was also not activated and their Ca2+ signaling system was activated by a significantly higher concentration of CeNPs, which could also contribute to the formation of tolerance of this cancer cell line to nanoceria. The Ca2+ signaling system of mouse fibroblasts was found to be highly sensitive to activation by nanoceria and the cells produced Ca2+ signals with higher amplitude compared to A-172 and MCF-7 cells.
Collapse
Affiliation(s)
- Elena G Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290, Pushchino, Russia
| | - Sergey V Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilove st., 119991, Moscow, Russia
| | - Egor A Turovsky
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290, Pushchino, Russia.
| |
Collapse
|
38
|
Kato A, Takahashi H, Asai H, Uehara S, Harata S, Fujii Y, Watanabe K, Yanagita T, Suzuki T, Ushigome H, Shiga K, Yamakawa Y, Ogawa R, Mitsui A, Matsuo Y, Takiguchi S. Bcl‑xL‑specific BH3 mimetic A‑1331852 suppresses proliferation of fluorouracil‑resistant colorectal cancer cells by inducing apoptosis. Oncol Rep 2025; 53:26. [PMID: 39717947 PMCID: PMC11718432 DOI: 10.3892/or.2024.8859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 11/14/2024] [Indexed: 12/25/2024] Open
Abstract
BH3 mimetics are small‑molecule inhibitors of the antiapoptotic Bcl‑2 family and have therapeutic efficacy against hematological malignancies. BH3 mimetic A‑1331852 suppresses colorectal cancer cell proliferation. Progressive resistance to the widely used anticancer agent fluorouracil (5‑FU) is a key reason for colorectal cancer recurrence; therefore, the present study tested if A‑1331852 can suppress the proliferation of 5‑FU‑resistant colorectal cancer cells. A 5‑FU‑resistant colorectal cancer cell line was derived from HCT116 cells and compared with the parental line. Expression levels of the antiapoptotic Bcl‑2 proteins Bcl‑xL and myeloid cell leukemia 1 (Mcl‑1) were determined via western blotting, proliferation in the presence of 5‑FU and following small interfering (si)RNA‑mediated Bcl‑xL or Mcl‑1 knockdown was assessed by WST‑1 assay and sensitivity to A‑1331852‑induced apoptosis was assessed via western blotting and DNA fragmentation assay. In addition, a xenograft mouse model of 5‑FU‑resistant colorectal cancer was established via subcutaneous inoculation of 5‑FU‑resistant HCT116 cells to examine the in vivo antitumor efficacy of A‑1331852. Compared with the parental line, 5‑FU‑resistant cells overexpressed Bcl‑xL. Knockdown of Bcl‑xL by siRNA and treatment with A‑1331852 suppressed proliferation and induced the apoptosis of both 5‑FU‑resistant and parental HCT116 cells, but the potency of both effects was stronger in 5‑FU‑resistant than parental HCT116 cells. Furthermore, A‑1331852 suppressed the growth of xenograft tumors derived from 5‑FU‑resistant cells by inducing apoptosis. Overall, the present findings suggested that Bcl‑xL upregulation contributes to 5‑FU resistance of colorectal cancer and targeted inhibition by A‑1331852 may be an effective treatment strategy.
Collapse
Affiliation(s)
- Akira Kato
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Hiroki Takahashi
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Hiroyuki Asai
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Shuhei Uehara
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Shinnosuke Harata
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Yoshiaki Fujii
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Kaori Watanabe
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Takeshi Yanagita
- Department of Gastroenterological Surgery, Toyokawa City Hospital, Toyokawa, Aichi 442-8561, Japan
| | - Takuya Suzuki
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Hajime Ushigome
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Kazuyoshi Shiga
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Yushi Yamakawa
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Ryo Ogawa
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Akira Mitsui
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Yoichi Matsuo
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Shuji Takiguchi
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| |
Collapse
|
39
|
Ramasamy SS, Adhigaman K, Nandakumar V, Sundarasamy A, Jagadeesan S, Saravanakumar M, Malecki JG, Easwaran N, Thangaraj S. In-Silico exploration: Unraveling the anti-cancer potential of 8-Nitroquinoline hydrazides. J Mol Struct 2025; 1321:140218. [DOI: 10.1016/j.molstruc.2024.140218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
40
|
Han Y, Sun Z. Anticancer potential of osthole: targeting gynecological tumors and breast cancer. Pharmacol Rep 2025; 77:87-102. [PMID: 39617816 DOI: 10.1007/s43440-024-00685-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 01/21/2025]
Abstract
Gynecological tumors, such as ovarian, endometrial, and cervical cancers, alongside breast cancer, represent significant malignancies that pose serious threats to women's health worldwide. Standard treatments, including surgery, chemotherapy, radiotherapy, and targeted therapies, are commonly utilized in clinical practice. However, challenges such as high recurrence rates, drug resistance, and adverse side effects underscore the urgent need for more effective therapeutic options. Osthole, a natural coumarin compound derived from Chinese herbal medicine, has demonstrated remarkable antitumor activity against various cancers. Emerging evidence indicates that osthole can inhibit the proliferation, invasion, and metastasis of gynecological and breast cancer cells through various mechanisms, including inducing apoptosis and autophagy, regulating the tumor microenvironment, inhibiting tumor angiogenesis, and enhancing the sensitivity of cancer cells to chemotherapy and radiotherapy. This review highlights the recent advancements in osthole research within the context of gynecological and breast cancers, focusing on its molecular mechanisms, and offers a theoretical foundation for its potential development as an anticancer agent.
Collapse
Affiliation(s)
- Yingqi Han
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, 16369 Jingshi Road, Lixia District, Jinan, Shangdong Province, 250014, China
| | - Zhengao Sun
- Department of Reproduction and Genetics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 42 Wenhua West Road, Lixia District, Jinan, Shangdong Province, 250014, China.
| |
Collapse
|
41
|
Lee SO, Joo SH, Park J, Khong QT, Seo SY, Yoon G, Park JW, Na M, Shim JH. Deoxybouvardin Glucoside Induces Apoptosis in Oxaliplatin-Sensitive and -Resistant Colorectal Cancer Cells via Reactive Oxygen Species-Mediated Activation of JNK and p38 MAPK. J Microbiol Biotechnol 2025; 35:e2410008. [PMID: 39947664 DOI: 10.4014/jmb.2410.10008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/22/2024] [Accepted: 12/06/2024] [Indexed: 03/06/2025]
Abstract
The roots of Rubia spp. (Rubiaceae) have been employed to treat hematemesis, inflammatory disease, and tumor. Cyclohexapeptides derived from Rubia spp. have been reported to have antitumor potential; however, the mechanism of action for their antitumor activity remains unclear. We aimed to examine the antitumor effect of deoxybouvardin glucoside (DBG), a cyclohexapeptide from Rubia spp. on oxaliplatin (Ox)-resistant human HCT116 colorectal cancer (CRC) cells. Cell viability in the presence of DBG was monitored using an MTT viability assay, and flow cytometry was used to analyze changes in apoptosis, cell cycle, mitochondrial membrane potential (MMP), and reactive oxygen species (ROS) activity. The antiproliferative activity involved apoptosis and phosphorylation of JNK and p38 MAPK. Inhibition of JNK and p38 MAPK by specific inhibitors prevented DBG-induced apoptosis, underscoring the close involvement of these kinases. Further, DBG induced cell cycle arrest in CRC cells at the G2/M phase by regulating the p21, p27, cyclin B1, and cdc2 proteins. DBG-induced apoptosis was accompanied mitochondrial membrane depolarization, resulting in cytochrome c release into the cytoplasm and caspase activation. Remarkably, DBG induced apoptosis by generating high ROS levels. The mediation of apoptosis by increased ROS generation was confirmed by pretreatment with the ROS scavenger N-acetyl cysteine (NAC). Collectively, DBG exhibited anticancer activity against both Ox-sensitive and Ox-resistant CRC cells by targeting JNK and p38 MAPK, inducing cell cycle arrest, elevating cellular ROS levels, and disrupting MMP. This study suggests that DBG has the potential to be utilized as a therapeutic agent for treating Ox-resistant CRC.
Collapse
Affiliation(s)
- Seung-On Lee
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
| | - Sang Hoon Joo
- College of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Republic of Korea
| | - Jisu Park
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Quan T Khong
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Si Yeong Seo
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
| | - Goo Yoon
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
| | - Jin Woo Park
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
| | - MinKyun Na
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jung-Hyun Shim
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, P.R. China
| |
Collapse
|
42
|
Barkat MA, Fatima A, Riaz B, Hassan MZ, Ahamad T, Alanezi AA, Barkat H, Almuqati AF, Asiri YI, Siddiqui S. Bidirectional approach of Punica granatum natural compounds: reduction in lung cancer and SARS-CoV-2 propagation. BMC Complement Med Ther 2025; 25:32. [PMID: 39885485 PMCID: PMC11781039 DOI: 10.1186/s12906-024-04738-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/19/2024] [Indexed: 02/01/2025] Open
Abstract
The spreading of COVID-19 has posed a risk to global health, especially for lung cancer patients. An investigation is needed to overcome the challenges of COVID-19 pathophysiology and lung cancer disease. This study was designed to evaluate the phytoconstituents in Punica granatum peel (PGP), its anti-lung cancer activity, and in silico evaluation for antiviral potential. GC-MS technique was used to detect the phytoconstituents. Cytotoxicity was analyzed using MTT dye, followed by apoptosis, ROS generation, and cell cycle phase detection in human lung cancer cells (A549). The glide module of Maestro software was used to investigate the molecular-docking interaction of the constituents against main protease (Mpro) and papain-like protease (PLpro) of SARS-CoV-2. GROMACS 2023.2 was utilized to evaluate the complex stability. A total of nineteen phytocomponents were detected in the PGP extract through GC-MS analysis. PGP has shown a potential to reduce lung cancer cell proliferation while evading normal cell death. PGP induced apoptosis by arresting cells in the G0/G1 phase and generating ROS. A total of six and eight phytocomponents had a high affinity for PLpro and Mpro proteins, respectively. The top docked complex, ethyl 5-oxo-2-pyrrolidinecarboxylate, with PLpro and Mpro proteins, showed likely stable interaction throughout 100 ns simulation. This finding raises the possibility of top-eight hits (docking score ≥ -1.0 kcal/mol) preventing SARS-CoV-2 severity. The phytoconstituents exhibited orally active drugs with no more than one violation and drug-likeness activity. The PGP phytoconstituents are suggested to be dual agents for lung cancer and SARS-CoV-2 pathogenesis.
Collapse
Affiliation(s)
- Md Abul Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al-Batin, Al Jamiah, 39524, Hafr Al Batin, Saudi Arabia
| | - Afreen Fatima
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Al Batin, 39524, Hafr Al Batin, Saudi Arabia
| | - Bushra Riaz
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Al Batin, 39524, Hafr Al Batin, Saudi Arabia
| | - Mohd Zaheen Hassan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Asir, Saudi Arabia
| | - Tanveer Ahamad
- Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Lucknow, India
| | - Abdulkareem A Alanezi
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al-Batin, Al Jamiah, 39524, Hafr Al Batin, Saudi Arabia
| | - Harshita Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al-Batin, Al Jamiah, 39524, Hafr Al Batin, Saudi Arabia
| | - Afaf F Almuqati
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hafr Al-Batin, Al Jamiah, 39524, Hafr Al Batin, Saudi Arabia
| | - Yahya I Asiri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Asir, Saudi Arabia
| | - Sahabjada Siddiqui
- Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Lucknow, India.
| |
Collapse
|
43
|
Yao M, Ding Y, Sun Y, Gao K, Li R, Zhang W, Li W, Wang Y, Qiao Y, Tang H, Wang J. PD15, a steroidal saponin, induces apoptosis of HCT116 colorectal cancer cells via suppressing the Akt/GSK3β pathway. J Pharm Pharmacol 2025:rgae151. [PMID: 39879640 DOI: 10.1093/jpp/rgae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/27/2024] [Indexed: 01/31/2025]
Abstract
OBJECTIVES PD15, a novel natural steroidal saponin extracted from the rhizomes of Paris delavayi Franchet, has demonstrated a strong cytotoxic effect against HepG2 and U87MG cells. However, its therapeutic effects on colorectal cancer (CRC) and the underlying molecular mechanisms remain unclear. METHODS MTT assay, clonogenic assay, Hoechst 33258 staining, flow cytometry, molecular docking, and western blot were used to investigate the mechanism of PD15 in HCT116 cell lines. Additionally, the anti-CRC effects of PD15 were evaluated in vivo using HCT116 xenograft models. KEY FINDINGS PD15 significantly inhibited cell proliferation and induced G0/G1 phase arrest in HCT116 cells. Furthermore, PD15 upregulated cleaved Caspase 3 and 9, cleaved PARP, and Bax expression levels while downregulating Bcl-2, leading to apoptosis. Further experiments revealed that PD15 downregulated the protein expression of p-Akt and p-GSK3β, with LY294002 (a PI3K/Akt inhibitor) enhancing PD15-induced apoptosis and its effects on Akt/GSK3β-associated proteins. In addition, molecular docking demonstrated that PD15 exhibited strong binding affinity with Akt and GSK3β. Critically, PD15 inhibited CRC growth in vivo without causing apparent toxicity in mice. CONCLUSIONS These findings indicate that PD15 could trigger apoptosis by suppressing the Akt/GSK3β signaling pathway in HCT116 cells.
Collapse
Affiliation(s)
- Minna Yao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yang Sun
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Kai Gao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Ruili Li
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Wei Zhang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Weiwei Li
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yanhua Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yi Qiao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Haifeng Tang
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Jingwen Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
44
|
Kwiatek M, Murthy GSG, Hoffmann M, Tessoulin B, Danilov A, Alencar AJ, Shah NN, Ghesquieres H, Le Gouill S, Jurczak W, Han H, Yuen E, Patel V, Guo-Avrutin Y, Pauff JM, Roeker LE. A First-in-Human Phase I Study of LOXO-338, an Oral Selective Bcl-2 Inhibitor, in Patients With Advanced Hematologic Malignancies. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2025:S2152-2650(25)00034-5. [PMID: 40000354 DOI: 10.1016/j.clml.2025.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/16/2025] [Accepted: 01/26/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND LOXO-338 is a novel, orally bioavailable small-molecule inhibitor of Bcl-2, designed to achieve selectivity for Bcl-2 over Bcl-xL, thus avoiding dose-limiting thrombocytopenia associated with Bcl-xL inhibition. This first-in-human, open-label, Phase 1 study investigated LOXO-338 in patients with chronic lymphocytic leukemia (CLL), small lymphocytic lymphoma (SLL), or B-cell non-Hodgkin lymphoma (NHL) (NCT05024045). PATIENTS AND METHODS Patients with histologically confirmed advanced B-cell malignancies who had received ≥ 2 prior therapies were enrolled in Phase 1 dose escalation (interval 3 + 3 design). LOXO-338 was administered orally as 50 to 300 mg once-daily dose until discontinuation due to progressive disease or unacceptable toxicity. The primary objective was to determine the maximum tolerated dose (MTD)/recommended Phase 2 dose of LOXO-338. Secondary objectives included safety, tolerability, pharmacokinetics, and preliminary antitumor activity. RESULTS In total, 27 patients with CLL/SLL (n = 10) or NHL (n = 17) were treated. No dose-limiting toxicities occurred and the MTD was not reached. Treatment-emergent adverse events occurred in 23 patients (85%); anemia (22%) and fatigue (22%) were the most prevalent. Treatment-related adverse events (TRAEs) occurred in 15% and were mostly grade 1 (11%) or 2 (4%); grade ≥ 3 or serious TRAEs were not reported. Tumor lysis syndrome was not observed. The overall response rate was 19% (95% CI: 6.3, 38.1) and disease control rate was 67% (95% CI: 46, 83.5). LOXO-338 was orally bioavailable with dose-dependent increases in exposure. CONCLUSION LOXO-338 was well tolerated with a favorable safety profile in previously treated patients with advanced hematologic malignancies. Preliminary efficacy was observed in this heavily pretreated population supporting further investigation.
Collapse
Affiliation(s)
| | | | - Marc Hoffmann
- Division of Hematologic Malignancies and Cellular Therapeutics, University of Kansas Cancer Center, Overland Park, KS
| | - Benoit Tessoulin
- Service d'Hématologie Clinique, CHU de Nantes, Place Alexis Ricordeau, Nantes, France
| | - Alexey Danilov
- Toni Stephenson Lymphoma Center, City of Hope National Medical Center, Duarte, CA
| | - Alvaro J Alencar
- Department of Medicine, Division of Hematology, University of Miami Sylvester Comprehensive Cancer Center, Miami, FL
| | - Nirav N Shah
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI
| | | | - Steven Le Gouill
- Service d'hématologie, Institut Curie, 5 Rue Gaston Latouche, 92210, Saint-Cloud, France; Université de Versailles Saint-Quentin (UVSQ), France; Laboratoire d'Imagerie Translationnelle en Oncologie (LITO), U1288 Inserm/Institut Curie Centre de recherche
| | - Wojciech Jurczak
- Department of Clinical Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Krakow, Poland
| | | | | | | | | | | | | |
Collapse
|
45
|
Zhao J, Liu Y, Zhou L, Liu Y. Retinol-Binding Protein 4 as a Biomarker in Cancer: Insights from a Pan-Cancer Analysis of Expression, Immune Infiltration, and Methylation. Genes (Basel) 2025; 16:150. [PMID: 40004479 PMCID: PMC11855459 DOI: 10.3390/genes16020150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/19/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Retinol-binding protein 4 (RBP4) is primarily recognized for its role in retinoid transport, but has recently been implicated in cancer progression and prognosis. However, a comprehensive pan-cancer analysis of RBP4's expression, prognostic significance, and functional associations across various cancers is lacking. METHODS We conducted a pan-cancer analysis of RBP4 using data from public databases. RBP4 expression levels were examined in 33 tumor types, and correlations with clinical outcomes, immune cell infiltration, DNA methylation, and gene mutations were assessed. Enrichment analyses of RBP4 and its co-expressed genes were performed to explore associated biological pathways. Additionally, in vitro experiments were conducted to assess the effects of RBP4 on cell migration and proliferation. RESULTS RBP4 showed differential expression between tumor and normal tissues, with downregulation in 21 cancer types and upregulation in 6. High expression levels of RBP4 were associated with poor overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI) in specific cancers, notably in BRCA, HNSC, and STAD, whereas it was a favorable prognostic factor in cancers such as KIRP and MESO. RBP4 expression was also associated with immune cell infiltration, particularly with CD4+ Th2 cells and immune checkpoint genes. DNA methylation analysis suggested that the methylation of RBP4 may play a role in its regulatory mechanisms across cancer types. Enrichment analyses revealed that RBP4 and its co-expressed genes are involved in metabolism-related pathways and immune regulation. Functional assays indicated that RBP4 knockdown promoted tumor cell migration and proliferation. CONCLUSIONS This study provides a comprehensive pan-cancer analysis of RBP4, identifying its prognostic potential and possible involvement in tumor immunity and metabolism. Our findings suggest that RBP4 could serve as a novel biomarker and therapeutic target in cancer, although further experimental studies are required to elucidate its precise mechanisms in specific cancer types.
Collapse
Affiliation(s)
| | | | | | - Yi Liu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (J.Z.)
| |
Collapse
|
46
|
Abd Elhameed AA, Ali AR, Ghabbour HA, Bayomi SM, El-Gohary NS. Probing structural requirements for thiazole-based mimetics of sunitinib as potent VEGFR-2 inhibitors. RSC Med Chem 2025:d4md00754a. [PMID: 39850549 PMCID: PMC11753467 DOI: 10.1039/d4md00754a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/29/2024] [Indexed: 01/25/2025] Open
Abstract
Novel thiazole analogs 3a, 3b, 4, 5, 6a-g, 8a, 8b, 9a-c, 10a-d and 11 were designed and synthesized as molecular mimetics of sunitinib. In vitro antitumor activity of the obtained compounds was investigated against HepG2, HCT-116, MCF-7, HeP-2 and HeLa cancer cell lines. The obtained data showed that compounds 3b and 10c are the most potent members toward HepG2, HCT-116, MCF-7 and HeLa cells. Moreover, compounds 3a, 3b, 6g, 8a and 10c were assessed for their in vitro VEGFR-2 inhibitory activity. Results proved that compound 10c exhibited outstanding VEGFR-2 inhibition (IC50 = 0.104 μM) compared to sunitinib. Compound 10c paused the G0-G1 phase of the cell cycle in HCT-116 and MCF-7 cells and the S phase in HeLa cells. Additionally, compound 10c elevated caspase-3/9 levels in HCT-116 and HeLa cells, leading to cancer cell death via apoptosis. Furthermore, compound 10c showed a significant reduction in tumor volume in Swiss albino female mice as an in vivo breast cancer model. Docking results confirmed the tight binding interactions of compound 10c with the VEGFR-2 binding site, with its binding energy surpassing that of sunitinib. In silico PK studies predicted compound 10c to have good oral bioavailability and a good drug score with low human toxicity risks.
Collapse
Affiliation(s)
- Alaa A Abd Elhameed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University Mansoura 35516 Egypt
| | - Ahmed R Ali
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University Mansoura 35516 Egypt
| | - Hazem A Ghabbour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University Mansoura 35516 Egypt
| | - Said M Bayomi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University Mansoura 35516 Egypt
| | - Nadia S El-Gohary
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University Mansoura 35516 Egypt
| |
Collapse
|
47
|
Wu X, Gu R, Tang M, Mu X, He W, Nie X. Elucidating the dual roles of apoptosis and necroptosis in diabetic wound healing: implications for therapeutic intervention. BURNS & TRAUMA 2025; 13:tkae061. [PMID: 39845196 PMCID: PMC11752647 DOI: 10.1093/burnst/tkae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 01/24/2025]
Abstract
Wound healing is a complex and multistep biological process that involves the cooperation of various cell types. Programmed cell death, including apoptosis and necrotizing apoptosis, plays a crucial role in this process. Apoptosis, a controlled and orderly programmed cell death regulated by genes, helps eliminate unnecessary or abnormal cells and maintain internal environmental stability. It also regulates various cell functions and contributes to the development of many diseases. In wound healing, programmed cell death is essential for removing inflammatory cells and forming scars. On the other hand, necroptosis, another form of programmed cell death, has not been thoroughly investigated regarding its role in wound healing. This review explores the changes and apoptosis of specific cell groups during wound healing after an injury and delves into the potential underlying mechanisms. Furthermore, it briefly discusses the possible mechanisms linking wound inflammation and fibrosis to apoptosis in wound healing. By understanding the relationship between apoptosis and wound healing and investigating the molecular mechanisms involved in apoptosis regulation, new strategies for the clinical treatment of wound healing may be discovered.
Collapse
Affiliation(s)
- Xingqian Wu
- College of Pharmacy, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu New District, Zunyi 563006, China
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu New District, Zunyi 563006, China
| | - Rifang Gu
- School Medical Office, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu New District, Zunyi 563006, China
| | - Ming Tang
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, United States
| | - Xingrui Mu
- College of Pharmacy, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu New District, Zunyi 563006, China
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu New District, Zunyi 563006, China
| | - Wenjie He
- College of Pharmacy, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu New District, Zunyi 563006, China
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu New District, Zunyi 563006, China
| | - Xuqiang Nie
- College of Pharmacy, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu New District, Zunyi 563006, China
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No. 6 West Xuefu Road, Xinpu New District, Zunyi 563006, China
| |
Collapse
|
48
|
Oliveira-Silva JM, Oliveira LS, Chiminazo CB, Fonseca R, de Souza CVE, Aissa AF, de Almeida Lima GD, Ionta M, Castro-Gamero AM. WT161, a selective HDAC6 inhibitor, decreases growth, enhances chemosensitivity, promotes apoptosis, and suppresses motility of melanoma cells. Cancer Chemother Pharmacol 2025; 95:22. [PMID: 39821335 DOI: 10.1007/s00280-024-04731-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/25/2024] [Indexed: 01/19/2025]
Abstract
PURPOSE Histone deacetylase 6 (HDAC6) plays a critical role in tumorigenesis and tumor progression, contributing to proliferation, chemoresistance, and cell motility by regulating microtubule architecture. Despite its upregulation in melanoma tissues and cell lines, the specific biological roles of HDAC6 in melanoma are not well understood. This study aims to explore the functional effects and underlying mechanisms of WT161, a selective HDAC6 inhibitor, in melanoma cell lines. METHODS Cell proliferation was assessed using both 2D and 3D cell culture systems, including MTT assays, spheroid growth analyses, and colony formation assays. The interaction between WT161 and the chemotherapeutic agents temozolomide (TMZ) or dacarbazine (DTIC) was evaluated using the Chou-Talalay method. Apoptotic cell death was analyzed through flow cytometry, while migration, adhesion, and invasion assays were conducted to evaluate the motility capacities of melanoma cells. Western blot assays quantified α-tubulin acetylation (Lys40), PARP cleavage, and protein levels of β-catenin and E-cadherin. RESULTS WT161 significantly reduced cell growth in both 2D and 3D cultures, decreased clonogenic capacity, and showed synergistic interactions with TMZ and DTIC. The inhibitor also induced apoptotic cell death and enhanced TMZ-induced apoptosis. Additionally, WT161 reduced cell migration and invasion while increasing cell adhesion. These effects were linked to changes in β-catenin and E-cadherin levels, depending on the specific cell type evaluated. CONCLUSION Our study underscores the pivotal role of HDAC6 in melanoma progression, establishing it as a promising therapeutic target. We provide the first comprehensive evidence of WT161's anti-melanoma effects, setting the stage for further research into HDAC6 inhibitors as a potential strategy for melanoma treatment.
Collapse
Affiliation(s)
- João Marcos Oliveira-Silva
- Human Genetics Laboratory, Institute of Natural Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, MG, 37130-001, Brazil
- Postgraduate Program in Biosciences Applied to Health (PPGB), Federal University of Alfenas (UNIFAL-MG), Alfenas, MG, 37130-001, Brazil
| | - Leilane Sales Oliveira
- Human Genetics Laboratory, Institute of Natural Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, MG, 37130-001, Brazil
- Postgraduate Program in Biosciences Applied to Health (PPGB), Federal University of Alfenas (UNIFAL-MG), Alfenas, MG, 37130-001, Brazil
| | - Carolina Berraut Chiminazo
- Human Genetics Laboratory, Institute of Natural Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, MG, 37130-001, Brazil
| | - Rafael Fonseca
- Institute of Biomedical Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, MG, 37130-001, Brazil
| | | | - Alexandre Ferro Aissa
- Institute of Biomedical Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, MG, 37130-001, Brazil
- Postgraduate Program in Biosciences Applied to Health (PPGB), Federal University of Alfenas (UNIFAL-MG), Alfenas, MG, 37130-001, Brazil
| | - Graziela Domingues de Almeida Lima
- Institute of Biomedical Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, MG, 37130-001, Brazil
- Postgraduate Program in Biosciences Applied to Health (PPGB), Federal University of Alfenas (UNIFAL-MG), Alfenas, MG, 37130-001, Brazil
| | - Marisa Ionta
- Institute of Biomedical Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, MG, 37130-001, Brazil
- Postgraduate Program in Biosciences Applied to Health (PPGB), Federal University of Alfenas (UNIFAL-MG), Alfenas, MG, 37130-001, Brazil
| | - Angel Mauricio Castro-Gamero
- Human Genetics Laboratory, Institute of Natural Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, MG, 37130-001, Brazil.
- Postgraduate Program in Biosciences Applied to Health (PPGB), Federal University of Alfenas (UNIFAL-MG), Alfenas, MG, 37130-001, Brazil.
| |
Collapse
|
49
|
Koolivand Z, Bahreini F, Rayzan E, Rezaei N. Inducing apoptosis in acute myeloid leukemia; mechanisms and limitations. Heliyon 2025; 11:e41355. [PMID: 39811307 PMCID: PMC11730532 DOI: 10.1016/j.heliyon.2024.e41355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
Acute myeloid leukemia is the expansion of leukemic stem cells which might originate from a stem cell or a progenitor which has acquired self-renewal capacity. An aggregation of leukemic blasts in bone marrow, peripheral blood, and extramedullary tissue will result in acute myeloid leukemia. The main difficulty in treating acute myeloid leukemia is multidrug resistance, leading to treatment failure. This unfortunate phenomenon is practically elevated because of apoptosis inhibition in tumor cells. Two general apoptotic pathways are the Bcl-2 regulated pathway (the intrinsic pathway) and the death receptor pathway. Deficiencies in each of these apoptotic pathways can cause the usual resistance mechanism in this disease. This article reviews and highlights different antiapoptotic pathways, currently-used treatments, and new findings in this field, which may lead to the development of treatment methods for acute myeloid leukemia.
Collapse
Affiliation(s)
- Zahra Koolivand
- Faculty of Pharmacy and Pharmaceutical Sciences, Islamic Azad University, Tehran Medical Sciences University (IAUTMU), Tehran, Iran
- International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Farbod Bahreini
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Institute of Anatomy, University of Luebeck, Luebeck, Germany
| | - Elham Rayzan
- International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
50
|
Kyrgiafini MA, Katsigianni M, Giannoulis T, Sarafidou T, Chatziparasidou A, Mamuris Z. Integrative Analysis of Whole-Genome and Transcriptomic Data Reveals Novel Variants in Differentially Expressed Long Noncoding RNAs Associated with Asthenozoospermia. Noncoding RNA 2025; 11:4. [PMID: 39846682 PMCID: PMC11755663 DOI: 10.3390/ncrna11010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/05/2025] [Accepted: 01/08/2025] [Indexed: 01/24/2025] Open
Abstract
Background/Objectives: Asthenozoospermia, characterized by reduced sperm motility, is a common cause of male infertility. Emerging evidence suggests that noncoding RNAs, particularly long noncoding RNAs (lncRNAs), play a critical role in the regulation of spermatogenesis and sperm function. Coding regions have a well-characterized role and established predictive value in asthenozoospermia. However, this study was designed to complement previous findings and provide a more holistic understanding of asthenozoospermia, this time focusing on noncoding regions. This study aimed to identify and prioritize variants in differentially expressed (DE) lncRNAs found exclusively in asthenozoospermic men, focusing on their impact on lncRNA structure and lncRNA-miRNA-mRNA interactions. Methods: Whole-genome sequencing (WGS) was performed on samples from asthenozoospermic and normozoospermic men. Additionally, an RNA-seq dataset from normozoospermic and asthenozoospermic individuals was analyzed to identify DE lncRNAs. Bioinformatics analyses were conducted to map unique variants on DE lncRNAs, followed by prioritization based on predicted functional impact. The structural impact of the variants and their effects on lncRNA-miRNA interactions were assessed using computational tools. Gene ontology (GO) and KEGG pathway analyses were employed to investigate the affected biological processes and pathways. Results: We identified 4173 unique variants mapped to 258 DE lncRNAs. After prioritization, 5 unique variants in 5 lncRNAs were found to affect lncRNA structure, while 20 variants in 17 lncRNAs were predicted to disrupt miRNA-lncRNA interactions. Enriched pathways included Wnt signaling, phosphatase binding, and cell proliferation, all previously implicated in reproductive health. Conclusions: This study identifies specific variants in DE lncRNAs that may play a role in asthenozoospermia. Given the limited research utilizing WGS to explore the role of noncoding RNAs in male infertility, our findings provide valuable insights and a foundation for future studies.
Collapse
Affiliation(s)
- Maria-Anna Kyrgiafini
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| | - Maria Katsigianni
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| | - Themistoklis Giannoulis
- Laboratory of Biology, Genetics and Bioinformatics, Department of Animal Sciences, University of Thessaly, Gaiopolis, 41336 Larissa, Greece
| | - Theologia Sarafidou
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| | - Alexia Chatziparasidou
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
- Embryolab IVF Unit, St. 173-175 Ethnikis Antistaseos, Kalamaria, 55134 Thessaloniki, Greece
| | - Zissis Mamuris
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| |
Collapse
|