1
|
Meier C, Brieger A. The role of IL-8 in cancer development and its impact on immunotherapy resistance. Eur J Cancer 2025; 218:115267. [PMID: 39899909 DOI: 10.1016/j.ejca.2025.115267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/28/2025] [Accepted: 01/28/2025] [Indexed: 02/05/2025]
Abstract
Tumors are structures of high complexity. Plurality of their structural and functional components - heterogeneity, diversity, directionality, interdependence and integration of signaling pathways - seem to follow isolated local rules, whereby a superordinate structure remains largely unknown. Understanding the complexity of cancer is the mainstay in finding determinants and developing effective therapies. Interleukin 8 (IL-8) is a potent pro-inflammatory chemokine that is significantly elevated in many different tumor entities. In contrast to its initially postulated anti-tumor properties, an increasing number of studies have been published in recent years linking this chemokine with tumor-promoting features and poor prognosis. This review summarizes the current state and diversity of the role of IL-8 in the development of cancer.
Collapse
Affiliation(s)
- Clara Meier
- Goethe University Frankfurt, University Hospital, Medical Clinic 1, Biomedical Research Laboratory, Frankfurt am Main, Germany
| | - Angela Brieger
- Goethe University Frankfurt, University Hospital, Medical Clinic 1, Biomedical Research Laboratory, Frankfurt am Main, Germany.
| |
Collapse
|
2
|
Lin Y, Liang Z, Weng Z, Liu X, Zhang F, Chong Y. CRSP8-driven fatty acid metabolism reprogramming enhances hepatocellular carcinoma progression by inhibiting RAN-mediated PPARα nucleus-cytoplasm shuttling. J Exp Clin Cancer Res 2025; 44:93. [PMID: 40069732 PMCID: PMC11895297 DOI: 10.1186/s13046-025-03329-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/14/2025] [Indexed: 03/15/2025] Open
Abstract
BACKGROUND In-depth exploration into the dysregulation of lipid metabolism in hepatocellular carcinoma (HCC) has contributed to the development of advanced antitumor strategies. CRSP8 is a critical component of mediator multiprotein complex involved in transcriptional recruiting. However, the regulatory mechanisms of CRSP8 on fatty acid metabolism reprogramming and HCC progression remain unclear. METHODS In-silico/house dataset analysis, lipid droplets (LDs) formation, HCC mouse models and targeted lipidomic analysis were performed to determine the function of CRSP8 on regulating lipid metabolism in HCC. The subcellular colocalization and live cell imaging of LDs, transmission electron microscopy, co-immunoprecipitation and luciferase reporter assay were employed to investigate their potential mechanism. RESULTS CRSP8 was identified as a highly expressed oncogene essential for the proliferation and aggressiveness of HCC in vitro and in vivo. The tumor promotion of CRSP8 was accompanied by LDs accumulation and increased de novo fatty acids (FAs) synthesis. Moreover, CRSP8 diminished the colocalization between LC3 and LDs to impair lipophagy in a nuclear-localized PPARα-dependent manner, which decreased the mobilization of FAs from LDs degradation and hindered mitochondrial fatty acid oxidation. Mechanistically, the small ras family GTPase RAN was transcriptionally activated by CRSP8, leading to the reinforcement of RAN/CRM1-mediated nuclear export. CRSP8-induced enhanced formation of RAN/CRM1/PPARα nucleus-cytoplasm shuttling heterotrimer orchestrated cytoplasmic translocation of PPARα, attenuated nPPARα-mediated lipophagy and fatty acid catabolism, subsequently exacerbated HCC progression. In CRSP8-enriched HCC, lipid synthesis inhibitor Orlistat effectively reshaped the immunosuppressive tumor microenvironment (TME) and improved the efficacy of anti-PD-L1 therapy in vivo. CONCLUSION Our study establishes that CRSP8-driven fatty acid metabolism reprogramming facilitates HCC progression via the RAN/CRM1/PPARα nucleus-cytoplasm shuttling heterotrimer and impaired lipophagy-derived catabolism. Targeting the energy supply sourced from lipids could represent a promising therapeutic strategy for treating CRSP8-sufficient HCC.
Collapse
Affiliation(s)
- Yuxi Lin
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Zhixing Liang
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Zhiyan Weng
- Department of Endocrinology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Xiaofang Liu
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Feng Zhang
- Biotherapy Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.
| | - Yutian Chong
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
3
|
Mahadevan KK, Maldonado AS, Li B, Bickert AA, Perdyan A, Kumbhar SV, Piya S, Sockwell A, Morse SJ, Arian K, Sugimoto H, Shalapour S, Hong DS, Heffernan TP, Maitra A, Kalluri R. Inhibitors of oncogenic Kras specifically prime CTLA4 blockade to transcriptionally reprogram Tregs and overcome resistance to suppress pancreas cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.28.640711. [PMID: 40093186 PMCID: PMC11908235 DOI: 10.1101/2025.02.28.640711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Lack of sustained response to oncogenic Kras (Kras*) inhibition in preclinical models and patients with pancreatic ductal adenocarcinoma (PDAC) emphasizes the need to identify impactful synergistic combination therapies to achieve robust clinical benefit. Kras* targeting results in an influx of global T cell infiltrates including Tregs, effector CD8 + T cells and exhausted CD8 + T cells expressing several immune checkpoint molecules in PDAC. Here, we probe whether the T cell influx induced by diverse Kras* inhibitors open a therapeutic window to target the adaptive immune response in PDAC. We show a specific synergy of anti-CTLA4 immune checkpoint blockade with Kras* targeting primed by Kras G12D allele specific inhibitor, MRTX1133 and multi-selective pan-RAS inhibitor, RMC-6236, both currently in clinical testing phase. In contrast, attempted therapeutic combination following Kras* targeting with multiple checkpoint inhibitors, including anti-PD1, anti-Tim3, anti-Lag3, anti-Vista and anti-4-1BB agonist antibody failed due to compensatory mechanisms mediated by other checkpoints on exhausted CD8 + T cells. Anti-CTLA4 therapy in Kras* targeted PDAC transcriptionally reprograms effector T regs to a naïve phenotype, reverses CD8 + T cell exhaustion and is associated with recruitment of tertiary lymphoid structures (TLS) containing interferon (IFN)-stimulated/ activated B cells and germinal center B cells to enable immunotherapy efficacy and overcome resistance with long-term survival. Single cell ATAC sequencing analysis revealed that transcriptional reprogramming of Tregs is epigenetically regulated by downregulation of AP-1 family of transcription factors including Fos, Fos-b, Jun-b, Jun-d in the IL-35 promoter region. This study reveals an actionable vulnerability in the adaptive immune response in Kras* targeted PDAC with important clinical implications. Graphical abstract
Collapse
|
4
|
Kobayashi C, Suzuki‐Imaizumi M, Sakaguchi Y, Ishii T, Adachi M, Kaneda A, Ebihara R, Saito M, Uemori T, Mori K. The novel and potent CD40 agonist KHK2840 augments the antitumor efficacy of anti-PD-1 antibody and paclitaxel. Cancer Sci 2024; 115:4008-4020. [PMID: 39380291 PMCID: PMC11611760 DOI: 10.1111/cas.16366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/05/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024] Open
Abstract
Lack of tumor-reactive cytotoxic T lymphocytes (CTLs) limits the antitumor efficacy of immune checkpoint inhibitors (ICIs). CD40 agonists have been expected to overcome this limitation by generating tumor-reactive CTLs. However, the clinical efficacy of CD40 agonistic antibodies is not as good as in non-clinical studies. The novel human CD40 (hCD40) agonist KHK2840 is a fully human anti-CD40 IgG2 agonistic antibody that is Fc-engineered to minimize complement-dependent cytotoxicity and antibody-dependent cellular cytotoxicity. Compared to other hCD40 agonists, KHK2840 exhibited the most potent hCD40 agonistic signal in tumor-bearing hCD40 transgenic mice and human peripheral blood B cells. Moreover, KHK2840 enhanced the antitumor efficacy of the antiprogrammed cell death 1 antibody and paclitaxel. Comprehensive immune profiling revealed that the antitumor immune response of the triple combination involved tumor-draining lymph nodes in addition to tumor microenvironments. This suggests that a coordinated antitumor immune response between tumors and lymph nodes may underlie the synergistic antitumor efficacy of the triple combination therapy. Finally, a toxicology study in cynomolgus monkeys demonstrated that KHK2840 activated the CD40 signal with tolerable toxicological properties. These results indicate that KHK2840 is a novel and potent hCD40 agonistic antibody for cancer immunotherapy, which is expected to augment the antitumor efficacy of ICIs and chemotherapy.
Collapse
|
5
|
Debesset A, Pilon C, Meunier S, Cuelenaere-Bonizec O, Richer W, Thiolat A, Houppe C, Ponzo M, Magnan J, Caron J, Caudana P, Tosello Boari J, Baulande S, To NH, Salomon BL, Piaggio E, Cascone I, Cohen JL. TNFR2 blockade promotes antitumoral immune response in PDAC by targeting activated Treg and reducing T cell exhaustion. J Immunother Cancer 2024; 12:e008898. [PMID: 39562007 PMCID: PMC11580249 DOI: 10.1136/jitc-2024-008898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers, highly resistant to standard chemotherapy and immunotherapy. Regulatory T cells (Tregs) expressing tumor necrosis factor α receptor 2 (TNFR2) contribute to immunosuppression in PDAC. Treg infiltration correlates with poor survival and tumor progression in patients with PDAC. We hypothesized that TNFR2 inhibition using a blocking monoclonal antibody (mAb) could shift the Treg-effector T cell balance in PDAC, thus enhancing antitumoral responses. METHOD To support this hypothesis, we first described TNFR2 expression in a cohort of 24 patients with PDAC from publicly available single-cell analysis data. In orthotopic and immunocompetent mouse models of PDAC, we also described the immune environment of PDAC after immune cell sorting and single-cell analysis. The modifications of the immune environment before and after anti-TNFR2 mAb treatment were evaluated as well as the effect on tumor progression. RESULTS Patients with PDAC exhibited elevated TNFR2 expression in Treg, myeloid cells and endothelial cells and lower level in tumor cells. By flow cytometry and single-cell RNA-seq analysis, we identified two Treg populations in orthotopic mouse models: Resting and activated Tregs. The anti-TNFR2 mAb selectively targeted activated tumor-infiltrating Tregs, reducing T cell exhaustion markers in CD8+ T cells. However, anti-TNFR2 treatment alone had limited efficacy in activating CD8+ T cells and only slightly reduced the tumor growth. The combination of the anti-TNFR2 mAb with agonistic anti-CD40 mAb promoted stronger T cell activation, tumor growth inhibition, and improved survival and immunological memory in PDAC-bearing mice. CONCLUSION Our data suggest that combining a CD40 agonist with a TNFR2 antagonist represents a promising therapeutic strategy for patients with PDAC.
Collapse
Affiliation(s)
- Anais Debesset
- INSERM, IMRB U955, Université Paris-Est Créteil Val de Marne, Créteil, France
| | - Caroline Pilon
- INSERM, IMRB U955, Université Paris-Est Créteil Val de Marne, Créteil, France
- CIC Biotherapy, Fédération hospitalo-Universitaire TRUE, AP-HP, GH Henri Mondor, Créteil, France
| | - Sylvain Meunier
- INSERM, IMRB U955, Université Paris-Est Créteil Val de Marne, Créteil, France
| | | | - Wilfrid Richer
- INSERM U932, Institute Curie Research Center, PSL Research University, Paris, France
- Department of Translational Research, Institut Curie Research center, PSL Research University, Paris, France
| | - Allan Thiolat
- INSERM, IMRB U955, Université Paris-Est Créteil Val de Marne, Créteil, France
| | - Claire Houppe
- INSERM, IMRB U955, Université Paris-Est Créteil Val de Marne, Créteil, France
| | - Matteo Ponzo
- INSERM, IMRB U955, Université Paris-Est Créteil Val de Marne, Créteil, France
| | - Jeanne Magnan
- INSERM, IMRB U955, Université Paris-Est Créteil Val de Marne, Créteil, France
| | - Jonathan Caron
- INSERM, IMRB U955, Université Paris-Est Créteil Val de Marne, Créteil, France
| | - Pamela Caudana
- INSERM U932, Institute Curie Research Center, PSL Research University, Paris, France
- Department of Translational Research, Institut Curie Research center, PSL Research University, Paris, France
| | - Jimena Tosello Boari
- INSERM U932, Institute Curie Research Center, PSL Research University, Paris, France
- Department of Translational Research, Institut Curie Research center, PSL Research University, Paris, France
| | - Sylvain Baulande
- Institut Curie Research Center, ICGex Next-Generation Sequencing Platform, Single Cell Initiative, PSL Research University, Paris, France
| | - Nhu Han To
- INSERM, IMRB U955, Université Paris-Est Créteil Val de Marne, Créteil, France
- Department of Radiation Oncology, Henri Mondor Breast Center, AP-HP, GH Henri Mondor, Paris, France
| | - Benoit Laurent Salomon
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, Toulouse, France
| | - Eliane Piaggio
- INSERM U932, Institute Curie Research Center, PSL Research University, Paris, France
- Department of Translational Research, Institut Curie Research center, PSL Research University, Paris, France
| | - Ilaria Cascone
- INSERM, IMRB U955, Université Paris-Est Créteil Val de Marne, Créteil, France
| | - José Laurent Cohen
- INSERM, IMRB U955, Université Paris-Est Créteil Val de Marne, Créteil, France
- CIC Biotherapy, Fédération hospitalo-Universitaire TRUE, AP-HP, GH Henri Mondor, Créteil, France
| |
Collapse
|
6
|
Singhal A, Styers HC, Rub J, Li Z, Torborg SR, Kim JY, Grbovic-Huezo O, Feng H, Tarcan ZC, Ozkan HS, Hallin J, Basturk O, Yaeger R, Christensen JG, Betel D, Yan Y, Chio IIC, de Stanchina E, Tammela T. A Classical Epithelial State Drives Acute Resistance to KRAS Inhibition in Pancreatic Cancer. Cancer Discov 2024; 14:2122-2134. [PMID: 38975873 PMCID: PMC11624508 DOI: 10.1158/2159-8290.cd-24-0740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/25/2024] [Accepted: 07/05/2024] [Indexed: 07/09/2024]
Abstract
Intratumoral heterogeneity in pancreatic ductal adenocarcinoma (PDAC) is characterized by a balance between basal and classical epithelial cancer cell states, with basal dominance associating with chemoresistance and a dismal prognosis. Targeting oncogenic KRAS, the primary driver of pancreatic cancer, shows early promise in clinical trials, but efficacy is limited by acquired resistance. Using genetically engineered mouse models and patient-derived xenografts, we find that basal PDAC cells are highly sensitive to KRAS inhibitors. Employing fluorescent and bioluminescent reporter systems, we longitudinally track cell-state dynamics in vivo and reveal a rapid, KRAS inhibitor-induced enrichment of the classical state. Lineage tracing uncovers that these enriched classical PDAC cells are a reservoir for disease relapse. Genetic or chemotherapy-mediated ablation of the classical cell state is synergistic with KRAS inhibition, providing a preclinical proof of concept for this therapeutic strategy. Our findings motivate combining classical state-directed therapies with KRAS inhibitors to deepen responses and counteract resistance in pancreatic cancer. Significance: KRAS inhibitors hold promise in pancreatic cancer, but responses are limited by acquired resistance. We find that a classical epithelial cancer cell state is acutely resistant to KRAS inhibition and serves as a reservoir for disease relapse. Targeting the classical state alongside KRAS inhibition deepens responses, revealing a potent therapeutic strategy. See related commentary by Marasco and Misale, p. 2018.
Collapse
Affiliation(s)
- Anupriya Singhal
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- David M. Rubenstein Center for Pancreatic Cancer, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hannah C. Styers
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jonathan Rub
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Zhuxuan Li
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Weill Cornell Graduate School of Medical Science, Weill Cornell Medicine, New York, New York, USA
| | - Stefan R. Torborg
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Jung Yun Kim
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Olivera Grbovic-Huezo
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Huijin Feng
- Institute for Cancer Genetics, Department of Genetics and Development and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Zeynep Cagla Tarcan
- David M. Rubenstein Center for Pancreatic Cancer, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hulya Sahin Ozkan
- David M. Rubenstein Center for Pancreatic Cancer, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jill Hallin
- Mirati Therapeutics, San Diego, California 92121, USA
| | - Olca Basturk
- David M. Rubenstein Center for Pancreatic Cancer, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rona Yaeger
- Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Doron Betel
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Division of Hematology & Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Yan Yan
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Current address: College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Current address: Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Iok In Christine Chio
- Institute for Cancer Genetics, Department of Genetics and Development and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Elisa de Stanchina
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Antitumor Assessment Core Facility, Molecular Pharmacology Program, MSKCC
| | - Tuomas Tammela
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- David M. Rubenstein Center for Pancreatic Cancer, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
7
|
Zhao Y, Qin C, Lin C, Li Z, Zhao B, Li T, Zhang X, Wang W. Pancreatic ductal adenocarcinoma cells reshape the immune microenvironment: Molecular mechanisms and therapeutic targets. Biochim Biophys Acta Rev Cancer 2024; 1879:189183. [PMID: 39303859 DOI: 10.1016/j.bbcan.2024.189183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/23/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a digestive system malignancy characterized by challenging early detection, limited treatment alternatives, and generally poor prognosis. Although there have been significant advancements in immunotherapy for hematological malignancies and various solid tumors in recent decades, with impressive outcomes in recent preclinical and clinical trials, the effectiveness of these therapies in treating PDAC continues to be modest. The unique immunological microenvironment of PDAC, especially the abnormal distribution, complex composition, and variable activation states of tumor-infiltrating immune cells, greatly restricts the effectiveness of immunotherapy. Undoubtedly, integrating data from both preclinical models and human studies helps accelerate the identification of reliable molecules and pathways responsive to targeted biological therapies and immunotherapies, thereby continuously optimizing therapeutic combinations. In this review, we delve deeply into how PDAC cells regulate the immune microenvironment through complex signaling networks, affecting the quantity and functional status of immune cells to promote immune escape and tumor progression. Furthermore, we explore the multi-modal immunotherapeutic strategies currently under development, emphasizing the transformation of the immunosuppressive environment into an anti-tumor milieu by targeting specific molecular and cellular pathways, providing insights for the development of novel treatment strategies.
Collapse
Affiliation(s)
- Yutong Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Cheng Qin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Chen Lin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Zeru Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Bangbo Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Tianyu Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Xiangyu Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Weibin Wang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China.
| |
Collapse
|
8
|
Bridges K, Pizzurro GA, Baysoy A, Baskaran JP, Xu Z, Mathew V, Tripple V, LaPorte M, Park K, Damsky W, Kluger H, Fan R, Kaech SM, Bosenberg MW, Miller-Jensen K. Mapping intratumoral myeloid-T cell interactomes at single-cell resolution reveals targets for overcoming checkpoint inhibitor resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620093. [PMID: 39554094 PMCID: PMC11565996 DOI: 10.1101/2024.10.28.620093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Effective cancer immunotherapies restore anti-tumor immunity by rewiring cell-cell communication. Treatment-induced changes in communication can be inferred from single-cell RNA-sequencing (scRNA-seq) data, but current methods do not effectively manage heterogeneity within cell types. Here we developed a computational approach to efficiently analyze scRNA-seq-derived, single-cell-resolved cell-cell interactomes, which we applied to determine how agonistic CD40 (CD40ag) alters immune cell crosstalk alone, across tumor models, and in combination with immune checkpoint blockade (ICB). Our analyses suggested that CD40ag improves responses to ICB by targeting both immuno-stimulatory and immunosuppressive macrophage subsets communicating with T cells, and we experimentally validated a spatial basis for these subsets with immunofluorescence and spatial transcriptomics. Moreover, treatment with CD40ag and ICB established coordinated myeloid-T cell interaction hubs that are critical for reestablishing antitumor immunity. Our work advances the biological significance of hypotheses generated from scRNA-seq-derived cell-cell interactomes and supports the clinical translation of myeloid-targeted therapies for ICB-resistant tumors.
Collapse
Affiliation(s)
- Kate Bridges
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
- Present address: Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Alev Baysoy
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Janani P. Baskaran
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Ziyan Xu
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Varsha Mathew
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Victoria Tripple
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Michael LaPorte
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Koonam Park
- Department of Dermatology, Yale School of Medicine, New Haven, CT 06520, USA
| | - William Damsky
- Department of Dermatology, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Harriet Kluger
- Department of Medicine (Medical Oncology), Yale School of Medicine, New Haven, CT 06520, USA
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Susan M. Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Marcus W. Bosenberg
- Department of Dermatology, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Kathryn Miller-Jensen
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
- Systems Biology Institute, Yale University, New Haven, CT 06511, USA
- Lead contact
| |
Collapse
|
9
|
Ni R, Hu Z, Tao R. Advances of immune-checkpoint inhibition of CTLA-4 in pancreatic cancer. Biomed Pharmacother 2024; 179:117430. [PMID: 39260322 DOI: 10.1016/j.biopha.2024.117430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024] Open
Abstract
Targeting checkpoints for immune cell activation has been acknowledged known as one of the most effective way to activate anti-tumor immune responses. Among them, drugs targeting cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) are approved for clinical treatment though several more are in advanced stages of development, which demonstrated durable response rates and manageable safety profile. However, its therapy efficacy is unsatisfactory in pancreatic cancer (PC), which can be limited by the overall condition of patients, the pathological type of PC, the expression level of tumor related genes, etc. To improve clinical efficiency, various researches have been conducted, and the efficacy of combination therapy showed significantly improvement compared to monotherapy. This review analyzed current strategies based on anti-CTLA-4 combination immunotherapy, providing totally new idea for future research.
Collapse
Affiliation(s)
- Ran Ni
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhiming Hu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; Department of Hepatobiliary & Pancreatic Surgery, Tongde Hospital of Zhejiang Province, Hangzhou 310012, China.
| | - Ran Tao
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
10
|
Arneson-Wissink PC, Bartlett AQ, Mendez H, Zhu X, Dickie J, McWhorter M, Levasseur PR, Diba P, Byrne KT, Scott GD, Eil R, Grossberg AJ. Pancreatic cancer cells overexpressing interleukin 6 induce T-cell-mediated tumor clearance and durable anti-tumor immune response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615308. [PMID: 39386578 PMCID: PMC11463358 DOI: 10.1101/2024.09.26.615308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Tumor immune resistance is recognized as a contributor to low survivorship in pancreatic ductal adenocarcinoma (PDAC). We developed a novel murine model of spontaneous PDAC clearance, generated by overexpressing interleukin-6 (IL-6) in orthotopically implanted PDAC cancer cells (OT-PDACIL6). Circulating IL-6 was 100-fold higher in OT-PDACIL6 than in OT-PDACparental mice. OT-PDACIL6 tumors were present at 5 days post-implantation, and undetectable by 10 days post implantation. Flow cytometry revealed increased T cells and NK cells, and decreased T regulatory cells in OT-PDACIL6 as compared to OT-PDACparental tumors. Increased lymphoid aggregates were apparent by histological assessment and may account for elevated T cell content. Antibody-based depletion of CD4+ and CD8+ T cells prevented tumor clearance and significantly reduced survival of OT-PDACIL6 mice. The anti-tumor immune response to OT-PDACIL6 rendered mice immune to re-challenge with OT-PDACparental tumors. In high concentrations, IL-6 acts in opposition to previously described pro-tumorigenic effects by enhancing the T cell-mediated anti-tumor response to PDAC.
Collapse
Affiliation(s)
| | - Alexandra Q. Bartlett
- Division of Surgical Oncology, Department of Surgery, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Heike Mendez
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Xinxia Zhu
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Jessica Dickie
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Matthew McWhorter
- Division of Surgical Oncology, Department of Surgery, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Peter R. Levasseur
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Parham Diba
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Katelyn T. Byrne
- Department of Cell, Development, and Cancer Biology, Oregon Health & Science University,Portland, OR, 97239, USA
- Brenden Colson Center for Pancreatic Care, Oregon Health & Science University, Portland,OR, 97239, USA
| | - Gregory D. Scott
- Department of Pathology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Robert Eil
- Division of Surgical Oncology, Department of Surgery, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Aaron J. Grossberg
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR, 97239, USA
- Brenden Colson Center for Pancreatic Care, Oregon Health & Science University, Portland,OR, 97239, USA
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University,Portland, OR, 97201, USA
| |
Collapse
|
11
|
Alam MS, Gaida MM, Witzel HR, Otsuka S, Abbasi A, Guerin T, Abdelmaksoud A, Wong N, Cam MC, Kozlov S, Ashwell JD. TNFR1 signaling promotes pancreatic tumor growth by limiting dendritic cell number and function. Cell Rep Med 2024; 5:101696. [PMID: 39178856 PMCID: PMC11528236 DOI: 10.1016/j.xcrm.2024.101696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/28/2024] [Accepted: 07/30/2024] [Indexed: 08/26/2024]
Abstract
Pancreatic adenocarcinoma (PDAC) is one the most intractable cancers, in part due to its highly inflammatory microenvironment and paucity of infiltrating dendritic cells (DCs). Here, we find that genetic ablation or antibody blockade of tumor necrosis factor receptor 1 (TNFR1) enhanced intratumor T cell activation and slowed PDAC growth. While anti-PD-1 checkpoint inhibition alone had little effect, it further enhanced intratumor T cell activation in combination with anti-TNFR1. The major cellular alteration in the tumor microenvironment in the absence of TNFR1 signaling was a large increase in DC number and immunostimulatory phenotype. This may reflect a direct effect on DCs, because TNF induced TNFR1-dependent apoptosis of bone-marrow-derived DCs. The therapeutic response to anti-TNFR1 alone was superior to the combination of DC-activating agonistic anti-CD40 and Flt3 ligand (Flt3L). These observations suggest that targeting TNFR1, perhaps in concert with other strategies that promote DC generation and mobilization, may have therapeutic benefits.
Collapse
Affiliation(s)
- Muhammad S Alam
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Matthias M Gaida
- Institute of Pathology, University Medical Center Mainz, JGU-Mainz, 55131 Mainz, Germany; TRON, Translational Oncology at the University Medical Center, JGU-Mainz, 55131 Mainz, Germany; Research Center for Immunotherapy, University Medical Center Mainz, JGU-Mainz, 55131 Mainz, Germany
| | - Hagen R Witzel
- Institute of Pathology, University Medical Center Mainz, JGU-Mainz, 55131 Mainz, Germany
| | - Shizuka Otsuka
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aamna Abbasi
- Department of Integrative Immunobiology, Duke University, Durham, NC 27708, USA
| | - Theresa Guerin
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21707, USA
| | - Abdalla Abdelmaksoud
- Collaborative Bioinformatics Resource (CCBR), Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Nathan Wong
- Collaborative Bioinformatics Resource (CCBR), Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Margaret C Cam
- Collaborative Bioinformatics Resource (CCBR), Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Serguei Kozlov
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21707, USA
| | - Jonathan D Ashwell
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
12
|
Vitorakis N, Gargalionis AN, Papavassiliou KA, Adamopoulos C, Papavassiliou AG. Precision Targeting Strategies in Pancreatic Cancer: The Role of Tumor Microenvironment. Cancers (Basel) 2024; 16:2876. [PMID: 39199647 PMCID: PMC11352254 DOI: 10.3390/cancers16162876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/14/2024] [Accepted: 08/17/2024] [Indexed: 09/01/2024] Open
Abstract
Pancreatic cancer demonstrates an ever-increasing incidence over the last years and represents one of the top causes of cancer-associated mortality. Cells of the tumor microenvironment (TME) interact with cancer cells in pancreatic ductal adenocarcinoma (PDAC) tumors to preserve cancer cells' metabolism, inhibit drug delivery, enhance immune suppression mechanisms and finally develop resistance to chemotherapy and immunotherapy. New strategies target TME genetic alterations and specific pathways in cell populations of the TME. Complex molecular interactions develop between PDAC cells and TME cell populations including cancer-associated fibroblasts, myeloid-derived suppressor cells, pancreatic stellate cells, tumor-associated macrophages, tumor-associated neutrophils, and regulatory T cells. In the present review, we aim to fully explore the molecular landscape of the pancreatic cancer TME cell populations and discuss current TME targeting strategies to provide thoughts for further research and preclinical testing.
Collapse
Affiliation(s)
- Nikolaos Vitorakis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Antonios N Gargalionis
- Department of Clinical Biochemistry, 'Attikon' University General Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Kostas A Papavassiliou
- First University Department of Respiratory Medicine, 'Sotiria' Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christos Adamopoulos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
13
|
Dharmapuri S, Cabal R, Akturk G, Ioannou G, Ozbey S, Paulsen J, Raina S, Ang C, Sarpel U, Sung MW, Kozuch P, Schwartz ME, Cohen DJ, Gnjatic S, Pintova S. Multiplexed immunohistochemical analysis of the immune microenvironment of biliary tract cancers pre- & post-neoadjuvant chemotherapy: case series. ANNALS OF TRANSLATIONAL MEDICINE 2024; 12:78. [PMID: 39118963 PMCID: PMC11304425 DOI: 10.21037/atm-23-1928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/17/2024] [Indexed: 08/10/2024]
Abstract
Background Neoadjuvant chemotherapy (NACT) is increasingly being used in the management of locally advanced biliary tract cancer (BTC). The evidence suggests a contributing role of tumor infiltrating immune cells in the prognosis and response. We set out to characterize immune modulation of tumor immune microenvironment in BTC following NACT. Case Description Patients with BTC who underwent diagnostic biopsy, then NACT then resection between 2014-2018 were identified. Multiplexed immunohistochemical consecutive staining on single slide (MICSSS) analysis was performed with a series of immune markers to characterize T-cells, immune checkpoints etc. on pre- & post-NACT tumor tissue. Density was calculated for each marker. The final analysis included five patients. Median age was 48 (range, 41-56) years, with 4 female, 4 intrahepatic cholangiocarcinoma and 1 gallbladder. All patients received gemcitabine/cisplatin as NACT (median of 5 cycles). Median time from diagnosis to surgery was 4.3 (range, 1.4-7.8) months. All patients were mismatch repair proficient (pMMR). NACT on average produced a depletion of all immune markers. Given small sample size, each patient was considered their own control and changes in mean cell densities post-NACT were calculated. Patient #2 with a 40-fold increase in PD-L1 expression & 5-fold decrease in CD8:FOXP3 ratio after NACT notably had the shortest disease-free interval (DFI). Patient #3 with the longest DFI had the largest increase in CD8:FOXP3 by about 8-fold with a decrease in PD-L1. Conclusions Preliminary results suggest NACT may differentially modulate various compartments of the immune tumor contexture despite overall cell depletion. Future studies should focus on strategies to expand immune modulation of tumor microenvironment, including immune-oncology agents to augment the effects of chemotherapy.
Collapse
Affiliation(s)
- Sirish Dharmapuri
- Division of Medical Oncology, Department of Hematology and Oncology, Icahn School of Medicine at Mount Sinai West, Tisch Cancer Institute, New York, NY, USA
| | - Rafael Cabal
- Division of Molecular and Cell-Based Medicine, Department of Pathology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, USA
| | - Guray Akturk
- Division of Molecular and Cell-Based Medicine, Department of Pathology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, USA
| | - Giorgio Ioannou
- Division of Molecular and Cell-Based Medicine, Department of Pathology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, USA
| | - Sinem Ozbey
- Division of Molecular and Cell-Based Medicine, Department of Pathology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, USA
| | - John Paulsen
- Division of Molecular and Cell-Based Medicine, Department of Pathology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, USA
| | - Sheen Raina
- Division of Medical Oncology, Department of Hematology and Oncology, Icahn School of Medicine at Mount Sinai West, Tisch Cancer Institute, New York, NY, USA
| | - Celina Ang
- Division of Medical Oncology, Department of Hematology and Oncology, Icahn School of Medicine at Mount Sinai West, Tisch Cancer Institute, New York, NY, USA
| | - Umut Sarpel
- Division of Surgical Oncology, Department of Surgery, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, USA
| | - Max W. Sung
- Division of Medical Oncology, Department of Hematology and Oncology, Icahn School of Medicine at Mount Sinai West, Tisch Cancer Institute, New York, NY, USA
| | - Peter Kozuch
- Division of Medical Oncology, Department of Hematology and Oncology, Icahn School of Medicine at Mount Sinai West, Tisch Cancer Institute, New York, NY, USA
| | - Myron E. Schwartz
- Division of Surgical Oncology, Department of Surgery, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, USA
| | - Deirdre Jill Cohen
- Division of Medical Oncology, Department of Hematology and Oncology, Icahn School of Medicine at Mount Sinai West, Tisch Cancer Institute, New York, NY, USA
| | - Sacha Gnjatic
- Division of Molecular and Cell-Based Medicine, Department of Pathology, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, USA
| | - Sofya Pintova
- Division of Medical Oncology, Department of Hematology and Oncology, Icahn School of Medicine at Mount Sinai West, Tisch Cancer Institute, New York, NY, USA
| |
Collapse
|
14
|
Assouline B, Kahn R, Hodali L, Condiotti R, Engel Y, Elyada E, Mordechai-Heyn T, Pitarresi JR, Atias D, Steinberg E, Bidany-Mizrahi T, Forkosh E, Katz LH, Benny O, Golan T, Hofree M, Stewart SA, Atlan KA, Zamir G, Stanger BZ, Berger M, Ben-Porath I. Senescent cancer-associated fibroblasts in pancreatic adenocarcinoma restrict CD8 + T cell activation and limit responsiveness to immunotherapy in mice. Nat Commun 2024; 15:6162. [PMID: 39039076 PMCID: PMC11263607 DOI: 10.1038/s41467-024-50441-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 07/05/2024] [Indexed: 07/24/2024] Open
Abstract
Senescent cells within tumors and their stroma exert complex pro- and anti-tumorigenic functions. However, the identities and traits of these cells, and the potential for improving cancer therapy through their targeting, remain poorly characterized. Here, we identify a senescent subset within previously-defined cancer-associated fibroblasts (CAFs) in pancreatic ductal adenocarcinomas (PDAC) and in premalignant lesions in mice and humans. Senescent CAFs isolated from mouse and humans expressed elevated levels of immune-regulatory genes. Depletion of senescent CAFs, either genetically or using the Bcl-2 inhibitor ABT-199 (venetoclax), increased the proportion of activated CD8+ T cells in mouse pancreatic carcinomas, whereas induction of CAF senescence had the opposite effect. Combining ABT-199 with an immune checkpoint therapy regimen significantly reduced mouse tumor burden. These results indicate that senescent CAFs in PDAC stroma limit the numbers of activated cytotoxic CD8+ T cells, and suggest that their targeted elimination through senolytic treatment may enhance immunotherapy.
Collapse
Grants
- R01 CA217208 NCI NIH HHS
- R01 CA276512 NCI NIH HHS
- R00 CA252153 NCI NIH HHS
- 2621/18 Israel Science Foundation (ISF)
- R01 CA252225 NCI NIH HHS
- R01 AG059244 NIA NIH HHS
- Israel Cancer Research Fund (Israel Cancer Research Fund, Inc.)
- This study was supported by grants from the Israel Science Foundation - Broad Institute program (2621/18, I.B.-P.), Israel Precision Medicine Partnership (3755/21, I.B.-P.), Israel Science Foundation Mid-Career Program (1923/22, I.B.-P.), the Israel Ministry of Science and Technology DKFZ-MOST program (4062, I.B.-P.), the Chief Scientist of the Israel Ministry of Health (3-15017, I.B.-P.), the Alex U. Soyka Program (I.B.-P., B.A., R.K., L.H.), the Israel Cancer Research Fund International Collaboration Program (I.B.-P)
Collapse
Affiliation(s)
- Benjamin Assouline
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rachel Kahn
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lutfi Hodali
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Reba Condiotti
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yarden Engel
- The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ela Elyada
- Department of Biochemistry, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tzlil Mordechai-Heyn
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Surgery, Hadassah Medical Center, and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jason R Pitarresi
- Division of Hematology-Oncology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Molecular Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Dikla Atias
- Pancreatic Cancer Translational Research Laboratory, Oncology Institute, Sheba Medical Center, Tel Hashomer, Israel, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eliana Steinberg
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tirza Bidany-Mizrahi
- The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Esther Forkosh
- Department of Gastroenterology, Hadassah Medical Center, and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lior H Katz
- Department of Gastroenterology, Hadassah Medical Center, and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ofra Benny
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Talia Golan
- Pancreatic Cancer Translational Research Laboratory, Oncology Institute, Sheba Medical Center, Tel Hashomer, Israel, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Matan Hofree
- The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sheila A Stewart
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Karine A Atlan
- Department of Pathology, Hadassah Medical Center, and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gideon Zamir
- Department of Surgery, Hadassah Medical Center, and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ben Z Stanger
- Department of Medicine and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael Berger
- The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ittai Ben-Porath
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
15
|
Song W, Hu H, Yuan Z, Yao H. A prognostic model for anoikis-related genes in pancreatic cancer. Sci Rep 2024; 14:15200. [PMID: 38956290 PMCID: PMC11220081 DOI: 10.1038/s41598-024-65981-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024] Open
Abstract
Anoikis, a distinct form of programmed cell death, is crucial for both organismal development and maintaining tissue equilibrium. Its role extends to the proliferation and progression of cancer cells. This study aimed to establish an anoikis-related prognostic model to predict the prognosis of pancreatic cancer (PC) patients. Gene expression data and patient clinical profiles were sourced from The Cancer Genome Atlas (TCGA-PAAD: Pancreatic Adenocarcinoma) and the International Cancer Genome Consortium (ICGC-PACA: Pancreatic Ductal Adenocarcinoma). Non-cancerous pancreatic tissue gene expression data were obtained from the Genotype-Tissue Expression (GTEx) project. The R package was used to construct anoikis-related PC prognostic models, which were later validated with the ICGC-PACA database. Survival analyses demonstrated a poorer prognosis for patients in the high-risk group, consistent across both TCGA-PAAD and ICGC-PACA datasets. A nomogram was designed as a predictive tool to estimate patient mortality. The study also analyzed tumor mutations and immune infiltration across various risk groups, uncovering notable differences in tumor mutation patterns and immune landscapes between high- and low-risk groups. In conclusion, this research successfully developed a prognostic model centered on anoikis-related genes, offering a novel tool for predicting the clinical trajectory of PC patients.
Collapse
Affiliation(s)
- Wenbin Song
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
- Tianjin Key Laboratory of Precise Vascular Reconstruction and Organ Function Repair, Tianjin, 300052, People's Republic of China
| | - Haiyang Hu
- Department of Cardiac Critical Care Medicine, Affiliated Hospital of Jining Medical University, Jining, 272007, People's Republic of China
| | - Zhengbo Yuan
- School of Medicine, Xiamen University, No.4221 Xiangan South Road, Xiangan District, Xiamen, 361102, People's Republic of China.
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, No.55 Zhenghai load, Siming District, Xiamen, 361001, People's Republic of China.
| | - Hao Yao
- Department of Hepatological Surgery, The Second Hospital of Tianjin Medical University, No.23 Pingjiang Road, Hexi District, Tianjin, 300211, People's Republic of China.
| |
Collapse
|
16
|
Yang D, Sun X, Moniruzzaman R, Wang H, Citu C, Zhao Z, Wistuba II, Wang H, Maitra A, Chen Y. Genetic Deletion of Galectin-3 Inhibits Pancreatic Cancer Progression and Enhances the Efficacy of Immunotherapy. Gastroenterology 2024; 167:298-314. [PMID: 38467382 PMCID: PMC11972442 DOI: 10.1053/j.gastro.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/28/2024] [Accepted: 03/03/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND & AIMS Pancreatic ductal adenocarcinoma (PDAC) has a desmoplastic tumor stroma and immunosuppressive microenvironment. Galectin-3 (GAL3) is enriched in PDAC, highly expressed by cancer cells and myeloid cells. However, the functional roles of GAL3 in the PDAC microenvironment remain elusive. METHODS We generated a novel transgenic mouse model (LSL-KrasG12D/+;Trp53loxP/loxP;Pdx1-Cre;Lgals3-/- [KPPC;Lgals3-/-]) that allows the genetic depletion of GAL3 from both cancer cells and myeloid cells in spontaneous PDAC formation. Single-cell RNA-sequencing analysis was used to identify the alterations in the tumor microenvironment upon GAL3 depletion. We investigated both the cancer cell-intrinsic function and immunosuppressive function of GAL3. We also evaluated the therapeutic efficacy of GAL3 inhibition in combination with immunotherapy. RESULTS Genetic deletion of GAL3 significantly inhibited the spontaneous pancreatic tumor progression and prolonged the survival of KPPC;Lgals3-/- mice. Single-cell analysis revealed that genetic deletion of GAL3 altered the phenotypes of immune cells, cancer cells, and other cell populations. GAL3 deletion significantly enriched the antitumor myeloid cell subpopulation with high major histocompatibility complex class II expression. We also identified that GAL3 depletion resulted in CXCL12 upregulation, which could act as a potential compensating mechanism on GAL3 deficiency. Combined inhibition of the CXCL12-CXCR4 axis and GAL3 enhanced the efficacy of anti-PD-1 immunotherapy, leading to significantly inhibited PDAC progression. In addition, deletion of GAL3 also inhibited the basal/mesenchymal-like phenotype of pancreatic cancer cells. CONCLUSIONS GAL3 promotes PDAC progression and immunosuppression via both cancer cell-intrinsic and immune-related mechanisms. Combined treatment targeting GAL3, CXCL12-CXCR4 axis, and PD-1 represents a novel therapeutic strategy for PDAC.
Collapse
MESH Headings
- Animals
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/therapy
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/immunology
- Carcinoma, Pancreatic Ductal/therapy
- Galectin 3/genetics
- Galectin 3/metabolism
- Galectin 3/antagonists & inhibitors
- Tumor Microenvironment/immunology
- Disease Progression
- Mice
- Humans
- Receptors, CXCR4/genetics
- Receptors, CXCR4/metabolism
- Disease Models, Animal
- Cell Line, Tumor
- Gene Deletion
- Mice, Transgenic
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Programmed Cell Death 1 Receptor/metabolism
- Programmed Cell Death 1 Receptor/genetics
- Mice, Knockout
- Immune Checkpoint Inhibitors/pharmacology
- Immune Checkpoint Inhibitors/therapeutic use
- Immunotherapy/methods
- Signal Transduction
- Galectins/genetics
- Galectins/metabolism
Collapse
Affiliation(s)
- Daowei Yang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xinlei Sun
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rohan Moniruzzaman
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hua Wang
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Citu Citu
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Zhongming Zhao
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Huamin Wang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anirban Maitra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yang Chen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
17
|
Mahadevan KK, Dyevoich AM, Chen Y, Li B, Sugimoto H, Sockwell AM, McAndrews KM, Sthanam LK, Wang H, Shalapour S, Watowich SS, Kalluri R. Type I conventional dendritic cells facilitate immunotherapy in pancreatic cancer. Science 2024; 384:eadh4567. [PMID: 38935717 PMCID: PMC11841451 DOI: 10.1126/science.adh4567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 04/23/2024] [Indexed: 06/29/2024]
Abstract
Inflammation and tissue damage associated with pancreatitis can precede or occur concurrently with pancreatic ductal adenocarcinoma (PDAC). We demonstrate that in PDAC coupled with pancreatitis (ptPDAC), antigen-presenting type I conventional dendritic cells (cDC1s) are specifically activated. Immune checkpoint blockade therapy (iCBT) leads to cytotoxic CD8+ T cell activation and elimination of ptPDAC with restoration of life span even upon PDAC rechallenge. Using PDAC antigen-loaded cDC1s as a vaccine, immunotherapy-resistant PDAC was rendered sensitive to iCBT with elimination of tumors. cDC1 vaccination coupled with iCBT identified specific CDR3 sequences in the tumor-infiltrating CD8+ T cells with potential therapeutic importance. This study identifies a fundamental difference in the immune microenvironment in PDAC concurrent with, or without, pancreatitis and provides a rationale for combining cDC1 vaccination with iCBT as a potential treatment option.
Collapse
Affiliation(s)
- Krishnan K. Mahadevan
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Allison M. Dyevoich
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Yang Chen
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Bingrui Li
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Hikaru Sugimoto
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Amari M. Sockwell
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Kathleen M. McAndrews
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Lakshmi Kavitha Sthanam
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Huamin Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Shabnam Shalapour
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Stephanie S. Watowich
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Bioengineering, Rice University, Houston, TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| |
Collapse
|
18
|
Farhangnia P, Khorramdelazad H, Nickho H, Delbandi AA. Current and future immunotherapeutic approaches in pancreatic cancer treatment. J Hematol Oncol 2024; 17:40. [PMID: 38835055 PMCID: PMC11151541 DOI: 10.1186/s13045-024-01561-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024] Open
Abstract
Pancreatic cancer is a major cause of cancer-related death, but despondently, the outlook and prognosis for this resistant type of tumor have remained grim for a long time. Currently, it is extremely challenging to prevent or detect it early enough for effective treatment because patients rarely exhibit symptoms and there are no reliable indicators for detection. Most patients have advanced or spreading cancer that is difficult to treat, and treatments like chemotherapy and radiotherapy can only slightly prolong their life by a few months. Immunotherapy has revolutionized the treatment of pancreatic cancer, yet its effectiveness is limited by the tumor's immunosuppressive and hard-to-reach microenvironment. First, this article explains the immunosuppressive microenvironment of pancreatic cancer and highlights a wide range of immunotherapy options, including therapies involving oncolytic viruses, modified T cells (T-cell receptor [TCR]-engineered and chimeric antigen receptor [CAR] T-cell therapy), CAR natural killer cell therapy, cytokine-induced killer cells, immune checkpoint inhibitors, immunomodulators, cancer vaccines, and strategies targeting myeloid cells in the context of contemporary knowledge and future trends. Lastly, it discusses the main challenges ahead of pancreatic cancer immunotherapy.
Collapse
Affiliation(s)
- Pooya Farhangnia
- Reproductive Sciences and Technology Research Center, Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hamid Nickho
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali-Akbar Delbandi
- Reproductive Sciences and Technology Research Center, Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Enzler T, Nguyen A, Misleh J, Cline VJ, Johns M, Shumway N, Paulson S, Siegel R, Larson T, Messersmith W, Richards D, Chaves J, Pierce E, Zalupski M, Sahai V, Orr D, Ruste SA, Haun A, Kawabe T. A multicenter, randomized phase 2 study to establish combinations of CBP501, cisplatin and nivolumab for ≥3rd-line treatment of patients with advanced pancreatic adenocarcinoma. Eur J Cancer 2024; 201:113950. [PMID: 38422585 DOI: 10.1016/j.ejca.2024.113950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/04/2024] [Accepted: 02/14/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND There is no standard of care for ≥ 3rd-line treatment of metastatic pancreatic adenocarcinoma (PDAC). CBP501 is a novel calmodulin-binding peptide that has been shown to enhance the influx of platinum agents into tumor cells and tumor immunogenicity. This study aimed to (1) confirm efficacy of CBP501/cisplatin/nivolumab for metastatic PDAC observed in a previous phase 1 study, (2) identify combinations that yield 35% 3-month progression-free survival rate (3MPFS) and (3) define the contribution of CBP501 to the effects of combination therapy. METHODS CBP501 16 or 25 mg/m2 (CBP(16) or CBP(25)) was combined with 60 mg/m2 cisplatin (CDDP) and 240 mg nivolumab (nivo), administered at 3-week intervals. Patients were randomized 1:1:1:1 to (1) CBP(25)/CDDP/nivo, (2) CBP(16)/CDDP/nivo, (3) CBP(25)/CDDP and (4) CDDP/nivo, with randomization stratified by ECOG PS and liver metastases. A Fleming two-stage design was used, yielding a one-sided type I error rate of 2.5% and 80% power when the true 3MPFS is 35%. RESULTS Among 36 patients, 3MPFS was 44.4% in arms 1 and 2, 11.1% in arm 3% and 33.3% in arm 4. Two patients achieved a partial response in arm 1 (ORR 22.2%; none in other arms). Median PFS and OS were 2.4, 2.1, 1.5 and 1.5 months and 6.3, 5.3, 3.7 and 4.9 months, respectively. Overall, all treatment combinations were well tolerated. Most treatment-related adverse events were grade 1-2. CONCLUSIONS The combination CBP(25)/(16)/CDDP/nivo demonstrated promising signs of efficacy and a manageable safety profile for the treatment of advanced PDAC. CLINICAL TRIAL REGISTRATION NCT04953962.
Collapse
Affiliation(s)
- T Enzler
- Rogel Cancer Center, University of Michigan Health, Ann Arbor, MI, USA.
| | - A Nguyen
- Comprehensive Cancer Centers of Nevada, Henderson, NV, USA
| | - J Misleh
- Medical Hematology Oncology Consultants PA, Newark, DE, USA
| | - V J Cline
- Texas Oncology - Austin Midtown, Austin, TX, USA
| | - M Johns
- Oncology Hematology Care Eastgate, Cincinnati, OH, USA
| | - N Shumway
- Texas Oncology-San Antonio Stone Oak, San Antonio, TX, USA
| | - S Paulson
- Texas Oncology - Baylor Charles A. Sammons Cancer Center, Dallas, TX, USA
| | - R Siegel
- Illinois Cancer Specialists, Arlington Heights, IL, USA
| | - T Larson
- Minnseota Oncology Hematology PA, Minneapolis, MN, USA
| | - W Messersmith
- University of Colorado Cancer Center, Aurora, CO, USA
| | - D Richards
- Texas Oncology - Northeast Texas Cancer and Research Institute, Tyler, TX, USA
| | - J Chaves
- Northwest Medical Specialties, PLLC, Tacoma, WA, USA
| | - E Pierce
- Ochsner MD Anderson Cancer Center, New Orleans, LA, USA
| | - M Zalupski
- Rogel Cancer Center, University of Michigan Health, Ann Arbor, MI, USA
| | - V Sahai
- Rogel Cancer Center, University of Michigan Health, Ann Arbor, MI, USA
| | - D Orr
- Mary Crowley Cancer Research, Dallas, TX, USA
| | - S A Ruste
- Medical Affairs, Veristat LLC, Toronto Canada
| | - A Haun
- Medical Affairs, Veristat LLC, Toronto Canada
| | - T Kawabe
- CanBas Co., Ltd., Numazu, Shizuoka, Japan
| |
Collapse
|
20
|
Theys J, Patterson AV, Mowday AM. Clostridium Bacteria: Harnessing Tumour Necrosis for Targeted Gene Delivery. Mol Diagn Ther 2024; 28:141-151. [PMID: 38302842 PMCID: PMC10925577 DOI: 10.1007/s40291-024-00695-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2024] [Indexed: 02/03/2024]
Abstract
Necrosis is a common feature of solid tumours that offers a unique opportunity for targeted cancer therapy as it is absent from normal healthy tissues. Tumour necrosis provides an ideal environment for germination of the anaerobic bacterium Clostridium from endospores, resulting in tumour-specific colonisation. Two main species, Clostridium novyi-NT and Clostridium sporogenes, are at the forefront of this therapy, showing promise in preclinical models. However, anti-tumour activity is modest when used as a single agent, encouraging development of Clostridium as a tumour-selective gene delivery system. Various methods, such as allele-coupled exchange and CRISPR-cas9 technology, can facilitate the genetic modification of Clostridium, allowing chromosomal integration of transgenes to ensure long-term stability of expression. Strains of Clostridium can be engineered to express prodrug-activating enzymes, resulting in the generation of active drug selectively in the tumour microenvironment (a concept termed Clostridium-directed enzyme prodrug therapy). More recently, Clostridium strains have been investigated in the context of cancer immunotherapy, either in combination with immune checkpoint inhibitors or with engineered strains expressing immunomodulatory molecules such as IL-2 and TNF-α. Localised expression of these molecules using tumour-targeting Clostridium strains has the potential to improve delivery and reduce systemic toxicity. In summary, Clostridium species represent a promising platform for cancer therapy, with potential for localised gene delivery and immunomodulation selectively within the tumour microenvironment. The ongoing clinical progress being made with C. novyi-NT, in addition to developments in genetic modification techniques and non-invasive imaging capabilities, are expected to further progress Clostridium as an option for cancer treatment.
Collapse
Affiliation(s)
- Jan Theys
- M-Lab, Department of Precision Medicine, GROW - School of Oncology and Reproduction, Maastricht University, 6229 ER, Maastricht, The Netherlands
| | - Adam V Patterson
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, 1142, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1142, New Zealand
| | - Alexandra M Mowday
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, 1142, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1142, New Zealand.
| |
Collapse
|
21
|
Kim IK, Diamond MS, Yuan S, Kemp SB, Kahn BM, Li Q, Lin JH, Li J, Norgard RJ, Thomas SK, Merolle M, Katsuda T, Tobias JW, Baslan T, Politi K, Vonderheide RH, Stanger BZ. Plasticity-induced repression of Irf6 underlies acquired resistance to cancer immunotherapy in pancreatic ductal adenocarcinoma. Nat Commun 2024; 15:1532. [PMID: 38378697 PMCID: PMC10879147 DOI: 10.1038/s41467-024-46048-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 02/12/2024] [Indexed: 02/22/2024] Open
Abstract
Acquired resistance to immunotherapy remains a critical yet incompletely understood biological mechanism. Here, using a mouse model of pancreatic ductal adenocarcinoma (PDAC) to study tumor relapse following immunotherapy-induced responses, we find that resistance is reproducibly associated with an epithelial-to-mesenchymal transition (EMT), with EMT-transcription factors ZEB1 and SNAIL functioning as master genetic and epigenetic regulators of this effect. Acquired resistance in this model is not due to immunosuppression in the tumor immune microenvironment, disruptions in the antigen presentation machinery, or altered expression of immune checkpoints. Rather, resistance is due to a tumor cell-intrinsic defect in T-cell killing. Molecularly, EMT leads to the epigenetic and transcriptional silencing of interferon regulatory factor 6 (Irf6), rendering tumor cells less sensitive to the pro-apoptotic effects of TNF-α. These findings indicate that acquired resistance to immunotherapy may be mediated by programs distinct from those governing primary resistance, including plasticity programs that render tumor cells impervious to T-cell killing.
Collapse
Affiliation(s)
- Il-Kyu Kim
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark S Diamond
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Salina Yuan
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Samantha B Kemp
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin M Kahn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Qinglan Li
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jeffrey H Lin
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jinyang Li
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert J Norgard
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stacy K Thomas
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maria Merolle
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Takeshi Katsuda
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John W Tobias
- Penn Genomic Analysis Core, University of Pennsylvania, Philadelphia, PA, USA
| | - Timour Baslan
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katerina Politi
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Section of Medical Oncology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Robert H Vonderheide
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA, USA.
| | - Ben Z Stanger
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
22
|
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a rising incidence and is one of the most lethal human malignancies. Much is known regarding the biology and pathophysiology of PDAC, but translating this knowledge to the clinic to improve patient outcomes has been challenging. In this Review, we discuss advances and practice-changing trials for PDAC. We briefly review therapeutic failures as well as ongoing research to refine the standard of care, including novel biomarkers and clinical trial designs. In addition, we highlight contemporary areas of research, including poly(ADP-ribose) polymerase inhibitors, KRAS-targeted therapies and immunotherapies. Finally, we discuss the future of pancreatic cancer research and areas for improvement in the next decade.
Collapse
Affiliation(s)
- Z Ian Hu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eileen M O'Reilly
- Gastrointestinal Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
23
|
Rogers S, Charles A, Thomas RM. The Prospect of Harnessing the Microbiome to Improve Immunotherapeutic Response in Pancreatic Cancer. Cancers (Basel) 2023; 15:5708. [PMID: 38136254 PMCID: PMC10741649 DOI: 10.3390/cancers15245708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/24/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Pancreatic ductal adenocarcinoma cancer (PDAC) is projected to become the second leading cause of cancer-related death in the United States by 2030. Patients are often diagnosed with advanced disease, which explains the dismal 5-year median overall survival rate of ~12%. Immunotherapy has been successful in improving outcomes in the past decade for a variety of malignancies, including gastrointestinal cancers. However, PDAC is historically an immunologically "cold" tumor, one with an immunosuppressive environment and with restricted entry of immune cells that have limited the success of immunotherapy in these tumors. The microbiome, the intricate community of microorganisms present on and within humans, has been shown to contribute to many cancers, including PDAC. Recently, its role in tumor immunology and response to immunotherapy has generated much interest. Herein, the current state of the interaction of the microbiome and immunotherapy in PDAC is discussed with a focus on needed areas of study in order to harness the immune system to combat pancreatic cancer.
Collapse
Affiliation(s)
- Sherise Rogers
- Department of Medicine, Division of Hematology and Oncology, University of Florida College of Medicine, Gainesville, FL 32610, USA;
| | - Angel Charles
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610, USA;
| | - Ryan M. Thomas
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610, USA;
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL 32603, USA
| |
Collapse
|
24
|
Niezni D, Taub-Tabib H, Harris Y, Sason H, Amrusi Y, Meron-Azagury D, Avrashami M, Launer-Wachs S, Borchardt J, Kusold M, Tiktinsky A, Hope T, Goldberg Y, Shamay Y. Extending the boundaries of cancer therapeutic complexity with literature text mining. Artif Intell Med 2023; 145:102681. [PMID: 37925210 DOI: 10.1016/j.artmed.2023.102681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/30/2023] [Accepted: 10/03/2023] [Indexed: 11/06/2023]
Abstract
Drug combination therapy is a main pillar of cancer therapy. As the number of possible drug candidates for combinations grows, the development of optimal high complexity combination therapies (involving 4 or more drugs per treatment) such as RCHOP-I and FOLFIRINOX becomes increasingly challenging due to combinatorial explosion. In this paper, we propose a text mining (TM) based tool and workflow for rapid generation of high complexity combination treatments (HCCT) in order to extend the boundaries of complexity in cancer treatments. Our primary objectives were: (1) Characterize the existing limitations in combination therapy; (2) Develop and introduce the Plan Builder (PB) to utilize existing literature for drug combination effectively; (3) Evaluate PB's potential in accelerating the development of HCCT plans. Our results demonstrate that researchers and experts using PB are able to create HCCT plans at much greater speed and quality compared to conventional methods. By releasing PB, we hope to enable more researchers to engage with HCCT planning and demonstrate its clinical efficacy.
Collapse
Affiliation(s)
- Danna Niezni
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | | | - Yuval Harris
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Hagit Sason
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yakir Amrusi
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Dana Meron-Azagury
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Maytal Avrashami
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Shaked Launer-Wachs
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | | | - M Kusold
- Allen Institute for AI, Seattle, USA
| | | | - Tom Hope
- Allen Institute for AI, Tel Aviv, Israel; The Hebrew University, Jerusalem, Israel
| | - Yoav Goldberg
- Allen Institute for AI, Tel Aviv, Israel; Bar-Ilan University, Ramat-Gan, Israel
| | - Yosi Shamay
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
25
|
Liu J, Wu W, Zhu Q, Zhu H. Hydrogel-Based Therapeutics for Pancreatic Ductal Adenocarcinoma Treatment. Pharmaceutics 2023; 15:2421. [PMID: 37896181 PMCID: PMC10610350 DOI: 10.3390/pharmaceutics15102421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), one of the deadliest malignancies worldwide, is characteristic of the tumor microenvironments (TME) comprising numerous fibroblasts and immunosuppressive cells. Conventional therapies for PDAC are often restricted by limited drug delivery efficiency, immunosuppressive TME, and adverse effects. Thus, effective and safe therapeutics are urgently required for PDAC treatment. In recent years, hydrogels, with their excellent biocompatibility, high drug load capacity, and sustainable release profiles, have been developed as effective drug-delivery systems, offering potential therapeutic options for PDAC. This review summarizes the distinctive features of the immunosuppressive TME of PDAC and discusses the application of hydrogel-based therapies in PDAC, with a focus on how these hydrogels remodel the TME and deliver different types of cargoes in a controlled manner. Furthermore, we also discuss potential drug candidates and the challenges and prospects for hydrogel-based therapeutics for PDAC. By providing a comprehensive overview of hydrogel-based therapeutics for PDAC treatment, this review seeks to serve as a reference for researchers and clinicians involved in developing therapeutic strategies targeting the PDAC microenvironment.
Collapse
Affiliation(s)
- Jinlu Liu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (J.L.); (Q.Z.)
| | - Wenbi Wu
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Qing Zhu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (J.L.); (Q.Z.)
| | - Hong Zhu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (J.L.); (Q.Z.)
| |
Collapse
|
26
|
Krykbaeva I, Bridges K, Damsky W, Pizzurro GA, Alexander AF, McGeary MK, Park K, Muthusamy V, Eyles J, Luheshi N, Turner N, Weiss SA, Olino K, Kaech SM, Kluger HM, Miller-Jensen K, Bosenberg M. Combinatorial Immunotherapy with Agonistic CD40 Activates Dendritic Cells to Express IL12 and Overcomes PD-1 Resistance. Cancer Immunol Res 2023; 11:1332-1350. [PMID: 37478171 DOI: 10.1158/2326-6066.cir-22-0699] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/17/2023] [Accepted: 07/20/2023] [Indexed: 07/23/2023]
Abstract
Checkpoint inhibitors have revolutionized cancer treatment, but resistance remains a significant clinical challenge. Myeloid cells within the tumor microenvironment can modulate checkpoint resistance by either supporting or suppressing adaptive immune responses. Using an anti-PD-1-resistant mouse melanoma model, we show that targeting the myeloid compartment via CD40 activation and CSF1R blockade in combination with anti-PD-1 results in complete tumor regression in a majority of mice. This triple therapy combination was primarily CD40 agonist-driven in the first 24 hours after therapy and showed a similar systemic cytokine profile in human patients as was seen in mice. Functional single-cell cytokine secretion profiling of dendritic cells (DC) using a novel microwell assay identified a CCL22+CCL5+ IL12-secreting DC subset as important early-stage effectors of triple therapy. CD4+ and CD8+ T cells are both critical effectors of treatment, and systems analysis of single-cell RNA sequencing data supported a role for DC-secreted IL12 in priming T-cell activation and recruitment. Finally, we showed that treatment with a novel IL12 mRNA therapeutic alone was sufficient to overcome PD-1 resistance and cause tumor regression. Overall, we conclude that combining myeloid-based innate immune activation and enhancement of adaptive immunity is a viable strategy to overcome anti-PD-1 resistance.
Collapse
Affiliation(s)
- Irina Krykbaeva
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Kate Bridges
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - William Damsky
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut
| | - Gabriela A Pizzurro
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Amanda F Alexander
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Meaghan K McGeary
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Koonam Park
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut
| | - Viswanathan Muthusamy
- Yale Center for Precision Cancer Modeling, Yale School of Medicine, New Haven, Connecticut
| | - James Eyles
- Oncology Research and Early Development, AstraZeneca, Cambridge, United Kingdom
| | - Nadia Luheshi
- Oncology Research and Early Development, AstraZeneca, Cambridge, United Kingdom
| | - Noel Turner
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut
| | - Sarah A Weiss
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Kelly Olino
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut
| | - Susan M Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute of Biological Sciences, La Jolla, California
| | - Harriet M Kluger
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Kathryn Miller-Jensen
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut
| | - Marcus Bosenberg
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut
- Yale Center for Precision Cancer Modeling, Yale School of Medicine, New Haven, Connecticut
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
27
|
Wang RN, Yu Q, Wang XB, Zhu D, Li GL, Li ZX, Jiang W, Li W, Dang YJ. Bis(benzonitrile) dichloroplatinum (II) interrupts PD-1/PD-L1 interaction by binding to PD-1. Acta Pharmacol Sin 2023; 44:2103-2112. [PMID: 37193754 PMCID: PMC10545660 DOI: 10.1038/s41401-023-01092-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 04/10/2023] [Indexed: 05/18/2023]
Abstract
Checkpoint inhibitors such as PD-1/PD-L1 antibody therapeutics are a promising option for the treatment of multiple cancers. Due to the inherent limitations of antibodies, great efforts have been devoted to developing small-molecule PD-1/PD-L1 signaling pathway inhibitors. In this study we established a high-throughput AlphaLISA assay to discover small molecules with new skeletons that could block PD-1/PD-L1 interaction. We screened a small-molecule library of 4169 compounds including natural products, FDA approved drugs and other synthetic compounds. Among the 8 potential hits, we found that cisplatin, a first-line chemotherapeutic drug, reduced AlphaLISA signal with an EC50 of 8.3 ± 2.2 μM. Furthermore, we showed that cisplatin-DMSO adduct, but not semplice cisplatin, inhibited PD-1/PD-L1 interaction. Thus, we assessed several commercial platinum (II) compounds, and found that bis(benzonitrile) dichloroplatinum (II) disturbed PD-1/PD-L1 interaction (EC50 = 13.2 ± 3.5 μM). Its inhibitory activity on PD-1/PD-L1 interaction was confirmed in co-immunoprecipitation and PD-1/PD-L1 signaling pathway blockade bioassays. Surface plasmon resonance assay revealed that bis(benzonitrile) dichloroplatinum (II) bound to PD-1 (KD = 2.08 μM) but not PD-L1. In immune-competent wild-type mice but not in immunodeficient nude mice, bis(benzonitrile) dichloroplatinum (II) (7.5 mg/kg, i.p., every 3 days) significantly suppressed the growth of MC38 colorectal cancer xenografts with increasing tumor-infiltrating T cells. These data highlight that platinum compounds are potential immune checkpoint inhibitors for the treatment of cancers.
Collapse
Affiliation(s)
- Rui-Na Wang
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qian Yu
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiao-Bo Wang
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Di Zhu
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Guo-Long Li
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, China
| | - Zeng-Xia Li
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wei Jiang
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Wei Li
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, China.
| | - Yong-Jun Dang
- Key Laboratory of Metabolism and Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
28
|
Guo J, Wang S, Gao Q. An integrated overview of the immunosuppression features in the tumor microenvironment of pancreatic cancer. Front Immunol 2023; 14:1258538. [PMID: 37771596 PMCID: PMC10523014 DOI: 10.3389/fimmu.2023.1258538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/29/2023] [Indexed: 09/30/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies. It is characterized by a complex and immunosuppressive tumor microenvironment (TME), which is primarily composed of tumor cells, stromal cells, immune cells, and acellular components. The cross-interactions and -regulations among various cell types in the TME have been recognized to profoundly shape the immunosuppression features that meaningfully affect PDAC biology and treatment outcomes. In this review, we first summarize five cellular composition modules by integrating the cellular (sub)types, phenotypes, and functions in PDAC TME. Then we discuss an integrated overview of the cross-module regulations as a determinant of the immunosuppressive TME in PDAC. We also briefly highlight TME-targeted strategies that potentially improve PDAC therapy.
Collapse
Affiliation(s)
- Jinglong Guo
- Department of Cardiovascular Disease, the First Hospital of Jilin University, Changchun, China
| | - Siyue Wang
- Baylor College of Medicine, One Baylor Plaza, Houston, TX, United States
| | - Qi Gao
- Department of Cardiovascular Disease, the First Hospital of Jilin University, Changchun, China
| |
Collapse
|
29
|
Mahadevan KK, LeBleu VS, Ramirez EV, Chen Y, Li B, Sockwell AM, Gagea M, Sugimoto H, Sthanam LK, Tampe D, Zeisberg M, Ying H, Jain AK, DePinho RA, Maitra A, McAndrews KM, Kalluri R. Elimination of oncogenic KRAS in genetic mouse models eradicates pancreatic cancer by inducing FAS-dependent apoptosis by CD8 + T cells. Dev Cell 2023; 58:1562-1577.e8. [PMID: 37625403 PMCID: PMC10810082 DOI: 10.1016/j.devcel.2023.07.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/02/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023]
Abstract
Oncogenic KRASG12D (KRAS∗) is critical for the initiation and maintenance of pancreatic ductal adenocarcinoma (PDAC) and is a known repressor of tumor immunity. Conditional elimination of KRAS∗ in genetic mouse models of PDAC leads to the reactivation of FAS, CD8+ T cell-mediated apoptosis, and complete eradication of tumors. KRAS∗ elimination recruits activated CD4+ and CD8+ T cells and promotes the activation of antigen-presenting cells. Mechanistically, KRAS∗-mediated immune evasion involves the epigenetic regulation of Fas death receptor in cancer cells, via methylation of its promoter region. Furthermore, analysis of human RNA sequencing identifies that high KRAS expression in PDAC tumors shows a lower proportion of CD8+ T cells and demonstrates shorter survival compared with tumors with low KRAS expression. This study highlights the role of CD8+ T cells in the eradication of PDAC following KRAS∗ elimination and provides a rationale for the combination of KRAS∗ targeting with immunotherapy to control PDAC.
Collapse
Affiliation(s)
- Krishnan K Mahadevan
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Valerie S LeBleu
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Elena V Ramirez
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yang Chen
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bingrui Li
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amari M Sockwell
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mihai Gagea
- Department of Veterinary Medicine and Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hikaru Sugimoto
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lakshmi Kavitha Sthanam
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Desiree Tampe
- Department of Nephrology and Rheumatology, Göttingen University Medical Center, Georg August University, Göttingen, Germany
| | - Michael Zeisberg
- Department of Nephrology and Rheumatology, Göttingen University Medical Center, Georg August University, Göttingen, Germany
| | - Haoqiang Ying
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Abhinav K Jain
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ronald A DePinho
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anirban Maitra
- Department of Translational Molecular Pathology, Ahmad Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kathleen M McAndrews
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Bioengineering, Rice University, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
30
|
Laubach K, Turan T, Mathew R, Wilsbacher J, Engelhardt J, Samayoa J. Tumor-intrinsic metabolic reprogramming and how it drives resistance to anti-PD-1/PD-L1 treatment. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:611-641. [PMID: 37842241 PMCID: PMC10571065 DOI: 10.20517/cdr.2023.60] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/15/2023] [Accepted: 08/29/2023] [Indexed: 10/17/2023]
Abstract
The development of immune checkpoint blockade (ICB) therapies has been instrumental in advancing the field of immunotherapy. Despite the prominence of these treatments, many patients exhibit primary or acquired resistance, rendering them ineffective. For example, anti-programmed cell death protein 1 (anti-PD-1)/anti-programmed cell death ligand 1 (anti-PD-L1) treatments are widely utilized across a range of cancer indications, but the response rate is only 10%-30%. As such, it is necessary for researchers to identify targets and develop drugs that can be used in combination with existing ICB therapies to overcome resistance. The intersection of cancer, metabolism, and the immune system has gained considerable traction in recent years as a way to comprehensively study the mechanisms that drive oncogenesis, immune evasion, and immunotherapy resistance. As a result, new research is continuously emerging in support of targeting metabolic pathways as an adjuvant to ICB to boost patient response and overcome resistance. Due to the plethora of studies in recent years highlighting this notion, this review will integrate the relevant articles that demonstrate how tumor-derived alterations in energy, amino acid, and lipid metabolism dysregulate anti-tumor immune responses and drive resistance to anti-PD-1/PD-L1 therapy.
Collapse
Affiliation(s)
- Kyra Laubach
- Computational Oncology, AbbVie, South San Francisco, CA 94080, USA
- Immuno-Oncology, AbbVie, South San Francisco, CA 94080, USA
| | - Tolga Turan
- Computational Oncology, AbbVie, South San Francisco, CA 94080, USA
| | - Rebecca Mathew
- Immuno-Oncology, AbbVie, South San Francisco, CA 94080, USA
| | | | | | - Josue Samayoa
- Computational Oncology, AbbVie, South San Francisco, CA 94080, USA
| |
Collapse
|
31
|
Rudqvist NP, Charpentier M, Lhuillier C, Wennerberg E, Spada S, Sheridan C, Zhou XK, Zhang T, Formenti SC, Sims JS, Alonso A, Demaria S. Immunotherapy targeting different immune compartments in combination with radiation therapy induces regression of resistant tumors. Nat Commun 2023; 14:5146. [PMID: 37620372 PMCID: PMC10449830 DOI: 10.1038/s41467-023-40844-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 08/13/2023] [Indexed: 08/26/2023] Open
Abstract
Radiation therapy (RT) increases tumor response to CTLA-4 inhibition (CTLA4i) in mice and in some patients, yet deep responses are rare. To identify rational combinations of immunotherapy to improve responses we use models of triple negative breast cancer highly resistant to immunotherapy in female mice. We find that CTLA4i promotes the expansion of CD4+ T helper cells, whereas RT enhances T cell clonality and enriches for CD8+ T cells with an exhausted phenotype. Combination therapy decreases regulatory CD4+ T cells and increases effector memory, early activation and precursor exhausted CD8+ T cells. A combined gene signature comprising these three CD8+ T cell clusters is associated with survival in patients. Here we show that targeting additional immune checkpoints expressed by intratumoral T cells, including PD1, is not effective, whereas CD40 agonist therapy recruits resistant tumors into responding to the combination of RT and CTLA4i, indicating the need to target different immune compartments.
Collapse
Affiliation(s)
- Nils-Petter Rudqvist
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, 10065, USA
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson, Houston, TX, 77030, USA
- Department of Immunology, University of Texas MD Anderson, Houston, TX, 77030, USA
| | - Maud Charpentier
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Claire Lhuillier
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, 10065, USA
- Department of Immuno-Oncology, Sanofi, 94403, Vitry-sur-Seine, France
| | - Erik Wennerberg
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, 10065, USA
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, SM2 5NG, UK
| | - Sheila Spada
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Caroline Sheridan
- Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Xi Kathy Zhou
- Division of Biostatistics, Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Tuo Zhang
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Silvia C Formenti
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Jennifer S Sims
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Alicia Alonso
- Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, 10065, USA.
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
32
|
Xiao Z, Todd L, Huang L, Noguera-Ortega E, Lu Z, Huang L, Kopp M, Li Y, Pattada N, Zhong W, Guo W, Scholler J, Liousia M, Assenmacher CA, June CH, Albelda SM, Puré E. Desmoplastic stroma restricts T cell extravasation and mediates immune exclusion and immunosuppression in solid tumors. Nat Commun 2023; 14:5110. [PMID: 37607999 PMCID: PMC10444764 DOI: 10.1038/s41467-023-40850-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/14/2023] [Indexed: 08/24/2023] Open
Abstract
The desmoplastic stroma in solid tumors presents a formidable challenge to immunotherapies that rely on endogenous or adoptively transferred T cells, however, the mechanisms are poorly understood. To define mechanisms involved, here we treat established desmoplastic pancreatic tumors with CAR T cells directed to fibroblast activation protein (FAP), an enzyme highly overexpressed on a subset of cancer-associated fibroblasts (CAFs). Depletion of FAP+ CAFs results in loss of the structural integrity of desmoplastic matrix. This renders these highly treatment-resistant cancers susceptible to subsequent treatment with a tumor antigen (mesothelin)-targeted CAR T cells and to anti-PD-1 antibody therapy. Mechanisms include overcoming stroma-dependent restriction of T cell extravasation and/or perivascular invasion, reversing immune exclusion, relieving T cell suppression, and altering the immune landscape by reducing myeloid cell accumulation and increasing endogenous CD8+ T cell and NK cell infiltration. These data provide strong rationale for combining tumor stroma- and malignant cell-targeted therapies to be tested in clinical trials.
Collapse
Affiliation(s)
- Zebin Xiao
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Leslie Todd
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Li Huang
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Estela Noguera-Ortega
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Zhen Lu
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lili Huang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Meghan Kopp
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yue Li
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nimisha Pattada
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Wenqun Zhong
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Wei Guo
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John Scholler
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Maria Liousia
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Charles-Antoine Assenmacher
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carl H June
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Steven M Albelda
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ellen Puré
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
33
|
Xiao Z, Todd L, Huang L, Noguera-Ortega E, Lu Z, Huang L, Kopp M, Li Y, Pattada N, Zhong W, Guo W, Scholler J, Liousia M, Assenmacher CA, June CH, Albelda SM, Puré E. Desmoplastic stroma restricts T cell extravasation and mediates immune exclusion and immunosuppression in solid tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.13.536777. [PMID: 37090547 PMCID: PMC10120701 DOI: 10.1101/2023.04.13.536777] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The desmoplastic stroma in solid tumors presents a formidable challenge to immunotherapies that rely on endogenous or adoptively transferred T cells, however, the mechanisms are poorly understood. To define mechanisms involved, we treat established desmoplastic pancreatic tumors with CAR T cells directed to fibroblast activation protein (FAP), an enzyme highly overexpressed on a subset of cancer-associated fibroblasts (CAFs). Depletion of FAP+CAFs results in loss of the structural integrity of desmoplastic matrix. This renders these highly treatment-resistant cancers susceptible to subsequent treatment with a tumor antigen (mesothelin)-targeted CAR and to anti-PD1 antibody therapy. Mechanisms include overcoming stroma-dependent restriction of T cell extravasation and/or perivascular invasion, reversing immune exclusion, relieving T cell suppression, and altering the immune landscape by reducing myeloid cell accumulation and increasing endogenous CD8+ T cell and NK cell infiltration. These data provide strong rationale for combining tumor stroma- and malignant cell-targeted therapies to be tested in clinical trials.
Collapse
Affiliation(s)
- Zebin Xiao
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Leslie Todd
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Li Huang
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Estela Noguera-Ortega
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhen Lu
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lili Huang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Meghan Kopp
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yue Li
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nimisha Pattada
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wenqun Zhong
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wei Guo
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John Scholler
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maria Liousia
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Charles-Antoine Assenmacher
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carl H. June
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Steven M. Albelda
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ellen Puré
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
34
|
Herpels M, Ishihara J, Sadanandam A. The clinical terrain of immunotherapies in heterogeneous pancreatic cancer: unravelling challenges and opportunities. J Pathol 2023; 260:533-550. [PMID: 37550956 DOI: 10.1002/path.6171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 08/09/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common and aggressive type of pancreatic cancer and has abysmal survival rates. In the past two decades, immunotherapeutic agents with success in other cancer types have gradually been trialled against PDACs at different stages of cancer progression, either as a monotherapy or in combination with chemotherapy. Unfortunately, to this day, chemotherapy still prolongs the survival rates the most and is prescribed in clinics despite the severe side effects in other cancer types. The low success rates of immunotherapy against PDAC have been attributed most frequently to its complex and multi-faceted tumour microenvironment (TME) and low mutational burden. In this review, we give a comprehensive overview of the immunotherapies tested in PDAC clinical trials thus far, their limitations, and potential explanations for their failure. We also discuss the existing classification of heterogenous PDACs into cancer, cancer-associated fibroblast, and immune subtypes and their potential opportunity in patient selection as a form of personalisation of PDAC immunotherapy. © 2023 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Melanie Herpels
- Division of Molecular Pathology, Institute of Cancer Research, London, UK
- Department of Bioengineering, Imperial College London, London, UK
| | - Jun Ishihara
- Department of Bioengineering, Imperial College London, London, UK
| | - Anguraj Sadanandam
- Division of Molecular Pathology, Institute of Cancer Research, London, UK
- Centre for Global Oncology, Division of Molecular Pathology, Institute of Cancer Research, London, UK
- Centre for Translational Immunotherapy, Division of Radiotherapy and Imaging, Institute of Cancer Research, London, UK
| |
Collapse
|
35
|
Gautam SK, Batra SK, Jain M. Molecular and metabolic regulation of immunosuppression in metastatic pancreatic ductal adenocarcinoma. Mol Cancer 2023; 22:118. [PMID: 37488598 PMCID: PMC10367391 DOI: 10.1186/s12943-023-01813-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/23/2023] [Indexed: 07/26/2023] Open
Abstract
Immunosuppression is a hallmark of pancreatic ductal adenocarcinoma (PDAC), contributing to early metastasis and poor patient survival. Compared to the localized tumors, current standard-of-care therapies have failed to improve the survival of patients with metastatic PDAC, that necessecitates exploration of novel therapeutic approaches. While immunotherapies such as immune checkpoint blockade (ICB) and therapeutic vaccines have emerged as promising treatment modalities in certain cancers, limited responses have been achieved in PDAC. Therefore, specific mechanisms regulating the poor response to immunotherapy must be explored. The immunosuppressive microenvironment driven by oncogenic mutations, tumor secretome, non-coding RNAs, and tumor microbiome persists throughout PDAC progression, allowing neoplastic cells to grow locally and metastasize distantly. The metastatic cells escaping the host immune surveillance are unique in molecular, immunological, and metabolic characteristics. Following chemokine and exosomal guidance, these cells metastasize to the organ-specific pre-metastatic niches (PMNs) constituted by local resident cells, stromal fibroblasts, and suppressive immune cells, such as the metastasis-associated macrophages, neutrophils, and myeloid-derived suppressor cells. The metastatic immune microenvironment differs from primary tumors in stromal and immune cell composition, functionality, and metabolism. Thus far, multiple molecular and metabolic pathways, distinct from primary tumors, have been identified that dampen immune effector functions, confounding the immunotherapy response in metastatic PDAC. This review describes major immunoregulatory pathways that contribute to the metastatic progression and limit immunotherapy outcomes in PDAC. Overall, we highlight the therapeutic vulnerabilities attributable to immunosuppressive factors and discuss whether targeting these molecular and immunological "hot spots" could improve the outcomes of PDAC immunotherapies.
Collapse
Affiliation(s)
- Shailendra K Gautam
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
36
|
Lin HJ, Liu Y, Caroland K, Lin J. Polarization of Cancer-Associated Macrophages Maneuver Neoplastic Attributes of Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2023; 15:3507. [PMID: 37444617 DOI: 10.3390/cancers15133507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Mounting evidence links the phenomenon of enhanced recruitment of tumor-associated macrophages towards cancer bulks to neoplastic growth, invasion, metastasis, immune escape, matrix remodeling, and therapeutic resistance. In the context of cancer progression, naïve macrophages are polarized into M1 or M2 subtypes according to their differentiation status, gene signatures, and functional roles. While the former render proinflammatory and anticancer effects, the latter subpopulation elicits an opposite impact on pancreatic ductal adenocarcinoma. M2 macrophages have gained increasing attention as they are largely responsible for molding an immune-suppressive landscape. Through positive feedback circuits involving a paracrine manner, M2 macrophages can be amplified by and synergized with neighboring neoplastic cells, fibroblasts, endothelial cells, and non-cell autonomous constituents in the microenvironmental niche to promote an advanced disease state. This review delineates the molecular cues expanding M2 populations that subsequently convey notorious clinical outcomes. Future therapeutic regimens shall comprise protocols attempting to abolish environmental niches favoring M2 polarization; weaken cancer growth typically assisted by M2; promote the recruitment of tumoricidal CD8+ T lymphocytes and dendritic cells; and boost susceptibility towards gemcitabine as well as other chemotherapeutic agents.
Collapse
Affiliation(s)
- Huey-Jen Lin
- Department of Medical & Molecular Sciences, University of Delaware, Willard Hall Education Building, 16 West Main Street, Newark, DE 19716, USA
| | - Yingguang Liu
- Department of Molecular and Cellular Sciences, College of Osteopathic Medicine, Liberty University, 306 Liberty View Lane, Lynchburg, VA 24502, USA
| | - Kailey Caroland
- Department of Biochemistry and Molecular Biology, Molecular Medicine Graduate Program, Greenebaum Comprehensive Cancer Center, School of Medicine, University of Maryland, 108 N. Greene Street, Baltimore, MD 21201, USA
| | - Jiayuh Lin
- Department of Biochemistry and Molecular Biology, Molecular Medicine Graduate Program, Greenebaum Comprehensive Cancer Center, School of Medicine, University of Maryland, 108 N. Greene Street, Baltimore, MD 21201, USA
| |
Collapse
|
37
|
Laface C, Memeo R, Maselli FM, Santoro AN, Iaia ML, Ambrogio F, Laterza M, Cazzato G, Guarini C, De Santis P, Perrone M, Fedele P. Immunotherapy and Pancreatic Cancer: A Lost Challenge? Life (Basel) 2023; 13:1482. [PMID: 37511856 PMCID: PMC10381818 DOI: 10.3390/life13071482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Although immunotherapy has proved to be a very efficient therapeutic strategy for many types of tumors, the results for pancreatic cancer (PC) have been very poor. Indeed, chemotherapy remains the standard treatment for this tumor in the advanced stage. Clinical data showed that only a small portion of PC patients with high microsatellite instability/mismatch repair deficiency benefit from immunotherapy. However, the low prevalence of these alterations was not sufficient to lead to a practice change in the treatment strategy of this tumor. The main reasons for the poor efficacy of immunotherapy probably lie in the peculiar features of the pancreatic tumor microenvironment in comparison with other malignancies. In addition, the biomarkers usually evaluated to define immunotherapy efficacy in other cancers appear to be useless in PC. This review aims to describe the main features of the pancreatic tumor microenvironment from an immunological point of view and to summarize the current data on immunotherapy efficacy and immune biomarkers in PC.
Collapse
Affiliation(s)
- Carmelo Laface
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| | - Riccardo Memeo
- Unit of Hepato-Pancreatic-Biliary Surgery, "F. Miulli" General Regional Hospital, 70021 Acquaviva Delle Fonti, Italy
| | | | | | - Maria Laura Iaia
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| | - Francesca Ambrogio
- Section of Dermatology, Department of Biomedical Science and Human Oncology, University of Bari, 70124 Bari, Italy
| | - Marigia Laterza
- Division of Cardiac Surgery, University of Bari, 70124 Bari, Italy
| | - Gerardo Cazzato
- Department of Emergency and Organ Transplantation, Pathology Section, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Chiara Guarini
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| | - Pierluigi De Santis
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| | - Martina Perrone
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| | - Palma Fedele
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| |
Collapse
|
38
|
Papa V, Schepis T, Coppola G, Chiappetta MF, Del Vecchio LE, Rozera T, Quero G, Gasbarrini A, Alfieri S, Papa A. The Role of Microbiota in Pancreatic Cancer. Cancers (Basel) 2023; 15:3143. [PMID: 37370753 DOI: 10.3390/cancers15123143] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Pancreatic cancer (PC) has an unfavorable prognosis with few effective therapeutic options. This has led researchers to investigate the possible links between microbiota and PC. A disrupted gut microbiome can lead to chronic inflammation, which is involved in the pathogenesis of PC. In addition, some bacterial strains can produce carcinogens that promote the growth of cancer cells. Research has also focused on pancreatic and oral microbiota. Changes in these microbiota can contribute to the development and progression of PC. Furthermore, patients with periodontal disease have an increased risk of developing PC. The potential use of microbiota as a prognostic marker or to predict patients' responses to chemotherapy or immunotherapy is also being explored. Overall, the role of microbiota-including the gut, pancreatic, and oral microbiota-in PC is an active research area. Understanding these associations could lead to new diagnostic and therapeutic targets for this deadly disease.
Collapse
Affiliation(s)
- Valerio Papa
- Department of Translational Medicine and Surgery, School of Medicine, Catholic University, 00168 Rome, Italy
- Digestive Surgery Unit, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Tommaso Schepis
- Center for Diagnosis and Treatment of Digestive Diseases, CEMAD, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Gaetano Coppola
- Center for Diagnosis and Treatment of Digestive Diseases, CEMAD, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Michele Francesco Chiappetta
- Center for Diagnosis and Treatment of Digestive Diseases, CEMAD, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Livio Enrico Del Vecchio
- Center for Diagnosis and Treatment of Digestive Diseases, CEMAD, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Tommaso Rozera
- Center for Diagnosis and Treatment of Digestive Diseases, CEMAD, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Giuseppe Quero
- Department of Translational Medicine and Surgery, School of Medicine, Catholic University, 00168 Rome, Italy
- Digestive Surgery Unit, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, School of Medicine, Catholic University, 00168 Rome, Italy
- Center for Diagnosis and Treatment of Digestive Diseases, CEMAD, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Sergio Alfieri
- Department of Translational Medicine and Surgery, School of Medicine, Catholic University, 00168 Rome, Italy
- Digestive Surgery Unit, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Alfredo Papa
- Department of Translational Medicine and Surgery, School of Medicine, Catholic University, 00168 Rome, Italy
- Center for Diagnosis and Treatment of Digestive Diseases, CEMAD, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| |
Collapse
|
39
|
Sheban F. It takes two to tango: the role of tumor-associated macrophages in T cell-directed immune checkpoint blockade therapy. Front Immunol 2023; 14:1183578. [PMID: 37359522 PMCID: PMC10288188 DOI: 10.3389/fimmu.2023.1183578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Immunotherapy has revolutionized cancer care in the past decade. Treatment with immune checkpoint inhibitors has demonstrated promising clinical activity against tumors. However, only a subset of patients responds to these treatments, limiting their potential benefit. Efforts to understand, predict, and overcome the lack of response in patients, have thus far focused mainly on the tumor immunogenicity and the quantity and characteristics of tumor-infiltrating T cells, since these cells are the main effectors of immunotherapies. However, recent comprehensive analyses of the tumor microenvironment (TME) in the context of immune checkpoint blockade (ICB) therapy have revealed critical functions of other immune cells in the effective anti-tumor response, highlighting the need to account for complex cell-cell interaction and communication underlying clinical outputs. In this perspective, I discuss the current understanding of the crucial roles of tumor-associated macrophages (TAMs) in the success of T cell-directed immune checkpoint blockade therapies, as well as the present, and the future of clinical trials on combinatorial therapies targeting both cell types.
Collapse
|
40
|
Kim IK, Diamond M, Yuan S, Kemp S, Li Q, Lin J, Li J, Norgard R, Thomas S, Merolle M, Katsuda T, Tobias J, Politi K, Vonderheide R, Stanger B. Plasticity-induced repression of Irf6 underlies acquired resistance to cancer immunotherapy. RESEARCH SQUARE 2023:rs.3.rs-2960521. [PMID: 37398248 PMCID: PMC10312946 DOI: 10.21203/rs.3.rs-2960521/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Acquired resistance to immune checkpoint immunotherapy remains a critical yet incompletely understood biological mechanism. Here, using a mouse model of pancreatic ductal adenocarcinoma (PDAC) to study tumor relapse following immunotherapy-induced responses, we found that tumors underwent an epithelial-to-mesenchymal transition (EMT) that resulted in reduced sensitivity to T cell-mediated killing. EMT-transcription factors (EMT-TFs) ZEB1 and SNAIL function as master genetic and epigenetic regulators of this tumor-intrinsic effect. Acquired resistance was not due to immunosuppression in the tumor immune microenvironment, disruptions in the antigen presentation machinery, or altered expression of immune checkpoints. Rather, EMT was associated with epigenetic and transcriptional silencing of interferon regulatory factor 6 (Irf6), which renders tumor cells less sensitive to the pro-apoptotic effects of TNF-α. These findings show how resistance to immunotherapy in PDAC can be acquired through plasticity programs that render tumor cells impervious to T cell killing.
Collapse
|
41
|
Halbrook CJ, Lyssiotis CA, Pasca di Magliano M, Maitra A. Pancreatic cancer: Advances and challenges. Cell 2023; 186:1729-1754. [PMID: 37059070 PMCID: PMC10182830 DOI: 10.1016/j.cell.2023.02.014] [Citation(s) in RCA: 479] [Impact Index Per Article: 239.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/17/2023] [Accepted: 02/08/2023] [Indexed: 04/16/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest cancers. Significant efforts have largely defined major genetic factors driving PDAC pathogenesis and progression. Pancreatic tumors are characterized by a complex microenvironment that orchestrates metabolic alterations and supports a milieu of interactions among various cell types within this niche. In this review, we highlight the foundational studies that have driven our understanding of these processes. We further discuss the recent technological advances that continue to expand our understanding of PDAC complexity. We posit that the clinical translation of these research endeavors will enhance the currently dismal survival rate of this recalcitrant disease.
Collapse
Affiliation(s)
- Christopher J Halbrook
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA; Institute for Immunology, University of California, Irvine, Irvine, CA 92697, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, CA 92868, USA.
| | - Costas A Lyssiotis
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Marina Pasca di Magliano
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Anirban Maitra
- Department of Translational Molecular Pathology, Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
42
|
Montagne JM, Jaffee EM, Fertig EJ. Multiomics Empowers Predictive Pancreatic Cancer Immunotherapy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:859-868. [PMID: 36947820 PMCID: PMC10236355 DOI: 10.4049/jimmunol.2200660] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/23/2022] [Indexed: 03/24/2023]
Abstract
Advances in cancer immunotherapy, particularly immune checkpoint inhibitors, have dramatically improved the prognosis for patients with metastatic melanoma and other previously incurable cancers. However, patients with pancreatic ductal adenocarcinoma (PDAC) generally do not respond to these therapies. PDAC is exceptionally difficult to treat because of its often late stage at diagnosis, modest mutation burden, and notoriously complex and immunosuppressive tumor microenvironment. Simultaneously interrogating features of cancer, immune, and other cellular components of the PDAC tumor microenvironment is therefore crucial for identifying biomarkers of immunotherapeutic resistance and response. Notably, single-cell and multiomics technologies, along with the analytical tools for interpreting corresponding data, are facilitating discoveries of the systems-level cellular and molecular interactions contributing to the overall resistance of PDAC to immunotherapy. Thus, in this review, we will explore how multiomics and single-cell analyses provide the unprecedented opportunity to identify biomarkers of resistance and response to successfully sensitize PDAC to immunotherapy.
Collapse
Affiliation(s)
- Janelle M Montagne
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Elizabeth M Jaffee
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Elana J Fertig
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
43
|
Kurdi M, Mulla N, Malibary H, Bamaga AK, Fadul MM, Faizo E, Hakamy S, Baeesa S. Immune microenvironment of medulloblastoma: The association between its molecular subgroups and potential targeted immunotherapeutic receptors. World J Clin Oncol 2023; 14:117-130. [PMID: 37009528 PMCID: PMC10052334 DOI: 10.5306/wjco.v14.i3.117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/08/2023] [Accepted: 02/22/2023] [Indexed: 03/19/2023] Open
Abstract
Medulloblastoma (MB) is considered the commonest malignant brain tumor in children. Multimodal treatments consisting of surgery, radiation, and chemotherapy have improved patients’ survival. Nevertheless, the recurrence occurs in 30% of cases. The persistent mortality rates, the failure of current therapies to extend life expectancy, and the serious complications of non-targeted cytotoxic treatment indicate the need for more refined therapeutic approaches. Most MBs originating from the neurons of external granular layer line the outer surface of neocerebellum and responsible for the afferent and efferent connections. Recently, MBs have been segregated into four molecular subgroups: Wingless-activated (WNT-MB) (Group 1); Sonic-hedgehog-activated (SHH-MB) (Group 2); Group 3 and 4 MBs. These molecular alterations follow specific gene mutations and disease-risk stratifications. The current treatment protocols and ongoing clinical trials against these molecular subgroups are still using common chemotherapeutic agents by which their efficacy have improved the progression-free survival but did not change the overall survival. However, the need to explore new therapies targeting specific receptors in MB microenvironment became essential. The immune microenvironment of MBs consists of distinctive cellular heterogeneities including immune cells and none-immune cells. Tumour associate macrophage and tumour infiltrating lymphocyte are considered the main principal cells in tumour microenvironment, and their role are still under investigation. In this review, we discuss the mechanism of interaction between MB cells and immune cells in the microenvironment, with an overview of the recent investigations and clinical trials
Collapse
Affiliation(s)
- Maher Kurdi
- Department of Pathology, Faculty of Medicine, King Abdulaziz University, Rabigh 213733, Saudi Arabia
- Neuromuscular Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 213733, Saudi Arabia
| | - Nasser Mulla
- Department of Internal Medicine, Faculty of Medicine, Taibah University, Medina 213733, Saudi Arabia
| | - Husam Malibary
- Department of Internal Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah 213733, Saudi Arabia
| | - Ahmed K Bamaga
- Department of Paediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah 213733, Saudi Arabia
| | - Motaz M Fadul
- Department of Pathology, Faculty of Medicine, King Abdulaziz University, Rabigh 213733, Saudi Arabia
| | - Eyad Faizo
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Tabuk University, Tabuk 213733, Saudi Arabia
| | - Sahar Hakamy
- Neurmuscular Unit, Center of Excellence of Genomic Medicine, Jeddah 21423, Saudi Arabia
| | - Saleh Baeesa
- Department of Neuroscience, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| |
Collapse
|
44
|
O'Brien M, Ernst M, Poh AR. An intrasplenic injection model of pancreatic cancer metastasis to the liver in mice. STAR Protoc 2023; 4:102021. [PMID: 36638017 PMCID: PMC9846119 DOI: 10.1016/j.xpro.2022.102021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/05/2022] [Accepted: 12/23/2022] [Indexed: 01/14/2023] Open
Abstract
Here, we provide a protocol for an intrasplenic injection model to establish pancreatic tumors in the mouse liver. We describe the steps to inject tumor cells into mouse spleen and to perform a splenectomy, followed by animal recovery and end point analysis of tumors in the liver. This model allows rapid and reproducible tumor growth in a clinically relevant metastatic site, providing a platform to evaluate the efficacy of anti-cancer drugs. This technique can be expanded to other cancer cell lines. For complete details on the use and execution of this protocol, please refer to Poh et al. (2022).1.
Collapse
Affiliation(s)
- Megan O'Brien
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, VIC 3084, Australia
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, VIC 3084, Australia
| | - Ashleigh R Poh
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, VIC 3084, Australia.
| |
Collapse
|
45
|
Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) as an undetermined tool in tumor cells. Hum Cell 2023:10.1007/s13577-023-00893-8. [PMID: 36907978 DOI: 10.1007/s13577-023-00893-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/02/2023] [Indexed: 03/14/2023]
Abstract
In the tumor microenvironment, the function of T cells is a fate-changer for tumor progression. In the meantime, CD28 and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) are vital role players in the controlling activity of T cells as an activator and deactivator, respectively. In T cells in comparison to CD28, the molecular mechanism of CTLA-4 is unclear. In addition, despite the fact that most tumor cell types express CTLA-4, its role in tumor cells is not well understood and only few studies focused on the role of CTLA-4 signaling in tumor cells. It is illustrated that CTLA-4 signaling causes PD-L1 expression in tumor cells. However, numerous characteristics of CTLA-4 signaling in tumor cells are ambiguous and require to be described. In this article, we proposed that the CTLA-4 signaling during immunotherapy with anti-CTLA-4 antibodies may cause poor responses by patients. In addition, we attract attention to several fundamental questions regarding CTLA-4 signaling in tumor cells. Overall, the CTLA-4 signaling function and the related gaps about its role in tumor cells in the present review are challenged.
Collapse
|
46
|
Mahadevan KK, Dyevoich AM, Chen Y, Li B, Sugimoto H, Sockwell AM, McAndrews KM, Wang H, Shalapour S, Watowich SS, Kalluri R. Antigen-presenting type-I conventional dendritic cells facilitate curative checkpoint blockade immunotherapy in pancreatic cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.05.531191. [PMID: 36945457 PMCID: PMC10028824 DOI: 10.1101/2023.03.05.531191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Inflammation and tissue damage associated with pancreatitis can precede or occur concurrently with pancreatic ductal adenocarcinoma (PDAC). We demonstrate that in PDAC coupled with pancreatitis (ptPDAC), antigen-presenting type-I conventional dendritic cells (cDC1s) are specifically activated. Immune checkpoint blockade therapy (iCBT) leads to cytotoxic CD8 + T cell activation and eradication of ptPDAC with restoration of lifespan even upon PDAC re-challenge. Such eradication of ptPDAC was reversed following specific depletion of dendritic cells. Employing PDAC antigen-loaded cDC1s as a vaccine, immunotherapy-resistant PDAC was rendered sensitive to iCBT with a curative outcome. Analysis of the T-cell receptor (TCR) sequences in the tumor infiltrating CD8 + T cells following cDC1 vaccination coupled with iCBT identified unique CDR3 sequences with potential therapeutic significance. Our findings identify a fundamental difference in the immune microenvironment and adaptive immune response in PDAC concurrent with, or without pancreatitis, and provides a rationale for combining cDC1 vaccination with iCBT as a potential treatment option.
Collapse
|
47
|
Zhang Z, Xiong Q, Xu Y, Cai X, Zhang L, Zhu Q. The PD-L1 Expression and Tumor-Infiltrating Immune Cells Predict an Unfavorable Prognosis in Pancreatic Ductal Adenocarcinoma and Adenosquamous Carcinoma. J Clin Med 2023; 12:jcm12041398. [PMID: 36835933 PMCID: PMC9965576 DOI: 10.3390/jcm12041398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
The tumor microenvironment (TME) plays a vital role in the development, progression, and metastasis of pancreatic cancer (PC). The composition of the TME and its potential prognostic value remains to be fully understood, especially in adenosquamous carcinoma of pancreas (ASCP) patients. Immunohistochemistry was used to explore the clinical significance of CD3, CD4, CD8, FoxP3, and PD-L1 expression within the TME and to identify correlations with the prognosis of PC in a series of 29 patients with ASCP and 54 patients with pancreatic ductal adenocarcinoma (PDAC). Data from the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) were accessed to obtain the scRNA-seq data and transcriptome profiles. Seurat was used to process the scRNA-seq data, and CellChat was used to analyze cell-cell communication. CIBERSORT was used to approximate the constitution of tumor-infiltrating immune cell (TICs) profiles. Higher levels of PD-L1 were linked with a shorter overall survival in ASCP (p = 0.0007) and PDAC (p = 0.0594). A higher expression of CD3+ and CD8+ T-cell infiltration was significantly correlated with a better prognosis in PC. By influencing the composition of tumor-infiltrating immune cells (TICs), high levels of PD-L1 expression are linked with a shorter overall survival in ASCP and PDAC.
Collapse
|
48
|
Kemp SB, Cheng N, Markosyan N, Sor R, Kim IK, Hallin J, Shoush J, Quinones L, Brown NV, Bassett JB, Joshi N, Yuan S, Smith M, Vostrejs WP, Perez-Vale KZ, Kahn B, Mo F, Donahue TR, Radu CG, Clendenin C, Christensen JG, Vonderheide RH, Stanger BZ. Efficacy of a Small-Molecule Inhibitor of KrasG12D in Immunocompetent Models of Pancreatic Cancer. Cancer Discov 2023; 13:298-311. [PMID: 36472553 PMCID: PMC9900321 DOI: 10.1158/2159-8290.cd-22-1066] [Citation(s) in RCA: 187] [Impact Index Per Article: 93.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/09/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Mutations in the KRAS oncogene are found in more than 90% of patients with pancreatic ductal adenocarcinoma (PDAC), with Gly-to-Asp mutations (KRASG12D) being the most common. Here, we tested the efficacy of a small-molecule KRASG12D inhibitor, MRTX1133, in implantable and autochthonous PDAC models with an intact immune system. In vitro studies validated the specificity and potency of MRTX1133. In vivo, MRTX1133 prompted deep tumor regressions in all models tested, including complete or near-complete remissions after 14 days. Concomitant with tumor cell apoptosis and proliferative arrest, drug treatment led to marked shifts in the tumor microenvironment (TME), including changes in fibroblasts, matrix, and macrophages. T cells were necessary for MRTX1133's full antitumor effect, and T-cell depletion accelerated tumor regrowth after therapy. These results validate the specificity, potency, and efficacy of MRTX1133 in immunocompetent KRASG12D-mutant PDAC models, providing a rationale for clinical testing and a platform for further investigation of combination therapies. SIGNIFICANCE Pharmacologic inhibition of KRASG12D in pancreatic cancer models with an intact immune system stimulates specific, potent, and durable tumor regressions. In the absence of overt toxicity, these results suggest that this and similar inhibitors should be tested as potential, high-impact novel therapies for patients with PDAC. See related commentary by Redding and Grabocka, p. 260. This article is highlighted in the In This Issue feature, p. 247.
Collapse
Affiliation(s)
- Samantha B. Kemp
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Noah Cheng
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nune Markosyan
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rina Sor
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Il-Kyu Kim
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jill Hallin
- Mirati Therapeutics, Inc., San Diego, California
| | - Jason Shoush
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Liz Quinones
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Natalie V. Brown
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jared B. Bassett
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nikhil Joshi
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Salina Yuan
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Molly Smith
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - William P. Vostrejs
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kia Z. Perez-Vale
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Benjamin Kahn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Feiyan Mo
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Timothy R. Donahue
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, California
| | - Caius G. Radu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, California
| | - Cynthia Clendenin
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Robert H. Vonderheide
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ben Z. Stanger
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
49
|
Falcomatà C, Bärthel S, Schneider G, Rad R, Schmidt-Supprian M, Saur D. Context-Specific Determinants of the Immunosuppressive Tumor Microenvironment in Pancreatic Cancer. Cancer Discov 2023; 13:278-297. [PMID: 36622087 PMCID: PMC9900325 DOI: 10.1158/2159-8290.cd-22-0876] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/17/2022] [Accepted: 10/26/2022] [Indexed: 01/10/2023]
Abstract
Immunotherapies have shown benefits across a range of human cancers, but not pancreatic ductal adenocarcinoma (PDAC). Recent evidence suggests that the immunosuppressive tumor microenvironment (TME) constitutes an important roadblock to their efficacy. The landscape of the TME differs substantially across PDAC subtypes, indicating context-specific principles of immunosuppression. In this review, we discuss how PDAC cells, the local TME, and systemic host and environmental factors drive immunosuppression in context. We argue that unraveling the mechanistic drivers of the context-specific modes of immunosuppression will open new possibilities to target PDAC more efficiently by using multimodal (immuno)therapeutic interventions. SIGNIFICANCE Immunosuppression is an almost universal hallmark of pancreatic cancer, although this tumor entity is highly heterogeneous across its different subtypes and phenotypes. Here, we provide evidence that the diverse TME of pancreatic cancer is a central executor of various different context-dependent modes of immunosuppression, and discuss key challenges and novel opportunities to uncover, functionalize, and target the central drivers and functional nodes of immunosuppression for therapeutic exploitation.
Collapse
Affiliation(s)
- Chiara Falcomatà
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Stefanie Bärthel
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Günter Schneider
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- University Medical Center Göttingen, Department of General, Visceral and Pediatric Surgery, Göttingen, Germany
| | - Roland Rad
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Marc Schmidt-Supprian
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Dieter Saur
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
50
|
Velasco RM, García AG, Sánchez PJ, Sellart IM, Sánchez-Arévalo Lobo VJ. Tumour microenvironment and heterotypic interactions in pancreatic cancer. J Physiol Biochem 2023; 79:179-192. [PMID: 35102531 DOI: 10.1007/s13105-022-00875-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/18/2022] [Indexed: 12/27/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a disease with a survival rate of 9%; this is due to its chemoresistance and the large tumour stroma that occupies most of the tumour mass. It is composed of a large number of cells of the immune system, such as Treg cells, tumour-associated macrophages (TAMs), myeloid suppressor cells (MDCs) and tumour-associated neutrophiles (TANs) that generate an immunosuppressive environment by the release of inflammatory cytokines. Moreover, cancer-associated fibroblast (CAFs) provide a protective coverage that would difficult the access of chemotherapy to the tumour. According to this, new therapies that could remodel this heterogeneous tumour microenvironment, such as adoptive T cell therapies (ACT), immune checkpoint inhibitors (ICI), and CD40 agonists, should be developed for targeting PDA. This review organizes the different cell populations found in the tumour stroma involved in tumour progression in addition to the different therapies that are being studied to counteract the tumour.
Collapse
Affiliation(s)
- Raúl Muñoz Velasco
- Molecular Oncology Group, Faculty of Experimental Sciences, Biosanitary Research Institute, Francisco de Vitoria University, 28223, Pozuelo de Alarcón, Madrid, UFV, Spain
- Instituto de Investigación Hospital 12 de Octubre, Pathology Department, Av. Córdoba, s/n, 28041, Madrid, Spain
| | - Ana García García
- Molecular Oncology Group, Faculty of Experimental Sciences, Biosanitary Research Institute, Francisco de Vitoria University, 28223, Pozuelo de Alarcón, Madrid, UFV, Spain
- Instituto de Investigación Hospital 12 de Octubre, Pathology Department, Av. Córdoba, s/n, 28041, Madrid, Spain
| | - Paula Jiménez Sánchez
- Molecular Oncology Group, Faculty of Experimental Sciences, Biosanitary Research Institute, Francisco de Vitoria University, 28223, Pozuelo de Alarcón, Madrid, UFV, Spain
- Instituto de Investigación Hospital 12 de Octubre, Pathology Department, Av. Córdoba, s/n, 28041, Madrid, Spain
| | - Inmaculada Montanuy Sellart
- Molecular Oncology Group, Faculty of Experimental Sciences, Biosanitary Research Institute, Francisco de Vitoria University, 28223, Pozuelo de Alarcón, Madrid, UFV, Spain
| | - Víctor Javier Sánchez-Arévalo Lobo
- Molecular Oncology Group, Faculty of Experimental Sciences, Biosanitary Research Institute, Francisco de Vitoria University, 28223, Pozuelo de Alarcón, Madrid, UFV, Spain.
- Instituto de Investigación Hospital 12 de Octubre, Pathology Department, Av. Córdoba, s/n, 28041, Madrid, Spain.
| |
Collapse
|